数学中几何辅助线的常规作法集锦

合集下载

全等三角形几何证明常用辅助线

全等三角形几何证明常用辅助线

几何证明-常用辅助线(一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。

已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤21(AB+AC) 分析:要证明AD ﹤21(AB+AC),就是证明AB+AC>2AD ,也就是证明两条线段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。

待证结论AB+AC>2AD 中,出现了2AD ,即中线AD 应该加倍。

证明:延长AD 至E ,使DE=AD ,连CE ,则AE=2AD 。

在△ADB 和△EDC 中,AD =DE ∠ADB =∠EDC BD =DC∴△ADB ≌△EDC(SAS) ∴AB=CE又 在△ACE 中,AC+CE >AE∴AC+AB >2AD ,即AD ﹤21(AB+AC)小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。

它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。

课题练习:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC 例2:中线一倍辅助线作法 △ABC 中方式 AD 是BC 边中线方式2:间接倍长作CF ⊥AD 于F ,延长MD 到N , 作BE ⊥AD 使DN=MD , 连接BE 连接CD 例3:△ABC 中,AB=5,AC=3,求中线例4:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 课堂练习:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 交AC 于F ,求证:AF=EF例5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠C 第 1 题图A DBCE图2-1课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

中考数学几何辅助线大全及常考题型解析

中考数学几何辅助线大全及常考题型解析

中考数学几何辅助线大全及常考题型解析中考数学几何辅助线作法及常考题型解析第一部分常见辅助线做法等腰三角形:1.作底边上的高,构成两个全等的直角三角形2.作一腰上的高; 3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1.垂直于平行边2.垂直于下底,延长上底作一腰的平行线3.平行于两条斜边4.作两条垂直于下底的垂线5.延长两条斜边做成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.作对角线——把一个平行四边形分成两个三角形3.做高——形内形外都要注意矩形1.对角线2.作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

初中几何常用辅助线做法

初中几何常用辅助线做法

常用辅助线做法➢考点考向1. 与角平分线有关的辅助线2. 与线段长度相关的辅助线3. 与等腰、等边三角形相关的辅助线4. 与中点相关的辅助线5. 构造一线三垂直(等角)6. 等面积法常见辅助线的作法总结1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6)构造等腰三角形或作等腰三角形的高利用“三线合一”性质。

7)作三角形的中位线。

8)引平行线构造全等三角形。

9)特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.(等面积法)10)构造三垂直模型。

✧考点一:与角平分线有关的辅助线(1)可向两边作垂线。

(2)可构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形【例1】已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.✧考点二:与线段长度有关的辅助线(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

全等三角形辅助线系列之三---截长补短类辅助线作法大全

全等三角形辅助线系列之三---截长补短类辅助线作法大全

全等三角形辅助线系列之三---截长补短类辅助线作法大全-CAL-FENGHAI.-(YICAI)-Company One1全等三角形辅助线系列之三 与截长补短有关的辅助线作法大全一、截长补短法构造全等三角形截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目.典型例题精讲【例1】 如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【解析】法一:如图所示,延长AB 至E 使BE BD =,连接ED 、EC .由AC AB BD =+知AE AC =,而60BAC ∠=︒,则AEC ∆为等边三角形.注意到EAD CAD ∠=∠,AD AD =,AE AC =, 故AED ACD ∆∆≌.从而有DE DC =,DEC DCE ∠=∠,故2BED BDE DCE DEC DEC ∠=∠=∠+∠=∠.所以20DEC DCE ∠=∠=︒,602080ABC BEC BCE ∠=∠+∠=︒+︒=︒. 法二:在AC 上取点E ,使得AE AB =,则由题意可知CE BD =. 在ABD ∆和AED ∆中,AB AE =,BAD EAD ∠=∠,AD AD =, 则ABD AED ∆∆≌,从而BD DE =, 进而有DE CE =,ECD EDC ∠=∠, AED ECD EDC ∠=∠+∠=2ECD ∠. 注意到ABD AED ∠=∠,则:1318012022ABC ACB ABC ABC ABC BAC ∠+∠=∠+∠=∠=︒-∠=︒,故80ABC ∠=︒.【答案】见解析.【例2】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】BE CD BC +=,理由是:在BC 上截取BF BE =,连结OF , 利用SAS 证得BEO ∆≌BFO ∆,∴12∠=∠,∵60A ∠=︒,∴1901202BOC A ∠=︒+∠=︒,∴120DOE ∠=︒,∴180A DOE ∠+∠=︒,∴180AEO ADO ∠+∠=︒, ∴13180∠+∠=︒,∵24180∠+∠=︒,∴12∠=∠,∴34∠=∠, 利用AAS 证得CDO ∆≌CFO ∆,∴CD CF =, ∴BC BF CF BE CD =+=+.【答案】见解析.【例3】 如图,已知在△ABC 内,60BAC ∠=︒,40C ∠=︒,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,求证:BQ AQ AB BP +=+.DOECB A4321FDOE CB A【解析】延长AB 至D ,使BD BP =,连DP .在等腰△BPD 中,可得40BDP ∠=︒, 从而40BDP ACP ∠=︒=∠,△ADP ≌△ACP (ASA ),故AD AC =又40QBC QCB ∠=︒=∠,故 BQ QC =,BD BP =. 从而BQ AQ AB BP +=+.【答案】见解析.【例4】 如图,在四边形ABCD 中,BC BA >,AD CD =,BD 平分∠ABC ,求证:180A C ∠+∠=︒.【解析】延长BA 至F ,使BF BC =,连FD△BDF ≌△BDC (SAS ), 故DFB DCB ∠=∠,FD DC =又AD CD =,故在等腰△BFD 中,DFB DAF ∠=∠ 故有180BAD BCD ∠+∠=︒【答案】见解析.【例5】 点M ,N 在等边三角形ABC 的AB 边上运动,BD DC =,120BDC ∠=︒,60MDN ∠=︒,求证:MN MB NC =+.QPCBACDB A【解析】延长NC 至E ,使得CE MB =∵ BDC ∆是等腰三角形,且120BDC ∠=︒,∴30DBC DCB ∠=∠=︒ ∵ ABC ∆是等边三角形. ∴60ABC ACB BAC ∠=∠=∠=︒∴90MBD ABC DBC ACB DCB DCN DCE ∠=∠+∠=∠+∠=∠=∠=︒ 在DBM ∆和DCE ∆中,BD DC =,MB CE =, ∴ DBM DCE ∆∆≌. ∴DE DM =, 12∠=∠.又∵ 160NDC ∠+∠=︒,∴ 2+60NDC END ∠∠=∠=︒. 在MDN ∆与EDN ∆中,ND ND =,60MDN EDN ∠=∠=︒,DE DM = ∴ MND END ∆∆≌∴ MN EN NC MB ==+【答案】见解析.【例6】 如图在△ABC 中,AB AC >,12∠=∠,P 为AD 上任意一点,求证:AB AC PB PC ->-.【解析】延长AC 至F ,使AF AB =,连PD△ABP ≌△AFP (SAS ) 故BP PF =由三角形性质知1BMNM CBA21EABCDMN< PB PC PF PC CF AF AC AB AC -=-=-=-【答案】见解析.【例7】 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上.求证:BC AB DC =+.【解析】在BC 上截取BF AB =,连接EF∵BE 平分∠ABC ,∴ABE FBE ∠=∠又∵BE BE =,∴△ABE ≌△FBE (SAS ),∴A BFE ∠=∠.∵AB 180A D ∠+∠=︒180BFE CFE ∠+∠=︒D CFE ∠=∠DCE FCE ∠=∠CE CE =CD CF=BC BF CF AB CD =+=+M ABCD AB MN DM ⊥ABC ∠N MD MNDM MN =AD 上截取AG AM =,∴DG MB =,∴45AGM =︒∠∴135DGM MBN ==︒∠∠,∴ADM NMB =∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.【答案】见解析.【例8】 已知:如图,ABCD 是正方形,FAD FAE ∠=∠,求证:BE DF AE +=.DEC BAN CDE B M A NCDEB M A FE DCBAM F EDCB A【解析】延长CB 至M ,使得BM DF =,连接AM .∵AB AD =,AD CD ⊥,AB BM ⊥,BM DF = ∴ABM ADF ∆∆≌∴AFD AMB ∠=∠,DAF BAM ∠=∠ ∵AB CD ∥∴AFD BAF EAF BAE BAE BAM EAM ∠=∠=∠+∠=∠+∠=∠ ∴AMB EAM ∠=∠,AE EM BE BM BE DF ==+=+【答案】见解析.【例9】 如图所示,已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且2BAE DAM ∠=∠.求证:AE BC CE =+.【解析】分析证明一条线段等于两条线段和的基本方法有两种:(1)通过添辅助线“构造”一条线段使其为求证中的两条线段之和,再证所构造的线段与求证中那一条线段相等.(2)通过添辅助线先在求证中长线段上截取与线段中的某一段相等的线段,再证明截剩的部分与线段中的另一段相等.我们用(1)法来证明.【答案】延长AB 到F ,使BF CE =,则由正方形性质知AF AB BF BC CE =+=+下面我们利用全等三角形来证明AE AF =.为此,连接EF 交边BC 于G .由于对顶角BGF CGE ∠=∠,所以()Rt ΔBGF CGE AAS ∆≌,从而12BG GC BC FG EG ===,,BG DM =于是()Rt ΔRt ΔABG ADM SAS ≌,所以12BAG DAM BAE EAG ∠=∠=∠=∠,AG 是EAF ∠的平分线【例10】 五边形ABCDE 中,AB AE =,BC DE CD +=,180ABC AED ∠+∠=︒,求证:AD 平分∠CDE .M EDCBAF【解析】延长DE 至F ,使得EF BC =,连接AC .∵180ABC AED ∠+∠=︒,180AEF AED ∠+∠=︒,∴ABC AEF ∠=∠ ∵AB AE =,BC EF =,∴△ABC ≌△AEF . ∴EF BC =,AC AF =∵BC DE CD +=,∴CD DE EF DF =+= ∴△ADC ≌△ADF ,∴ADC ADF ∠=∠ 即AD 平分∠CDE .【答案】见解析.【例11】 若P 为ABC ∆所在平面上一点,且120APB BPC CPA ∠=∠=∠=︒,则点P 叫做ABC ∆的费马点.(1)若点P 为锐角ABC ∆的费马点,且60ABC ∠=︒,34PA PC ==,,则PB 的值为_____;(2)如图,在锐角ABC ∆外侧作等边ACB ∆′,连结BB ′. 求证:BB ′过ABC ∆的费马点P ,且BB PA PB PC =++′.【解析】(1)(2)证明:在BB ′上取点P ,使120BPC ∠=︒, 连结AP ,再在PB ′上截取PE PC =,连结CE .∵120BPC ∠=︒,∴60EPC ∠=︒,∴PCE ∆为正三角形, ∴PC CE =,60PCE ∠=︒,120CEB ∠=︒′, ∵ACB ∆′为正三角形,∴AC B C =′,60ACB ∠=︒′, ∴60PCA ACE ACE ECB ∠+∠=∠+∠=︒′,∴PCA ECB ∠=∠′, ∴ACP B CE ∆∆≌′,∴120APC B CE ∠=∠=︒′,PA EB =′, ∴120APB APC BPC ∠=∠=∠=︒,CEDB AABDEFC B'CBA∴P为ABC∆的费马点,P∴BB′过ABC∆的费马点,且BB EB PB PE PA PB PC′′.=++=++【答案】见解析.AB'EPB课后复习【作业1】已知,AD 平分∠BAC ,AC AB BD =+,求证:2B C ∠=∠.【解析】延长AB 至点E ,使AE AC =,连接DE∵AD 平分∠BAC ,∴EAD CAD ∠=∠ ∵AE AC =,AD AD =,∴△AED ≌△ACD (SAS ),∴E C ∠=∠ ∵AC AB BD =+,∴AE AB BD =+∵AE AB BE =+,∴BD BE =,∴BDE E ∠=∠ ∵ABC E BDE ∠=∠+∠,∴2ABC E ∠=∠,∴2ABC C ∠=∠.【答案】见解析.【作业2】如图,△ABC 中,2AB AC =,AD 平分∠BAC ,且AD BD =,求证:CD ⊥AC .【解析】在AB 上取中点F ,连接FD .则△ADB 是等腰三角形,F 是底AB 的中点,由三线合一知 DF ⊥AB ,故90AFD ∠=︒ △ADF ≌△ADC (SAS )90ACD AFD ∠=∠=︒,即:CD ⊥AC【答案】见解析.DCBAECBADCDBA【作业3】如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【解析】如图所示,延长AC 到E 使CE BM =.在BDM ∆与CDE ∆中,因为BD CD =,90MBD ECD ∠=∠=︒,BM CE =, 所以BDM CDE ∆∆≌,故MD ED =.因为120BDC ∠=︒,60MDN ∠=,所以60BDM NDC ∠+∠=︒. 又因为BDM CDE ∠=∠,所以60MDN EDN ∠=∠=︒. 在MND ∆与END ∆中,DN DN =,60MDN EDN ∠=∠=︒,DM DE =, 所以MND END ∆∆≌,则NE MN =,所以AMN ∆的周长为2.【答案】见解析.【作业4】已知:AC 平分∠BAD ,CE ⊥AB ,180B D ∠+∠=︒,求证:AE AD BE =+.【解析】在AE 上取F ,使EF EB =,连接CF∵CE ⊥ABE D CBA∴90∠=∠=︒CEB CEF∵EB EF=,CE CE=,∴△CEB≌△CEF∴B CFE∠=∠∵180+,180∠+∠=︒CFE CFA∠∠=︒B D∴D CFA∠=∠∵AC平分∠BAD∴DAC FAC∠=∠∵AC AC=∴△ADC≌△AFC(SAS)∴AD AF=∴AE AF FE AD BE=+=+【答案】见解析.。

初中几何全等三角形常见辅助线作法

初中几何全等三角形常见辅助线作法

全等三角形常见辅助线作法【例1】.已知:如图6, 4BCE、△ACO分别是以8E、为斜边的直角三角形,且= ACDE是等边三角形.求证:△ A3c是等边三角形.【例2】、如图,已知BC>AB, AD=DCo BD 平分NABC。

求证:ZA+ZC=180°.线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

1、倍长中线法【例.3]如图,己知在△ABC中,ZC = 90°, ZB = 30°, A。

平分NB4C,交BC于点D.求证:BD = 2CD证明:延长DC到E,使得CE=CD,联结AEZC=90°A AC ± CDVCD=CEAD=AEVZB=30° ZC=90°ZBAC=60°YAD 平分NBACJ ZBAD=30°A DB=DA ZADE=60°VDB=DA:.BD=DE/. BD=2DC4B D笫3题•/ ZADE=60° AD=AEA △ ADE为等边三角形,AD=DE【例4.】如图,。

是AABC的边上的点,且CD = AB, ZADB = ZBAD, AE是AARD的中线。

求证:AC = 2AEo 证明:延长AE至IJ点F,使得EF=AE联结DF在4ABE和4FDE中BE=DEZAEB=ZFEDAE=FE/.△ABE 也AFDE (SAS) A AB=FD ZABE=ZFDE VAB=DCJ FD = DCZADC=ZABD+ZBAD ZADB = ZBAD,ZADC=ZABD+ZBDA VZABE=ZFDE・・・NADONADB+NFDE即ZADC= ZADF ffiAADF 和AADC 中AD=AD< ZADF= ZADC、DF =DC・•・△ ADF也ADC(SAS) AAF=ACAC=2AE【变式练习】、如图,AABC中,BD二DOAC, E是DC的中点,求证:AD平分NBAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法, 倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

初中几何,辅助线的常见做法.

初中几何,辅助线的常见做法.

初中数学辅助线的添加人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线。

(2)等腰三角形是个简单的基本图形当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

(完整版)全等三角形常用辅助线做法

(完整版)全等三角形常用辅助线做法

五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。

求证: CD=AD+BC。

思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。

初中常用几何辅助线作法大全

初中常用几何辅助线作法大全

初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90 °;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1 )平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5 )三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初中数学常用辅助线大全

初中数学常用辅助线大全

初中数学常用辅助线大全初中数学中,辅助线是解决几何问题的重要工具。

通过添加适当的辅助线,可以转化问题,使其更容易解决。

以下是初中数学中常用的辅助线做法:1. 中点连接线:如果一条线段被另一条线段平分,则可以作出中点连接线。

中点连接线将原图形分为面积相等、形状相同的两部分。

2. 平行线:通过作平行线,可以将复杂的几何图形转化为简单的、易于处理的图形。

平行线有助于证明角度相等、线段相等和全等三角形。

3. 延长线:在需要证明某一直线或线段等于另一条直线或线段时,可以通过延长线的方式将问题简化。

4. 垂线:在证明角相等、三角形全等或线段长度等问题时,经常需要作垂线。

垂足将线段分为两段相等的部分,有助于证明和计算。

5. 角平分线:角平分线将角分为两个相等的部分,有助于证明角度相等和线段长度相等。

6. 构造法:在某些情况下,需要通过构造新的图形来解决问题。

例如,构造一个与原图形相似的三角形或平行四边形。

7. 截长补短法:当需要证明某一直线或线段等于两条其他直线或线段的和时,可以通过截长或补短的方式来证明。

8. 辅助圆:在证明与圆相关的问题时,有时需要作辅助圆。

通过辅助圆,可以将问题转化为与圆相关的定理和性质。

除了以上常用方法外,还有一些特殊图形的辅助线做法。

例如,在等腰三角形中,可以通过作底边上的高或中线来证明性质;在直角三角形中,可以通过作斜边上的中线来证明性质。

为了更好地掌握辅助线的做法,学生需要多做练习题,积累经验并熟悉各种题型。

同时,要注意总结和归纳,发现不同问题之间的联系和规律,以便能够更快地找到解决问题的方法。

另外,值得注意的是,辅助线并不是随意添加的,需要遵循一定的逻辑和推理。

添加的辅助线必须与原图形有清晰的关系,不能凭空创造。

同时,要注意证明过程中每一步的逻辑严密性,确保证明过程是正确的。

综上所述,初中数学中的辅助线做法是解决几何问题的关键。

通过熟练掌握各种辅助线的做法,学生可以更好地解决复杂的几何问题,提高数学成绩。

初中数学几何辅助线作法大全及专题训练(含答案)

初中数学几何辅助线作法大全及专题训练(含答案)

图1 2 C
(法二:)如图 1-2, 延长 BD 交 AC 于 F,延长 CE 交 BF 于 G,
在△ABF 和△GFC 和△GDE 中有: AB+AF> BD+DG+GF (三角形两边之和大于第三边)(1) GF+FC>GE+CE(同上)………………………………(2) DG+GE>DE(同上)……………………………………(3) 由(1)+(2)+(3)得: AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC。
DF DF(公共边)
∴△EDF≌△MDF (SAS) ∴EF=MF (全等三角形对应边相等) ∵在△CMF 中,CF+CM>MF(三角形两边之和大于第三边) ∴BE+CF>EF 注:上题也可加倍 FD,证法同上。 注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形, 使题中分散的条件集中。
五、有三角形中线时,常延长加倍中线,构造全等三角形。
例如:如图 5-1:AD 为 △ABC 的中线,求证:AB+AC>2AD。
A
分析:要证 AB+AC>2AD,由图想到: AB+BD>AD,AC+CD >AD,所以有 AB+AC+ BD+CD>AD+AD=2AD,左边比要证
B
D
C
E
结论多 BD+CD,故不能直接证出此题,而由 2AD 想到要构造 2AD,即加倍中线,把所要证的 线段转移到同一个三角形中去。
证法一:延长 BD 交 AC 于点 E,这时∠BDC 是△EDC 的外角,
A
G
E
D
∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接 AD,并延长交 BC 于 F
B
F

初中数学几何题常见辅助线作法

初中数学几何题常见辅助线作法

初中数学几何题常见辅助线作法.几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径联。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

由角平分线想到的辅助线一、截取构全等平分∠ABC,CE平分∠BCD,点E 在AB//CD如图,,BEAD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE与CD的延长线交于一点来证明。

自已试一试。

二、角分线上点向两边作垂线构全等B=180∠ADC+∠。

求证:FAC,CD=BC∠BAC=∠AB>AD, 如图,已知.∠BAD的两边作垂线。

近而证∠ADC与∠分析:可由BC向之和为平角。

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。

下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。

一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。

具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法适用于证明线段的和、差、倍、分等类的题目。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。

要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。

具体证明过程为:在AC上截取AF=AE,连接OF。

由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。

显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。

另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

要证明CD=AD+BC。

因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。

初中几何辅助线大全

初中几何辅助线大全

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC 与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角;证明:分别延长DA,CB,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD 已知∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件;二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 三、有和角平分线垂直的线段时,通常把这条线段延长;ABCDE17-图O分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长; 证明:分别延长BA,CE 交于点F; ∵BE ⊥CF 已知∴∠BEF =∠BEC =90° 垂直的定义在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等 ∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE四、取线段中点构造全等三有形;分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有19-图DCBA E F12△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中 ∵⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB;巧求三角形中线段的比值例1. 如图1,在△ABC 中,BD :DC =1:3,AE :ED =2:3,求AF :FC;解:过点D 作DG 如图2,BC =CD,AF =FC,求EF :FD解:过点C 作CG如图3,BD :DC =1:3,AE :EB =2:3,求AF :FD;111-图DCBAM N解:过点B 作BG如图4,BD :DC =1:3,AF =FD,求EF :FC;解:过点D 作DG如图5,BD =DC,AE :ED =1:5,求AF :FB;2. 如图6,AD :DB =1:3,AE :EC =3:1,求BF :FC;答案:1、1:10; 2. 9:1二 由角平分线想到的辅助线图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边;通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件;与角有关的辅助线一、截取构全等例1. 如图1-2,AB 21证:BD=2CE;分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形;图1-3ABCDE 图1-4A BC DE图2-1ABCD E F图2-2ABCDE 图2-3P AB CM ND F 图示3-1AB CDH E例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD,交AD 的延长线于F,连结FC 并延长交AE 于M;求证:AM=ME;分析:由AD 、AE 是∠BAC 内外角平分线,可得EA ⊥AF,从而有BF 212121∠∠21图,△ABC 中,∠BAC=90°,AB=AC,AE 是过A 的一条直线,且B,C 在AE 的异侧, BD ⊥AE 于D,CE ⊥AE 于E;求证:BD=DE+CE四 由中点想到的辅助线三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;一、由中点应想到利用三角形的中位线例2.如图3,在四边形ABCD 中,AB=CD,E 、F 分别是BC 、AD 的中点,BA 、CD 的延长线分别交EF 的延长线G 、H;求证:∠BGE=∠CHE;证明:连结BD,并取BD 的中点为M,连结ME 、MF, ∵ME 是ΔBCD 的中位线, ∴MECD,∴∠MEF=∠CHE,∵MF 是ΔABD 的中位线, ∴MFAB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE, 从而∠BGE=∠CHE;二、由中线应想到延长中线例3.图4,已知ΔABC 中,AB=5,AC=3,连BC 上的中线AD=2,求BC 的长; 解:延长AD 到E,使DE=AD,则AE=2AD=2×2=4; 在ΔACD 和ΔEBD 中,D AE C BD C BAMBD C AE D CB A图3-3DBEF N ACM图3-4nEBADCM FDCB AE D FCB A ∵AD=ED,∠ADC=∠EDB,CD=BD, ∴ΔACD≌ΔEBD ,∴AC=BE, 从而BE=AC=3;在ΔABE 中,因AE 2+BE 2=42+32=25=AB 2,故∠E=90°, ∴BD===,故BC=2BD=2;例4.如图5,已知ΔABC 中,AD 是∠BAC 的平分线,AD 又是BC 边上的中线;求证:ΔABC 是等腰三角形;证明:延长AD 到E,使DE=AD; 仿例3可证: ΔBED≌ΔCAD , 故EB=AC,∠E=∠2, 又∠1=∠2, ∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC 是等腰三角形;三、直角三角形斜边中线的性质例5.如图6,已知梯形ABCD 中,AB 2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE.中考应用例题:以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.1如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;DMCEA BB ECD AA BDC E FAD CBA2将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ0<θ<90后,如图②所示,1问中得到的两个结论是否发生改变并说明理由.二、截长补短1.如图,ABC ∆中,AB=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC 2:如图,AC ∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB =AC+BD 3:如图,已知在ABC 内,60BAC ∠=分别在BC,CA 上,并且AP,BQ 分别是BAC ∠,ABC ∠线;求证:BQ+AQ=AB+BP4:如图,在四边形ABCD 中,BC >BA,AD 平分ABC ∠,求证:0180=∠+∠C A5三、借助角平分线造全等1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O,求证:OE=OD2:06郑州市中考题如图,△ABC 中,AD 平分∠且平分BC,DE ⊥AB 于E,DF ⊥AC 于F. 1说明BE=CF AB=a ,AC=b ,求AE 、BE 的长.3.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答下列问题:1如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ;请你判断并写出FE 与FD 之间的数量关系;E DGFCBAAFEDCBA2如图③,在△ABC 中,如果∠ACB 不是直角,而1中的其它条件不变,请问,你在1中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由;四、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为C D 上的一点,BE+DF=EF,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F;(1) 当MDN ∠绕点D 转动时,求证(2)若AB=2,求四边形DECF 的面积;3.如图,ABC ∆是边长为3的等边三角形,BDC∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060使其两边分别交AB 于点M,交AC 于点N,连接MN,则AMN ∆4.已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,或它们的延长线于E F ,.当MBN ∠绕B 点旋转到AE CF =时如图1,易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系请写出你的猜想,不需证明.5.以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.1,求AB 及PD 的长;2且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.第23题图OP AMN EB C D F ACEF BD图① 图② 图③图1 图2 图36.在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3I 如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时=LQ; II 如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想I 问的两个结论还成立吗写出你的猜想并加以证明;III 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x ,则Q= 用x 、L 表示.梯形中的辅助线1、平移一腰:例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC,AD =15,AB =16,BC =17. 求CD 的长.解:过点D 作DE ∥BC 交AB 于点E. 又AB ∥CD,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得 AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围; 解:过点B作B M)(2121CH BG BC GH EF --==512=⨯=BE ED BD DH ABDCEH A BCDABCDE6251252DH BC)(AD ABCD =⨯=⨯+=∴梯形S 25252522222100)25()25(AE CE AC ==+=+DCEACD ABD S S S ∆∆∆==DBEABCDS S ∆=梯形2222DH AC DH DE EH -=-=9121522=-=1612202222=-=-=DH BD BH )(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆如图所示,四边形ABCD 中,AD 不平行于BC,AC =BD,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形.证明:延长AD 、BC 相交于点E,如图所示. ∵AC =BD,AD =BC,AB =BA, ∴△DAB ≌△CBA. ∴∠DAB =∠CBA.∴EA =EB.又AD =BC,∴DE =CE,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB,∴DC ∥AB. 又AD 不平行于BC,∴四边形ABCD 是等腰梯形.三、作对角线即通过作对角线,使梯形转化为三角形; 例9如图6,在直角梯形ABCD中,ADcmBE AE 33==2342)(cmAE BC AD S ABCD=⨯+=梯形21AD OE 21=)(21AD BC EF -=A BCD ABCDEABCDE FBG EF 21=AD BC CG BC BG -=-=)(21AD BC -=如图所示,已知等腰梯形ABCD 中,AD ∥BC,∠B =60°,AD =2,BC =8,则此等腰梯形的周长为A. 19B. 20C. 21D. 228. 如图所示,梯形ABCD 中,AD ∥BC,1若E 是AB 的中点,且AD +BC =CD,则DE 与CE 有何位置关系2E 是∠ADC 与∠BCD 的角平分线的交点,则DE 与CE 有何位置关系 A B DC E FAB CD EF MN.圆中作辅助线的常用方法:例题1:如图2,在圆O 中,B 为的中点,BD 为AB 的延长线,∠OAB=500,求∠CBD 的度数; 解:如图,连结OB 、OC 的圆O 的半径,已知∠OAB=500∵B 是弧AC 的中点∴弧AB=弧BC∴AB==BC又∵OA=OB=OC∴△AOB ≌△BOC 图2∴∠OBC=∠ABO=500∵∠ABO+∠OBC+∠CBD=1800∴∠CBD=1800 - 500- 500∴∠CBD=800答:∠CBD 的度数是800.例题2:如图3,在圆O 中,弦AB 、CD 相交于点P,求证:∠APD的度数=21弧AD+弧BC 的度数; 证明:连接AC,则∠DPA=∠C+∠A∴∠C 的度数=21弧AD 的度数 ∠A 的度数=21弧BC 的度数 ∴∠APD=21弧AD+弧BC 的度数; 图3 一、造直角三角形法1.构成Rt △,常连接半径例1. 过⊙O 内一点M ,最长弦AB = 26cm,最短弦CD = 10cm ,求AM 长;2.遇有直径,常作直径上的圆周角例2. AB 是⊙O 的直径,AC 切⊙O 于A,CB 交⊙O 于D,过D 作⊙O 的切线,交AC 于E.求证:CE = AE;3.遇有切线,常作过切点的半径例3 .割线AB 交⊙O 于C 、D,且AC=BD,AE 切⊙O 于E,BF 切⊙O 于F.求证:∠OAE = ∠OBF;4.遇有公切线,常构造Rt △斜边长为圆心距,一直角边为两半径的差,另一直角边为公切线长例4 .小 ⊙O 1与大⊙O 2外切于点A,外公切线BC 、DE 分别和⊙O 1、⊙O 2切于点B 、C和D 、E,并相交于P,∠P = 60°;求证:⊙O 1与⊙O 2的半径之比为1:3;5.正多边形相关计算常构造Rt △例5.⊙O 的半径为6,求其内接正方形ABCD 与内接正六边形AEFCGH 的公共部分的面积.二、欲用垂径定理常作弦的垂线段例6. AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E,BF ⊥CD 于F.1求证:EC = DF; 2若AE = 2,CD=BF=6,求⊙O 的面积;三、转换割线与弦相交的角,常构成圆的内接四边形例7. AB 是⊙O 直径,弦CD ⊥AB,M 是AC 上一点,AM 延长线交DC 延长线于F. 求证: ∠F = ∠ACM;四、切线的综合运用 1.已知过圆上的点,常_________________例8.如图, 已知:⊙O 1与⊙O 2外切于P,AC 是过P 点的割线交⊙O 1于A,交⊙O 2于C,过点O 1的直线AB ⊥BC 于B.求证: BC 与⊙O 2相切. 六、开放性题目 例17.已知:如图,以ABC △的边AB 为直径的O 交边AC 于点D ,且过点D 的切线DE 平分边BC .1BC 与O 是否相切请说明理由;2当ABC △满足什么条件时,以点O ,B,E ,D 明理由.第23题。

初中数学常见辅助线的做法

初中数学常见辅助线的做法

初中数学常见辅助线的做法一、中点模型的构造1.已知任意三角形一边上的中点,可以考虑:(1)倍长中线或类中线(与中点有关的线段)构造全等三角形.如图1、图2所示.(2)三角形中位线定理.2.已知直角三角形斜边中点,可以考虑构造斜边中线.3.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一二4.有些题目的中点不直接给出,此时需要我们挖掘题目中的隐含中点,例如:直角三角形中斜边中点, 等腰三角形底边上的中点,当没有这些条件的时候,可以用辅助线添加.二、角平分线模型的构造与角平分线有关的常用辅助线作法,即角平分线的四大基本模型.已知。

是4MON平分线上一点,(1)若以_L 0M于点4 ,如图1,可以过户点作PB1ON于点&则与二以.可记为“图中有角平分线, 可向两边作垂线”.(2)若点4是射线0M上任意一点,如图2,可以在ON上截取(用=0/1 ,连接/7人构造△()*?三△ /%.可记为“图中有角平分线,可以将图对折看,对称以后关系现二⑶若翼妆舔踹嚼鼠3耳以黠部交0N于点从周造A4 0H基尊健三角形/是底边4加勺中点.可记为“角平分线加垂线,三线合一试试看二(4)若过P点作PQ//0N交0M于点0,如图4,可以构造△P0Q是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现二三、轴对称模型的构造下面给出几种常见考虑要用或作轴对称的基本图形.(1 )线段或角度存在2倍关系的,可考虑对称.(2)有互余、互补关系的图形,可考虑对称.(3)角度和或差存在特殊角度的,可考虑对称.(4)路径最短问题,基本上运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解.所以最短路径问题,需考虑轴对称.几何最值问题的儿种题型及解题作图方法如下表所示.四、圆中辅助线构造在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此, 灵活掌握作辅助线的一般规律和常见方法,对.提高学生分析问题和解决问题的能力是大有帮助的。

(完整)初中数学几何辅助线技巧

(完整)初中数学几何辅助线技巧

几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径联。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

由角平分线想到的辅助线一、截取构全等:如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE与CD的延长线交于一点来证明。

自己试一试。

二、角分线上点向两边作垂线构全等:如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。

求证:∠ADC+∠B=180分析:可由C向∠BAD的两边作垂线。

近而证∠ADC与∠B之和为平角。

三、三线合一构造等腰三角形:如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。

(完整版)初二数学辅助线常用做法及例题(含答案)

(完整版)初二数学辅助线常用做法及例题(含答案)

DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

几何证明之常见辅助线做法--

几何证明之常见辅助线做法--

几何证明常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等.1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3、遇到角平分线在三种添辅助线的方法.(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形.(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形.4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”.5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.例题精讲第一部分:常见构造全等三角形方法例1、已知:如图,在四边形ABCD中,BC AB>,AD CD=,BD平分ABC∠.求证:180A C∠+∠=︒.例2、已知:如图所示,△ABC中,90C∠=︒,AC BC=,AD DB=,AE CF=.求证:DE DF=.相关练习:D为等腰Rt△ABC斜边AB的中点,DM⊥DN,DM、DN分别交BC、CA于点E、F.(1)当MDN∠绕点D转动时,求证:DE DF=;(2)若2AC=,求四边形DECF的面积.FEC AMD第二部分:倍长中线作法 【夯实基础】例:△ABC 中,AD 是BAC ∠的平分线,且BD CD =.求证:AB AC =.【方法精讲】常用辅助线添加方法——倍长中线△ABC 中方式1: 延长AD 到E ,AD 是BC 边中线 使DE=AD , 连接BE方式2:间接倍长作CF ⊥AD 于F , 延长MD到N ,作BE ⊥AD 的延长线于E 使DN=MD ,连接BE 连接CD【经典例题】例1、△ABC 中,5AB =,3AC =,求中线AD 的取值范围.例2、已知在△ABC 中,AB AC =,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF EF =.求证:BD CE =.例3、已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F .求证:AF EF =.例4、已知:如图,在△ABC 中,AB AC ≠,D 、E 在BC 上,且DE EC =,过D 作DF ∥BA 交AE 于点F ,DF AC =. 求证:AE 平分BAC ∠.例5、已知CD AB =,BDA BAD ∠=∠,AE 是△ABD 的中线.求证:C BAE ∠=∠.第 1 题图ABFDECEDCBA【融会贯通】1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,BAE EAF ∠=∠,AF 与DC 的延长线相交于点F .试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.2、如图,AD 为△ABC 的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F . 求证:BE CF EF +>.3、已知:如图,△ABC 中,90C ∠=︒,CM ⊥AB 于M ,AT 平分BAC ∠交CM 于D ,交BC 于T ,过D 作DE ∥AB 交BC 于E .求证:CT BE =.备选例题例1、如图,AD ∥BC ,EA 、EB 分别平分DAB ∠、CBA ∠,CD 过点E ,求证:AB AD BC =+.FEABCDDABCMTE例2、以的两边AB 、AC 为腰分别向外作等腰Rt △ABD 、Rt △ACE ,90BAD CAE ∠=∠=︒,连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系. (1)如图① 当△ABC 为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt △ABD 绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.自我测试1、在△ABC 中,高AD 和BE 交于H 点,且BH AC =,则ABC ∠= .2、如图,已知AE 平分BAC ∠,BE ⊥AE 于E ,ED ∥AC ,36BAE ∠=︒,那么BED ∠= .第2题 第3题3、如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E ,给出三个论断:①DE EF =;②AE CE =;③FC ∥AB ,以其中一个论断为结论,其余两个论断为条件,可作出三个命题,其中正确命题的个数是 .4、如图,在△ABC 中,AD 为BC 边上的中线,若5AB =,3AC =,则AD 的取值范围是 .第4题 第5题 第6题5、如图,在△ABC 中,AC BC =,90ACB ∠=︒.AD 平分BAC ∠,BE ⊥AD 交AC 的延长线于F ,E 为垂足.则结论:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1;B .2;C .3;D .4.6、如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AD >,下列结论中正确的是( )A .AB AD CB CD ->-; B .AB AD CB CD -=-;C .AB AD CB CD -<-; D .AB AD -与CB CD -的大小关系不确定. 7、考查下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数有( ). A .4个; B .3个; C .2个; D .1个.8、如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE ⊥AB 于E ,并且1()2AE AB AD =+,求ABC ADC ∠+∠的度数.9、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE CF +与EF 的大小关系,并证明你的结论.10、如图,已知2AB CD AE BC DE ===+=,90ABC AED ∠=∠=︒,求五边形ABCDE 的面积.11、如图,在△ABC 中,60ABC ∠=︒,AD 、CE 分别平分BAC ∠、ACB ∠. 求证:AC AE CD =+.12、如图,已知90ABC DBE ∠=∠=︒,DB BE =,AB BC =. (1)求证:AD CE =,AD ⊥CE ;(2)若△DBE 绕点B 旋转到△ABC 外部,其他条件不变,则(1)中结论是否仍成立?请证明.。

初中几何辅助线作法大全

初中几何辅助线作法大全

线,角,相交线,平行线规律1.假如平面上有n (n ≥2)个点,其中任何三点都不在同一直线上,那么每两点画一款直线,一共可以画出12n (n -1)款.规律2.平面上地n 款直线最多可把平面分成〔12n (n +1)+1〕个部分.规律3.假如一款直线上有n 个点,那么在这个图形中共有线段地款数为12n (n -1)款.规律4.线段(或延长线)上任一点分线段为两段,这两款线段地中点地距离等于线段长地一半.例:如图,B 在线段AC 上,M 是AB 地中点,N 是BC 地中点.求证:MN =12AC 证明:∵M 是AB 地中点,N 是BC 地中点∴AM = BM =12AB ,BN = CN = 12BC ∴MN = MB +BN = 12AB + 12BC = 12(AB + BC )∴MN =12AC练习:1.如图,点C 是线段AB 上地一点,M 是线段BC 地中点.求证:AM =12(AB + BC ) 2.如图,点B 在线段AC 上,M 是AB 地中点,N 是AC 地中点.求证:MN =12BC 3.如图,点B 在线段AC 上,N 是AC 地中点,M 是BC 地中点.求证:MN =12AB 规律5.有公共端点地n 款射线所构成地交点地个数一共有12n (n -1)个.规律6.假如平面内有n 款直线都经过同一点,则可构成小于平角地角共有2n (n -1)个.规律7. 假如平面内有n 款直线都经过同一点,则可构成n (n -1)对对顶角.规律8.平面上若有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出16n (n -1)(n -2)个.规律9.互为邻补角地两个角平分线所成地角地度数为90o .规律10.平面上有n 款直线相交,最多交点地个数为12n (n -1)个.规律11.互为补角中较小角地余角等于这两个互为补角地角地差地一半.N M CB A MC BA N M CB A N MCB A规律12.当两直线平行时,同位角地角平分线互相平行,内错角地角平分线互相平行,同旁内角地角平分线互相垂直.例:如图,以下三种情况请同学们自己证明.规律13.已知AB ∥DE ,如图⑴~⑹,规律如下:规律14.成“8”字形地两个三角形地一对内角平分线相交所成地角等于另两个内角和地一半.例:已知,BE ,DE 分别平分∠ABC 和∠ADC ,若∠A = 45o ,∠C = 55o ,求∠E 地度数.解:∠A +∠ABE =∠E +∠ADE ①∠C +∠CDE =∠E +∠CBE ②①+②得∠A +∠ABE +∠C +∠CDE =∠E +∠ADE +∠E +∠CBE ∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠ABE =∠CBE ,∠CDE =∠ADE ∴2∠E =∠A +∠C∴∠E =12(∠A +∠C )1()∠ABC+∠BCD+∠CDE=360︒E D C BA +=∠CDE∠ABC ∠BCD 2()E DCBA-=∠CDE ∠ABC∠BCD 3()E DC BA-=∠CDE∠ABC ∠BCD 4()E D CBA +=∠CDE ∠ABC∠BCD 5()EDCB A +=∠CDE∠ABC ∠BCD 6()EDCBANME DBCAH GFE D BCAHGFED BCAH GFEDBCA∵∠A =45o,∠C =55o,∴∠E =50o三角形部分规律15.在利用三角形三边关系证明线段不等关系时,假如直接证不出来,可连结两点或延长某边构造三角形,使结论中出现地线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.例:如图,已知D,E为△ABC内两点,求证:AB+AC>BD+DE+CE.证法(一):将DE向两边延长,分别交AB,AC于M,N在△AMN中, AM+AN>MD+DE+NE①在△BDM中,MB+MD>BD②在△CEN中,CN+NE>CE③①+②+③得AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+CE证法(二)延长BD交AC于F,延长CE交BF于G,在△ABF和△GFC和△GDE中有,①AB+AF>BD+DG+GF②GF+FC>GE+CE③DG+GE>DE∴①+②+③有AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+CE注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证地量(或与求证相关地量)移到同一个或几个三角形中去然后再证题.练习:已知:如图P为△ABC内任一点,求证:12(AB+BC+AC)<PA+PB+PC<AB+BC+AC规律16.三角形地一个内角平分线与一个外角平分线相交所成地锐角,等于第三个内角地一半.例:如图,已知BD为△ABC地角平分线,CD为△ABC地外角∠ACE地平分线,它与BD地延长线交于D.求证:∠A = 2∠D证明:∵BD,CD分别是∠ABC,∠ACE地平分线∴∠ACE =2∠1, ∠ABC =2∠2∵∠A = ∠ACE-∠ABC∴∠A = 2∠1-2∠2又∵∠D =∠1-∠2∴∠A =2∠D规律17. 三角形地两个内角平分线相交所成地钝角等于90o加上第三个内角地一半.例:如图,BD,CD分别平分∠ABC,∠ACB, 求证:∠BDC = 90o+12∠A证明:∵BD,CD分别平分∠ABC,∠ACBFGNMEDBA21C EDBA∴∠A+2∠1+2∠2 = 180o∴2(∠1+∠2)= 180o-∠A①∵∠BDC = 180o-(∠1+∠2)∴(∠1+∠2) = 180o-∠BDC②把②式代入①式得2(180o-∠BDC)= 180o-∠A 即:360o-2∠BDC =180o-∠A ∴2∠BDC = 180o+∠A∴∠BDC = 90o+12∠A规律18. 三角形地两个外角平分线相交所成地锐角等于90o减去第三个内角地一半.例:如图,BD,CD分别平分∠EBC,∠FCB, 求证:∠BDC = 90o-12∠A证明:∵BD,CD分别平分∠EBC,∠FCB∴∠EBC = 2∠1,∠FCB = 2∠2∴2∠1 =∠A+∠ACB①2∠2 =∠A+∠ABC②①+②得2(∠1+∠2)= ∠A+∠ABC+∠ACB+∠A2(∠1+∠2)= 180o+∠A∴(∠1+∠2)= 90o+12∠A∵∠BDC = 180o-(∠1+∠2)∴∠BDC = 180o-(90o+12∠A)∴∠BDC = 90o-12∠A规律19. 从三角形地一个顶点作高线和角平分线,它们所夹地角等于三角形另外两个角差(地绝对值)地一半.例:已知,如图,在△ABC中,∠C>∠B, AD⊥BC于D, AE平分∠BAC.求证:∠EAD = 12(∠C-∠B)证明:∵AE平分∠BAC∴∠BAE =∠CAE =12∠BAC∵∠BAC =180o-(∠B+∠C)∴∠EAC = 12〔180o-(∠B+∠C)〕∵AD⊥BC∴∠DAC = 90o-∠C∵∠EAD = ∠EAC-∠DACDCBA2121FEDCBAE D CBA∴∠EAD = 12〔180o -(∠B +∠C )〕-(90o -∠C ) = 90o -12(∠B +∠C )-90o +∠C= 12(∠C -∠B )假如把AD 平移可以得到如下两图,FD ⊥BC 其它款件不变,结论为∠EFD =12(∠C -∠B ).注意:同学们在学习几何时,可以把自己证完地题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三,灵活应变地能力.规律20.在利用三角形地外角大于任何和它不相邻地内角证明角地不等关系时,假如直接证不出来,可连结两点或延长某边,构造三角形,使求证地大角在某个三角形外角地位置上,小角处在内角地位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 地外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F∵∠BDF 是△ABD 地外角,∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC规律21.有角平分线时常在角两边截取相等地线段,构造全等三角形. 例:已知,如图,AD 为△ABC 地中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE ,NF ,则DN = DC 在△BDE 和△NDE 中,DN = DB∠1 = ∠2ED = ED∴△BDE ≌△NDE ∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF规律22. 有以线段中点为端点地线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 地中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM ,FMABCDEF FE DCBA FABC DE D C B A 4321NFEDCBABD = CD ∠1 = ∠5ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180o ∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o △EDF 和△MDF 中ED = MD ∠FDM = ∠EDF DF = DF∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 地中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 地中线∴BD = CD在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD规律24.截长补短作辅助线地方式截长法:在较长地线段上截取一款线段等于较短线段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(8)基本辅助线;( 9)截取和延长变换;( 10)对称变换;( 11)平移变换;( 12)旋转
变换。下面通过近年全国各地中考的实例探讨其应用。
一、构造基本图形: 每个几何定理都有与它相对应的几何图形, 我们把它叫做基本图形,
添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形。
如平行线, 垂直
AB=1时,△ AME的面积记为 S1;当 AB=2时,△ AME的面积记为 S2;当 AB=3时,△ AME的面
积记为 S3;…;当 AB=n时,△ AME的面积记为 Sn.当 n≥2时, Sn﹣ Sn﹣1= ▲ .
【答案】 2n 1 。 2
【考点】 正方形的性质,平行的判定和性质,同底等高的三角形面积,整式的混合运算。 【分析】 连接 BE,
在 Rt△OEF中, OE=2,∠ AED=30°,∴ OF
23 。∴ FG=2OF
43

3
3
【考点】 翻折变换(折叠问题),折叠对称的性质,菱形的判定,梯形中位线性质,锐角三
角函数定义,特殊角的三角函数值。
【分析】 ( 1)根据折叠的性质判断出 AG=G,E ∠AGF=∠EGF, 再由 CD∥AB 得出∠ EFG=∠AGF,
线,直角三角形斜边上中线, 三角形、 四边形的中位线等。 等腰(边) 三角形、 直角三角形、
全等三角形、 相似三角形、 特殊四边形和圆的特殊图形也都是基本图形, 但我们后面把它们
单独表述。
典型例题:
例 1. ( 2012 湖北襄阳 3 分) 如图,直线 l ∥m,将含有 45°角的三角板 ABC的直角顶点 C
2
2
∴四边形 EFGH是平行四边形。
由于四边形 EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所
以 AC=BD或 AC⊥BD 不一定成立,从而得不到矩形或菱形的判断。
故选 A。
例 5. ( 2012 江苏宿迁 3 分) 已知点 E, F, G, H 分别是四边形 ABCD的边 AB, BC,CD, DA
中求
出 FO,从而可得出 FG的长度。
-6-
练习题: 1. ( 2012 宁夏区 3 分) 如图, C 岛在 A 岛的北偏东 45°方向,在 B 岛的北偏西 25°方向, 则从 C 岛看 A、 B 两岛的视角∠ ACB= ▲ 度.
2. ( 2012 浙江嘉兴、舟山 5 分) 在直角△ ABC 中,∠ C=90°, AD平分∠ BAC交 BC于点 D, 若 CD=4,则点 D 到斜边 AB 的距离为 ▲ .
(2)连接 EG,判断 EG与 DF的位置关系,并说明理由。
【答案】 解:( 1)证明:∵ AD∥BC,∴∠ ADE=∠BFE(两直线平行,内错角相等)。 ∵E是 AB 的中点,∴ AE=BE。 又∵∠ AED=∠BEF,∴△ ADE≌△ BFE( AAS)。
( 2) EG与 DF的位置关系是 EG⊥DF。理由如下: ∵∠ ADE=∠BFE,∠ GDF=∠ADF, ∴∠ GDF=∠BFE(等量代换)。∴ GD=G(F 等角对等边)。 又∵△ ADE≌△ BFE,∴ DE=EF(全等三角形对应边相等)。 ∴EG⊥DF(等腰三角形三线合一)。
1 n2 2
1
21
2n 1
n 1 = n+n 1 n n+1 =

2
2
2
例 7. ( 2012 江苏镇江 6 分) 如图,在四边形 ABCD中, AD∥BC, E 是 AB的中点,连接 DE并
延长交 CB的延长线于点 F,点 G在 BC边上,且∠ GDF=∠ADF。
(1)求证:△ ADE≌△ BFE;
例 2.( 2012 四川内江 3 分)如图, a // b , 1 65 0 , 2 140 0 , 则 3 【 】
-2-
A. 1000 B. 1050 C. 1100 D. 1150
【答案】 B。
【考点】 平行的性质,三角形外角性质。
【分析】 如图,反向延长 b ,形成∠ 4。 ∵ a / /b ,∴∠ 3=180 0-∠ 4。
辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。
-1-
在几何题的证明或求解时, 需要构成一些基本图形来求证 (解) 时往往要通过添加辅助
∴四边形 EFGH是矩形。
且∵ AC≠BD,∴四边形 EFGH邻边不相等。
∴四边形 EFGH不可能是菱形。
例 6.( 2012 湖北天门、 仙桃、 潜江、 江汉油田 3 分)如图, 线段 AC=n+1(其中 n 为正整数),
点 B在线段 AC上,在线段 AC同侧作正方形 ABMN及正方形 BCEF,连接 AM、ME、EA得到△ AME.当

A .平行四边形
B.矩形
C.菱形
D.梯形
【答案】 A 。
【考点】 三角形中位线定理,平行四边形的判定。
【分析】 根据题意画出图形,如右图所示:
连接 AC,
∵四边形 ABCD各边中点是 E、F、 G,EF∥AC, EF= 1 AC。∴ EF=GH,EF∥GH。
∵在线段 AC同侧作正方形 ABMN及正方形 BCEF,
-4-
∴BE∥AM。∴△ AME 与△ AMB同底等高。
∴△ AME的面积 =△AMB的面积。
∴当 AB=n时,△ AME的面积为 Sn 1 n2 ,当 AB=n-1 时,△ AME的面积为 2
1
2
Sn
n1。 2
∴当 n≥2时, Sn
Sn 1
-5-
(3)如图 2,在( 2)的条件下,求折痕 FG的长.
【答案】 解:( 1)由折叠的性质可得, GA=G,E ∠ AGF=∠EGF, ∵DC∥AB,∴∠ EFG=∠AGF。∴∠ EFG=∠EGF。∴ EF=EG=A。G ∴四边形 AGEF是平行四边形( EF∥AG, EF=AG)。 又∵ AG=G,E ∴四边形 AGEF是菱形。
线(图)来形成,添加辅助线(图),构成的基本图形是结果,构造的手段是方法。
笔者从作辅助线的结果和方法两方面将几何辅助线(图)作法归纳为结果―――(
1)
构造基本图形;( 2)构造等腰(边)三角形:( 3)构造直角三角形;( 4)构造全等三角
形;( 5)构造相似三角形;( 6)构造特殊四边形;( 7)构造圆的特殊图形;方法―――
从而
判断出 EF=AG,得出四边形 AGEF是平行四边形,从而结合 AG=G,E 可得出结论。
(2)连接 ON,则 ON⊥BC, 从而判断出 ON是梯形 ABCE的中位线,从而可得出结论。
( 3)根据( 1)可得出 AE=AB,从而在 Rt△ADE中,可判断出∠ AED 为 30°,在 Rt△EFO
4. ( 2011 湖南怀化 3 分)如图, 已知直线 a ∥ b ,∠1=40°, ∠2=60°. 则∠3等于 【 】 A、100° B 、60° C 、40° D 、20°
5. ( 2011 湖北恩施 3 分)将一个直角三角板和一把直尺如图放置,
专题 7:几何辅助线(图)作法探讨 一些几何题的证明或求解, 由原图形分析探究, 有时显得十分复杂, 若通过适当的变换, 即添加适当的辅助线(图),将原图形转换成一个完整的、特殊的、简单的新图形,则能使 原问题的本质得到充分的显示, 通过对新图形的分析, 原问题顺利获解。 网络上有许多初中 几何常见辅助线作法歌诀,下面这一套是很好的: 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内切圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。
3. ( 2012 江苏南京 8 分) 如图,梯形 ABCD中, AD//BC ,AB=CD,对角线 AC、 BD交于点 O, AC BD, E、 F、 G、 H分别为 AB、 BC、 CD、 DA的中点 (1)求证:四边形 EFGH为正方形; (2)若 AD=2, BC=4,求四边形 EFGH的面积。
又∵∠ 2=∠1+∠ 4,即∠ 4=∠2—∠ 1。
∴ 3 1800
2 1 1800 1400 650 1050 。故选 B。
例 3. ( 2012 广东梅州 3 分) 如图,∠ AOE=∠BOE=1°5 , EF∥OB,EC⊥OB,若 EC=1,则 EF= ▲.
【答案】 2。
【考点】 角平分线的性质,平行的性质,三角形外角性质, 含 30 度角的直角三角形的性质。
【考点】 平行的性质,全等三角形的判定和性质,等腰三角形的判定和性质。 【分析】 ( 1)由已知,应用 AAS即可证明△ ADE≌△ BFE。
相关文档
最新文档