热释电红外探测器组成和原理
热释电红外传感器工作原理

热释电红外传感器工作原理热释电红外传感器是一种常见的红外传感器,其工作原理基于物质的热节电效应。
热释电红外传感器通常由薄膜材料制成的感测元件、接收与放大电路以及信号处理电路组成。
在工作过程中,热释电红外传感器通过感测元件检测目标物体发出的红外辐射,然后将其转化为电信号并传输给接收与放大电路进行处理。
感测元件通常采用的是热电效应材料,该材料具有独特的热电特性,即在温度变化时会产生电压变化。
热释电红外传感器的感测元件通常是由多个微型热电堆组成的热敏电阻网络。
每个热敏电阻都是由内部微加热结构和感测结构组成。
当目标物体进入热释电红外传感器的感测区域时,感测元件会受到目标物体发出的红外辐射的影响,使得感测元件中的热敏电阻发生温度变化。
这种温度变化会导致感测元件中的热敏电阻产生电压变化,进而输出电信号。
接收与放大电路通过将这个微弱的电信号放大,并进行滤波和增益控制,使得信号能够被信号处理电路准确地分析和处理。
信号处理电路会对接收到的电信号进行进一步的分析和处理,提取出有效的红外目标信号,并根据目标物体的距离、温度以及运动状况等信息进行判断和处理。
总的来说,热释电红外传感器的工作原理可以简单概括为以下几个步骤:1. 接受红外辐射:热释电红外传感器感测元件接收到目标物体发出的红外辐射。
2. 温度变化产生电压:目标物体的红外辐射导致感测元件中的热敏电阻发生温度变化,进而产生相应的电压信号。
3. 电信号放大:接收与放大电路对感测元件输出的微弱电压信号进行放大,以便信号能够被信号处理电路进一步处理和分析。
4. 信号分析与处理:信号处理电路对放大后的信号进行进一步的分析和处理,提取出有效的红外目标信号,并根据目标物体的距离、温度以及运动状况等信息进行判断和处理。
总的来说,热释电红外传感器利用物质的热节电效应,通过感测元件对红外辐射的感测和转化,实现对目标物体的探测和判断,并在安防、自动化控制等领域中得到广泛应用。
热释电红外传感器工作原理

热释电红外传感器工作原理
热释电红外传感器是一种测量和检测红外辐射的设备,它利用物体发出的红外辐射来探测物体的存在。
其工作原理基于物体的热能状态。
当一个物体的温度高于绝对温度零度时,它会发出红外辐射。
这些红外辐射按照不同的波长和频率发射出去。
热释电红外传感器通过检测这些红外辐射来感知物体的存在。
热释电红外传感器通常由一个红外探测器和一个信号处理单元组成。
红外探测器通常是由热释电材料制成,如锂钽酸锂、锂铌酸锂等。
这些材料能够根据温度的变化而产生电荷。
当物体靠近红外探测器时,物体的红外辐射也会靠近传感器。
这会导致探测器吸收更多的红外辐射,从而使其温度上升。
温度的升高会导致热释电材料中的离子在晶格之间移动,并产生电荷。
这些电荷被收集并转化为电压信号。
信号处理单元会接收并处理来自红外探测器的电压信号。
它会分析信号的幅度和频率,以判断是否存在物体并确定其位置和运动。
通过与预设的阈值进行比较,传感器可以触发适当的响应,如报警、触发摄像头拍摄等。
总之,热释电红外传感器通过测量和分析物体发出的红外辐射来感知其存在。
它的工作原理基于热释电材料的特性,利用物体温度的变化产生电荷,并将其转化为电压信号。
这种传感器可以广泛应用于防盗系统、人体检测、智能家居等领域。
红外探测器原理

红外探测器原理
红外探测器是一种能够感知红外辐射的传感器,其原理基于物体的热辐射特性。
红外辐射是指波长长于可见光的电磁辐射,通常处于0.75μm至1000μm的范围内。
红外探测器主要应用于红外成像、红外测温、红外遥控以及红外安防等领域。
红外探测器的原理主要有热释电、热电偶、焦平面阵列等几种。
热释电原理是基于物质在吸收红外辐射后产生温度升高,从而产生电荷变化的
现象。
热释电探测器的工作原理是通过将红外辐射转化为热能,再将热能转化为电能,最终得到电信号。
这种原理的探测器具有快速响应、高灵敏度的特点,但需要外部电源供电。
热电偶原理是利用两种不同材料的接触产生的塞贝克效应,当其中一种材料吸
收红外辐射时,产生的热量使得两种材料的接触点产生温差,从而产生电压信号。
热电偶探测器的优点是工作稳定、寿命长,但对环境温度变化敏感。
焦平面阵列是一种集成式的红外探测器,由多个微小的红外探测单元组成,每
个单元都能够独立感知红外辐射并转化为电信号。
焦平面阵列探测器具有高分辨率、高灵敏度和多功能集成的特点,广泛应用于红外成像领域。
除了以上几种原理外,红外探测器还可以根据探测方式分为主动式和被动式。
主动式红外探测器通过发射红外辐射并测量其反射回来的信号来实现探测,常用于红外遥控和红外测距。
被动式红外探测器则是通过感知周围环境中的红外辐射来实现探测,常用于红外安防和红外监测。
总的来说,红外探测器通过感知物体的红外辐射来实现探测,其原理多种多样,应用也十分广泛。
随着科技的不断进步,红外探测器的性能将会不断提升,为各种领域的应用提供更加可靠、高效的技术支持。
人体热释电红外传感器PIR原理

人体热释电红外传感器PIR原理人体热释电红外传感器(Passive Infrared Sensor,简称PIR)是一种常用于安防系统和自动控制系统的传感器。
它通过感知人体所释放的红外辐射来检测人的存在。
接下来,我将详细介绍PIR传感器的工作原理。
PIR传感器基于人体的热辐射原理。
人体在运动或者处于不同温度的环境下,会释放出红外辐射,传感器通过检测这种红外辐射来确定人体的存在。
PIR传感器通常由一个镜片、一个红外感应单元和一个信号处理单元组成。
首先,镜片用于收集环境中的红外辐射。
通常,这个镜片是一个分段的圆形或矩形,它可以将环境中的红外辐射聚焦到红外感应单元的元件上。
其次,红外感应单元是PIR传感器的核心部件。
它通常由两个红外感应器构成,每个感应器都包含了一个红外感测元件和一个输电线圈。
一个感应器探测到一个感应元件,而与其相对的感应器探测到另一个感应元件。
当没有人体经过时,两个感应器接收到的红外辐射强度是相等的。
然而,当有人体经过时,红外辐射的分布会发生变化,一个感应器接收到的辐射比另一个感应器接收到的辐射要强。
这是因为人体是一个温度较高的物体,当一个感应器探测到红外辐射时,另一个感应器探测到的辐射会更弱,从而产生一个差异信号。
这个差异信号将被传送到信号处理单元进行分析。
最后,信号处理单元负责接收并处理差异信号。
当差异信号超过一定的阈值时,信号处理单元会触发相应的动作,比如开启报警、开启照明等。
同时,为了提高传感器的灵敏度和减少误报率,信号处理单元也可以采用一些技术,比如时间窗口的技术,只有在特定的时间段内出现差异信号才被触发。
需要注意的是,PIR传感器只能检测到红外辐射的变化,而不能检测到绝对温度或静止物体的存在。
因此,在设置PIR传感器时,应该考虑到人体的运动情况以及环境的温度变化。
总结一下,人体热释电红外传感器PIR是一种通过感知人体所释放的红外辐射来检测人的存在的传感器。
它通过镜片收集环境中的红外辐射,通过红外感应单元检测红外辐射的差异,最后通过信号处理单元进行差异信号的分析和处理。
热释电红外传感器的工作原理

热释电红外传感器的工作原理热释电红外传感器是一种采用热释电效应来感测红外辐射的传感器。
该传感器能够感知物体的温度和运动状态,具有广泛的应用领域,如安防、自动化、机器人等。
一、热释电效应原理热释电效应是指在非均匀电介质中,当物理量(如温度)发生变化时,电介质中的电荷会发生移动,导致电势的变化。
这种现象叫做热释电效应。
利用这种效应可以制成红外传感器。
二、热释电红外传感器的结构热释电红外传感器由传感器芯片、滤光器、接收器、前置放大器、信号处理电路、输出电路等组成。
传感器芯片通常由热释电材料制成,如聚乙烯、锂铌酸锂等。
滤光器主要过滤掉不需要的光波,只让红外波通过。
接收器将红外波转化为电信号,然后通过前置放大器放大。
信号处理电路对信号进行滤波、增益等处理。
输出电路将处理后的信号转化为可用的电压或电流输出。
三、热释电红外传感器的工作原理1. 当有热源或物体进入传感器的感应区域时,将发射红外辐射波。
2. 经过滤光器的过滤,只有红外波通过,照射到传感器芯片上。
3. 传感器芯片产生电荷的移动,产生电势,经由接收器转化为电信号。
4. 通过前置放大器放大信号之后,通过信号处理电路进行滤波、增益等操作。
5. 处理后的信号通过输出电路转化为可用的电压或电流输出。
四、热释电红外传感器的优缺点1. 优点:响应速度快、结构简单、功耗低、灵敏度高、价格相对较低、在恶劣环境下也可以进行工作。
2. 缺点:受环境影响较大、易受其它电磁辐射的干扰、动态响应能力较差。
综上所述,热释电红外传感器是一种基于热释电效应工作的传感器,其工作原理主要是利用物体的红外辐射,产生电荷移动,最终产生电势并输出信号。
该传感器具有快速响应速度、低功耗、灵敏度高等优点,但受到环境影响较大、易受其它电磁辐射的干扰等缺点。
简述热释电红外传感器的工作原理

简述热释电红外传感器的工作原理热释电红外传感器是一种常见的红外传感器,广泛应用于人体检测、安防监控、自动化控制等领域。
它的工作原理是基于热释电效应,通过感知被测物体的红外辐射能量来实现检测和识别的功能。
热释电红外传感器的工作原理可以简单概括为以下几个步骤:1. 热释电材料的特性:热释电材料具有特殊的物理性质,当其受到外界热源的激发时,会产生电荷分布的变化。
这种特性使得热释电材料可以作为红外辐射的敏感元件。
2. 感测元件的结构:热释电红外传感器通常由热敏元件和信号处理电路两部分组成。
其中,热敏元件是关键部分,由热释电材料制成,常见的材料有硅化锂钽酸锂等。
热释电材料的电极上覆盖有吸收红外辐射能量的薄膜,使得热能可以有效地被传递给热释电材料。
3. 红外辐射的感测:当有物体靠近热释电红外传感器时,物体会发出红外辐射能量,这些红外辐射能量会被热释电材料吸收。
被吸收的红外辐射能量会导致热释电材料的温度发生变化,进而引起电荷分布的改变。
4. 电荷信号的转换和处理:热释电红外传感器的信号处理电路将热敏元件上的电荷信号转换为电压信号,然后经过放大、滤波、去噪等处理,最终输出一个与被测物体红外辐射能量强度相关的电信号。
5. 信号识别和应用:经过信号处理的电信号可以被用来识别和判断被测物体的特性,例如人体的存在、移动方向、距离等。
根据具体应用需求,可以通过设置阈值等方式进行信号的判断和处理。
总结一下,热释电红外传感器利用热释电材料的特性,感知被测物体的红外辐射能量,然后通过信号处理电路将其转换为可用的电信号。
这样的工作原理使得热释电红外传感器成为了一种有效、灵敏的红外传感器,广泛应用于各个领域。
在人体检测、安防监控、自动化控制等方面,热释电红外传感器都发挥着重要的作用,为人们的生活和工作带来了便利和安全。
热释电红外 原理

热释电红外原理
热释电红外(Pyroelectric Infrared)是利用材料的热释电效应
产生的电荷变化来检测红外辐射的一种技术。
其原理基于热释电效应,即在一些特定的材料中,当其被热量激发时,会产生电荷的分离和积聚。
热释电红外器件通常由热释电材料和引线两部分组成。
热释电材料是一种具有热释电性质的晶体,例如铌酸锂(LiNbO3)
或四硼酸锂(LiB3O5)。
当红外辐射照射到热释电材料时,
材料的温度会发生变化。
由于热释电效应,该温度变化会导致材料内的正负电荷发生分离,并在材料表面积聚。
引线的作用是将材料上积聚的电荷传递到外部电路中。
一般来说,引线由金属制成,可以保证电荷的导电性能。
当热释电红外器件暴露在红外辐射下时,材料温度发生变化,使得材料内部的电荷分离和积聚。
这些积聚的电荷会产生电场,进而产生电压。
通过引线,这个电压可以传递到外部电路中,并产生可测量的电信号。
在具体应用中,热释电红外技术被广泛应用于热成像、人体检测、安防监控等领域。
通过检测和分析红外辐射的变化,我们可以获得关于温度、人体活动等信息。
由于热释电红外技术具有快速响应、高灵敏度和能够工作在室温下的优点,因此在安防和监控领域得到了广泛应用。
热释电红外传感器原理

热释电红外传感器原理
热释电红外传感器利用物体的红外辐射特性实现对目标物体的检测与监测。
它的工作原理基于热释电效应,即当物体处于不同温度时,会发射出不同强度的红外辐射。
热释电红外传感器的核心部件是由热释电材料制成的探测器。
这种材料能够感应并吸收周围环境中的红外辐射能量。
当被探测的目标物体进入传感器的检测范围内时,目标物体会通过发射红外辐射来改变周围环境的温度分布。
探测器会感知到这种变化,并将其转化为电信号输出。
热释电红外传感器通常还配备有补偿元件和信号处理电路。
补偿元件用于自动调整探测器的温度,以排除环境温度的影响。
信号处理电路则负责处理探测器输出的电信号,将其转化为可读的数字信号或控制信号。
当有人或物体进入传感器的感应范围时,热释电红外传感器会发出警报信号或触发其他相应的操作。
由于其灵敏度高、响应快,以及对环境光和声音的抵抗能力强,因此热释电红外传感器被广泛应用于安防系统、自动化控制以及简单的人体检测等领域。
红外热释电传感器原理

红外热释电传感器原理红外热释电传感器原理 1红外热释电传感器原理 2热释电红外传感器和热电偶都是基于热电效应原理的热电型红外传感器。
不同的是热释电红外传感器的热电系数远远高于热电偶,其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化随温度的变化而变化。
为了抑制因自身温度变化而产生的干扰该传感器在工艺上将两个特征一致的热电元反向串联或接成差动平衡电路方式,因而能以非接触式检测出物体放出的红外线能量变化并将其转换为电信号输出。
热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。
由于热电元输出的是电荷信号,并不能直接使用因而需要用电阻将其转换为电压形式该电阻阻抗高达104MΩ,故引入的N沟道结型场效应管应接成共漏形式即源极跟随器来完成阻抗变换。
热释电红外传感器由传感探测元、干涉滤光片和场效应管匹配器三部分组成。
设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。
由于加电极化的电压是有极性的,因此极化后的探测元也是有正、负极性的。
1.2 被动式热释电红外传感器的工作原理与特性人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。
人体发射的10UM左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。
红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
1)这种探头是以探测人体辐射为目标的。
所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。
2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲泥尔滤光片,使环境的干扰受到明显的控制作用。
3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。
而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
热释电红外探测器的工作原理

热释电红外探测器的工作原理报警电路中通常采用双探测元热释电红外传感器,其结构示意图如图所示。
该传感器将两个特性相同的热释电晶体逆向串联,用来防止其他红外光引起传感器误动作。
另外,当环境温度改变时,两个晶体的参数会同时发生变化,这样可以相互抵消,避免出现检测误差。
该传感器使用时, D端接电源正极, G端接电源负极, S端为信号输出。
被动式红外报警器的组成框图:电路原理:当红外警戒区内无移动物体时,传感器无输出信号,报警电路不工作;当有人闯入警戒区时,只要人体移动,其辐射出的红外线便会被热释电红外传感器所接收,并输出微弱的电信号。
该信号经运算放大器放大后,会输出一个较强的电信号。
再输送给双限电压比较器。
当A2输出的电压>A3的基准电压时, A3 输出高电平;当A2输出的电压<A4 的基准电压时, A4也输出高电平。
这个高电平信号经反向器7变成低电平信号,作为单稳态触发器555的触发信号。
单稳电路触发翻转后,输出高电平,驱动三极管导通报警电路发出警报。
电路中的旁路电容可以起到防止干扰的作用。
LF347Features Description• Low input bias current The LF347 is a high speed quad JFET input operational • High input impedance amplifier. This feature high input impedance, wide• Wide gain bandwidth: 4 MHz Typ.bandwidth, high slew rate, and low input offset voltage and• High slew rate: 13 V/∝ s Typ.bias current. LF347 may be used in circuits requiring highinput impedance. High slew rate and wide bandwidth, lowinput bias current.Parameter Symbol Value Unit Supply Voltage V CC± 18V Differential Input Voltage V I(DIFF)30V Input Voltage Range V I± 15V Output Short Circuit Duration-Continuous-Power Dissipation P D570mW Operating Temperature Range T OPR0 ~ + 70︒ C Storage Temperature Range T STG-65 ~ + 150︒ C74LS0074LS00从属于TTL 门系列.它是一个内部含有四个双输入的与非门芯片.其14脚接+5v 电压;7脚地;当 AB 都为高电平"1"时输出为高电平"0";当AB 都为低电平"0"时输出为高电平"1";当AB 异同时:即,一个为低电平"0"一个为高电平"1"时输出为高电平"1"555定时器它含有两个电压比较器,一个基本RS 触发器,一个放电开关T ,比较器的参考电压由三只5KΩ的电阻器构成分压,它们分别使高电平比较器C1同相比较端和低电平比较器C2的反相输入端的参考电平为Vcc 32和Vcc 31。
hc-sr501热释电红外传感器工作原理

hc-sr501热释电红外传感器工作原理
HC-SR501热释电红外传感器是一种基于热释电效应和红外技术的传感器。
它通过感知环境中的温度变化和红外辐射来检测人体的存在。
工作原理如下:
1. 热释电效应:热释电效应是一种物体在温度变化时产生的电信号。
当物体的温度发生变化时,物体内部的热能分布也会发生变化,导致
物体表面电子的位置分布也发生变化,从而产生微弱的电荷分布。
这
个电荷分布会导致物体表面电位变化,形成热释电电信号。
2. 红外技术:红外辐射是一种人眼无法看见的电磁辐射,其波
长较长,能够被人体发射的红外辐射器辐射出来。
人体的红外辐射主
要来自于体温的散发。
当有人或其他物体进入传感器的检测范围时,
传感器会感知到其发出的红外辐射。
3. HC-SR501的工作原理:HC-SR501传感器具有一个红外探测单
元和一个信号处理单元。
红外探测单元包括一个红外辐射接收器和一
个镜头。
当有人或物体进入传感器的感应范围时,人体发出的红外辐
射会被镜头聚焦,然后被红外辐射接收器接收。
接收到的信号通过信
号处理单元进行放大和滤波处理,然后输出一个电平信号,用于触发
其他设备或系统。
总结来说,HC-SR501热释电红外传感器通过感知环境中的温度变化和红外辐射来检测人体的存在。
当有人或其他物体进入传感器范围时,红外辐射被探测、放大和处理,最终输出一个电平信号,用于触
发其他设备或系统的工作。
热释电红外传感器原理及其应用

热释电红外传感器原理及其应用热释电红外传感器原理及其应用
热释电红外传感器是一种气体传感器,它能够测量工作环境中的
红外和可见光辐射强度,并将这些信息转换成电流流或电压。
这种传
感器的结构一般包括一个热释电片,一个微电路,一个高静态电压源
和一个放大器。
热释电片是一种特殊的半导体材料,它能够根据环境
中的温度变化而发出的热释电电位变化来检测红外线和可见光的辐射
状况。
当外部红外辐射作用在热释电片上时,它会产生一定的热释电
电位,而这种电位变化可以被微电路检测到,并将其转换成相应电压
或电流信号输出。
热释电红外传感器在不同领域有着多种应用,如工业自动化、电
力检测,例如空调系统中的传感器设备,可以准确地检测并监测环境
中的温度和红外辐射状况,从而达到自动控制空调系统的效果。
另外,它也可以用于安全系统、运动识别系统中,可以检测到目标物体的热
释电信号,从而实现人机交互和数据采集。
热释电红外传感器在火灾
报警系统中也有着重要作用,当室内有异常情况,如火灾发生时,它
可以检测到环境中的热释电信号变化,并立即发出警报,提醒使用者
注意安全。
此外,热释电红外传感器也可以用来监测太阳辐射,因为太阳除
了发出大量的可见光外,还发出大量的红外线,因此能够通过热释电
传感器来检测太阳辐射及其变化。
这种传感器也可以用于大气污染控制,可以检测到空气中有毒气体的存在,从而有效控制空气污染。
总之,热释电红外传感器具有多种应用场景,它可以根据温度和
红外辐射状况来检测和控制室内环境,从而实现自动控制、人机交互
和安全报警等功能。
热释电红外传感器原理及其应用

热释电红外传感器原理及其应用随着科技的不断发展,红外技术逐渐成为了现代社会中不可或缺的一部分。
作为红外技术的重要组成部分之一,热释电红外传感器因其灵敏度高、响应速度快等特点被广泛应用于安防、智能家居、医疗等领域。
本文将介绍热释电红外传感器的原理、工作方式以及应用。
一、热释电红外传感器原理热释电红外传感器是利用材料的热释电效应来检测周围物体的红外辐射。
热释电效应是指当某种材料受到辐射时,内部温度发生变化,进而导致该材料表面产生电荷,从而形成电势差。
这种电势差被称为热释电电势。
热释电红外传感器利用这种原理来检测周围物体的红外辐射,从而实现对物体的探测。
二、热释电红外传感器工作方式热释电红外传感器主要由热释电元件、前置放大器、滤波器、放大器等组成。
当传感器受到周围物体的红外辐射时,热释电元件内部的温度会发生变化,从而导致元件表面产生电势差。
这个电势差被传送到前置放大器中,经过滤波器和放大器的处理后,最终被转化为数字信号输出。
热释电红外传感器的灵敏度和响应速度主要取决于热释电元件的材料和结构。
常用的热释电元件材料有锂钽酸盐、钛酸钡、铁酸锂等。
不同的材料具有不同的响应频率和灵敏度,可以根据具体的应用场景进行选择。
三、热释电红外传感器应用热释电红外传感器由于其灵敏度高、响应速度快等特点,在安防、智能家居、医疗等领域得到了广泛的应用。
1.安防领域热释电红外传感器可以用于室内和室外监控系统中,可以检测到人体的红外辐射,从而实现对人体的探测和跟踪。
在夜间或低照度条件下,热释电红外传感器具有更好的效果,可以有效地防止盗窃和入侵。
2.智能家居领域热释电红外传感器可以用于智能家居系统中,可以检测到人体的活动和位置,从而实现对家居设备的自动控制。
例如,当人离开房间时,系统可以自动关闭灯光和电器设备,从而实现节能和智能化管理。
3.医疗领域热释电红外传感器可以用于医疗领域中,可以检测到人体的体温变化,从而实现对病人的监测和诊断。
红外探测工作原理

红外探测工作原理红外探测是利用物体辐射的红外波段进行探测的技术。
红外波段是电磁波的一个频段,其波长范围在0.75微米到1000微米之间。
红外探测器一般由光学系统、探测器和信号处理电路三部分组成。
红外光学系统主要包括滤光片和透镜,用于选择特定波长范围内的红外辐射并聚焦到探测器上。
探测器则是将红外辐射转化为电信号的元件。
红外探测器的工作原理可以分为热探测和光电探测两种。
1. 热探测原理:热探测器利用物体辐射的热能来检测红外波段的辐射。
常见的热探测器有热电偶和热释电探测器。
热电偶是利用材料的温度变化产生电势差的原理工作。
当红外辐射通过热电偶材料时,材料吸收红外能量导致温度升高,进而产生电势差。
这个电势差可以通过电路放大并测量,从而得到红外信号。
热释电探测器利用材料在吸收红外辐射时会产生温度变化的原理工作。
热释电探测器中通常使用的材料是氧化物,如锂钽酸盐和锰钒酸盐。
当红外辐射通过热释电探测器时,材料中的电荷会发生变化,进而产生电势差。
这个电势差可以被测量并转化为红外信号。
2. 光电探测原理:光电探测器利用物体在红外波段吸收辐射后电子能级的跃迁来产生电信号。
常见的光电探测器有光电二极管和光敏电阻。
光电二极管是利用半导体材料的能带结构和PN结的特性工作的。
当红外辐射照射到PN结上时,光子会激发电子跃迁到导带,产生电流。
这个电流可以被测量并转化为红外信号。
光敏电阻是利用材料在吸收红外辐射后导电性发生变化的原理工作。
当红外辐射照射到光敏电阻上时,材料的电阻值会发生变化,进而产生电压信号。
这个电压信号可以被测量并转化为红外信号。
综上所述,红外探测器的工作原理基于物体辐射的红外波段特性,利用热能或光电转换的原理将红外辐射转换为电信号,进而实现红外探测。
热释电人体红外传感器

热释电人体红外传感器概述热释电人体红外传感器(Pyroelectric Infrared Sensor, PIS)是一种能够检测人体红外辐射的传感器。
它基于热释电效应,当有人或动物经过时,会发生温度变化,进而引起电荷分布的改变,使得能够检测到人体的存在。
热释电传感器使用非常广泛,主要应用于安防领域,能够检测并报警区域内是否有人体活动。
同时,还可以应用于自动化控制、智能家居、医学检测等领域。
工作原理热释电红外传感器由两个部分组成:感应电容和热敏电阻。
当有人体经过时,感应电容会感应到人体红外辐射,将其转化为电荷信号。
然后,该信号输入到热敏电阻上,产生电压信号。
进而,经过放大和处理,输出为控制电路所能接受的信号。
技术特点灵敏度高热释电传感器对人体红外辐射具有很高的灵敏度。
特别是对于热红外辐射,其灵敏度可以达到0.1°C以下,可以检测到非常微小的温度变化。
抗扰动能力强热释电传感器采用差分电路进行信号处理,从而可以降低系统的噪声干扰和环境电磁干扰,提高系统的抗扰动性。
体积小热释电传感器集成度高,体积小,可以方便地布置在需要检测的区域内。
通过组合成阵列,可以形成全向性的监测。
节能热释电传感器的工作电流非常低,一般不超过1 mA。
因此,它可以工作在长时间不间断的状态下,并且不会对电力造成过大的负担。
应用领域安防领域热释电传感器可以应用于安防领域,检测室内外是否有人经过,控制闸门的打开和关闭。
尤其在智能家居系统中的安防领域,热释电传感器可以组成监控网络,实现长时间的无缝监控。
自动化控制热释电传感器可以应用于自动化控制领域,在机器人、工业控制等领域中进行热释电传感器的应用,可以提高系统的自动化程度和智能化程度。
医学检测热释电传感器可以应用于医学检测领域。
例如,可以用于人体体温检测,检测人体多个部位的温度变化,监测人的健康状况。
优缺点优点1.灵敏度高,能够检测到非常微小的温度变化。
2.抗干扰能力强,减少了系统的外部干扰,提高了系统的稳定性。
热释电红外 原理

热释电红外原理热释电红外原理是指通过材料的温度改变引起物质内部电荷的移动而产生的红外辐射。
它是一种基于材料热响应性质的红外探测技术,利用热释电效应来探测热辐射,并将其转换为电信号,以实现红外图像的获取和目标检测。
热释电效应指的是当物质受到辐射或者温度变化时,内部原子以更高频率振动产生热能。
这种振动引起了物质内部电荷的移动,从而形成了电流。
在材料的晶体结构中,由于晶体的偶极矩的存在,当温度改变时,晶体内的正负电荷分布也会发生变化。
由于偶极矩的改变,会引起材料表面或界面的电势变化,进一步形成电流。
这种电流被称为热释电电流。
热释电红外探测器通常使用的是热释电材料,如锂钽酸锂(LiTaO3)、锂铌酸锂(LiNbO3)、焦亥石(PZT)等。
这些材料具有良好的热释电特性,能够有效转换红外辐射为电信号。
热释电红外探测器的工作原理可以简单地分为三个步骤:感应、传导和放大。
首先,当有热辐射进入探测器时,热辐射会使得热释电材料发生温度变化。
这种温度变化会引起材料内部原子的振动和电荷分布的变化。
其次,热释电效应使得材料表面的电位发生变化。
当有红外辐射进入探测器时,探测器的电极会受到改变的电位作用,从而形成热释电电流。
这个电流信号可以被测量和记录。
最后,为了增强热释电电流信号的检测和处理,通常使用电路和放大器来放大和处理电流信号。
这个过程通常包括滤波、放大和去背景噪声等步骤,以获得更准确的红外信号。
总结起来,热释电红外原理是通过材料的温度变化引起物质内部电荷的移动而产生的红外辐射。
通过利用热释电效应,并采用相应的电路和放大器,可以将热辐射转换为电信号,实现红外图像的获取和目标检测。
这种探测技术在军事、安防、消防等领域具有广泛的应用和发展前景。
热释电红外感应传感器原理

热释电红外感应传感器原理热释电红外感应传感器原理,内部电路结构,常用型号及主要参数介绍热释电效应原理简述热释电红外传感器通过目标与背景的温差来探测目标,其工作原理是利用热释电效应,即在钛酸钡一类晶体的上、下表面设置电极,在上表面覆以黑色膜,若有红外线间歇地照射,其表面温度上升△T,其晶体内部的原子排列将产生变化,引起自发极化电荷,在上下电极之间产生电压△U。
常用的热释电红外线光敏元件的材料有陶瓷氧化物和压电晶体,如钛酸钡、钽酸锂、硫酸三甘肽及钛铅酸铅等。
实质上热释电传感器是对温度敏感的传感器。
它由陶瓷氧化物或压电晶体元件组成,在元件两个表面做成电极。
在环境温度有ΔT的变化时,由于有热释电效应,在两个电极上会产生电荷ΔQ,即在两电极之间产生一微弱的电压ΔV。
由于它的输出阻抗极高,在传感器中有一个场效应管进行阻抗变换。
热释电效应所产生的电荷ΔQ会被空气中的离子所结合而消失,即当环境温度稳定不变时,ΔT=0,则传感器无输出。
当人体进入检测区,因人体温度与环境温度有差别,产生ΔT,则有ΔT输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出了。
所以这种传感器也称为人体运动传感器。
由实验证明,传感器不加光学透镜(也称菲涅尔透镜),其检测距离小于2m,而加上光学透镜后,其检测距离可增加到10m左右。
热释电红外感应传感器内部电路及工作原理热释电红外传感器内部由光学滤镜、场效应管、红外感应源(热释电元件)、偏置电阻、EMI电容等元器件组成,其内部电路如图1所示。
光学滤镜的主要作用是只允许波长在10μm左右的红外线(人体发出的红外线波长)通过,而将灯光、太阳光及其他辐射滤掉,以抑制外界的干扰。
红外感应源通常由两个串联或者并联的热释电元件组成,这两个热释电元件的电极相反,环境背景辐射对两个热释电元件几乎具有相同的作用,使其产生的热释电效应相互抵消,输出信号接近为零。
一旦有人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元件接收,由于角度不同,两片热释电元件接收到的热量不同,热释电能量也不同,不能完全抵消,经处理电路处理后输出控制信号。
热释电探测器原理

热释电探测器原理热释电探测器是一种利用物体释放的红外辐射来检测其存在的传感器。
它利用了物体对热辐射的特定响应,可以在没有可见光的情况下检测到物体的存在。
热释电探测器的原理基于材料的热释电效应和光电探测技术。
热释电效应是指当材料受到红外辐射时,其内部温度会发生变化,从而导致热释电效应。
这是由于吸收红外辐射的能量会使材料的内部结构发生变化,从而引起材料的温度变化。
热释电效应是许多晶体和陶瓷材料特有的性质,利用这种效应可以制造出热释电材料。
一般来说,热释电材料是由铁电陶瓷材料制成的,例如锂钽酸铽等。
热释电材料具有极性晶格结构,当受到红外辐射时,其内部电荷分布会发生变化,从而改变了材料的极化程度。
这种极化程度的变化会产生极化电荷,导致材料表面产生电势差。
这种电势差可以通过金属电极的连接来测量,并将其转化为电信号。
在热释电探测器中,热释电材料通常制成薄膜状,并固定在传感器的表面。
当物体发出红外辐射时,热释电材料会吸收这些辐射并产生温度变化。
这个温度变化会导致材料表面产生电势差,进而形成电流信号。
通过测量这个电流信号的强度和变化,可以确定物体的存在和移动。
为了提高热释电探测器的性能,通常会将其与其他元件结合在一起。
例如,一个常见的热释电探测器系统包括透镜和滤光片。
透镜可以集中并聚焦红外辐射到热释电材料上,从而增强探测器对红外辐射的灵敏度。
滤光片则可以滤除掉除了感兴趣的特定波长之外的其他光线,从而减少背景噪声的干扰。
除了这些基本元件外,热释电探测器还可以结合其他技术来提高其性能。
例如,一些热释电探测器使用微机电系统(MEMS)技术制造,可以实现小型化和集成化的设计。
此外,一些高级探测器还可以采用多个热释电材料和电路来提高灵敏度和分辨率。
总的来说,热释电探测器利用物体对红外辐射的特定响应来检测其存在。
通过利用热释电效应,热释电材料可以转化红外辐射的能量为电信号。
通过测量这个电信号的强度和变化,可以确定物体的存在和移动。
热释电光探测原理

热释电光探测原理热释电光探测原理是一种基于热释电效应的光电传感器原理。
热释电效应是指当光线照射到一个介质上时,光在介质中产生的能量会被物质吸收,并转化为热能。
这种转化产生的热能会导致介质的温度变化,进而引起介质产生内部电场的偏移,从而在介质材料周围产生电势差。
热释电光探测器通常由一块热敏材料、一对电极和一个感应电路组成。
热敏材料一般为晶体或陶瓷材料,如锂钽酸锶钠晶体。
当光线照射到热敏材料上时,热敏材料会吸收光的能量,产生微弱的热能,从而使材料温度变化。
该温度变化会引起热敏材料内部的电势差的偏移。
电极负责检测热释电现象产生的电势差,并将其转化为电信号。
电极通常由金属材料制成,如金属箔或金属薄膜。
电极与热敏材料通过相应的电连接器连接,并将热释电效应所产生的电势差引导到感应电路中。
感应电路是热释电光探测器中的一个重要部分,它负责放大和处理电信号,从而使其更容易被检测和解读。
感应电路通常包括放大器、滤波器和数字转换器等组件。
放大器用于放大电信号,使其足够强大以供进一步处理。
滤波器则用于去除杂散信号和噪音,以保证最终输出信号的准确性和可靠性。
数字转换器则将模拟信号转换为数字信号,以方便后续处理和分析。
热释电光探测器的原理是基于热敏材料的热释电效应,通过热能转变为电势差的变化,最终转化为电信号。
由于热释电效应非常敏感,热释电光探测器可以在微弱光照下工作,并且对红外辐射具有很高的响应度。
因此,热释电光探测器被广泛应用于红外传感、安防监控、人体检测、智能家居等领域。
热释电红外探测器组成和原理

热释电红外探测器组成和原理1热释电红外探测器的组成 (1)1.1热释电红外传感器的结构 (1)1.2热释电红外探测器的光学系统 (2)2热释电红外探测器的原理 (5)在过去的几十年里,传感器这一用语经历了从诞生到家喻户晓的过程。
今天很难找到一个科学领域或产业部门能够完全脱离传感器而存在。
热释电红外传感器作为热释电红外探测器的核心部件因其新颖的工作原理越来越受到人们的关注。
本章将先介绍热释电红外探测器的工作原理,并深入分析热释电红外传感器的工作原理,然后对热释电红外探测器的组成和关键技术做详细介绍。
1热释电红外探测器的组成目前市场上的热释电红外传感器是探测器的核心器件。
如图1所示。
它的主要部分是由高热电系数的材料制成尺寸约在2×1mm的探测元件。
在每个探测器内装入一个或两个探测元件、并将两个探测元件以反极性串联,以抑制由于自身温度变化而产生的干扰。
热释电红外传感器的作用主要是探测接收红外辐射并将其转换为微弱的电压信号。
下面小节中将对热释电红外传感器的热释电效应做详细分析介绍。
图1 热释电红外探测器的基本组成1.1热释电红外传感器的结构热释红外传感器和热电偶一样是基于热电效应的热电型红外传感器。
不同的是,它的热释电系数远远高于热电偶,其内部的热电元件采用高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化强度随温度的变化而变化。
为了抑制因自身温度变化而产生的干扰,在工艺上将两个特征一致的热电敏感元反向串联接成差动平衡电路,它能以非接触式探测出物体放出的红外线能量变化,并将其转换为电信号输出。
典型的热释电红外传感器结构如图2所示,热释电陶瓷敏感元件、场效应管和偏置高阻被封在管壳内。
器件的性能不仅与敏感元件本身的特性有关,与敏感元件的物理尺寸、固定方式、以及偏置电阻的大小和场效应管的类型也有关。
红外窗口的性能、器件密封方式以及外围电路的特性都会影响器件的探测效率。
图2 热释电红外传感器内部结构热释电红外传感器是以探测人体辐射为目标,所以热释电元件对波长为m 12~8左右的红外辐射必须非常敏感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热释电红外探测器组成和原理1热释电红外探测器的组成 (1)1.1热释电红外传感器的结构 (1)1.2热释电红外探测器的光学系统 (2)2热释电红外探测器的原理 (5)在过去的几十年里,传感器这一用语经历了从诞生到家喻户晓的过程。
今天很难找到一个科学领域或产业部门能够完全脱离传感器而存在。
热释电红外传感器作为热释电红外探测器的核心部件因其新颖的工作原理越来越受到人们的关注。
本章将先介绍热释电红外探测器的工作原理,并深入分析热释电红外传感器的工作原理,然后对热释电红外探测器的组成和关键技术做详细介绍。
1热释电红外探测器的组成目前市场上的热释电红外传感器是探测器的核心器件。
如图1所示。
它的主要部分是由高热电系数的材料制成尺寸约在2×1mm的探测元件。
在每个探测器内装入一个或两个探测元件、并将两个探测元件以反极性串联,以抑制由于自身温度变化而产生的干扰。
热释电红外传感器的作用主要是探测接收红外辐射并将其转换为微弱的电压信号。
下面小节中将对热释电红外传感器的热释电效应做详细分析介绍。
图1 热释电红外探测器的基本组成1.1热释电红外传感器的结构热释红外传感器和热电偶一样是基于热电效应的热电型红外传感器。
不同的是,它的热释电系数远远高于热电偶,其内部的热电元件采用高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化强度随温度的变化而变化。
为了抑制因自身温度变化而产生的干扰,在工艺上将两个特征一致的热电敏感元反向串联接成差动平衡电路,它能以非接触式探测出物体放出的红外线能量变化,并将其转换为电信号输出。
典型的热释电红外传感器结构如图2所示,热释电陶瓷敏感元件、场效应管和偏置高阻被封在管壳内。
器件的性能不仅与敏感元件本身的特性有关,与敏感元件的物理尺寸、固定方式、以及偏置电阻的大小和场效应管的类型也有关。
红外窗口的性能、器件密封方式以及外围电路的特性都会影响器件的探测效率。
图2 热释电红外传感器内部结构热释电红外传感器是以探测人体辐射为目标,所以热释电元件对波长为m 12~8左右的红外辐射必须非常敏感。
为了仅仅对移动人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔透镜系统,使环境的干扰受到明显的控制作用。
热释电红外传感器包含两个互相串联或并联的热释电敏感元,而且两个敏感元的电极化方向正好相反,如图3所示。
环境背景红外热辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。
菲涅尔透镜系统根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。
图3 热释电传感器的内部电路示意图热释电红外传感器的封装形式有多种,早期的树脂封装因为不能对外界的电磁波有效屏蔽,已经被淘汰,目前的热释电红外传感器几乎都采用带红外窗口的TO-5型金属壳封装。
1.2热释电红外探测器的光学系统热释电红外探测器的光学系统其基本功能是将目标红外热能辐射汇聚到热释电传感器表面。
视区概念的建立能将入侵目标在防护区域内的移动转化为热释电元件表面的脉动热能变化,为信号的后续处理奠定基础。
为了将移动目标从静态热背景下区分出来,热释电红外探测器设有一个复杂的光学系统,分层结构的多组光学透镜和反光镜,形成向下俯瞰的扇形保护区,张开扇形视角的同时,兼顾远、中、近等不同区域的目标探测。
聚乙烯菲涅尔透镜因加工成型方便,价格低廉,被广泛应用于探测距离在30米以内的探测器中,抛物面反射镜构成的光学系统效率高、聚焦准确,但是体积大。
为了取长补短,菲涅尔透镜、抛物面反射镜、遮挡片三种类型的聚焦手段经常用于同一个探测器当中,相互配合点检出最佳的光学系统。
热释电红外传感器内封装了两片热释电敏感元,其大小及排列如图4所示。
为了探测红外移动目标需要将移动目标的红外热能辐射反射到热释电敏感元件上。
这是靠特殊的光学系统设计实现的。
在热释电元件旁设置光学系统,经由透镜、反射镜将现场的景物(红外热量)投射到热释电元件表面,形成红外成像。
这一过程与常见照相机在底片上成像原理完全相同,区别在于热释电红外探测器的光学系统不需要很高的成像精度,更不必考虑影像轮廓是否准确。
图4 热释电敏感元件的几何排列普通照相机设有一组镜头,在底片上的影像是唯一的。
而热释电红外探测器的设计目的不同,为了使单一热释电元件能探测特定范围的移动目标,热释电红外探测器的光学系统设有多组镜头组成有序的光学阵列,阵列中各个镜头的光轴有不同的指向,但是红外热量汇聚在同一热释电敏感元的表面,即多幅红外影像在同一热释电元件表面重叠在一起。
在没有移动目标的情况下,这些重叠的红外影像反映的是现场背景的红外热能辐射情况,持续的静态热能辐射并不会引起热电输出。
如果用图4所示的热释电元件充当透镜的镜面,两个热释电元件表面就会呈现现场景物的倒像。
由于每一个热释电元件的大小只有2×1mm2,经过透镜能够投射到元件矩形范围内的现场景物就局限在一个漏斗型的空间里。
换言之,热释电元件只能“看”到这个漏斗型空间内的热能景物,我们把这个漏斗型敏感空间称为热释电元件的视区(FOV, Field of View),如图5所示。
图5 热释电红外传感器的光学视区双元热释电红外传感器这种类型的热释电元件由于其性能稳定已被广泛使用,配合单一凸透镜后会形成两个规则排列的热敏感视区。
如图5所示。
漏斗形视区任一横断面其高度比均为2:1,漏斗张角(视角)的大小取决于镜头焦距的设计。
焦距越小,漏斗的视角越大。
一般而言,希望防范较远的区域的移动目标应采纳小视角视区,即采用较长焦距的镜头,反之亦然。
单一透镜所能形成的视区只有两个,防范区域也只能限定在视区作用的范围内,为了获得更大的防范区域,需要增加互不重叠的视区数目。
在被动红外探测器中扩充视区数量的方法是在热释电红外传感器的前段放置菲涅尔透镜(Fresnel lens)。
菲涅尔透镜由多层、不同焦距的透镜组成。
各透镜的法线汇聚于热释电元件中心,法线向外辐射,以形成等间距视区分布。
如图6所示,使用了三片镜头弧形排列,于是形成了六个视区,扇形分布,防范区域得到扩充。
图6 三镜头六视区示意图多个透镜组合在热释电元件表面形成了多幅热影像,并不会影响到热释电红外元件的正常工作。
在没有移动目标进入视区的情况下,热释电元件表面的多幅影像均为现场背景的热辐射成像。
这样的静态背景所产生的热辐射为持续不变的能量场,这样的热辐射会使热释电元件处于热平衡状态,不会有热点信号输出。
当有移动目标进入任何一个视区,持续的背景能量辐射受到扰动,热释电元件接收到的热能发生变化,原有的热平衡状态被打破,热电元件产生热电信号输出,如图7所示。
图7 热释电红外传感器视场及输出信号2热释电红外探测器的原理约在公元前300年人们就发现了热释电效应,不过热释电的现代名称Pyroelectric是1824年才由英国物理学家D.布儒斯特引入的。
热释电效应很早就被发现的原因是他们很容易显示出来。
关于热释电效应的最早的记录就是电气石吸引轻小物体。
早期主要是对现象的描述,从19世纪末开始,随着近代物理的发展,关于热释电效应的定量和理论的研究日益发展。
在二十世纪六十年代以来,激光和红外技术的发展极大的促进了热释电效应及其应用的研究,丰富和发展了热释电理论,发现了一些重要的热释电材料,并研制了性能优良的热释电探测器和热释电摄像管等热释电器件。
热释电效应及其应用已经成为凝聚态物理和技术中活跃的研究领域之一。
图8 热释电效应所谓热释电效应是指晶体随温度的变化而在晶体表面产生电荷聚集的物理现象,并且该种材料自发极化的强度随温度的变化而变化。
热释电效应是自然界普遍存在的一种物理现象。
宏观上,温度的改变使材料的两端出现电压或产生电流。
考虑一个单畴化的铁电体,其中极化强度的排列使靠近极化矢量两端的表面附近出现束缚电荷。
在热平衡状态下,这些束缚电荷被等量反号的自由电荷所屏蔽,所以铁电体对外界并不显示电的作用。
当温度改变时,极化强度发生变化,原先的自由电荷不能再完全屏蔽束缚电荷,于是表面出现自由电荷,他们在附近空间形成电场,对带电微粒有吸引或者排斥作用,如图8所示。
通过与外电路连接,则可在电路中观测到电流。
升温和降温两种情况下电流的方向相反,与铁电体中的压电效应相似,热释电效应中电荷或电流的出现是由于极化改变后对自由电荷的吸引能力发生变化,使在相应表面上自由电荷增加或减少。
与压电效应不同的是,热释电效应中极化的改变由温度变化引起,压电效应中极化的改变则是由应力造成的。
属于具有特殊极性方向的10个极性点群的晶体具有热释电性,所以常称它们为热释电体。
其中大多数的极化可因电场作用而重新取向,是铁电体。
经过强直流电场处理的铁电陶瓷,其性能可按极性点群晶体来描写,也具有热释电效应。
根据普朗克定律,黑体的单色辐射强度λW 随波长λ和热力学温度T 变化而变化的关系式为:151)1(2---=T C e C W λλλ (1)式中:λW —黑体单色辐射强度(3/cm w ),1C —普朗克第一辐射常数(31211074.3cm W C ⨯⨯=-),2C —普朗克第二辐射常数(k cm C ⨯=44.12),T —黑体的绝对温度。
在温度低于300K 的可见光范围内,一般用维恩公式来代替(1)式,即:T C e C W λλλ251-= (2)红外辐射理论表明:任何温度高于绝对零度(-273.15℃) 的物体,由于分子的热运动,都会产生红外辐射,并且这种红外辐射的特性与辐射的能量是跟物体的温度高低成正比的。
对于温度为36~37℃的人体,其自身就是一个红外热辐射源,且发射率很高,这种辐射是与肤色无关的。
在室温下人体裸露皮肤的温度大约为32℃,辐射能量大部分集中在8~12m μ的光谱波段内,也就是说人体所发出的红外线属于中红外波段。
人体红外辐射强度的个体差异不大,但频谱特性的差异却较大。
因此,可以利用人体与背景温度和辐射特性的自然差异,借助红外光学系统、红外敏感组件(红外探测器)、以及现代信号处理技术,研制出被动式红外探测器,应用与生产生活当中。
凡是自发极化的晶体,其表面会出现面束缚电荷,而这些面束缚电荷平时被晶体内部和外部来的自由电荷所中和,因此在常态下呈中性。
如果交变的辐射照射在光敏元上,则光敏元的温度、晶片的自发极化强度以及由此引起的面束缚电荷的密度均以同样频率发生周期性变化。
如果面束缚电荷变化较快,自由电荷来不及中和,在垂直于自发极化矢量的两个端面间会出现交变的端电压。
当晶体处于低于Curie 温度的恒温环境时,其自极化强度保持不变,即极化电荷面密度保持不变。