2020-2021学年湖南省长沙市浏阳一中高一(下)第一次月考数学试卷 Word版含解析

合集下载

湖南省长沙市第一中学2020-2021学年高一下学期3月月考数学试题

湖南省长沙市第一中学2020-2021学年高一下学期3月月考数学试题

长沙市第一中学2020-2021学年度高一第二学期第一次阶段性检测数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x 2+2x ﹣8>0},B ={x |x ﹣a >0},若A B ⊆,则实数a 的取值范围为()A .(2,+∞)[2,+∞)C .(4,+∞)D .[4,+∞)2.△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,若A =105°,B =45°,b =22,则c 等于()A .1B .2C .3D .23.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ⊥n ”是“m ⊥α”的()A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件4.欧拉公式e i x =cos x +i sin x (i 是虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数之间的关系,被誉为“数学中的天桥”.根据欧拉公式,则复数3π8e 在复平面内对应的点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限5.如图,△C B A '''表示水平放置的△ABC 根据斜二测画法得到的直观图,B A ''在x '轴上,C B ''与x '轴垂直,且C B ''=2,则△ABC 的边AB 上的高为()A .2B .22C .4D .426.在△ABC 中,点D 是线段BC (不包括端点)上的动点,若AB =x AC y AD + ,则()A .y >1B .x >1C .x +y >1D .xy >17.若三棱锥的三条侧棱两两垂直,且三条侧棱长分别为1,2,3,,则其外接球的表面积是()A .π6B .π62C .π6D .π638.已知α,β∈(0,π),α≠β,若e α﹣e β=cos α﹣3cos β,则下列结论一定成立的是()A .cos α<cos βB .cos α>cos βC .sin α<sin βD .sin α>sin β二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知函数()x x x f 212+=,则()A .()343log 2=f B .()x f 的最小值为2C .()x f 为偶函数D .()x f 在(﹣∞,+∞)上单调递增10.下列命题中正确的是()A .若x ,y ∈C ,i 22i +=+y x ,则2==y x B .若复数z 1,z 2满足02221=+z z ,则021==z z C .若复数z 为纯虚数,则22z z ≠D .若复数z 满足21=-z ,则i +z 的最大值为22+11.已知a ,b ,c ∈R ,则下列命题中正确的是()A .若ab >0且a <b ,则a b 11<B .若a >b >0,则a b a b 11++C .若a <b ,则33b a <D .若0<b <a <1=,则ab b a <12.点M 是正方体ABCD ﹣A 1B 1C 1D 1中侧面正方形ADD 1A 1内的一个动点,则下面结论正确的是()A .满足CM ⊥AD 1的点M 的轨迹为线段B .点M 存在无数个位置满足直线M B 1∥平面DBC 1C .在线段AD 1上存在点M ,使异面直线B 1M 与CD 所成的角是30°D .若正方体的棱长为1,三棱锥B ﹣C 1MD 的体积的最大值为31三、填空题:本大题共4小题,每小题5分,共20分.13.已知i 为虚数单位,复数z 满足z (2﹣i )=2021i ,则z =.14.写出一个最小正周期为1的奇函数()x f =.15.如图,已知一个圆锥的底面半径与高均为2,且在这个圆锥中有一个内接圆柱.当此圆柱的侧面积最大时,此圆柱的体积等于.16.△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知ab Bc C 1cos cos =+,则A 的取值范围是.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知复数α=2﹣i ,β=m ﹣i ,m ∈R ,i 为虚数单位.(1)若|α+β|<2|α|,求实数m 的取值范围;(2)若β是关于x 的方程x 2﹣nx +10=0(n ∈R )的一个根,求实数m 与n 的值.18.如图,已知正四棱柱ABCD ﹣A 1B 1C 1D 1中,1=AB ,21=AA ,M 为DD 1的中点.(1)求证:D 1B ∥平面MAC ;(2)过D 1B 作正四棱柱ABCD ﹣A 1B 1C 1D 1的截面,使得截面平行于平面MAC ,在正四棱柱表面应该怎样画线?请说明理由,并求出截面的面积.19.在复平面内,O 是原点,OA ,OB 对应的复数分别为⎪⎭⎫ ⎝⎛++3π2cos i 2x ,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++3π2cos 2i 2sin 32x x ,i 为虚数单位.设函数()=x f OA OB ⋅ .(1)求函数()x f 的单调递增区间;(2)若函数()m x f y -=在区间⎥⎦⎤⎢⎣⎡2π0,上有2个零点,求实数m 的取值范围.20.如图1,在直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,且AB =AD =21CD =1.现以AD 为一边向梯形外作矩形ADEF ,然后沿边AD 将矩形ADEF 翻折,使DC ED ⊥,如图2.(1)求证:BC ⊥平面BDE ;(2)若多面体ABCDEF 的体积为32,求直线CD 与平面BCE 所成角的正弦值.21.从秦朝统一全国币制到清朝末年,圆形方孔铜钱(简称“孔方兄”)是我国使用时间长达两千多年的货币.如图1,这是一枚清朝同治年间的铜钱,其边框是由大小不等的两同心圆围成的,内嵌正方形孔的中心与同心圆圆心重合,正方形外部,圆框内部刻有四个字“同治重宝”.某模具厂计划仿制这样的铜钱作为纪念品,其小圆内部图纸设计如图2所示,小圆直径1厘米,内嵌一个大正方形孔,四周是四个全等的小正方形(边长比孔的边长小),每个正方形有两个顶点在圆周上,另两个顶点在孔边上,四个小正方形内用于刻铜钱上的字.设∠OAB=θ,五个正方形的面积和为S.(1)求面积S关于θ的函数表达式,并求tanθ的范围;(2)求面积S最小值,并求出此时tanθ的值.22.已知函数()xx x x f 432+-=,()x g =|log 2x |.(1)若关于x 的方程()n x g =有两个不等根α,β(α<β),求αβ的值;(2)是否存在实数a ,使得对任意m ∈[1,2],关于x 的方程4g 2(x )﹣4ag (x )+3a ﹣1﹣f (m )=0在区间[81,4]上总有3个不等根x 1,x 2,x 3,若存在,求出实数a 与x 1•x 2•x 3的取值范围;若不存在,说明理由.。

湖南省浏阳一中高一下学期段考试题(数学).doc

湖南省浏阳一中高一下学期段考试题(数学).doc

湖南省浏阳一中高一下学期段考试题(数学)一选择题(共10题,每小题3分) 1、.tan600°的值是( )A .33-B .33C .3-D .32、已知54cos -=α,53sin =α,那么α的终边所在的象限为( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3.已知平面向量)1,1(=→a ,)1,1(-=→b ,则向量2a b →→--的坐标是( )A.(31)--,B .(31)-, C.(10)-,D.(12)-, 4、若三点P (1,1),A (2,-4),B (x,-9)共线,则( )A 、x=-1B 、x=3C 、x=29D 、x=515、已知3a =23b =3a b ⋅=-,则a 与b 的夹角是( )A 、30B 、 60︒C 、0120 D 、150︒ 6、已知3a =,4b =,且()a kb +⊥()a kb -,则k 等于( )A 、34±B 、43±C 、53±D 、54±7函数1sin()26y x π=-的最小正周期是( ) A .12πB .πC .2π D. 4π8化简式子012sin 72sin 12cos 72cos + 的结果是( )A .2123BC 33D 39、函数)32sin(2π+=x y 的图象 ( )A .关于原点对称 B .关于y 轴对称C .关于点(-6π,0)对称D .关于直线x=6π对称10.已知图是函数2|)(|sin(2πϕϕω<+=x y )的图象上的一段,则( )A.6,1110πϕω==B.6,1110πϕω-==C.6,2πϕω== D.6,2πϕω-==二填空题(共5 小题,每小题3分)11、=075sin 30sin 15sin12、已知点(1,2)A ,点(4,5)B ,若2AP PB =,则点P 的坐标是 。

13====c b a c c b a 表示的表达式为用将已知,),6,5(),4,3(),2,1( 14若a (2)λ=,,b (35)=-,,且a 与b 的夹角为锐角,则λ的取值范围是 15函数f(x)=3cosx -sinx(0≤x ≤6π)的值域是三 解答题(共6题,55分,要求在答卷上写有适当的解答过程。

2020-2021长沙市长沙市第一中学高一数学下期中第一次模拟试卷含答案

2020-2021长沙市长沙市第一中学高一数学下期中第一次模拟试卷含答案

y
4 3
(x 1) ,即
4x 3y 4 0 ,选 D.
4.A
解析:A
【解析】
【分析】
将异面直线所成的角转化为平面角,然后由题意,找出与直线 a 垂直的直线 b 的平行线, 与直线 c 平行线的夹角.
【详解】
在直线 a 上任取一点 O ,过 O 做 c / /c ,则 a, c 确定一平面 ,
过 O 点做直线 b 的平行线 b ,所有平行线 b 在过 O 与直线 a 垂直的平面 内, 若存在平行线 b1 不在 内,则 b1 与 b 相交又确定不同于 的平面, 这与过一点有且仅有一个平面与一条直线垂直矛盾,所以 b 都在平面 内, 且 , l ,在直线 c 上任取不同于 O 的一点 P , 做 PP l 于 P ,则 PP , POP 为是 c 与 所成的角为 60 , 若 b l ,则 b ,b c ,若 b 不垂直 l 且不与 l 重合, 过 P 做 PA b ,垂足为 A ,连 PA ,则 b 平面 PPA,
11.已知实数 x, y 满足 2x y 5 0 ,那么 x2 y2 的最小值为( )
A. 5
B. 10
C. 2 5
D. 2 10
12.如图,网格纸上小正方形的边长为 1,粗实(虚)线画出的是某多面体的三视图,则
该多面体的体积为( )
A.64
B. 64 3
C.16
D. 16 3
二、填空题
13.给出下面四个命题:
由平面几何知识知,为使由点 (a, b) 向圆所作的切线长的最小,只需圆心 C(1, 2) 与直线
x y 3 0 上的点连线段最小,所以,切线长的最小值为 ( 1 2 3 )2 2 4 , 2
故选 B . 考点:圆的几何性质,点到直线距离公式.

2020-2021学年湖南省长沙市高一下第一次月考数学试卷及答案解析

2020-2021学年湖南省长沙市高一下第一次月考数学试卷及答案解析

2020-2021学年湖南省长沙市高一下第一次月考数学试卷一.选择题(共8小题,每小题5分,共40分) 1.已知复数z =i1+i ,则|z |=( ) A .√22B .√2C .12D .12.已知向量a →=(2,4),b →=(﹣1,1),则2a →−b →=( ) A .(3,9)B .(5,9)C .(3,7)D .(5,7)3.在△ABC 中,a 、b 分别为内角A 、B 的对边,如果B =30°,C =105°,a =4,则b =( ) A .2√2B .3√2C .√6D .5√64.若△ABC 中,cos A =12,BC =2,则BA →⋅BC →|AB →|+CA →⋅CB →|AC →|的最大值是( )A .2√2B .1+√3C .√3D .25.已知复数z 满足|z |﹣z =1+i (i 为虚数单位),则z =( ) A .iB .﹣iC .1﹣iD .1+i6.已知复数z =(a ﹣3i )(3+2i )(a ∈R )的实部与虚部的和为7,则a 的值为( ) A .1B .0C .2D .﹣27.已知向量a →=(1,2),b →=(﹣2,1),c →=(5,4),则以向量a →与b →为基底表示向量c →的结果是( ) A .135a →−65b → B .133a →−143b →C .−72a →−92b →D .143a →+133b →8.已知在△ABC 角A 、B 、C 的对边分别是a 、b 、c ,且a =4,b =3,c =2.则△ABC 的最大角的正弦值是( )A .−14B .√152C .−√154D .√154二.多选题(共4小题,每小题5分,共20分) 9.若(1+i )n =(1﹣i )n ,则n 可以是( ) A .104B .106C .108D .10910.已知向量a →=(m ,2),b →=(﹣4,3),下列说法正确的有( ) A .若a →∥b →,则m =−38B .若m =0,则a →与b →夹角的正弦值为45C .若a →⊥b →,则m =−32D .若|a →+b →|=13,则m =﹣8或1611.已知i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足|z |=0,则z =0B .若复数z 1,z 2满足|z 1+z 2|=|z 1﹣z 2|,则z 1•z 2=0C .若复数z =a +ai (a ∈R ),则z 可能是纯虚数D .若复数z 满足z 2=3+4i ,则z 对应的点在第一象限或第三象限12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列各组条件中使得△ABC 有唯一解的是( )A .a =3,c =2√2,cosC =23B .a =3,c =4,cosC =13C .a =1,b =2,sinB =23D .b =1,sinB =13,C =π3三.填空题(共4小题,每小题5分,共20分) 13.复数−1+4i 4+i= .14.设a →,b →为单位向量,且|a →−b →|=1,则|2a →+b →|= .15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2√7,b =2,A =60°,则c = .16.已知向量a →=(2sinx ,1),b →=(1,cosx),则a →⋅b →的最大值为 ;若a →∥b →且x ∈(﹣π,0),则x 的值为 .四.解答题(共6小题,第17题10分,第18-22题各12分,共70分) 17.已知复数z 1=1﹣2i ,z 2=3+4i ,i 为虚数单位.(1)若复数z 1+az 2在复平面上对应的点在第四象限,求实数a 的取值范围; (2)若z =z 1z 2,求z 的共轭复数z .18.已知向量a →=(2cos θ,sin θ),b →=(1,﹣2). (1)若a →∥b →,求3sinθ−2cosθ2sinθ+cosθ的值;(2)若θ=45°,2a →−t b →与√2a →+b →垂直,求实数t 的值.19.设复数z =a +bi (a ,b ∈R ).(其中i 为虚数单位,且i 2=﹣1) (1)若|z |2﹣2z =7+4i ,求z ;(2)若z =1+2i +3i 2+4i 3+5i 4+…+2020i 2019+2021i 2020,求a ﹣b 的值.20.已知△ABC 外接圆的半径为R ,其内角A ,B ,C 的对边长分别为a ,b ,c .若b 2−a 2a+c=2R sin C .(1)求角B 的大小;(2)若b =√7,c =2,求sin A 的值.21.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且sin 2B +sin 2C =sin 2A +2√33sin A•sin B sin C .(1)若b =√3c ,△ABC 的面积为3,求b 与c ; (2)若sin B +sin C =√62,求C .22.在①2a cos C+c=2b,②cos2B−C2−cosBcosC=34,③(sin B+sin C)2=sin2A+3sin B sin C这三个条件中任选一个补充在下面的横线上,并加以解答.在△ABC中,角A,B,C所对的边分别为a,b,c,且_____.(1)求角A的大小;(2)若a=2,求△ABC面积的最大值.2020-2021学年湖南省长沙市高一下第一次月考数学试卷参考答案与试题解析一.选择题(共8小题,每小题5分,共40分) 1.已知复数z =i1+i ,则|z |=( ) A .√22B .√2C .12D .1【解答】解:∵复数z =i 1+i =i(1−i)(1+i)(1−i)=i−i 21−i 2=1+i 2=12+12i ,∴|z |=√(12)2+(12)2=√22.故选:A .2.已知向量a →=(2,4),b →=(﹣1,1),则2a →−b →=( ) A .(3,9)B .(5,9)C .(3,7)D .(5,7)【解答】解:向量a →=(2,4),b →=(﹣1,1),则2a →−b →=(5,7). 故选:D .3.在△ABC 中,a 、b 分别为内角A 、B 的对边,如果B =30°,C =105°,a =4,则b =( ) A .2√2B .3√2C .√6D .5√6【解答】解:∵B =30°,C =105°, ∴A =45°, 由正弦定理可得:4sin45°=b sin30°,解得b =4×12√22=2√2.故选:A .4.若△ABC 中,cos A =12,BC =2,则BA →⋅BC →|AB →|+CA →⋅CB →|AC →|的最大值是( )A .2√2B .1+√3C .√3D .2【解答】解:∵BA →⋅BC →=|BA →||BC →|cosB ,CA →⋅CB →=|CA →||CB →|cosC ,|BC →|=|CB →|=2,∴BA →⋅BC →|AB →|+CA →⋅CB →|AC →|=2cosB +2cosC ,∵cosA =12,A +B +C =π,A 为△ABC 的内角, ∴sinA =√32,A =π3,∴2cos B +2cos C =2cos B ﹣2cos (A +B )=cos B +√3sinB =2sin(B +π6), ∵0<B <2π3, ∴0<sin(B +π6)≤1, ∴0<2siin(B +π6)≤2,则BA →⋅BC →|AB →|+CA →⋅CB →|AC →|的最大值为2.故选:D .5.已知复数z 满足|z |﹣z =1+i (i 为虚数单位),则z =( ) A .iB .﹣iC .1﹣iD .1+i【解答】解:设z =a +bi ,因为|z |﹣z =1+i ,所以√a 2+b 2−(a +bi)=1+i ,即√a 2+b 2−a −bi =1+i ,所以{√a 2+b 2−a =1−b =1,解得a =0,b =﹣1,所以z =﹣i . 故选:B .6.已知复数z =(a ﹣3i )(3+2i )(a ∈R )的实部与虚部的和为7,则a 的值为( ) A .1B .0C .2D .﹣2【解答】解:z =(a ﹣3i )(3+2i )=3a +2ai ﹣9i ﹣6i 2=3a +6+(2a ﹣9)i , 所以复数z 的实部与虚部分别为3a +6,2a ﹣9, 则3a +6+2a ﹣9=7,得a =2. 故选:C .7.已知向量a →=(1,2),b →=(﹣2,1),c →=(5,4),则以向量a →与b →为基底表示向量c →的结果是( ) A .135a →−65b →B .133a →−143b →C .−72a →−92b →D .143a →+133b →【解答】解:设c →=x a →+y b →,即(5,4)=x (1,2)+y (﹣2,1),则{x −2y =52x +y =4,得x =135,y =−65,即c →=135a →−65b →,故选:A .8.已知在△ABC 角A 、B 、C 的对边分别是a 、b 、c ,且a =4,b =3,c =2.则△ABC 的最大角的正弦值是( ) A .−14B .√152C .−√154D .√154【解答】解:最大角是A ,根据余弦定理:cosA =b 2+c 2−a 22bc =9+4−162×3×2=−14,且A ∈(0,π),∴sinA =√1−cos 2A =√1−116=√154. 故选:D .二.多选题(共4小题,每小题5分,共20分) 9.若(1+i )n =(1﹣i )n ,则n 可以是( ) A .104B .106C .108D .109【解答】解:因为(1+i )2=1+2i ﹣1=2i ,(1﹣i )2=1﹣2i ﹣1=﹣2i , 又(1+i )n =(1﹣i )n , 所以(1+i)n=[(1+i)2]n2=(2i)n2,(1−i)n=[(1−i)2]n2=(−2i)n2,故(2i)n2=(−2i)n 2,即2n 2⋅(i)n2=(−1)n 2⋅2n 2⋅(i)n 2,故当n2为偶数时,(1+i )n =(1﹣i )n .故选:AC .10.已知向量a →=(m ,2),b →=(﹣4,3),下列说法正确的有( ) A .若a →∥b →,则m =−38B .若m =0,则a →与b →夹角的正弦值为45C .若a →⊥b →,则m =−32D .若|a →+b →|=13,则m =﹣8或16 【解答】解:根据题意,依次分析选项:对于A ,向量a →=(m ,2),b →=(﹣4,3),若a →∥b →,则3m =﹣8,则m =−83,A 错误; 对于B ,若m =0,则a →=(0,2),则|a →|=2,|b →|=5,a →•b →=6,则cos <a →,b →>=610=35,则sin <a →,b →>=45,B 正确,对于C ,若a →⊥b →,则a →•b →=−4m +6=0,解可得m =32,C 错误,对于D ,a →=(m ,2),b →=(﹣4,3),则a →+b →=(m ﹣4,5),若|a →+b →|=13,即(m ﹣4)2+25=169,解可得m =﹣8或16,D 正确, 故选:BD .11.已知i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足|z |=0,则z =0B .若复数z 1,z 2满足|z 1+z 2|=|z 1﹣z 2|,则z 1•z 2=0C .若复数z =a +ai (a ∈R ),则z 可能是纯虚数D .若复数z 满足z 2=3+4i ,则z 对应的点在第一象限或第三象限 【解答】解:对于A ,|z |=0,则z =0,故A 正确;对于B ,设z 1=a 1+b 1i (a 1,b 1∈R ),z 2=a 2+b 2i (a 2,b 2∈R ).由|z 1+z 2|=|z 1﹣z 2|,得|z 1+z 2|2=(a 1+a 2)2+(b 1+b 2)2=|z 1﹣z 2|2=(a 1﹣a 2)2+(b 1﹣b 2)2,则a 1a 2+b 1b 2=0,而z 1•z 2=(a 1+b 1i )(a 2+b 2i )=a 1a 2﹣b 1b 2=2a 1a 2不一定等于0,故B 错误;对于C ,z =a +ai (a ∈R ),若a =0,则z 为实数,若a ≠0,则z 为虚数,z 不可能为纯虚数,故C 错误;对于D ,设z =a +bi (a ,b ∈R ),由z 2=3+4i ,得(a +bi )2=a 2﹣b 2+2abi ,∴{a 2−b 2=32ab =4,解得{a =2b =1,或{a =−2b =−1. ∴z 对应的点在第一象限或第三象限,故D 正确. 故选:AD .12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列各组条件中使得△ABC 有唯一解的是( )A .a =3,c =2√2,cosC =23B .a =3,c =4,cosC =13C .a =1,b =2,sinB =23D .b =1,sinB =13,C =π3【解答】解:对于A ,由余弦定理c 2=a 2+b 2﹣2ab cos C ,可得8=9+b 2﹣2×3×b ×23,即b 2﹣6b +1=0,解得b =3±2√2,可得△ABC 有两个解,故错误;对于B ,由余弦定理c 2=a 2+b 2﹣2ab cos C ,可得16=9+b 2﹣2×3×b ×13,即b 2﹣2b ﹣7=0,解得b =1+2√2,(负值舍去),可得△ABC 有一个解,故正确; 对于C ,由a <b ,sin B =23,可得cos B =±√53,可得角B 不唯一,故错误; 对于D ,由sin π3=√32>13,且B <2π3,故B 为锐角且有唯一解,可得△ABC 有一个解,故正确; 故选:BD .三.填空题(共4小题,每小题5分,共20分) 13.复数−1+4i 4+i= i .【解答】解:−1+4i 4+i=(−1+4i)(4−i)(4+i)(4−i)=−4+i+16i−4i 242+12=−4+17i+417=17i 17=i .故答案为:i .14.设a →,b →为单位向量,且|a →−b →|=1,则|2a →+b →|= √7 . 【解答】解:∵|a →|=|b →|=1,|a →−b →|=1, ∴(a →−b →)2=a →2−2a →⋅b →+b →2=2−2a →⋅b →=1, ∴2a →⋅b →=1,∴|2a →+b →|=√(2a →+b →)2=√4a →2+4a →⋅b →+b →2=√4+2+1=√7.故答案为:√7.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2√7,b =2,A =60°,则c = 6 .【解答】解:在△ABC 中,a =2√7,b =2,A =60°, 根据正弦定理,2√7sin60°=2sinB,∴sinB =√2114, ∴cosB =5√714,根据余弦定理,5√714=22⋅2√7⋅c,解得c =4或6,据题意知,B <60°,C >60°, ∴c >2√7, ∴c =6. 故答案为:6.16.已知向量a →=(2sinx ,1),b →=(1,cosx),则a →⋅b →的最大值为 √5 ;若a →∥b →且x ∈(﹣π,0),则x 的值为 −3π4. 【解答】解:a →⋅b →=2sin x +cos x =√5sin (x +φ),其中tan φ=12, ∵x ∈R ,∴a →⋅b →的最大值为√5. ∵a →∥b →,∴2sin x cos x =1,即sin2x =1, ∴2x =π2+2k π,即x =π4+k π,k ∈Z , ∵x ∈(﹣π,0),∴取k =﹣1,x =−3π4. 故答案为:√5;−3π4.四.解答题(共6小题,第17题10分,第18-22题各12分,共70分) 17.已知复数z 1=1﹣2i ,z 2=3+4i ,i 为虚数单位.(1)若复数z 1+az 2在复平面上对应的点在第四象限,求实数a 的取值范围; (2)若z =z1z 2,求z 的共轭复数z .【解答】解:(1)复数z 1=1﹣2i ,z 2=3+4i ,所以z 1+az 2=(1﹣2i )+a (3+4i )=(1+3a )+(4a ﹣2)i ; 由该复数在复平面上对应的点在第四象限, 所以{1+3a >04a −2<0,解得−13<a <12,所以实数a 的取值范围是(−13,12);(2)化简z =z 1z 2=1−2i 3+4i =(1−2i)(3−4i)32−(4i)2=−5−10i 25=−15−25i ,z 的共轭复数z =−15+25i .18.已知向量a →=(2cos θ,sin θ),b →=(1,﹣2). (1)若a →∥b →,求3sinθ−2cosθ2sinθ+cosθ的值;(2)若θ=45°,2a →−t b →与√2a →+b →垂直,求实数t 的值.【解答】解:(1)∵向量a →=(2cos θ,sin θ),b →=(1,﹣2),a →∥b →, ∴2cosθ1=sinθ−2,∴tan θ=﹣4, ∴3sinθ−2cosθ2sinθ+cosθ=3tanθ−22tanθ+1=3×(−4)−22×(−4)+1=2.(2)∵θ=45°,∴a →=(√2,√22), ∴2a →−t b →=(2√2−t ,√2+2t ),√2a →+b →=(3,﹣1), ∵2a →−t b →与√2a →+b →垂直,∴(2a →−t b →)•(√2a →+b →)=(2√2−t )×3+(√2+2t )×(﹣1)=0, 解得t =√2.19.设复数z =a +bi (a ,b ∈R ).(其中i 为虚数单位,且i 2=﹣1) (1)若|z |2﹣2z =7+4i ,求z ;(2)若z =1+2i +3i 2+4i 3+5i 4+…+2020i 2019+2021i 2020,求a ﹣b 的值. 【解答】解:(1)由已知可得,a 2+b 2﹣2a +2bi =7+4i ,∴{a 2+b 2−2a =72b =4, 解之得{a =3b =2,或{a =−1b =2,∴z =3+2i 或z =﹣1+2i(2)由复数相等的性质,可知a =1−3+5−7+9−11+⋯−2019+2021=1+2+2+⋯+2︸505个=1011,b =2−4+6−8+10−12+⋯+2018−2020=−(2+2+⋯+2)︸505个=−1010.∴a ﹣b =2021.另解:z =1+2i +3i 2+4i 3+5i 4+…+2020i 2019+2021i 2020① ∴zi =1i +2i 2+3i 3+4i 4+5i 5+…+2020i 2020+2021i 2021②∴①﹣②得:z (1﹣i )=1+i +i 2+i 3+i 4+…+i 2020﹣2021i 2021=1﹣2020i ∴z =1−2021i 1−i =(1−2021i)(1+i)(1−i)(1+i)=2022−2020i2=1011−1010i , ∴a =1011,b =﹣1010, ∴a ﹣b =2021.20.已知△ABC 外接圆的半径为R ,其内角A ,B ,C 的对边长分别为a ,b ,c .若b 2−a 2a+c=2R sin C .(1)求角B 的大小;(2)若b =√7,c =2,求sin A 的值.【解答】解:(1)因为△ABC 外接圆的半径为R ,由正弦定理可得c sinC=2R ,所以b 2−a 2a+c=c ,整理可得:c 2+a 2﹣b 2=﹣ac ,所以cos B =a 2+c 2−b 22ac =−ac 2ac =−12, 因为B ∈(0,π), 可得B =2π3. (2)因为B =2π3,b =√7,c =2, 所以由正弦定理b sinB=c sinC,可得sin C =c⋅sinB b=√217, 因为c <b ,C 为锐角,可得cos C =√1−sin 2C =2√77,所以sin A =sin (B +C )=sin B cos C +cos B sin C =√32×2√77+(−12)×√217=√2114. 21.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且sin 2B +sin 2C =sin 2A +2√33sin A•sin B sin C .(1)若b =√3c ,△ABC 的面积为3,求b 与c ; (2)若sin B +sin C =√62,求C . 【解答】解:由sin 2B +sin 2C =sin 2A +2√33sin A •sin B sin C 得,b 2+c 2﹣a 2=2√33bc sin A =2bc cos A , 故√33sinA =cosA ,即tan A =√3, 由A 为三角形内角得A =π3,因为b =√3c ,△ABC 的面积为S =3=12bc ×√32=√34×√3c 2,故c =2,b =2√3; (2)因为A =π3, 故sin B +sin C =sin C +sin (2π3−C )=32sinC +√32cosC =√62, 即√32sinC +12cosC =√22, 所以sin (C +π6)=√22,由C 为三角形内角得,C =π12. 22.在①2a cos C +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sin B +sin C )2=sin 2A +3sin B sin C 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 _____. (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.【解答】解:(1)选①,由正弦定理得2sin A cos C +sin C =2sin B , 所以2sin A cos C +sin C =2sin (A +C )=2(sin A cos C +cos A sin C ),即sin C (2cos A ﹣1)=0,又C ∈(0,π),所以sin C >0,所以cosA =12, 又A ∈(0,π),从而得A =π3. 选②,因为cos 2B−C2−cosBcosC =1+cos(B−C)2−cosBcosC =1−cosBcosC+sinBsinC2=1−cos(B+C)2=34,所以cos(B +C)=−12,cosA =−cos(B +C)=12,又因为A ∈(0,π),所以A =π3. 选③因为(sin B +sin C )2=sin 2A +3sin B sin C , 所以sin 2B +sin 2C +2sin B sin C =sin 2A +3sin B sin C , 即sin 2B +sin 2C ﹣sin 2A =sin B sin C , 所以由正弦定理得b 2+c 2﹣a 2=bc ,由余弦定理知cosA =b 2+c 2−a 22bc=12,因为A∈(0,π),所以A=π3.(2)由(1)得A=π3,又a=2,由余弦定理a2=b2+c2﹣2bc cos A=b2+c2﹣ab≥2bc﹣bc=bc,所以bc≤4,当且仅当b=c=2时取得等号,S¡÷ABC=12bcsinA≤12×4×√32=√3,所以ABC面积的最大值为√3.。

湖南省浏阳一中高三数学第一次月考试题解析 文.doc

湖南省浏阳一中高三数学第一次月考试题解析 文.doc

湖南省浏阳一中高三第一次月考文科数学试题(时间:1;满分:150分)【试题总体说明】本套试题覆盖知识面较广,题型新颖,难度不大,内容紧扣大纲,是一轮复习中难得的一套好题。

一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填在答卷上)1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞) 答案:D解析:.y =log 2x -2的定义域满足⎩⎪⎨⎪⎧log 2x -2≥0,x >0,解这个不等式得x ≥42.设集合A ={(x ,y ) | 22134x y +=},B ={(x ,y )|y =2x },则A ∩B 的子集的个数是( ) A .1 B .2C .3D .4 答案:D解析:集合A 中的元素是焦点在y 轴上的椭圆上的所有点,集合B 中的元素是指数函数y =2x 图象上的所有点,作图可知A ∩B 中有两个元素,∴A ∩B 的子集的个数是22=4个,故选D.3.已知全集I =R ,若函数f (x )=x 2-3x +2,集合M ={x |f (x )≤0},N ={x |()f x '<0},则M ∩∁I N =( )A .[32,2]B .[32,2)C .(32,2]D .(32,2)答案:A解析:由f (x )≤0解得1≤x ≤2,故M =[1,2];()f x '<0,即2x -3<0,即x <32,故N =(-∞,32),∁I N =[32,+∞).故M ∩∁I N =[32,2].4.设f (x )是R 上的奇函数,当x >0时,f (x )=2x+x ,则当x <0时,f (x )=( )A .-(-12)x -xB .-(12)x+xC .-2x -xD .-2x+x 答案:B解析:当x <0时,则-x >0,∴f (-x )=2-x-x .又f (x )为奇函数,∴f (x )=-f (-x )=-(12)x+x .故选B.5.下列命题①∀x ∈R ,x 2≥x ;②∃x ∈R ,x 2≥x ;③4≥3;④“x 2≠1”的充要条件是“x ≠1或x ≠-1”.其中正确命题的个数是( )A .0B .1C .2D .36. 已知下图(1)中的图像对应的函数为()x f y =,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是( )A .()x f y = B .()x f y = C .()x f y -= D .()x f y -=答案:D解析:可用排除法,已知答案A 对应的函数图象应该是关于y 轴对称,且和图(1)中y 轴右侧的图像一致,故排除;答案B 中函数不是偶函数,故排除;但答案C 对应图像在x →+∞时,图像应该在x 轴的下方,故排除。

湖南浏阳一中高一下学期第一次月考试卷

湖南浏阳一中高一下学期第一次月考试卷

2020-2021学年湖南浏阳一中高一下学期第一次月考试卷学校:___________姓名:___________班级:___________考号:___________一、单项选择1.A former CCTV presenter ________ Chai Jing has released a documentary “Under the Dome”, which is inspired by her sick daughter.A.called B.callingC.calls D.is called2.Studies indicate that people are more _______ to suffer from back problems if they sit before computer screens for long hours.A.possible B.likely C.sure D.certain 3.The film star wears sunglasses. ________, he can go shopping without being recognized by fans.A.Therefore B.HoweverC.Otherwise D.Besides4.My parents always ________ great importance ______ receiving good education. A.pay; back B.apply; toC.attach; to D.get; across5.A new subway ________ in Changsha and it will be open to traffic when completed next year.A.has built B.has been builtC.is building D.is being built6.The last bus _________ two minutes before I arrived at the bus stop. What a pity!A.left B.has leftC.was leaving D.had left7.It was after he had read the requirements _______ Mr. Black realized the task was too difficult to be finished.A.when B.that C.which D.what8.I’d appreciate _______ if you could let me know in advance whether you will come or not. A.it B.you C.one D.what9.___________ seems hard to believe is that the bird the officer uses is the same bird often seen in public parks----the pigeons.A.What B.WhateverC.Which D.That10.At school, some students are active, ______ some are shy, yet they can be good friendswith one another.A.while B.although C.since D.thus11.Human beings are different from animals _________ they have languages.A.where B.in thatC.in which D.for which12.----That is ________ you spent your summer holiday, isn’t it?---- That’s right.A.where B.which C.what D.if13.By improving reading skills, you can read faster and understand more of ______ youread.A.that B.which C.what D.how14.Mary is being punished by the teacher. That is _______ she broke the school rules.A.why B.because ofC.the reason why D.because15.Do you know ______ tomorrow?A.when does Tom come homeB.when Tom come homeC.when will Tom come homeD.when Tom will come home二、完形填空Every time I passed boys who were playing basketball, I stopped to silently watch them. I really envied(羡慕) them. But as a girl, I once thought I could 16 play basketball.I like playing basketball though I'm not good at it. I've had a basketball sinceI was a child. At first, I could play freely because no one when I wasjust a kid. But as I grew up it seemed harder and harder for me to enjoy basketball.At school, it was always the boys who played basketball during PE classes. Thegirls were 17 allowed to play volleyball or badminton.My parents did not 18 me play basketball at home. "Basketball is notfit for girls," they said. However, I still went to play basketball with myfriends even though the boys 19 at me on the court as if I were an alien.I was feeling ___ and had lost hope of playing basketball. Unexpectedly, something changed my first day of high school. I made some friends who also enjoyed playing basketball. They 20 me to get back to the court.One of them told me with a smile, "Go your own 21 , let others talk."This girl would always play basketball with me. Even the boy who sat next tome in class talked about 22 with me almost every day.I've heard the NBA star Tracy McGrady say, "Nothing is impossible." It is froman advertisement on TV. I have come to ___ that life is just like playing basketball. You should have an ___ . After that, just be confident and 23 going. Never give up and you'll make it sooner or later.16.A. always B. often C. ever D. never17.A. struggled B. interrupted C. enjoyed D. joined18.A. only B. almost C. hardly D. not19.A. allow B. agree C. let D. permit20.A. looked B. glared C. glanced D. stared21.A. up B. down C. excited D. satisfied22.A. encouraged B. forbade C. ensured D. explored23.A. effort B. way C. business D. direction24.A. basketball B. sports C. interests D. dreams25.A. realize B. decide C. grasp D. recognize26.A. idea B. aim C. opinion D. effort27.A. insist B. remain C. keep D. last三、用单词的适当形式完成短文Shopping habits in America have changed a lot over the past few decades. Early28.the 1900smost American towns and cities had a Main Street. Main Street was always in29.heart of atown. This street was built with many stores on both sides. Shoppers walked into the stores tolook30.what they needed.31., a change began to take place in the 1950s. Too many cars had crowded into Main Street while too32.parking places were available(可用的) toshoppers.33.the streets were crowded, shop owners began34.look with interest at the open space from the city limits. When the first shopping center was built in the United States, an open space became35.they first had considered.四、阅读选择King’s College Summer School is an annual(每年的) training program for high school students at all levels who want to improve their English. Courses are given by the teachers of King’s College and other colleges in New York. Trips to museums and culture centers are also organized. This year’s summer school will be from July 25 to August 15.More information is as follows:Application (申请) date●Students in New York should send their applications before July 18, 2015.●Students of other cities should send their applications before July 16, 2015.●Foreign students should send their applications before July 10, 2015.Courses●English LanguageSpoken English: 22 hoursReading and Writing: 10 hours●American History: 16 hours●American Culture: 16 hoursSteps●A letter of self-introduction●A letter of recommendation(推荐)The letters should be written in English with all the necessary information.Cost●Daily lessons: $200●Sports and activities: $100●Travels: $200●Hotel service: $400You may choose to live with your friends or relatives in the same city.Please write to:Thompson, Sanders1026 King’s StreetNew York, NY 10016, USAE-mail: KC-Summer-School@ yahoo. com36.How many kinds of courses are offered?A.2B.3C.4D.537.If you are to live with your relatives in New York, you will have to pay the school_______.A.$200B.$400C.$500D.$900 38.Which of the following is true about King’s College Summer School?A.Only top students can take part in the program.B.King’s College Summer School is run every other year.C.Visits to museums and culture centers are part of the program.D.Only the teachers of King’s College give courses.39.You can most probably read the text in ________.A.a newspaper B.a travel guideC.a textbook D.a telephone book40.What information can you get from the text?A.The program will last two months.B.You can write to Thompson only in English.C.As a Chinese student, you can send your application on July 14, 2015.D.You can get in touch with the school by e-mail or by telephone.Michael Jackson is one of the world's best singers. Michael Jackson was born in the middle west of the city of Gary, Indiana, in 1958. He began singing with his four brothers. They called the group "The Jackson Five". The group became very popular after appearing on a television program. They started singing in 1965, and became popular soon. In 1970 the group made their first record with the name of "I Want You Back". It was very popular. One of their hit records was "Never Say Goodbye".Michael was good at dancing as well as singing, such as his dance moves and moon walking. He was asked to act in a film in 1978 for the first time, and in the same year he made a record on his own, which sold eight millioncopiesall over the world.Michael nearly didn't go out because he was too famous. Once his fans went off in a faint(晕倒) when they saw him at the concert. No one can do it by now. He lived in a large house and kept lots of animals. He never ate meat. He often raised money for Charity. This made him win the Guinness World Records(吉尼斯世界记录)in 2006. He died on June 25th, 2009, but he would live in our heart forever.41.How many people are there in Michael's group except him?A.Three.B.Five.C.Four.D.Six. 42.What's the name of their first record?A."Never Say Goodbye"B."See You, See Me"C."I Want You Back"D."On the World"43.The underlined word "copies" means ___________ in Chinese.A.抄写B.张/份C.复制D.模仿44.Michael was good at ____________according to the passage.A.rock music B.street danceC.playing the piano D.moon walking45.Why did Michael have to stay at home most of time?A.Because he had no friends.B.Because he often felt lonely.C.Because he was too famous.D.Because his company asked him to do so.Children start out as natural scientists, eager to look into the world around them. Helping them enjoy science can be easy; there’s no need for a lot of scientific terms or expensive lab equipment. You only have to share your children’s curiosity(好奇).Firstly, listen to their questions. I once visited a classroom of seven-year-olds to talk about science as a job. The children asked me “textbook questions” about teaching, salary(薪水) and whether I liked my job. When I finished answering, we sat facing one another in silence. Finally I said, “Now that we’re finished with your lists, do you have questions of your own about science?” After a long pause, a boy raised his hand, “Have you ever seen a grasshopper(蚱蜢) eat? When I try eating leaves like that, I get a stomachache. Why?” This began a set of questions that lasted nearly two hours.Secondly, give them time to think. Studies over the past 30 years have shown that, after asking a question, adults often wait only one second or less for an answer, no time for a childto think. When adults increase their “wait time” to three seconds or more, children give more logical(符合逻辑的), complete and creative answers.Thirdly, watch your language. Once you have a child involved in a science discussion, don’t jump in with “That’s right” or “Very good”. These words work well when you encourage their good behavior(行为). But in talking about science, quick praise can mean that discussion is over. Instead, keep things going by saying “That’s interesting” or “I’d never thought of it that way before”, or coming up with more questions or ideas.Lastly, show and don’t tell. Real-life impressions of nature are far more impressive than any lesson children can learn from a book or a television program. Let children look at their fingertips through a magnifying glass(放大镜), and they’ll understand why you want them to wash before dinner. Rather than saying that water evaporates(蒸发), set a pot of water to boil and let them watch the water level drop.46.According to the passage, children are natural scientists, and to raise their interest, the most important thing for adults to do is _______.A.to let them see the world aroundB.to share the children’s curiosityC.to explain difficult phrases about scienceD.to supply the children with lab equipment47.In the second paragraph, “your lists” could best be replaced by ______.A.any questionsB.any problemsC.questions from textbooksD.any number of questions48.According to the passage, children can answer questions in a more logical, complete and creative way if adults ________.A.ask them to answer quicklyB.wait for one or two seconds after a questionC.tell them to answer the next dayD.wait at least for three seconds after a question49.In which paragraph does the author tell us what to say to encourage children in a science discussion?A.The second B.The thirdC.The fourth D.The fifth50.The author mentions all of the following techniques(技巧) for adults to share with their children’s curiosity except that adults should ________.A.tell their children stories instead of reciting (背诵) factsB.offer their children chances to see things for themselvesC.be patient enough when their children answer questionsD.encourage their children to ask questions of their own五、任务型阅读Everybody gets stressed from time to time. Different people feel stress in different ways. You can try taking these five steps the next time to overcome stress:Step one: get support. When you need help, reach out to the people who care about you. Talk to a trusted adult, such as a parent, or a coach. And don't forget about your friends. They might be worried about the same test or have had similar problems.Step two: don't freak out(崩溃)! Notice your feelings, and name them — for example, "I am so angry!" And say or think about why you feel that way. Find a way to calm down and get past the upset feelings and find a way to express them. Do breathing exercises, listen to music, or do whatever helps you shift to a better mood.Step three: don't take it out on yourself. Sometimes when kids are stressed and upset they take it out on themselves. You should be kind to yourself and ask for the helping hand or pat on the back that you need — and deserve — to get you through the tough situation you're facing.Step four: try to solve the problem. After you're calm and you have support from adults and friends, it's time to get down to business. You need to figure out what the problem is. Even if you can't solve all of it, maybe you can begin by solving a piece of it.Step five: be positive --- most stress is temporary. It may not seem like it when you're in the middle of a stressful situation, but stress does go away, often when you figure out the problem and start working on solving it.These five steps aren't magic, and you might have to do some steps more than once, but they do work.Turning to people who 52.________Talking to a 53.______ and following theirexperiencesNoticing your feelings, and54.________Finding a way to express themDoing something to help you shift to 55._______Being kind to yourselfAsking for help and getting rid of 57.________you'refacingGetting down to business and 59.________ whattheproblem isSolving it60._________Most stressful situation is temporary and willgo away.六、阅读表达In the animal kingdom, weakness can bring about attack from other animals. This sometimes happens to humans, too. But I have found that my weakness brings out the kindness in people. I see it every day when people hold doors for me, pour cream into my coffee, or help me to put on my coat. And I have found that it makes them happy.From my wheelchair experience, I see the best in people. Often, we try every way to avoid showing our weakness, which includes a lot of pretending. But when we stop pretending we’re strong, people around us will show their kindness. Last month, when I was driving home on a busy highway, I suddenly felt sick and drove very slowly. People behind me began to speed, horn(鸣喇叭) or even shoutat me. At the moment I decided to do something. I put on the car flashlight. No more angry shouts and no more horns! I knew when I put on my flashlights, I was saying to other drivers, “I have a problem here. I have already done my best.”Several times, I saw drivers who wanted to pass. They could not get around me because of the stream of passing traffic. But instead of getting impatient and angry, they waited, knowing the drivers in front of them was in some way weak.Sometimes situations call for us to act strong and brave even when we don’t feel that way. But those seldom happen. More often, it would be better if we don’t pretend we feel strong when we actually feel weak.61.How do people feel when they offer their help?(No more than 3 words)___________________________________________________________________________ ________________62.What reactions(反应) did other drivers have when the author drove very slowly?(No more than 5 words)___________________________________________________________________________ ________________63.Why did other drivers behave differently when the author put on the car flashlights?(No more than 8 words)___________________________________________________________________________ ________________64.What did the author advise us to do at last? (No more than 9 words)七、提纲类作文65.看图写作:假设你是XX中学高一学生李华,下面四幅图描述了上周日你放学回家的经历。

2023-2024学年湖南省长沙市第一中学高一下学期第一次阶段性检测数学试题+答案解析(附后)

2023-2024学年湖南省长沙市第一中学高一下学期第一次阶段性检测数学试题+答案解析(附后)

一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求2023-2024学年湖南省长沙市第一中学高一下学期第一次阶段性检测数学试题的。

1.已知集合,,则( )A. B.C.D.2.已知,则( )A.B. C.D.3.下列四个函数中,以为最小正周期,且在区间上单调递减的是( )A. B.C.D.4.函数的图象与直线为常数的交点最多有( )A. 1个B. 2个C. 3个D. 4个5.已知向量,不共线,且,,若与共线,则实数x 的值为A. 1B.C. 1或D.或6.下列命题:①若,则②若,,则③的充要条件是且④若,,则⑤若A 、B 、C 、D 是不共线的四点,则是四边形ABCD 为平行四边形的充要条件.其中真命题的个数是( )A. 2B. 3C. 4D. 57.如图所示,已知正方形ABCD 的边长为1,,,,则向量的模为( )A. B. 2 C. D. 48.设函数,则的最小正周期( )A. 与a有关,且与b有关B. 与a有关,但与b无关C. 与a无关,且与b无关D. 与a无关,但与b有关二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知函数,,且,下列结论正确的是( )A. B.C. D. 的最小值为810.要得到函数的图象,可以将函数的图象得到( )A. 先将各点横坐标变为原来的倍,再向左平移个单位B. 先将各点横坐标变为原来的2倍,再向左平移个单位C. 先将各点横坐标变为原来的倍,再向右平移个单位D. 先向左平移个单位,再将各点横坐标变为原来的倍11.已知,下列关系可能成立的有( )A. B. C. D.12.下列论断中,正确的有( )A. 中,若A为钝角,则B. 若奇函数对定义域内任意x都有,则为周期函数C. 若函数与的图象关于直线对称,则函数与的图象也关于直线对称D. 向量,,满足,则或三、填空题:本题共4小题,每小题5分,共20分。

湖南高一高中数学月考试卷带答案解析

湖南高一高中数学月考试卷带答案解析

湖南高一高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.设集合,集合,则()A.B.C.D.2.下列函数与函数相等的是()A.B.C.D.3.已知函数, 则的值为()A.1B.2C.4D.54.如果幂函数的图象经过点,则的值等于()A.B.C.D.5.若,则的值为()A. B. C. D6.若, 则下列不等关系正确的是()A.B.C.D.7.已知定义在上的奇函数, 当时, 则的值为()A.B.C.D.8.已知某一种物质每100年其质量就减少.设其物质质量为,则过年后,其物质的质量与的函数关系式为()A.B.C.D.9.已知,满足对任意成立,那么的取值范围是()A.(1,3)B.C.D.10.设函数,,,则对在其定义域内的任意实数,下列不等式总成立的是()①②③④A.②④B.②③C.①④D.①③二、填空题1.已知集合若,则..2.已知集合,且是从集合A到B的一个映射,若集合中的元素与集合中的元素3对应,则.3.计算= .4.若定义域为R的偶函数在[0,+∞)上是增函数,且,则不等式的解是.5.符号表示不超过的最大整数,如[]=3,=-2,定义函数:,则下列命题正确的序号是.①;②方程=有无数个解;③函数是增函数;④函数是奇函数.⑤函数的定义域为R,值域为[0,1].三、解答题1.(本小题满分8分)已知集合,集合.(1)若,求实数的取值范围;(2)若,求实数的取值范围.2.(本小题满分8分)(1)解含的不等式: ;(2)求函数的值域, 并写出其单调区间.3.(本小题满分8分)已知函数(1)求实数的取值范围,使函数在区间上是单调函数;(2)若, 记的最大值为, 求的表达式并判断其奇偶性.4.(本小题满分8分)已知函数在其定义域时单调递增, 且对任意的都有成立,且,(1)求的值;(2)解不等式:.5.如图, 已知底角为的等腰梯形, 底边长为, 腰长为, 当一条垂直于底边的直线从左至右移动(与梯形有公共点)时, 直线把梯形分成两部分, 令, 试写出左边部分的面积与的函数解析式, 并画出大致图象.6.(本小题满分10分)已知函数是偶函数.(1)求实数的值;(2)设,若有且只有一个实数解,求实数的取值范围.湖南高一高中数学月考试卷答案及解析一、选择题1.设集合,集合,则()A.B.C.D.【答案】A【解析】应为与中的共有元素构成的集合,所以=,故选A.【考点】集合的交集。

高一下学期第一次月考数学试卷参考答案

高一下学期第一次月考数学试卷参考答案

2020届高一下学期第一次月考数学试卷参考答案1. D2. C3. A4. D5. D6.A7.C8.B9. C 10.A 11.B 12.C 13. n a =12n -3 14. 1615. 2+ 5 16. 38417.(本小题满分10分)【解】 (1)由正弦定理,得AD sin B =BD sin∠BAD ,AD sin C =DC sin∠CAD. 因为AD 平分∠BAC,BD =2DC ,所以sin B sin C =DC BD =12. (2)因为∠C=180°-(∠BAC+∠B),∠BAC=60°,所以sin C =sin(∠BAC+∠B)=32cos B +12sin B. 由(1)知2sin B =sin C ,所以tan B =33, 所以∠B=30°.18.(本小题满分12分)解:设{n a }的公差为d.由3S =22a ,得32a =22a ,故2a =0或2a =3.由1S =2a -d, 2S =22a -d, 4S =42a +2d,故(22a -d)2=(2a -d)(42a +2d). 若2a =0,则d 2=-2d 2,所以d=0,此时n S =0,不合题意; 若2a =3,则(6-d)2=(3-d)(12+2d),解得d=0或d=2. 因此{n a }的通项公式为n a =3或n a =2n -1.19.(本小题满分12分)解析: ∵a 、b 、c 成等比数列,∴b 2=ac.又∵a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc.在△ABC 中,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12, ∴∠A =60°. 在△ABC 中,由正弦定理得sin B =bsin A a , ∵b 2=ac ,∠A =60°, ∴bsin B c =b 2sin 60°ca =sin 60°=32. 20(本小题满分12分)解:(1)∵28(2)n n S a =+ ∴2118(2)(1)n n S a n --=+>两式相减得:2218(2)(2)n n n a a a -=+-+ 即2211440n n n n a a a a -----=也即11()(4)0n n n n a a a a --+--=∵0n a > ∴14n n a a --= 即{}n a 是首项为2,公差为4的等差数列。

2023-2024学年湖南高一下册第一次月考数学试卷(含解析)

2023-2024学年湖南高一下册第一次月考数学试卷(含解析)

2023-2024学年湖南高一下册第一次月考数学试卷一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,下列说法正确的是()A.若210x +=,则i x =B.实部为零的复数是纯虚数C.()21i z x =+可能是实数D.复数2i z =+的虚部是i2.设集合(){}1lg 1,24xA xy x B x ⎧⎫==-=>⎨⎬⎩⎭∣∣,则()A B ⋂=R ð()A.()1,∞+B.(]2,1-C.()2,1-D.[)1,∞+3.若命题“2,40x x x a ∀∈-+≠R ”为假命题,则实数a 的取值范围是()A.(],4∞- B.(),4∞- C.(),4∞-- D.[)4,∞-+4.下列说法正确的是()A.“ac bc =”是“a b =”的充分条件B.“1x ”是“21x ”的必要条件C.“()cos y x ϕ=+的一个对称中心是原点”是“2,2k k πϕπ=-∈Z ”的充分不必要条件D.“0a b ⋅< ”的充分不必要条件是“a 与b的夹角为钝角”5.设1535212log 2,log 2,23a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A.a b c <<B.b a c <<C.b c a<< D.a c b<<6.已知不等式20ax bx c ++>的解集为{23}xx -<<∣,且对于[]1,5x ∀∈,不等式220bx amx c ++>恒成立,则m 的取值范围为()A.(,∞-B.(,∞-C.[)13,∞+ D.(),13∞-7.若向量()()(),2,2,3,2,4a x b c ===- ,且a c ∥,则a 在b上的投影向量为()A.812,1313⎛⎫⎪⎝⎭ B.812,1313⎛⎫-⎪⎝⎭ C.()8,12 D.413138.已知函数()sin f x x =,若存在12,,,m x x x 满足1204m x x x π<<< ,且()()()()()()()*1223182,m m f x f x f x f x f x f x m m --+-++-=∈N ,则m 的最小值为()A.5B.6C.7D.8二、多选题:本大题共4个小题,每小题5分,满分20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中错误的是()A.向量AB 与CD是共线向量,则,,,A B C D 四点必在一条直线上B.零向量与零向量共线C.若,a b b c == ,则a c= D.温度含零上温度和零下温度,所以温度是向量10.下列说法正确的是()A.若α为第一象限角,则2α为第一或第三象限角B.函数()sin 4f x x πϕ⎛⎫=++ ⎪⎝⎭是偶函数,则ϕ的一个可能值为34πC.3x π=是函数()2cos 23f x x π⎛⎫=+ ⎪⎝⎭的一条对称轴D.若扇形的圆心角为60 ,半径为1cm ,则该扇形的弧长为60cm 11.已知0,0a b c >>>,则下列结论一定正确的是()A.b b ca a c+<+ B.3322a b a b ab ->-C.22b a a b a b+<+ D.2()a b a ba b ab +>12.已知函数()f x 的定义域为(),1f x -R 为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()21f x x =-,则下列结论正确的是()A.()f x 为周期函数且最小正周期为8B.7324f ⎛⎫=⎪⎝⎭C.()f x 在()6,8上为增函数D.方程()lg 0f x x +=有且仅有7个实数解三、填空题:本大题共4小题,每小题5分,共20分.13.已知函数23(0x y a a -=+>,且1)a ≠的图象恒过定点P ,若点P 也在函数()32log 1y x b =++的图象上,则b =__________.14.化简:()2tan1234cos 122sin12-=-__________.15.已知函数()2log ,02,sin ,210,4x x f x x x π⎧<<⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩若存在1234,,,x x x x ,满足1234x x x x <<<,且()()()()1234f x f x f x f x ===,则1234x x x x 的取值范围为__________.16.在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知,a b c ≠=2233sin ,cos cos cos 52A AB A A B =-=-,则ABC 的面积是__________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且22232b c bc a +-=.(1)求cos A 的值;(2)若2,3B A b ==,求a 的值.18.(本小题满分12分)如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P .(1)若8AP AC ⋅=,求AP 的长;(2)设||6,||8,,3AB AC BAC AP xAB y AC π∠====+,求y x -的值.19.(本小题满分12分)有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速度可以表示为函数501log lg 210xv x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,0x 代表测量过程中某类候鸟每分钟的耗氧量偏差(参考数据:1.4lg20.30,59.52≈≈).(1)当05x =,候鸟停下休息时,它每分钟的耗氧量约为多少单位?(2)若雄鸟的飞行速度为1.75km /min ,同类雌鸟的飞行速度为1.5km /min ,则此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?20.(本小题满分12分)已知函数()f x 对任意实数x y 、恒有()()()f x y f x f y +=+,当0x >时()0f x <,且()12f -=.(1)求()f x 在区间[]2,4-上的最小值;(2)若()222f x m am <-+对所有的][1,1,1,1x a ⎡⎤∈-∈-⎣⎦恒成立,求实数m 的取值范围.21.(本小题满分12分)如图,在海岸线EF 一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC ,该曲线段是函数()()[]sin (0,0,0,),4,0y A x A x ωϕωϕπ=+>>∈∈-的图象,图象的最高点为()1,2B -.边界的中间部分为长1千米的直线段CD ,且CD EF ∥.游乐场的后一部分边界是以O 为圆心的一段圆弧 DE.(1)曲线段FGBC 上的入口G 距海岸线EF 的距离为1千米,现准备从入口G 修一条笔直的景观路到O ,求景观路GO 长;(2)如图,在扇形ODE 区域内建一个平行四边形休闲区OMPQ ,平行四边形的一边在海岸线EF 上,一边在半径OD 上,另外一个顶点P 在圆弧 DE上,且POE ∠θ=,求平行四边形休闲区OMPQ 面积的最大值及此时θ的值.22.(本小题满分12分)已知函数()()2ee ,ln xx f x a g x x =-=.(1)求函数()26g x x --的单调递减区间;(2)若对任意21,e ex ⎡⎤∈⎢⎥⎣⎦,存在()()()112,0,x f x g x ∞∈-≠,求实数a 的取值范围;(3)若函数()()()F x f x f x =+-,求函数()F x 零点的个数.数学答案一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案CBADBBAB1.C A.i x =±,说法不正确;B.实部为零的复数可能虚部也为零,从而是实数,说法不正确;C.当i x =时,()21i z x =+是实数,说法正确;D.复数2i z =+的虚部是1,说法不正确.故选C .2.B 由题知()()1,,2,A B ∞∞=+=-+,从而得到()(]R 2,1A B ⋂=-ð.故选B .3.A 命题“2,40x x x a ∀∈-+≠R ”为假命题,2“,40x x x a ∴∃∈-+=R ”是真命题,∴方程240x x a -+=有实数根,则2Δ(4)40a =--,解得4a ,故选A.4.D对于A ,当0c =时,满足ac bc =,此时可能有,A a b ≠错误;对于2B,1x 等价于1x 或1x -,故“1x ”是“21x ”的充分不必要条件,B 错误;对于C ,“()cos y x ϕ=+的一个对称中心是原点”等价于()2k k πϕπ=+∈Z ,故“()cos y x ϕ=+的一个对称中心是原点”是“2k ϕπ=,2k π-∈Z 的必要不充分条件,C 错误;对于D ,0a b ⋅< 等价于a 与b的夹角,2πθπ⎛⎤∈⎥⎝⎦,故“0a b⋅< ”的充分不必要条件是“a 与b的夹角为钝角”,D 正确.故选D.5.B 因为33322213log 2log log 122a ==<=且153355221131122log 2log ,log 2log ,12222233a b c -⎛⎫⎛⎫=>==<=>= ⎪ ⎪⎝⎭⎝⎭,故b a c <<.故选B.6.B 由不等式20ax bx c ++>的解集为{23}xx -<<∣,可知2,3-为方程20ax bx c ++=的两个根,故0a <且()231,236b ca a-=-+==-⨯=-,即,6b a c a =-=-,则不等式220bx amx c ++>变为2120ax amx a -+->,由于[]0,1,5a x <∈,则上式可转化为12m x x <+在[]1,5恒成立,又12x x +=,当且仅当x =m <.故选B.7.A 因为a c∥,所以44x -=,得1x =-,所以()1,2a =- ,又()2,3b =,所以,cos ,b a b a b b a b⋅===所以a 在b上的投影向量为:812cos ,,1313b a a b b ⎛⎫⋅==⎪⎝⎭,故选A.8.B 因为()sin f x x =对任意(),,1,2,3,,i j x x i j m = ,都有()()max min ()()2i j f x f x f x f x --=,要使m 取得最小值,应尽可能多让()1,2,3,,i x i m = 取得最值点,考虑1204m x x x π<<< ,且()()()()()()()*1223182,m m f x f x f x f x f x f x m m --+-++-=∈N ,则m 的最小值为6,故选B.二、多选题:本大题共4个小题,每小题5分,满分20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.题号9101112答案ADACABDABD9.AD向量AB 与CD是共线向量,则,,,A B C D 四点不一定在一条直线上,故A 错误;零向量与任一向量共线,故B 正确;若,a b b c == ,则a c =,故C 正确;温度是数量,只有正负,没有方向,故D 错误.故选A D.10.AC 对于A :若α为第一象限角,则22,2k k k ππαπ<<+∈Z ,则:,24k k k απππ<<+∈Z ,所以2α为第一或第三象限角,故A 正确;对于B :函数()sin 4f x x πϕ⎛⎫=++ ⎪⎝⎭是偶函数,若ϕ的一个可能值为34π,当34πϕ=时,()()sin sin f x x x π=+=-,函数为奇函数,故B 错误;对于C :2cos 23f ππ⎛⎫==- ⎪⎝⎭,所以3x π=是函数()2cos 23f x x π⎛⎫=+ ⎪⎝⎭的一条对称轴,故C 正确;对于D :扇形圆心角为3π,半径为1cm ,则该扇形的弧长为cm 3π,故D 错误.故选AC.11.ABD 对于()()A,c b a b b c a a c a a c -+-=++,由a b >,得0b a -<,所以()()0c b a a a c -<+,所以b b ca a c+<+,故A 正确;对于B ,()()()()()332222220a b a b ab a b a ab b ab a b a b ---=-++-=-+>,故B 正确;对于()()()()22222222222()11C,0b a b a b a b a b a b a a b a b b a a b a b a b ab ab --+---⎛⎫+--=+=--==> ⎪⎝⎭,故C 错误;对于D ,2()a b a ba b ab +>等价于()ln ln ln ln 2a ba ab b a b ++>+,等价于ln ln ln ln 0a a b b b a a b +-->,即()()ln ln 0a b a b -->,故D 正确.故选ABD.12.ABD 因为()1f x -为奇函数,所以()()11f x f x --=--,即()f x 关于点()1,0-对称;因为()1f x +为偶函数,所以()()11f x f x -+=+,即()f x 关于直线1x =对称;则()()()()()()()112314f x fx f x f x f x =-+=-+=---=--,所以()()8f x f x =-,故()f x 的最小正周期为8,A 正确;275531111311111,B 222222224f f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=-=--=--=--=---=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦正确;由于()f x 在()1,0-上单调递减,且()f x 关于点()1,0-对称,故()f x 在()2,0-上单调递减,又()f x 的周期为8,则()f x 在()6,8上也为减函数,C 错误;作出函数()f x 的图象可知,函数()y f x =的图象与函数lg y x =-的图象恰有7个交点,D 正确,故选ABD.三、填空题:本大题共4小题,每小题5分,共20分.13.2由题意可知,函数23(0x y a a -=+>,且1)a ≠的图象恒过定点()2,4,则有()32log 214b ++=,解得2b =.14.-4原式()()()222sin123tan123sin123cos12cos124cos 122sin1222cos 121sin1222cos 121sin12co s12-===---()()2132sin122sin 48222sin4841cos24sin242cos 121sin24sin482⎛⎫ ⎪--⎝⎭====--.15.(20,32)作出函数()2log ,02,sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫⎪⎪⎝⎭⎩的图象,如图所示,因为()()()()12341234,f x f x f x f x x x x x ===<<<,所以,由图象可知,212234log log ,2612x x x x -=+=⨯=,且()32,4x ∈,则()2123433331,1212x x x x x x x x ==-=-+,由于23312y x x =-+在()2,4上单调递增,故2032y <<,所以1234x x x x 的取值范围为()20,32.16.369350+由题意得1cos21cos233sin22222A B A B ++-=-,即3131sin2cos2cos22222A AB B -=-,所以sin 2sin 266A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.由a b ≠得A B ≠,又()0,A B π+∈,得2266A B πππ-+-=,即23A B π+=,所以3C π=.由3,5sin sin a c c A A C ===,得65a =.由a c <,得A C <,从而4cos 5A =,故()343sin sin sin cos cos sin 10B AC A C A C +=+=+=,所以ABC的面积为1163433693sin 2251050S ac B ++==⨯⨯=.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)在ABC 中,2223,2b c a bc +-=.由余弦定理222cos 2b c a A bc +-=,332cos 24bcA bc ∴==.(2)由(1)知,70,sin 24A A π<<∴==.32,sin sin22sin cos 2448B A B A A A =∴===⨯⨯=,又73sin 43,,2sin sin sin 378a b b A b a A B B ⨯==∴== ..18.(1) 在平行四边形ABCD 中,AP BD ⊥,垂足为P ,()22208AP AC AP AO AP AP PO AP AP ∴⋅=⋅=⋅+=⋅+=,22||4AP AP ∴== ,解得2AP = ,故AP 长为2.(2)2AP x AB y AC x AB y AO =+=+ ,且,,B P O 三点共线,21x y ∴+=①,又6,8,3AB AC BAC π∠=== ,则1cos 122AB AO AB AC BAC ∠⋅=⋅= ,由AP BD ⊥可知()()20AP BO x AB y AO AO AB ⋅=+⋅-= ,展开()22220y AO x AB x y AB AO -+-⋅= ,化简得到3y x =②联立①②解得13,77x y ==,故27y x -=.19.(1)由题意得,当候鸟停下休息时,它的速度是0,将05x =和0v =代入题目所给的公式,可得510log lg5210x =-,.即()5log 2lg521lg2 1.410x ==-≈,从而 1.410595.2x ≈⨯≈,故候鸟停下休息时,它每分钟的耗氧量约为95.2个单位.(2)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,由题意得:15025011.75log lg ,21011.5log lg ,210x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩两式相减可得15211log 42x x ⎛⎫= ⎪⎝⎭,解得:12x x =,倍.20.(1)取0x y ==,则()()()0020,00f f f +=∴=,取y x =-,则()()()()00f x x f x f x f -=+-==,()()f x f x ∴-=-对任意x ∈R 恒成立,()f x ∴为奇函数;任取()12,,x x ∞∞∈-+且12x x <,则()()()2121210,0x x f x f x f x x ->+-=-<,()()21f x f x ∴<--,又()f x 为奇函数,()()12f x f x ∴>.故()f x 为R 上的减函数.[]()()2,4,4x f x f ∈-∴ ,()()()()()42241418f f f f ===⨯--=- ,故()f x 在[]2,4-上的最小值为-8.(2)()f x 在[]1,1-上是减函数,()()12f x f ∴-=,()222f x m am <-+ 对所有][1,1,1,1x a ⎡⎤∈-∈-⎣⎦恒成立.2222m am ∴-+>对[]1,1a ∀∈-恒成立;即220m am ->对[]1,1a ∀∈-恒成立,令()22g a am m =-+,则()()10,10,g g ⎧->⎪⎨>⎪⎩即2220,20,m m m m ⎧+>⎨-+>⎩解得:2m >或2m <-.∴实数m 的取值范围为()(),22,∞∞--⋃+.21.(1)由已知条件,得2A =,又23,12,46T T ππωω===∴= ,又当1x =-时,有2sin 26y πϕ⎛⎫=-+= ⎪⎝⎭,且()20,,3πϕπϕ∈∴=,∴曲线段FGBC 的解析式为[]22sin ,4,063y x x ππ⎛⎫=+∈- ⎪⎝⎭.由22sin 163y x ππ⎛⎫=+= ⎪⎝⎭,根据图象得到()22636x k k ππππ+=+∈Z ,解得()312x k k =-+∈Z ,又[]()4,0,0, 3.3,1x k x G ∈-∴==-∴-.OG ∴=.∴千米.(2)如图,1OC CD ==,2,6OD COD π∠∴==,作1PP x ⊥轴于1P 点,在Rt 1OPP 中,1sin 2sin PP OP θθ==,在OMP 中,2sin sin 33OP OM ππθ=⎛⎫- ⎪⎝⎭,sin 2332cos sin 23sin 3OP OM πθθθπ⎛⎫- ⎪⎝⎭∴==-,12cos 2sin 3QMPQ S OM PP θθθ⎛⎫=⋅=-⨯ ⎪ ⎪⎝⎭.24323234sin cos 2sin2333θθθθθ=-=+-sin 2,0,3633ππθθ⎛⎫⎛⎫=+-∈ ⎪ ⎪⎝⎭⎝⎭.当262ππθ+=,即6πθ=时,平行四边形面积有最大值为233平方千米.22.(1)由260x x -->得:2x <-或3x >,即()26g x x --的定义域为{2x x <-∣或3}x >,令26,ln m x x y m =--=在()0,m ∞∈+内单调递增,而(),2x ∞∈--时,26m x x =--为减函数,()3,x ∞∈+时,26m x x =--为增函数,故函数()26g x x --的单调递减区间是(),2∞--(2)由21,e e x ⎡⎤∈⎢⎥⎣⎦与()1,0x ∞∈-可知()[]()121,1,e 0,1x g x ∈-∈,所以112e e 1x x a ->或112e e 1x x a -<-,分离参数得11211e e x x a >+,或11211e e x x a <-有解,令11ex n =,则21,n a n n >>+或2a n n <-有解,得2a >或0a <.(3)依题意()()()222e e e e e e e e 2x x x x x xx x F x a a a a ----=-+-=+-+-,令e e x x t -=+,则函数()F x 转化为()()222h t at t a t =--,此时只需讨论方程220at t a --=大于等于2的解的个数,①当0a =时,()0h t t =-=没有大于等于2的解,此时()F x 没有零点;②当0a >时,()020h a =-<,当()20h >时,1a >,方程没有大于等于2的解,此时()F x 没有零点;当()20h =时,1a =,方程有一个等于2的解,函数()F x 有一个零点;当()20h <时,01a <<,方程有一个大于2的解,函数()F x 有两个零点.③当0a <时,()()020,2220h a h a =->=-<恒成立,即方程不存在大于等于2的解,此时函数()F x 没有零点;·综上所述,当1a =时,()F x 有一个零点;当01a <<时,()F x 有两个零点;当0a 或1a >时,()F x 没有零点.。

(完整版)湖南省长沙市一中下学期高一第一次月考试题——数学(含解析)

(完整版)湖南省长沙市一中下学期高一第一次月考试题——数学(含解析)

长沙市一中高一下学期第一次月考数学试题命题人:艾简书 审校人:罗欲晓(时量:120分钟 满分:120分)一、选择题(本大题共5个小题,每小题4分,共20分. 在每个小题给出的四个选项中,只有一项符合题目要求的) 1. 在等差数列1,4,7,10,…中,28是它的( )A. 8项B. 9项C. 10项D. 11项2. 在△ABC 中,sinA :sinB :sinC=2:3:4,则a :b :c 为( )A. 4:3:2B. 2:3:4C. 1:2:3D. 1:2:33. 对于任意实数,,,a b c d ,以下三个命题中①若,0a b c >>,则ac bc >;②若22ac bc >,则a b >;③若0,a b c d >>>,则a c b d +>+.正确的个数有( )个 A. 0个 B. 1个 C. 2个 D. 3个4. 在△ABC 中,已知︒===60A ,2b ,6a ,则符合条件的三角形的个数有( )A. 1个B. 2个C. 0个D. 无数个5. 在△ABC 中,a ,b ,c 分别为A 、B 、C 的对边,如果a 、b 、c 成等差数列,B =︒30, △ABC 的面积为23,那么b=( ) A. 231+B. 31+C. 232+D. 32+二、填空题(10个小题,共40分) 6. 求数列1111,,,,248的一个通项公式n a = .7. 不等式2x x <的解集是__________.8. 在等比数列{}n a 中,34232a a ==,,则公比q =________. 9. 已知数列{}n a 中,21=a ,*11()2n n a a n N +=+∈,则101a 的值为_________. 10. 已知等差数列中,33a =,求5S = .11. 设S n 是{a n }前n 项和,且2n S n n =+,则n a = .12. 某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度折旧,则n 年以后这辆车的价值为 .13. 在等差数列{a n }中,40S ,19a a 552==+,则a 10为 14. 已知nn 312a ⎪⎭⎫⎝⎛⋅=,把数列{a n }的各项排成三角形状:1a2a3a 4a 5a6a7a8a9a… …记A (m,n )表示第m 行,第n 列的项,则A (10,8)=15. 已知{}n a 是等比数列,其前n 项的和为S ,前n 项倒数的和为T ,则数列{}2n a 的前n 项之积为 (要求用,,S T n 表示)三、解答题(本大题共6小题,每小题10分,共60分,解答题应写出必要的文字说明,证明过程或演算步骤)16. 在△ABC 中,(1)已知45,60,A B b =︒=︒=a ;(2)已知1a b c ===,求A.17. (1)求不等式2230x x -+->的解集;(5分) (2)m 是什么实数时,关于x 的方程2(1)0mx m x m +-+=没有实数根?(5分)18. 已知{a n }是等差数列,其前n 项和为S n ,已知153S ,11a 93==.(1)求数列{a n }的通项公式;(2)设2n an b =,证明{b n }是等比数列,并求其前n 项和T n (10分)19.设n S 是数列{}n a 的前n 项和,3322n n S a =-,又数列{}n b 的通项公式为43n b n =+,(1)求{}n a 的通项公式;(2)将数列{}n a 和{}n b 的公共项按由小到大顺序排成一个数列{}n c ,求数列{}n c 通项公式.(10分)20. (1)已知nn a nx =,求{}n a 前n 项之和;(2)已知数列{a n }满足51a 1=,且当n>1,∈n N *时,其n 1n n 1n a 211a 2a a -+=--,求证数列{a n }的通项公式(10分)21.如图,海岛O 上有一座海拔1km 高的山,山顶上设有一个观察站A ,某日上午11:00测得一轮船在岛的北偏东60的C 处,俯角为30,11:10又测得该船在岛的北偏西60的B 处,俯角为60. 求:(1)该轮船的速度;(2)若此船以不变航速继续前进,则它何时到达岛的正西方向?此时所在的E 处距离海岛多远?(10分)附加题(共5分) 22.设数列{}n a 是首项为6,公差为1的等差数列;n S 为数列{}n b 的前n 项和,且22n S n n =+,(1)求{}n a 及{}n b 的通项公式n a 和n b ; (2)若,(),n n a n f n b n ⎧=⎨⎩为奇数为偶数,问是否存在*k N ∈使(27)4()f k f k += 成立?若存在,求出k 的值;若不存在,说明理由; (3)若对任意的正整数n ,不等式121112(1)(1)(1)nna n ab b b -++++…<0恒成立,求正数a 的取值范围.长沙市一中高一下学期第一次月考数学试题参考答案命题人:艾简书 审校人:罗欲晓(时量:120分钟 满分:120分)一、选择题CBDAB二、填空题(10个小题,共40分) 6、11()2n n a -=;7、 {|1x x >或0}x <; 8、16q = 9、52 10、15 11.2n 12、13.50.9n⨯ 13、29 14、89312⎪⎭⎫⎝⎛15、()nS T三、解答题(6道题,共60分)16、解(1):sin sin 2a b a A B === (2)2222cos a b c bc A =+-314A +-=+1cos 2A =-120A =︒17、解:(1)原不等式可化为2230x x -+<,即2(1)20x -+<原不等式解集为∅…………5分 (2)22(1)40m m ∆=--<,……6分23210m m +->,………7分,13m >或1m <-原不等式解集为1(,1)(,)3-∞-+∞……10分(以上均为教材不等式解法原题,意在送分) 18、(1)解:⎪⎩⎪⎨⎧=⨯+=+153d 289a 9,11d 2a 11 解得d=3,2n 3a ,5a n 1+=∴=(2)证明:11531122,2232,282n nn a a a n n a n b b b b ++=======,∴{b n }是首项为32,公比为8的等比数列。

2020-2021学年高一数学下学期第一次月考试题 (II)[1]

2020-2021学年高一数学下学期第一次月考试题 (II)[1]

2020-2021学年高一数学下学期第一次月考试题 (II)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列}{n a 的通项公式432--=n n a n (∈n N *),则4a 等于( ) (A )1 (B )2 (C )3 (D )02.0000sin 45cos15cos 45sin165-的值是( )A .32B .21C .21-D .23- 3.若sin α=35,α∈⎝ ⎛⎭⎪⎫-π2,π2,则cos ⎝ ⎛⎭⎪⎫5π4+α=( ) A .-210 B .210 C .-7210 D .72104.函数()(13tan )cos f x x x =+的最小正周期为( ) A .2π B .32π C .π D .2π 5.若{}n a 为等差数列,n S 为其前n 项和,且π32211=S ,则6tan a 的值是( ) A .3 B .3- C .3± D .336.下列各式中,值为12的是( ) A .sin15cos15 B .22cos sin 1212ππ- C .11cos 226π+ D .2tan 22.51tan 22.5- 7.在ABC ∆中,2sin sin cos 2A B C =,则ABC ∆的形状是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .直角三角形8.在ABC ∆中,三边长7AB =,5BC =,6AC =,则AB BC ⋅的值等于A .19B .14-C .18-D .19-9.已知数列}{n a 满足01=a ,1331+-=+n n n a a a (∈n N *),则=20a ( )(A )0 (B )3- (C )3 (D )23 10.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 得俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为( )A . 5000米B .50002 米C .4000米D .24000 米11.在ABC ∆中,已知2220b bc c --=,且6a =,7cos 8A =,则ABC ∆的面积是 A .152B .15C .2D .3 12.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )(A )289 (B )1024 (C )1225 (D )1378二、填空题(每小题5分,共20分)13.已知α是第二象限角,sin ⎝⎛⎭⎪⎫α+π3=-35,则cos α=________. 14.如果ABC ∆的面积是22243a b c S +-=,那么C =____________. 15.在△ABC 中,A =60°,B =45°,12=+b a ,则a = ;b =16.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.三、解答题(本大题共7小题,17、18题10分,19、20、21、22题12分,23题卷面2分.解答应写出文字说明.证明过程或推演步骤.)17.如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ;(1)化简sin 2α+cos 2α+11+tan α (2)若点P 的坐标为⎝ ⎛⎭⎪⎫-35,45,求(1)中式子的值.18.已知等差数列{}n a 中,131,3a a ==-.(1)求数列{}n a 的通项公式;(2)若数列{}n a 的前k 项和35k S =-,求k 的值.19.已知tan α=-13,cos β=55,α,β∈(0,π). (1)求tan(α+β)的值;(2)求函数f (x )=2sin(x -α)+cos(x +β)的最大值.20.海上某货轮在A 处看灯塔B 在货轮的北偏东o 75,距离为126海里;在A 处看灯塔C 在货轮的北偏西o 30,距离为83海里;货轮向正北由A 处行驶到D 处时看灯塔B 在货轮的北偏东o 120.求(1)A 处与D 处之间的距离;(2)灯塔C 与D 处之间的距离.21.在△ABC 中,已知A =π4,cos B =255. (1)求cos C 的值;(2)若BC =25,D 为AB 的中点,求CD 的长.22.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且(1)求证:数列{nn a 2}是等差数列; (2)求数列{n a }的通项公式;四川省邻水实验学校高xx 级xx 春季学期第一次月考数学试卷参考答案一、选择题:1.D2.B3.A4.A5.B6.D7.B8.D9.B 10.B11.A 12.C二、填空题: 13.10334+- 14. 30 15. 61236-=a 24612-=b 16.225三、解答题17、2518)2(;cos 212α)(18、(1)32n a n =-; (2)7k =19、(1)1; (2)5 20、(1)24; (2) 3821、(1) 1010-;(2) 5CD =22、解:(1)),2(22*1N n n a a n n n ∈≥+=-且nn n n n n n n n nn n n nn a n n d n a a d a N n n a a a a 2)21(,211)1(21)1(212)1()2(,212,1,}{),2(122,1221*1111⋅-=∴-=⋅-+=-+===∴∈≥=-+=∴----得由首项公差为是等差数列数列且即 【感谢您的阅览,下载后可自由编辑和修改,关注我 每天更新】。

湖南省浏阳市第一中学高一数学下学期第一次月考试题

湖南省浏阳市第一中学高一数学下学期第一次月考试题

浏阳一中高一年级月考数学试题总分:150分时量:120分钟学生:班级:分数一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的,本大题共10小题,每小题5分,共50分)1.若且是,则是(C)A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.若点P在的终边上,且OP=2,则点P的坐标(D )A.B.C.D.3.下列函数中,最小正周期为的是(B )A.B.C.D.4.已知(D)A.B.C.D.5.( D )A.B.C.D.6.将函数的图象向左平移个单位,得到的图象,则等于( C )A.B.C.D.7.函数图像的对称轴方程可能是(D )A.B.C.D.8.设,,,则(A )A.B.C.D.9.函数的最小值和最大值分别为( C )A. -3,1B. -2,2C. -3,D. -2,10.若动直线与函数和的图像分别交于两点,则的最大值为(B )A.1 B.C.D.2二、填空题:(把答案填在答题卡相应题号后的横线上,本大题共5小题,每小题5分,共25分).11.sin150cos150=12.若角的终边经过点,则的值为.13.已知则_______.14.函数的最小正周期为__________.15.关于三角函数的图像,有下列命题:①与的图像关于y 轴对称;②与的图像相同;③与的图像关于y轴对称;④与的图像关于y轴对称;其中正确命题的序号是②④___________.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)16.已知,计算:(1)(2)(3)。

(本小题满分12分)答案:(1)(2)(3)17. 已知函数的最大值为,最小值为,求函数的单调区间、最大值和最小正周期.(本小题满分12分)17.[解答]由已知条件得解得∴,其最大值为2,最小正周期为,在区间[]()上是减函数,在区间[]()上是增函数.18. 已知求的值。

(本小题满分12分)答案:∴19. 函数()的最大值为3, 其图像相邻两条对称轴之间的距离为,(1)求函数的解析式;(2)设,则,求的值.(本小题满分13分)20. 已知函数图象上一个最高点为P(2,2),由这个最高点到相邻最低点间的曲线与X轴相交于点Q(6,0)。

下学期高一年级第一次月考数学试卷(2021附答案)

下学期高一年级第一次月考数学试卷(2021附答案)

下学期高一年级第一次月考数学试卷(2021附答案)一、选择题:本大题共8小题,每小题5分,共40分.在每一小题给出的四个选项中,只有一项是符合题目要求的. 1、下列表述正确的是:( )A、+∈N 0 B、R ∉π C、Q ∉1 D、Z ∈0 2、下列四个集合中,表示空集的是:( )A、}0{ B、},,),{(22R y R x x y y x ∈∈-= C、},,5{N x Z x x x ∉∈= D、},0232{2N x x x x ∈=-+ 3、函数b x k y ++=)12(在R 上是减函数,则( )A、5.0>k B、5.0<k C、5.0->kD、5.0-<k4、函数)x f y (=的图像与直线a x =的交点共有( )A、0 个 B、1 个 C、0个或1个 D、可能多于1个5、已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+= 关系的韦恩图是( )6、设U =R ,{|0}A x x =>,{|1}B x x =>,则B C A U ⋂= ( )A 、{|01}x x ≤<B 、{|01}x x <≤C 、{|0}x x <D 、{|1}x x >7、集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B =,则a 的值为( )A 、0B 、1C 、2D 、48、已知)(x f 为R 上的减函数,则满足)1()1(f x f >的实数x 的取值范围是:( )A、)1,(-∞ B、),1(+∞ C、)1,0()0,(⋃-∞ D、),1()0,(+∞⋃-∞二、填空题(本大题共7个小题,每小题5分,满分35分,请将正确的答案填在横线上。

)9、某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为__ 10、已知函数23)1(+=+x x f ,则)(x f 的解析式为:__11方程组⎩⎨⎧=-=+9122y x y x 的解集是 . 12. 已知函数2(4)()(1)(4)x x f x f x x ⎧<=⎨-≥⎩, 则(5)f _____________13.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 . 14、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()()0f x f x x x -<-,则()f x 在),(b a 上是 __函数(增、减性)15、设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个答卷一、选择题: 题号 1 2 3 4 5 6 7 8 答案二、填空题:9.__________________10.__________________ 11.__________________ 12.__________________ 13.__________________ 14.__________________ 15.__________________三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)设集合}32,3,2{2-+=a a U ,}2|,12{|-=a A ,}5{=A C U ,求实数a 的值.17.(本小题满分12分)用定义证明:函数4()f x x x=+在[)2,x ∈+∞上是增函数18.(本小题满分12分)已知集合A={x|x 2-3x+2=0},B={x|x 2-ax+3a -5=0},若A ∩B=B , 求实数a 的值.19.(本小题满分13分)已知)(x f 为二次函数,若0)0(=f ,且1)()1(++=+x x f x f ,求)(x f 的表达式.20.(本小题满分13分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上,且对角线MN 过C 点,已知|AB|=3米,|AD|=2米,(1)设AN 的长为x 米,用x 表示矩形AMPN 的面积?(2) 要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内?ABCDMNP21.(本小题满分13分) 已知数集1212{,,}(1,2)n n A a a a a a a n =≤<<≥具有性质P ;对任意的,(1)i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A 。

湖南省长沙市一中2020-2021学年高一下学期第一次阶段性检测数学试题 答案和解析

湖南省长沙市一中2020-2021学年高一下学期第一次阶段性检测数学试题 答案和解析
【详解】
对于A选项,由于定义域不关于原点对称,故为非奇非偶函数.对于B选项,函数为偶函数,当 时, 为增函数,故B选项正确.对于C选项,函数图像没有对称性,故为非奇非偶函数.对于D选项, 在 上有增有减.综上所述,本小题选B.
【点睛】
本小题主要考查函数的奇偶性与单调性,属于基础题.
6.A
【分析】
根据三视图,还原原图,再根据几何体求体积
湖南省长沙市一中【最新】高一下学期第一次阶段性检测数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.不等式 , 的解集为()
A. B. C. D.
2. ()
A. B. C. D.
3.直线 的倾斜角是()
A. B. C. D.
8.C
【分析】
将 展开,利用向量的数量积公式求解.
【详解】
解得
∵两向量夹角的范围为[0°,180°],∴ 的夹角为60°.
故选C
【点睛】
本题考查了平面向量的数量积运算,考查了向量的夹角,在解题时要注意两向量夹角的范围是 .
9.A
【解析】
试题分析:由已知得 ,
,故选A.
考点:两角和的正弦公式
10.B
【解析】
14. ____________
15.点 在直线 上,且点 始终落在圆 的内部或圆上,那么 的取值范围是______________.
16.已知函数 若存在互不相等实数 有 则 的取值范围是______.
三、解答题
17.计算与化简
(I)计算: ;
(II)化简: .
18.如图,在四边形 中, 是边长为6的正三角形,设 .
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022-2021学年湖南省长沙市浏阳一中高一(下)第一次月考数学试卷
一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的,本大题共10小题,每小题5分,共50分)
1.若sinα<0且tanα>0,则α是()
A.第一象限角B.其次象限角C.第三象限角D.第四象限角
2.若点P 在的终边上,且OP=2,则点P的坐标()
A.(1,)B.(,﹣1)C.(﹣1,﹣)D.(﹣1,)
3.下列函数中,最小正周期为的是()
A.B.C.
D.
4.已知sinα﹣cosα=﹣,则sinαcosα=()
A.B.C.D.
5.已知()
A.B.C.D.
6.将函数y=sin4x 的图象向左平移个单位,得到y=sin(4x+φ)的图象,则φ等于()A.B.C.D.
7.函数y=sin(2x+)图象的对称轴方程可能是()
A.x=﹣B.x=﹣C.x=D.x=
8.设,,,则()
A.a<b<c B.a<c<b C.b<c<a D.b<a<c 9.函数f(x)=cos2x+2sinx的最小值和最大值分别为()
A.﹣3,1 B.﹣2,2 C.﹣3,D.﹣2,
10.若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为()A.1 B.C.D.2
二、填空题:(把答案填在答题卡相应题号后的横线上,本大题共5小题,每小题5分,共25分).
11.sin15°+cos15°=.
12.若角α的终边经过点P(1,﹣2),则tan2α的值为.
13.已知,则sin(2α+β)=.
14.函数的最小正周期为.
15.下列命题中真命题的序号是.
①y=sin|x|与y=sinx的象关于y轴对称.
②y=cos(﹣x)与y=cos|x|的图象相同.
③y=|sinx|与y=sin(﹣x)的图象关于x轴对称.
④y=cosx与y=cos(﹣x)的图象关于y轴对称.
三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)
16.已知tanα=3,计算:
(1);
(2)sinαcosα;
(3)(sinα+cosα)2.
17.已知函数y=a﹣bcos3x(b>0)的最大值为,最小值为﹣,求函数y=﹣4asin3bx的单调区间、最大值和最小正周期.
18.已知cosα=,cos(α+β)=,且,,求tan及β的值.
19.函数(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,
(1)求函数f(x)的解析式;
(2)设,则,求α的值.
20.已知函数y=Asin(ωx+φ)(x∈R,A,ω>0,﹣<φ<)图象上一个最高点为P(2,2),由这个最
高点到相邻最低点间的曲线与X轴相交于点Q(6,0).
(1)求这个函数的解析式;
(2)写出这个函数的单调区间.
21.已知函数.
(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)求函数f(x)在区间上的值域.。

相关文档
最新文档