第二单元 核酸的结构和功能
Chapter 2 核酸的结构与功能教学教材
核酸的结构与功能
Structures and Functions of Nucleic Acids
内容
2.1 核酸的种类与分布 2.2 核苷酸 2.3 DNA的分子结构 2.4 核酸与蛋白质的复合体 2.5 RNA的分子结构 2.6 核酸的理化性质
2
2.1 核酸(Nucleic acid) 的种类与分布
48
(四)DNA双螺旋结构的多样性
49
双螺旋DNA的类型及相关参数
类型 螺旋方向
存在条件
螺距 碱基数/螺旋 碱基倾角
A-DNA 右手
相对湿度75% 2.53 nm
11
19°
B-DNA 右手
相对湿度92% 3.54 nm
10.4
1°
Z-DNA 左手 嘌呤-嘧啶二核 4.56 nm
12
苷酸为重复单位
N=A/U/G/C
同样,dNDP、dNTP, N=A/T/G/C
腺嘌呤 腺苷
16
核苷多磷酸的生物学功能:
§NTP和dNTP分别是RNA和DNA的直接前体。 §ATP分子的最显著特点是含有两个高能磷酸键。水
解时, ATP可以释放出大量自由能,推动生物体内 各种需能的生化反应。 §UDP、ADP、GDP在多糖合成中,可作为携带葡 萄糖基的载体;CDP在磷脂合成中可作为携带胆 碱的载体。 §GTP、CTP、UTP在某些生化反应中也具有传递能 量的作用。
11
稀 有 碱 基
大多甲基化碱基,tRNA含量丰富 (高达10%) 12
2.2.3 戊糖
β-D-核糖
β-D-脱氧核糖
13
2.2.4 核苷
碱基和核糖(或脱氧核糖)通过C-N 糖苷 键连接形成核苷(或脱氧核苷)。
02 核酸的结构与功能
2.DNA双链之间形成了互补碱基对 碱 基 配 对 关 系 称 为 互 补 碱 基 对 (complementary base pair)。 DNA 的 两 条 链 则 互 为 互 补 链 (complementary strand)。 碱基对平面与螺旋轴垂直。
大沟与小沟
3.疏水作用力和氢键共同维系着DNA双螺旋 结构的稳定。 相邻两个碱基对会有重叠, 产生了疏水性的碱基堆积力 (base stacking interaction)。 碱基堆积力和互补碱基对的 氢键共同维系着DNA结构的 稳定。
目录
(二) DNA双螺旋结构模型要点
1.DNA是反向平行、右手螺旋的双链结构 两条多聚核苷酸链在空间的走向呈反向平行(antiparallel)。两条链围绕着同一个螺旋轴形成右手螺 旋(right-handed)的结构。双螺旋结构的直径为2nm, 螺距为3. 4nm。
脱氧核糖和磷酸基团组成的亲水性骨架位于双螺旋 结构的外侧,疏水的碱基位于内侧。 双螺旋结构的表面形成了一个大沟(major groove) 和一个小沟(minor groove)。
CH2 O H H H H H
3´,5´-磷酸二酯键
O
P O-
O
碱基
O
P O-
O
CH 2 O H H OH
3´-羟基
目录
H H H
三、RNA也是具有3’,5’-磷酸二酯键 的线性大分子
RNA也是多个核苷酸分子通过酯化反应形 成的线性大分子,并且具有方向性; RNA的戊糖是核糖; RNA的嘧啶是胞嘧啶和尿嘧啶。
两种最重要的生物大分子比较
项 目
组成单位
种 类
蛋 白 质
氨基酸
核酸的结构和功能 (2)
均有形成 四股螺旋DNA
的可能
3’---AATCCCAATCCC-5’ • 着丝点附近的高度重复序列
已有实验结果表明--真核细胞端粒中存在四链结构
G G
结构特点
G G
Linked by Hoogsteen Bonding
可能的功能
A、 稳定真核生物染色体结构 B、 保证DNA末端准确复制 C、 与DNA分子的组装有关 D、 与染色体的 meiosis & mitosis 有关
的3’酯键到5’酯键 的方向
(5’→-U3C’AG)GCUA-3’ = UCAGGCUA
默认书写顺序5‘→3’
双螺旋模型的特征
1953. Watson & Crick
Chatgaff (查塔姆)对DNA 碱基组成的研究结果
Wilkins(威尔金斯)及其同事 Franklin(富兰克林)等用X射 线衍射方法获得的DNA结构资料
(1)核苷酸顺序;
(2)碱基组成;
(3)盐的种类;
(4)相对湿度。
B-DNA:生理状态下,每螺圈10.4个碱基对,右手螺旋; A-DNA:高盐浓度下,每螺圈11个碱基对,右手螺旋; Z-DNA:序列富含GC,嘌呤和嘧啶交替出现,每螺圈12个碱基对, 左手螺旋。
DNA钠盐在相对湿度92%或活 细胞生理状态下,以及A-T 较丰富的大多数自然DNA。
作业
1,名词解释: siRNA,分子生物学,蛋白质组学
2,维持DNA双螺旋的作用力有哪些? 3,真核生物和原核生物从DNA到染色质的组装有何不同?
感谢下 载
Watson(沃森) 和 Crick(克 里克)建立的双螺旋模型
第二章 核酸的结构与功能(试题及答案)
第二章核酸的结构与功能一、名词解释1.核酸 2.核苷 3.核苷酸 4.稀有碱基 5.碱基对 6.DNA的一级结构 7.核酸的变性 8.Tm值 9.DNA的复性 10.核酸的杂交二、填空题11.核酸可分为 ____和____两大类,其中____主要存在于____中,而____主要存在于____。
12.核酸完全水解生成的产物有____、____和____,其中糖基有____、____,碱基有____和____两大类. 13.生物体内的嘌呤碱主要有____和____,嘧啶碱主要有____、____和____。
某些RNA分子中还含有微量的其它碱基,称为____.14.DNA和RNA分子在物质组成上有所不同,主要表现在____和____的不同,DNA分子中存在的是____和____,RNA分子中存在的是____和____。
15.RNA的基本组成单位是____、____、____、____,DNA的基本组成单位是____、____、____、____,它们通过____键相互连接形成多核苷酸链。
16.DNA的二级结构是____结构,其中碱基组成的共同特点是(若按摩尔数计算)____、____、____。
17.测知某一DNA样品中,A=0。
53mol、C=0.25mol、那么T= ____mol,G= ____mol。
18.嘌呤环上的第____位氮原子与戊糖的第____位碳原子相连形成____键,通过这种键相连而成的化合物叫____。
19.嘧啶环上的第____位氮原子与戊糖的第____位碳原子相连形成____键,通过这种键相连而成的化合物叫____.20.体内有两个主要的环核苷酸是____、____,它们的主要生理功用是____。
21.写出下列核苷酸符号的中文名称:ATP____、dCDP____。
22.DNA分子中,两条链通过碱基间的____相连,碱基间的配对原则是____对____、____对____.23.DNA二级结构的重要特点是形成____结构,此结构属于____螺旋,此结构内部是由____通过____相连维持,其纵向结构的维系力是____。
第二章 核酸的结构与功能
核酸的结构与功能
❖ 1868年,瑞士外科医生Fridrich从外科手术绷带上的脓细胞的细 胞核中分离出一种溶于碱而不溶于酸的酸性有机化合物,其分子 中含磷2.5%、含氮14%,该物质被命名为核酸。
❖ 根据核酸分子中所含戊糖的差别: (一)脱氧核糖核酸(DNA):主要存在于细胞核中(真核细胞的 线粒体中也存在不少量的DNA),携带着决定个体基因型的遗传信 息,是遗传信息的贮存和携带者; (二)核糖核酸(RNA):主要存在于细胞核和细胞质中,参与细
比DNA复制得多,这与它的功能多样化密切相关。
一、mRNA是蛋白质合成中的模板
❖ 1960年,Jacob 和 Monod 等人用放射性核素示踪实验证实: 一类大小不同的RNA才是细胞内合成蛋白质的真正模板,于 1961年首先提出了信使RNA(mRNA)这个概念。
❖ 在各种RNA分子中,mRNA约占细胞内RNA总量的2~5%,种类 最多,分子大小相差很大;
N H
❖DN生称AN物为稀体有的D碱N基A8 N和79NH。RN45 AN36分12 子N 中NH2还含有一些65含1N4 3量2N 很O 少H的3C碱基65 1,N4 32
N
O
鸟嘌呤
RNA
胞嘧啶
胸腺嘧啶
5´
HOCH2
4´ H
OH O
H 1´
H
H
3´
2´
OH OH
β-D-核糖(构成RNA)
5´
HOCH2
遗传的相对稳定性,又可发生各种重组和突变,适应环境的 变迁,为自然选R型择细提菌供:无机毒会型。肺炎球菌
S型细菌:有毒型肺炎球菌
肺炎球菌转化实验
第三节
RNA 的结构与功能
❖ RNA和蛋白质共同担负着基因的表达和表达调控功能。 ❖ RNA通常以单链形式存在,但可通过链内的碱基配对形成
2核酸的结构和功能
第二章 核酸结构与功能学 习 目 标◆比较两类核酸的分子组成和基本单位㊂◆说出体内几种重要的游离核苷酸的组成和功能㊂◆叙述DNA 双螺旋结构特点㊂◆简述DNA ㊁mRNA ㊁tRNA 的结构特点㊂◆解释核酸的变性㊁复性㊁Tm 值和分子杂交的概念㊂1868年,瑞士的外科医生Friedrich Miescher 从包扎伤口的绷带上的脓细胞核中提取到一种富含磷元素的酸性化合物,此酸性物质即是现在所知的核酸(nucleic acid)㊂核酸是以核苷酸为基本组成单位的生物信息大分子,天然存在的核酸可以分成脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类㊂DNA 存在于细胞核和线粒体内,携带遗传信息,决定着细胞和个体遗传型;RNA 存在于细胞质㊁细胞核和线粒体内,参与遗传信息的复制与表达㊂第一节 核酸的分子组成一㊁核酸的元素组成核酸由C㊁H㊁O㊁N 和P 元素组成,其中P 元素在各种核酸中含量比较恒定,平均为9%~10%㊂因此,可以通过测定生物样品中核酸的P 元素含量,进一步推算出生物样品中核酸含量㊂二㊁核酸的基本成分核酸在核酸酶作用下水解为单核苷酸㊂核苷酸完全水解产物为含氮碱基㊁戊糖和磷酸㊂所以说,组成核酸的基本单位是单核苷酸,组成核酸的最基本化学成分是碱基㊁戊糖和磷酸(图2-1)㊂图2-1 核酸的组成(一)磷酸核酸分子中含有磷酸,所以成酸性㊂(二)戊糖核酸中的戊糖有两类:D-核糖(D-ribose)和D-2-脱氧核糖(D-2-deoxyribose)㊂核酸的分类就是根据所含戊糖种类不同而分为RNA 和DNA㊂戊糖中的碳原子编号加撇(如C-1′),以区别与碱基中的碳原子编号,其结构式见图2-2㊂图2-2 核糖的结构(三)碱基核酸中碱基是含氮杂环化合物,分两类,嘧啶碱和嘌呤碱㊂1.嘧啶碱 嘧啶碱是嘧啶衍生物,核酸中常见的嘧啶有三类:胞嘧啶(C)㊁尿嘧啶(U)和胸腺嘧啶(T),如图2-3所示㊂其中胞嘧啶为DNA 和RNA 两类核酸所共有㊂胸腺嘧啶只存在于DNA 中,但是tRNA 中也有少量存在;尿嘧啶只存在于RNA 中㊂2.嘌呤碱 嘌呤碱是嘌呤衍生而来的,核酸中常见的嘌呤碱有两类:腺嘌呤(A)及鸟嘌呤(G)㊂RNA 中的碱基有四种:腺嘌呤(A)㊁鸟嘌呤(G)㊁胞嘧啶(C)㊁尿嘧啶(U)㊂DNA 中的碱基有四种:腺嘌呤(A)㊁鸟嘌呤(G)㊁胞嘧啶(C)㊁胸腺嘧啶(T)㊂其结构式如下(图2-3):㊃42㊃ 生物化学基础图2-3 参与组成核酸的主要碱基 3.稀有碱基 核酸中除了这5种基本的碱基外,还有一些含量甚少的碱基,称为稀有碱基㊂稀有碱基种类极多,大多数都是甲基化碱基,tRNA 中含有较多的稀有碱基可高达10%(表2-1)㊂表2-1 核酸中的一些稀有碱基DNA RNA尿嘧啶(U)5,6-二氢尿嘧啶(DHU)5-羟甲基尿嘧啶(hm5U)5-甲基尿嘧啶,即胸腺嘧啶(T)5-甲基胞嘧啶(m5C)3-硫尿嘧啶(s3U)5-羟甲基胞嘧啶(hm5C)5-甲氧基尿嘧啶(mo5U)N 6-甲基腺嘌呤(m6A)N 3-乙酰基胞嘧啶(ac4C)2-硫胞嘧啶(s2C)1-甲基腺嘌呤(m1A)N 6,N 6-二甲基腺嘌呤(m6,6A)N 6-异戊烯基腺嘌呤(i A)1-甲基鸟嘌呤(m1G)N 1,N 2,N 7-三甲基鸟嘌呤(m1,2,7G)现将两类核酸的基本化学组成列于表2-2中㊂㊃52㊃第二章 核酸结构与功能 表2-2 DNA 和RNA 分子组成的区别组成成分DNARNA碱基嘌呤碱腺嘌呤(A)㊁鸟嘌呤(G)腺嘌呤(A)㊁鸟嘌呤(G)嘧啶碱胞嘧啶(C)㊁胸腺嘧啶(T)胞嘧啶(C)㊁尿嘧啶(U)戊糖D-2-脱氧核糖D-核糖三㊁组成核酸的基本单位 核苷酸1.核苷 核苷是碱基与戊糖以糖苷键相连接所形成的化合物㊂戊糖的第一位碳原子(C 1′)与嘧啶的第一位氮原子(N 1)或与嘌呤碱的第九位氮原子(N 9)相连接㊂根据核苷中所含戊糖的不同,将核苷分成两大类:核糖核苷和脱氧核糖核苷,如图2-4所示㊂图2-4 核苷的结构核苷的命名是在核苷的前面加上碱基的名字,如腺嘌呤核苷(简称腺苷)㊁胞嘧啶脱氧核苷(简称脱氧胞苷)等㊂各种常见核苷命名见表2-3㊂表2-3 各种常见核苷碱基核糖核苷脱氧核糖核苷A 腺嘌呤核苷(AR)腺嘌呤脱氧核苷(dAR)G 鸟嘌呤核苷(GR)鸟嘌呤脱氧核苷(dGR)C胞嘧啶核苷(CR)胞嘧啶脱氧核苷(dCR)U 尿嘧啶核苷(UR)-T -胸腺嘧啶脱氧核苷(dTR)2.核苷酸 核苷(脱氧核苷)中戊糖的自由羟基与磷酸通过酯键相连接构成核苷酸(脱氧核苷酸)㊂生物体内游离存在的核苷酸多是5′-核苷酸,即核苷酸的磷酸多是连接在核糖或脱氧核糖的C-5′上㊂RNA 的基本单位是核糖核苷酸;DNA 的基本单位是脱氧核糖核苷酸㊂组成DNA 和RNA 的碱基㊁核苷与相应核苷酸总结于表2-4㊂㊃62㊃ 生物化学基础表2-4 组成核酸的碱基、核苷与相应核苷酸碱基核苷5′-核苷一磷酸NMP RNA腺嘌呤(A)腺嘌呤核苷(AR)腺嘌呤核苷一磷酸(AMP)鸟嘌呤(G)鸟嘌呤核苷(GR)鸟嘌呤核苷一磷酸(GMP)胞嘧啶(C)胞嘧啶核苷(CR)胞嘧啶核苷一磷酸(CMP)尿嘧啶(U)尿嘧啶核苷(UR)尿嘧啶核苷一磷酸(UMP)DNA腺嘌呤(A)腺嘌呤脱氧核苷(dAR)腺嘌呤脱氧核苷一磷酸(dAMP)鸟嘌呤(G)鸟嘌呤脱氧核苷(dGR)鸟嘌呤脱氧核苷一磷酸(dGMP)胞嘧啶(C)胞嘧啶脱氧核苷(dCR)胞嘧啶脱氧核苷一磷酸(dCMP)胸腺嘧啶(T)胸腺嘧啶脱氧核苷(dTR)胸腺嘧啶脱氧核苷一磷酸(dTMP)现择几种核苷酸的结构式,如图2-5所示㊂图2-5 几种核苷酸的结构式㊃72㊃第二章 核酸结构与功能 四、几种重要的游离核苷酸体内游离存在的核苷酸,除构成核酸外,还可以参与其他物质或形成一定结构,具有许多重要生理功能㊂核苷酸的5′-磷酸基可再磷酸化,含有1个磷酸基团的称为核苷一磷酸(NMP或dNMP);有2个磷酸基团的核苷酸称为核苷二磷酸(NDP或dNDP);有3个磷酸基团的称为核苷三磷酸(NTP或dNTP)㊂常见的多磷酸核苷见表2-5㊂表2-5 常见的多磷酸核苷碱基核糖核苷酸NMP NDP NTP脱氧核糖核苷酸dNMP dNDP dNTPA AMP ADP ATP dAMP dADP dATP G GMP GDP GTP dGMP dGDP dGTP C CMP CDP CTP dCMP dCDP dCTP U UMP UDP UTP---T---dTMP dTDP dTTP核苷二磷酸和核苷三磷酸分子中含高能磷酸键,水解时可释放能量,是机体生命活动的重要能源,在代谢中GTP,UTP,CTP均可提供能量,可激活许多化合物生成代谢上活泼的物质㊂如UDP-葡萄糖(UDPG),CDP-二酯酰甘油,S-腺苷蛋氨酸等㊂ATP是体内最重要的三磷酸核苷,ATP中高能磷酸键水解释放能量是机体生命活动可直接利用的能源㊂ATP的分子结构如图2-6所示㊂体内某些核苷酸及其衍生物是重要调节因子,如3′,5′-环化腺苷酸(cAMP)与3′,5′-环化鸟苷酸(cGMP)在细胞内信号转导过程中作为激素第二信使,发挥信息分子作用(图2-7)㊂体内还有一些核苷酸参与物质代谢和能量代谢,例如腺苷酸是NAD+,NADP+,FAD,辅酶A等的组成成分㊂㊃82㊃ 生物化学基础图2-6 ATP的分子结构图2-7 cAMP 与cGMP第二节 核酸的分子结构核酸是一类生物大分子,DNA 和RNA 在分子的空间结构上有很大区别,现分别加以㊃92㊃第二章 核酸结构与功能 介绍㊂一、核酸的基本结构 1.核苷酸之间的连接 构成核酸大分子的基本单位是核苷酸㊂核苷酸之间通过3′,5′-磷酸二酯键相连接,它是每个核苷酸戊糖上的3′-羟基与相邻核苷酸的5′-磷酸缩合而成㊂多个核苷酸相连成多核苷酸链,多核苷酸链有两个端点,戊糖5′位带有游离磷酸基的称为5′末端,戊糖3′位带有游离羟基的一端称为3′末端,如图2-8所示㊂2.核酸的一级结构 各核苷酸残基沿多核苷酸链排列的顺序称为核酸的一级结构㊂一级结构是核酸的基本结构㊂核苷酸的种类虽不多,但可因核苷酸的数目㊁比例和序列的不同构成多种结构不同的核酸㊂核酸一级结构以3′,5′-磷酸二酯键连接,由相间排列的戊糖和磷酸构成核酸大分子主链,侧链碱基的有序排列体现了它的生物学特性㊂DNA 一级结构由四种脱氧核糖核苷酸(dNMP)按一定顺序连接形成;RNA 一级结构由四种核糖核苷酸(NMP)按一定顺序连接形成,一级结构是形成二级结构和三级结构的基础㊂核酸的一级结构常用简写式表示,读向是从左到右,表示的碱基序列是从5′到3′,即表示核苷酸链从5′末端磷酸基到3′末端羟基㊂如5′pApCpGpC 3′,可进一步省略为5′-ACGC-3′㊂图2-8 核苷酸之间的连接的基本结构㊃03㊃ 生物化学基础二、核酸的空间结构(一)DNA 的空间结构与功能1.DNA 的碱基组成特点 在20世纪50年代初,经Chargaff 等人的分析研究表明,DNA 的碱基组成有下列一些特点:(1)各种生物的DNA 分子中腺嘌呤与胸腺嘧啶的摩尔数相等,即A =T;鸟嘌呤与胞嘧啶的摩尔数相等,即G =C㊂因此,嘌呤碱的总数等于嘧啶碱的总数,即A+G =C+T㊂(2)DNA 的碱基组成具有种属特异性,即不同生物种属的DNA 具有各自特异的碱基组成,如人㊁牛和大肠杆菌的DNA 碱基组成比例是不一样的㊂(3)DNA 的碱基组成没有组织器官特异性,即同一生物体的各种不同器官或组织DNA 的碱基组成相似㊂比如牛的肝㊁胰㊁脾㊁肾和胸腺等器官的DNA 的碱基组成十分相近而无明显差别㊂(4)生物体内的碱基组成一般不受年龄㊁生长状况㊁营养状况和环境等条件的影响㊂这就是说,每种生物的DNA 具有各自特异的碱基组成,与生物的遗传特性有关㊂2.DNA 的二级结构 双螺旋结构模型 DNA 双螺旋结构模型是1953年由美国的Watson 和英国的Crick 两位科学家共同提出㊂X 射线衍射数据说明DNA 含有两条具有螺旋结构的多核苷酸链㊂其要点如下:(1)DNA 分子是两条反向平行的互补双链结构,一条链是5′→3′,另一条链是3′→5′㊂两条反向平行的多核苷酸链以右手螺旋方式围绕同一中心轴盘曲而形成双螺旋结构㊂(2)两条链的主链由戊糖 磷酸相间排列组成,在螺旋外侧;碱基在螺旋内侧㊂碱基中A 与T 配对形成两个氢键,C 与G 配对形成三个氢键㊂成对碱基大致处于同一平面,该平面与螺旋轴基本垂直,见图2-9㊂图2-9 双螺旋结构截面图(一)㊃13㊃第二章 核酸结构与功能 图2-9 双螺旋结构截面图(二) (3)DNA 双链所形成的螺旋直径为2nm;螺旋每旋转一周包含了10对碱基,每个碱基的旋转角度为36°;螺距为3.4nm,每个碱基平面之间的距离为0.34nm㊂从外观上,DNA 螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA 间的识别有关㊂(4)维系DNA 双螺旋结构稳定是氢键和疏水力,DNA 双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,相对来说,碱基堆积力对于双螺旋的稳定性更为重要㊂碱基对平面㊁DNA 双螺旋结构如图2-10所示㊂图2-10 碱基对平面与DNA 双螺旋结构㊃23㊃ 生物化学基础Watson和Crick提出的DNA模型是在相对湿度92%的条件下,从生理盐水溶液中提取的DNA纤维的构象,称B型构象㊂天然DNA的结构易受溶液的离子强度和相对湿度影响,DNA螺旋结构沟的深浅㊁螺距㊁旋转都会发生改变㊂当相对湿度是72%时为A型构象,两者的一些结构参数有很大差别㊂1979年Alexander Rich等人在研究人工合成的CGCGCG的晶体结构时,意外发现这种合成的DNA是左手螺旋㊂后来证明这种结构天然也有存在,人们称为Z-DNA㊂在生物体内,不同构象的DNA在功能上可能有所差别,与基因表达的调节和控制相适应㊂DNA双螺旋结构的发现是生物学发展的重要里程碑,是20世纪最伟大的科学成就㊂【知识链接】DNA双螺旋结构的发现对DNA双螺旋结构发现作出重大贡献的科学家有英国剑桥大学的克里克和沃森,英国皇家科学院的富兰克林(Franklin)和威尔金斯(Wilkins)㊂其中富兰克林的工作为DNA 双螺旋结构模型的提出奠定了基础㊂富兰克林不仅首先拍摄了一张可清楚显示出双螺旋结构的晶体X光衍射图,还指出了克里克和沃森早期提出的DNA结构是一个三螺旋结构模型的错误㊂后来克里克和沃森看到了这张X射线衍射图,在1953年提出了DNA双螺旋结构模型,并通过此结构解释了遗传的分子机制和基因自发突变的可能性㊂克里克和沃森因最先提出DNA双螺旋结构获得了1962年的生物和医学诺贝尔奖㊂DNA双螺旋结构的发现是生物学发展重要里程碑,正因为有了DNA双螺旋结构的发现,才会有今天的遗传工程和众多基因工程药物,如人重组胰岛素㊁白细胞介素㊁干扰素㊁人重组乙型肝炎疫苗等㊂3.DNA的超级结构 生物界的DNA是十分巨大的高分子,DNA的长度要求其必须形成紧密折叠扭转的方式才能够存在于很小的细胞核内,而且生物进化程度越高,其DNA的分子越大,所以细胞内的DNA在双螺旋式结构基础上,进一步折叠为超级结构㊂DNA双螺旋链再盘绕即形成超螺旋结构㊂盘绕方向与DNA双螺旋方向相同为正超螺旋;盘绕方向与DNA双螺旋方向相反则为负超螺旋㊂自然界的闭合双链DNA主要是以负超螺旋形式存在,如图2-11所示㊂在原核生物中,线粒体和叶绿体中的DNA是共价闭合的环状双螺旋,这种环状双螺旋结构还需再螺旋化形成超螺旋㊂图2-11 DNA超螺旋结构 真核生物染色体DNA是线性双螺旋结构,染色质的基本组成单位被称为核小体,由DNA和五种组蛋白共同构成㊂核小体中组蛋白分别称为H1㊁H2A㊁H2B㊁H3和H4㊂H2A㊁H2B㊁H3和H4各两分子构成八聚体的核心组蛋白,DNA双螺旋链缠绕在这一核心上形成核小体的核心颗粒㊂核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构,许多核小体形成的串珠样线性结构再进一步盘曲成直径为30nm的纤维结构,后者再经几次卷曲,形成染色体结构㊂核小体,染色质及染色体如图2-12所示㊂图2-12 染色体的结构4.DNA的功能 DNA的基本功能是以基因的形式荷载遗传信息,并作为基因复制和转录的模板,它是生命遗传的物质基础,也是个体生命活动的信息基础㊂基因是指DNA分子中的特定区段,其中的核苷酸排列顺序决定了基因的功能㊂DNA 利用四种碱基的不同排列,可以对生物体所有遗传信息进行编码,经过复制遗传给子代,并通过转录和翻译保证维持生命活动的各种RNA和蛋白质在细胞内有序合成㊂DNA的结构特点是具有高度的复杂性和稳定性,可以满足遗传多样性和稳定性的需要㊂(二)RNA的结构与功能RNA在生命活动中同样具有重要作用,RNA分子比DNA分子小得多,RNA通常以单链形式存在,但也有复杂的局部二级结构或三级结构,以完成一些特殊功能㊂RNA可分为多种类型,除信使RNA(mRNA)㊁核糖体RNA(rRNA)㊁转运RNA(tRNA)外,还有真核结构基因转录产生的mRNA前体分子,核内不均一RNA(hnRNA)㊁核内小RNA(snRNA)㊁反义RNA(asRNA)等㊂不同种类的RNA结构和功能各不相同㊂1.信使RNA DNA主要存在于细胞核内,而蛋白质的合成是在细胞质进行的㊂DNA 的遗传信息是通过特殊的RNA转移到细胞质,并在那里作为蛋白质合成的模板,决定其合成的蛋白质中氨基酸顺序㊂传递DNA遗传信息的RNA称为信使RNA㊂真核生物的mRNA结构特点是含有特殊5′-末端的帽子和3′-末端的多聚A尾结构㊂原核生物mRNA未发现类似结构㊂(1)mRNA的3′-末端有一段含30~200个核苷酸残基组成的多聚腺苷酸(polyA)㊂此段polyA不是直接从DNA转录而来,而是转录后逐个添加上去的㊂有人把polyA称为mRNA的 靴”㊂原核生物一般无polyA的结构㊂此结构与mRNA由胞核转运到胞质及维持mRNA的结构稳定有关,它的长度决定mRNA的半衰期㊂(2)mRNA的5′-末端有一个7-甲基鸟嘌呤核苷三磷酸的 帽”式结构㊂此结构在蛋白质的生物合成过程中可促进核蛋白体与mRNA的结合,加速翻译起始速度,并增强mRNA的稳定性,防止mRNA从头水解㊂mRNA的功能是把核内DNA的碱基顺序按照碱基互补原则,抄录并转移到细胞质,决定蛋白质合成过程中的氨基酸排列顺序㊂2.转运RNA tRNA含70~100个核苷酸残基,是相对分子质量最小的RNA,占RNA 总量的16%,现已发现有100多种㊂tRNA的主要生物学功能是转运活化了的氨基酸,参与蛋白质的生物合成㊂各种tRNA的一级结构互不相同,但它们的二级结构都呈三叶草形㊂这种三叶草形结构的主要特征是,含有四个螺旋区㊁三个环和一个附加叉㊂四个螺旋区构成四个臂,其中含有3′末端的螺旋区称为氨基酸臂,因为此臂的3′-末端都是C-C-A-OH序列,可与氨基酸连接㊂三个环分别用Ⅰ㊁Ⅱ㊁Ⅲ表示㊂环Ⅰ含有5,6二氢尿嘧啶,称为二氢尿嘧啶环(DHU环)㊂环Ⅱ顶端含有由三个碱基组成的反密码子,称为反密码环;反密码子可识别mRNA分子上的密码子,在蛋白质生物合成中起重要的翻译作用㊂环Ⅲ含有胸苷(T)㊁假尿苷(ψ)㊁胞苷(C),称为TψC环;此环可能与结合核糖体有关(图2-13)㊂tRNA分子中稀有碱基的数量是所有核酸分子中比例最高的,这些稀有碱基的来源是转录之后经过加工修饰形成的㊂tRNA在二级结构的基础上进一步折叠成为倒 L”字母形的三级结构,一端为反密码环,另一端为氨基酸臂,DHU环和TψC环在拐角处㊂此种结构与tRNA和核蛋白质及rRNA的相互作用相关㊂tRNA的二级结构和三级结构如图2-13所示㊂3.核糖体RNA rRNA是细胞中含量最多的RNA,约占RNA总量的82%㊂rRNA单独存在时不执行其功能,它与多种蛋白质结合成核糖体,作为蛋白质生物合成的 装配机”㊂rRNA的相对分子质量较大,结构相当复杂,目前虽已测出不少rRNA分子的一级结构,但对其二级㊁三级结构及其功能的研究还需进一步的深入㊂原核生物的rRNA分三类:5S rRNA㊁16S rRNA和23S rRNA㊂真核生物的rRNA分四类:5S rRNA㊁5.8S rRNA㊁图2-13 tRNA 的二级结构和三级结构18S rRNA 和28S rRNA㊂S 为大分子物质在超速离心沉降中的一个物理学单位,可间接反映相对分子质量的大小㊂原核生物和真核生物的核糖体均由大㊁小两种亚基组成㊂以大肠杆菌和小鼠肝为例,各亚基所含rRNA㊁蛋白质的种类和数目见表2-6㊂表2-6 核糖体中包含的rRNA 和蛋白质来源亚基rRNA 种类蛋白质种类数原核生物(大肠杆菌)大亚基(50S)小亚基(30S)5S㊁23S 16S 3121真核生物(小鼠肝)大亚基(60S)小亚基(40S)5S㊁5.8S㊁28S 18S 4933(三)核酶1982年Thomas Cech 在研究四膜虫rRNA 前体加工时发现,rRNA 前体本身具有自我催化作用,开创了RNA 具有酶功能的先河㊂提出了核酶的二级结构呈锤头状,即锤头核酶㊂1994年Breaker 发现人工合成DNA 的某些片段具有酶的活性而称为脱氧核酶㊂由于DNA 较RNA 稳定且成本低廉,脱氧核酶的应用已成为新药开发的热门课题㊂第三节 核酸的理化性质一㊁一般理化性质 核酸分子中有酸性基团和碱性基团,为两性电解质㊂DNA 是线性的大分子,具有大分子物质的一般特性㊂由于DNA 分子细长,其在溶液中的黏度很高㊂RNA 分子比DNA 短,在溶液中的黏度低于DNA㊂核酸分子中的碱基都含有共轭双键,故都有吸收紫外线的性质,其最大吸收峰在260nm 附近㊂这一重要的理化性质被广泛用来对核酸㊁核苷酸和碱基进行定性㊁定量分析㊂在同一浓度的核酸溶液中,单链DNA 的吸光度较双链DNA 大㊂二㊁DNA 的变性和复性(一)DNA 的变性在某些理化因素(温度㊁pH㊁离子强度等)作用下,DNA 双链的互补碱基之间的氢键断裂,使DNA 双螺旋结构松散,成为单链的现象即为DNA 变性㊂DNA 双螺旋结构的稳定性主要靠碱基平面间的疏水堆积力和互补碱基之间的氢键来维持㊂DNA 变性只改变其二级结构,不改变它的核苷酸排列㊂图2-14 DNA 的解链曲线在实验室内最常用的使DNA 分子变性的方法之一是加热㊂加热时,DNA 双链发生解离,在260nm 处的紫外线吸收值增高,此种现象称为增色效应㊂DNA的热变性是爆发性的,只在很狭窄的温度范围内进行㊂如果在连续加热DNA 的过程中以温度对紫外光吸收值作图,所得的曲线称为解链曲线,DNA 的变性从开始解链到完全解链,是在一个相当狭窄的温度内完成的,在这一范围内,紫外光吸收值达到最大值的50%时的温度称为DNA 的解链温度,由于这一现象和结晶的熔解过程类似,又称熔解温度(Tm)㊂在Tm时,核酸分子内50%的双链结构被解开㊂DNA 的Tm值一般在70~85℃之间,如图2-14所示㊂DNA 的Tm 值大小与DNA 分子中G㊁C 的含量有关,因为G ≡C 之间有三个氢键,而=A T 之间只有两个氢键,所以G㊁C 越多的DNA,其分子结构越稳定,Tm 值较高,这是因为G 与C 比A 与T 之间多一个氢键,解开G 与C 之间的氢键要消耗更多的能量㊂(二)DNA 的复性变性DNA 在适宜条件下,两条彼此分开的链经碱基互补可重新形成双螺旋结构,这一过程称为复性㊂热变性的DNA 经缓慢冷却即可复性,这一过程也称为退火㊂最适宜的复性温度比Tm约低25℃,这个温度叫做退火温度㊂DNA的复性速度受温度影响,只有温度缓慢下降才可使其重新配对复性㊂如加热后,将其迅速冷却至40℃以下,则几乎不能发生复性㊂这一特性被用来保持DNA的变性状态㊂一般认为比Tm低25℃的温度是DNA复性的最佳条件㊂【知识链接】DNA指纹技术每个人身上都拥有一套独一无二的遗传密码,这些密码记录着人体成长的所有信息,除了极少数外,几乎人身上的每一个细胞都含有这套完整的遗传密码㊂这些密码存在于细胞里的细胞核内,其中23对染色体就是用来储存这些密码的,而这些密码就是由DNA 分子所组成㊂生物个体间的差异本质上就是DNA分子序列的差异,人类不同个体(同卵双生除外)的DNA各不相同㊂将人基因组DNA经酶切㊁电泳㊁分子杂交及放射自显影等处理,可获得检测的杂交图谱,其杂交带数目和分子大小具有个体差异性,这如同一个人的指纹图形一样各不相同㊂因此,把这种杂交带图谱称为DNA指纹㊂DNA指纹技术已被广泛应用于法医学如物证检测㊁亲子鉴定㊁疾病诊断和肿瘤研究等领域㊂三㊁分子杂交DNA变性后可以复性,在此过程中,如果使不同DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在互补碱基,可以进行配对,在合适的条件下(温度及离子强度),可以形成杂化双链㊂杂化双链可以在DNA与DNA之间,也可以在DNA与RNA之间,或者在RNA与RNA分子之间形成,这就是核酸分子杂交㊂现代检测手段最新发展出来的基因芯片等最基本的原理就是核酸分子杂交㊂小 结核酸是生物大分子物质,包括DNA和RNA两大类㊂DNA主要分布于细胞核内,是遗传的物质基础;RNA主要分布于细胞质中,参与基因的表达和蛋白质的生物合成㊂组成核酸的主要元素中磷的含量相对稳定,因此可以用核酸样品中磷的含量代表核酸的含量㊂构成DNA的基本单位是脱氧核糖核苷酸,常用dNMP表示,其中N代表A㊁G㊁C㊁T㊂RNA则由核糖核苷酸构成,常用NMP表示,其中N代表A㊁G㊁C㊁U㊂许多核苷酸按一定排列顺序,通过磷酸二酯键连接成的多核苷酸链为核酸的一级结构㊂DNA的二级结构为双螺旋结构,由两条反向平行的互补脱氧多核苷酸链围绕分子长轴盘曲成螺旋结构,脱氧核糖基和磷酸基位于双螺旋的外侧,碱基位于双螺旋的内侧,两条链之间的碱基有固定的配对关系,即A和T配对,G和C配对,这种特征为DNA复制提供了结构基础㊂原核生物DNA的三级结构绝大多数是闭链环状的双螺旋分子,进一步螺旋化为麻花状结构,称为超螺旋结构,真核生物DNA的三级结构是在双螺旋基础上盘绕在组蛋白分子上形成的核小体结构,它是染色体的基本单位,可进一步多层次盘曲折。
第二章核酸的结构与功能
鸟嘌呤G 鸟嘌呤 胸腺嘧啶T 胸腺嘧啶 鸟嘌呤G 鸟嘌呤 脲嘧啶U 脲嘧啶
核酸的化学组成 2
二 戊糖与核苷 构成DNA的戊糖 的戊糖——β-D-2-脱氧核糖 构成 的戊糖 脱氧核糖 构成RNA的戊糖 的戊糖——β-D-核糖 构成 的戊糖 核糖 核苷: 核苷:碱基和核糖或脱氧核糖通过糖苷键 缩合成核苷或脱氧核苷, (glycosidic bond)缩合成核苷或脱氧核苷, 缩合成核苷或脱氧核苷 连接位置是C-1’ 连接位置是 核苷(脱氧核苷)与磷酸结合成核苷酸( 核苷(脱氧核苷)与磷酸结合成核苷酸(脱 氧核苷酸),一般情况下, ),一般情况下 氧核苷酸),一般情况下,磷酸结合于核糖 或脱氧核糖的5‘-C上 或脱氧核糖的 上
(二)双螺旋结构的要点——两链碱 双螺旋结构的要点 两链碱 基互补, 基互补,反平行走向
1 右手双螺旋:由两条走向平行,方向相反的脱氧多核苷酸 右手双螺旋:由两条走向平行, 链绕中心轴盘曲成右手双螺旋,其表面有大沟、小沟( 链绕中心轴盘曲成右手双螺旋,其表面有大沟、小沟(蛋白 质与DNA的识别点)交替出现,螺旋直径 的识别点) 质与 的识别点 交替出现,螺旋直径2nm 2 两链碱基互补:亲水的主链在外侧,疏水的碱基在两链内 两链碱基互补:亲水的主链在外侧, 按碱基配对原则形成碱基对( 侧,按碱基配对原则形成碱基对(base pair , bp)使条 ) DNA单链形成互补链,即一条链的碱基顺序决定了另一条 单链形成互补链, 单链形成互补链 链的碱基顺序,这是DNA半保留复制的理论基础 链的碱基顺序,这是 半保留复制的理论基础 3 螺旋结构:相互配对的碱基处于同一平面,每10个碱基为 螺旋结构:相互配对的碱基处于同一平面, 个碱基为 一圈,螺距为3.4nm 一圈,螺距为 4 稳定力: 稳定力: 横向:两链间——氢键 横向:两链间 氢键 纵向:疏水堆积力(碱基堆积力) 纵向:疏水堆积力(碱基堆积力)
核酸的结构与功能
现代分子生物学的基础:1953年 Watson和 Crick发现DNA的双螺旋结构
P24
• 1968年 Nirenberg发现遗传密码 • 1973年美国斯坦福大学首次进行了体外基因重组 • 1975年 Temin和Baltimore发现逆转录酶 • 1981年 Gilbert和Sanger建立DNA测序方法 • 1985年 Mullis发明PCR技术 • 1990年 启动人类基因组计划(HGP) • 2003年 完成人类基因组计划 • 20世纪末 发现许多具有特殊功能的RNA
2003年4月14日,美、英、日、意、中同时宣布: 人类30亿碱基DNA序列已测定出来
P30
核酸分子大小的表示方法
碱基数目(单链): base或kilobase, kb 碱基对数目(双链): base pair, bp或kilobase pair, kb DNA和RNA的分子量呈多样性
<50bp常被称为寡核苷酸(oligonucleotide)
P32
0.34nm
3.4nm
1nm
3、两条核苷酸链通过碱 基间的氢键连接。遵从
T
A
碱基互补原则,即:
A-T配对,形成两个氢键 C
G
G-C配对,形成三个氢键
互补
P32
4、碱基堆积力(疏水力)和氢键 维系DNA双螺旋结构的稳定 力量
P32
Watson-Crick的DNA双螺旋
2.0 nm
DNA双螺旋结构存在多样性:
第三节 DNA的结构与功能 第四节 RNA的结构与功能 第五节 核酸的理化性质及应用
第四节 RNA的结构与功能
RNA的一级结构即核苷酸的排列顺序 RNA的基本组成单位是4种核糖核苷酸 AMP、GMP、CMP、UMP RNA的基本结构键是 3’,5’ – 磷酸二酯键 RNA的分子小,种类多,稀有碱基多
第2章核酸的结构与功能ppt课件
Sanger测序原理
1.2.1.2 DNA的二级结构及其多态性
Watson和Crick在总结前人研究工作的基础上, 在1953年以立体化学上的最适构型建立了与 DNA X-射线衍射资料相符的分子模型—— DNA双螺旋结构模型。 它可在分子水平上 阐述遗传(基因复制)的基本特征。
⑴DNA双螺旋结构的主要依据
核酸根据核酸的化学组成和生物学功能,将核 酸分为:
核糖核酸(ribonucleic acid RNA)和
脱氧核糖核酸(deoxyribonucleic acid DNA)
所有细胞都同时含有DNA和RNA两种核酸。病 毒只含一种核酸,DNA或RNA,故有DNA 病毒和RNA病毒之分。多数细菌病毒(噬菌 体)属DNA病毒,而植物和动物病毒多为 RNA病毒。
5’pApCpUpUpGpApApCpC3’ RNA
简化为: 5’pACTTGAACG3’ DNA
5’pACUUGAACG3’RNA
简写式的5`-末端均含有一个磷酸残基(与糖基 的C-5`位上的羟基相连),3`-末端含有一个 自由羟基(与糖基的C-3`位相连),若5`端 不写P,则表示5`-末端为自由羟基。
3.4nm 2.8nm 36° 33°
Z-DNA
Wang和Rich等在研究人工 合成的d(CGCGCG)单 晶的X-射线衍射图谱时, 发现这种六聚体的构象不 同于B-构象。
它是左手双螺旋,在主链 中各个磷酸根呈锯齿 (Zigzag)状排列,因此 称Z-构象。
B-DNA与Z-DNA的比较
比较内容
B-DNA
T 24.8
28 25.6 29.7 28.9 29.2 32.9
G 24.1 23.2 21.9 20.5 20.4 20.4 18.7
2核酸的结构与功能
2核酸的结构与功能核酸是一种重要的生物大分子,它在生命活动中发挥着关键的作用。
核酸的结构和功能十分复杂,本文将对核酸的结构和功能进行详细的介绍。
核酸是由核苷酸单元组成的高分子化合物。
核苷酸由一种五碳糖(如脱氧核糖或核糖)、一个含氮碱基和一个磷酸基团组成。
根据五碳糖的种类,核酸可分为DNA(脱氧核糖核酸)和RNA(核糖核酸)两类。
DNA是生物体内贮存遗传信息的化学物质,它携带了生物体的遗传信息,指导了生物体的生长、发育和功能的实施。
DNA的核苷酸单元由脱氧核糖、腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶组成。
DNA的结构是双螺旋结构,由两条互补的链缠绕在一起,形成了一个螺旋梯状的结构,类似于一条扭转的梯子。
DNA的碱基通过氢键连接在一起,腺嘌呤与鸟嘌呤之间通过两个氢键连接,胞嘧啶与胸腺嘧啶之间通过三个氢键连接。
这种结构使得DNA能够进行复制和遗传信息的传递。
RNA是一类功能多样的分子,它在生物体内主要参与蛋白质的合成和转运等过程。
RNA的核苷酸单元由核糖、腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶组成。
RNA的结构多样,可分为mRNA(信使RNA)、tRNA(转运RNA)和rRNA(核糖体RNA)等多种类型。
mRNA是由DNA模板直接合成的,它携带了DNA上的遗传信息,为蛋白质的合成提供了模板。
tRNA是一类小分子RNA,它能够将氨基酸与mRNA上的密码子相互识别,将氨基酸带到合成蛋白质的位置。
rRNA是构成核糖体的主要组成部分,核糖体是蛋白质合成的场所。
核酸的功能主要有两方面:储存遗传信息和参与蛋白质的合成。
首先,核酸通过携带遗传信息来储存生物体的基因信息。
DNA中的碱基序列编码了生物体的基因信息,通过复制和传递这些信息,生物体的遗传特征得以传递。
DNA通过基因的转录和翻译过程,将基因信息转化为蛋白质的序列,进而决定了生物体的结构和功能。
基因突变会导致遗传信息的改变,进而影响生物体的形态和功能。
其次,核酸参与蛋白质的合成和转运过程。
第2章 核酸的结构与功能
第二章核酸的结构和功能核酸是以核苷酸为基本组成单位的线性多聚生物信息分子。
分为DNA和RNA两大类。
其化学组成见下表:DNA RNA碱基①嘌呤碱 A、G A、G②嘧啶碱 C、T C、U戊糖β-D-2 脱氧核糖β-D-核糖磷酸磷酸磷酸碱基与戊糖通过糖苷键相连,形成核苷。
核苷的磷酸酯为核苷酸。
根据核苷酸分子的戊糖种类不同,核苷酸分为核糖核苷酸与脱氧核糖核苷酸,前者是RNA的基本组成单位,后者为DNA的基本组成单位,核酸分子中核苷酸以3’,5’-磷酸二酯键相连,形成多核苷酸链,是核酸的基本结构。
多核苷酸链中碱基的排列顺序为核酸的一级结构。
多核苷酸链的两端分别称为3’-末端与5’-末端。
DNA的二级结构即双螺旋结构的特点:⑴两条链走向相反,反向平行,为右手螺旋结构;⑵脱氧核糖和磷酸在双螺旋外侧,碱基在内侧;⑶两链通过氢键相连,必须A与T、G与C配对形成氢键,称为碱基互补规律。
⑷大(深)沟,小(浅)沟。
⑸螺旋一周包含10个bp,碱基平面间的距离为0.34nm,螺旋为3.4nm,螺旋直径2nm;⑹疏水作用。
氢键及碱基平面间的疏水性堆积力维持其稳定性。
DNA的基本功能是作为遗传信息的载体,并作为基因复制转录的模板。
mRNA分子中有密码,是蛋白质合成的直接模板。
真核生物的mRNA一级结构特点:5’-末端“帽”,3’-末端“尾”。
tRNA在蛋白质合成中作为转运氨基酸的载体,其一级结构特点:含有较多的稀有碱基;3’-CCA-OH,二级结构为三叶草形结构。
rRNA与蛋白质结合构成核蛋白体,作为蛋白质合成的“装配机”。
细胞的不同部位还存在着许多其他种类小分子RNA,统称为非mRNA小RNA(snmRNAs),对细胞中snmRNA 种类、结构和功能的研究称为RNA组学。
具有催化作用的某些小RNA称为核酶。
碱基、核苷、核苷酸及核酸在260nm处有最大吸收峰。
加热可使DNA双链间氢键断裂,变为单链称为DNA变性。
DNA变性时,OD260增高。
核酸的结构与功能
核酸的结构与功能核酸是生物体内重要的生物大分子之一,它不仅参与到遗传信息的传递和转录过程中,还在细胞生理活动中发挥着重要的功能。
本文将重点介绍核酸的结构和功能。
一、核酸的结构核酸主要由核苷酸组成,而核苷酸又由糖基、碱基和磷酸残基构成。
1. 糖基:核酸中的糖基有两种,即脱氧核糖和核糖。
脱氧核糖是构成DNA的糖基,而核糖则是RNA的糖基。
2. 碱基:碱基是核苷酸的重要组成部分,它可分为两类,嘌呤和嘧啶。
嘌呤包括腺嘌呤(A)和鸟嘌呤(G),而嘧啶则包括胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。
3. 磷酸残基:磷酸残基是核苷酸的磷酸部分,通过醣苷酸的骨架连接在一起,形成了核酸的链状结构。
二、核酸的功能1. 遗传信息的传递:核酸承载着生物体的遗传信息,其中DNA是生物体遗传信息的主要媒介。
DNA分子通过编码自身的碱基序列,传递给下一代,从而实现了生物遗传的连续性。
2. 转录过程中的模板:DNA作为模板参与到转录过程中,转录酶根据DNA的碱基序列合成RNA,这个过程被称为转录。
RNA承载着从DNA传递过来的信息,进一步参与到蛋白质的合成中。
3. 蛋白质的合成:核酸在蛋白质的合成过程中发挥着重要的功能。
由DNA转录形成的RNA分子将遗传信息带到细胞质中的核糖体,核糖体根据RNA的信息合成特定的氨基酸序列,最终形成特定的蛋白质。
4. 能量传递:核酸有能量转移的功能。
在细胞生理活动中,ATP(腺苷三磷酸)作为一种常见的核苷酸,通过释放相应的磷酸,将化学能转化为细胞内能量。
5. 调节基因表达:核酸还通过一系列的调控机制来调节基因的表达。
例如,RNA干扰技术能够通过干扰特定基因的转录过程,实现对基因表达的调控。
结语:通过对核酸的结构与功能进行了解,我们深刻认识到核酸在生物体内的重要性。
作为遗传信息的承载者和调控蛋白质合成的关键参与者,核酸在维持生物体的正常功能和生理过程中起着不可忽视的作用。
进一步研究核酸的结构和功能有助于揭示生命活动的本质,并为生物技术领域的发展提供新的思路和路径。
生化第二章核酸的结构和功能
第二章核酸的结构与功能本章重点核酸前言:1.真核生物DNA存在于细胞核和线粒体内,携带遗传信息,并通过复制的方式将遗传信息进行传代;真核生物RNA存在于细胞质、细胞核和线粒体内。
2.在某些病毒中,RNA也可以作为遗传信息的载体。
一、核酸的化学组成以及一级结构(一)、核苷酸是构成核酸的基本组成单位1.DNA的基本组成单位是脱氧核苷酸,而RNA的基本组成单位是核糖核苷酸。
2.核苷酸中的碱基成分:含氮的杂环化合物。
①DNA中的碱基:A\T\C\G。
②RNA中的碱基:S\U\C\G。
★这五种碱基的酮基或氨基受所处环境的pH是影响可以形成酮-烯醇互变异构体或氨基-亚2.核糖①β-D-核糖:C-2’原子上有一个羟基。
②β-D-脱氧核糖:C-2’原子上没有羟基☆脱氧核糖的化学稳定性比核糖好,这使DNA成为了遗传信息的载体。
3.核苷①核苷②脱氧核苷③核糖的C-1’原子和嘌呤的N-9原子或者嘧啶的N-1原子通过缩合反应形成了β-N-糖苷键。
在天然条件下,由于空间位阻效应,核糖和碱基处在反式构象上。
3.核苷酸的结构与命名①核苷或脱氧核苷C-5’原子上的羟基可以与磷酸反应,脱水后形成磷酸键,生成核苷酸或脱氧核苷酸。
②根据连接的磷酸基团的数目不同,核苷酸可分为核苷一磷酸(NMP)、核苷二磷酸(NDP)、核苷三磷酸(NTP)。
③生物体内游离存在的多是5’核苷酸★细胞内一些参与物质代谢的酶分子的辅酶结构中都含有腺苷酸,如辅酶Ⅰ(NAD+),它们是生物氧化体系的重要成分,在传递质子或电子的过程中具有重要的作用。
(二)、DNA是脱氧核糖核苷酸通过3’,5’-磷酸二酯键连接形成的大分子1.脱氧核糖核苷三磷酸C-3’原子的羟基能够与另一个脱氧核糖核苷三磷酸的α-磷酸基团缩合,形成了一个含有3’,5’-磷酸二酯键的脱氧核苷酸分子。
2.脱氧核苷酸分子保留着C-5’原子的磷酸基团和C-3’原子的羟基。
3.多聚体核苷酸链的5’-端是磷酸基团,3’-端是羟基。
第二章 核酸的分子结构与功能(间)
32
33
图
不同类型的DNA双螺旋结构
34
B型双螺旋DNA的结构特点:
1. 为右手反平行双螺旋;
2. 主链位于螺旋外侧,碱基位于内侧;
3. 两条链间存在碱基互补:A与T或G与C配对形
成氢键,称为碱基互补原则(A与T为两个氢
键,G与C为三个氢键);
4. 螺旋的稳定因素为氢键和碱基堆砌力;
5. 螺旋的螺距为3.4nm,直径为2nm。
参与hnRNA的剪接、转运 rRNA的加工、修饰 蛋白质内质网定位合成 的信号识别体的组分
40
胞浆小RNA
一、mRNA的结构与功能
mRNA是在细胞核内以DNA为模板合成;
mRNA又作为模板将来自DNA的信息经翻译, 指导合成蛋白质。称信使RNA,或模板RNA 。
在细胞内合成的mRNA初级产物分子大小不 一,被称为核内不均一RNA(heterogeneous nuclear RNA,hnRNA) 。
3
分类
功能 遗传的物质基础, 携带、传递遗传信 息。
分布
细胞核和 线粒体内
DNA 核酸
mRNA RNA tRNA
模板(信使) 转运氨基酸 识别密码子 细胞质和 细胞核内
rRNA 构成核蛋白体
合成蛋白质的场所
4
核酸是存在于细胞中的一类大分子酸性物质, 包括核糖核酸(ribonucleic acid, RNA)和脱 氧核糖核酸(deoxyribonucleic acid, DNA)两 大类。
42
3’-末端的多聚A尾结构:
真核生物mRNA的3’-末端,大多数 有数十个至百余个腺苷酸连接而成的 多聚腺苷酸结构称为多聚A尾结构,即 poly(A)结构。
43
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1~2题共用备选答案)
A.G、C、T、U
Bቤተ መጻሕፍቲ ባይዱG、A、C、T
C.A、G、C、U
D.G、A、T、U
E.I、C、A、U
【助理】
1RNA分子中所含的碱基是
四、DNA的功能
DNA是遗传的物质基础,表现生物性状的遗传信息贮存在DNA分子的核苷酸序列中。当细胞分裂时,生物遗传信息通过复制从亲代(细胞)传递给子代(细胞),使物种得以延续。因此,DNA与细胞增生、生物体传代有关。DNA还可通过转录指导RNA(包括mRNA)合成,将遗传信息传递给mRNA;继而以mRNA为模板合成特异的蛋白质分子。蛋白质赋予生物体或细胞特异的生物表型和代谢表型,使生物性状遗传。
C.DNA双螺旋以右手螺旋的方式围绕同一轴有规律地盘旋
D.两股单链的5′至3′端走向在空间排列上相同
E.两碱基之间的氢键是维持双螺旋横向稳定的主要化学键
答案:D
三、DNA的三级结构
原核生物没有细胞核,其DNA分子在双螺旋基础上进一步扭转盘曲,形成超螺旋,使体积压缩。超螺旋结构就是DNA的三级结构。
在真核生物的染色体中,DNA的三级结构与蛋白质的结合有关。与DNA结合的蛋白质有组蛋白和非组蛋白两类。组蛋白有H1,H2A,H2B,H3和H4共5种,它们都是含有丰富的赖氨酸和精氨酸残基的碱性蛋白质。组蛋白H2A、H2B、H3和H4各两分子形成八聚体,八聚体之外绕有近1圈约140至146个碱基对的DNA,构成一个核小体。H1位于核小体与核小体之间的连接区,并与约75至100个碱基对的DNA结合,组成串珠状结构。在核小体结构基础上,DNA链进—步折叠,形成染色(单)体。人类细胞核中有46条(23对)染色体,这些染色体的DNA总长达1.7m,经过折叠压缩,46条染色体总长也仅200nm左右。
三、核酸探针
在核酸杂交基础上发展起来的一种用于核酸研究和诊断的新技术称核酸探针技术。一小段(例如十数个至数百个)核苷酸聚合体的单链,用放射性核素如32P、35S或生物素等化学发光物质标记其末端或全链,就可作为探针,将待测DNA变性并吸附在适当支持物(如硝酸纤维素膜)上,然后将支持物与含探针的溶液共同温育,使发生杂交。带有特殊标记的探针若能与待测DNA结合成杂交双链,则保留在支持物(或称固相载体)上。通过核素放射自显影或生物素的化学显色,就可判断探针是否与被测的DNA发生了杂交。此为固相杂交,应用较广。另外还有液相杂交。
【执业】2.下列有关mRNA的叙述,正确的是
A.为线状单链结构,5′端有多聚腺苷酸帽子结构
B.可作为蛋白质合成的模板
C.链的局部不可形成双链结构
D.3′末端特殊结构与mRNA的稳定无关
答案:B
二、tRNA
tRNA由70至90个核苷酸构成。tRNA分子含有稀有碱基,包括双氢尿嘧啶、假尿嘧啶和甲基化的嘌呤。在tRNA单链上有一些能配对的区域,形成局部双链,这些局部的碱基配对双链就像一支叶柄,中间不能配对的碱基鼓出成环状。所有tRNA均呈三叶草形状,这就是tRNA的二级结构。tRNA的三级结构为倒L型。tRNA二级结构有三个环,其中反密码环上有反密码子,反密码子辨认mRNA上相应的三联体密码,而且把正确的氨基酸连接到tRNA 3,末端的CCA-OH结构上。由此可见tRNA在蛋白质生物合成中起运输氨基酸的作用。
探针技术在遗传性疾病等的诊断上有广泛应用。例如诊断地中海贫血或血红蛋白病等分子病,可以由已确诊的病人白细胞中提取DNA,进行DNA诊断。
第四节RNA的结构与功能
RNA通常以数十个至数千个核苷酸组成的单链形式存在。RNA主要分为信使RNA(mRNA)、转运RNA(tRNA)和核糖(核蛋白)体RNA(rRNA)三类。
【执业】1.下列有关RNA的叙述错误的是
A.主要有mRNA,tRNA和rRNA三类
B.胞质中只有mRNA和tRNA
C.tRNA是细胞内分子量最小的一种RNA
D.rRNA可与蛋白质结合
E.RNA并不全是单链结构
答案:B
(3~5题共用备选答案)
A.核苷酸在核酸长链上的排列顺序
B.tRNA的三叶草结构
C.DNA双螺旋结构
一、mRNA
mRNA为线状单链结构。大多数真核mRNA在5’-端含倒装的7-甲基三磷酸鸟苷(m7Gppp),称为帽子结构。mRNA的3’-末端有一段长短不一的多聚腺苷酸序列,由数十个至上百个腺苷酸连接而成。3’-末端的多聚腺苷酸结构可增加转录活性,增加mRNA稳定性。5’加“帽”、3’加“尾”属转录后加工过程。
二、核酸杂交
复性是指核酸双链分子中分开的两股单链重新结合。如果将不同的DNA链放在同一溶液中作变性处理,或将单链DNA与RNA放在一起,只要某些区域(或链的大部分)有形成碱基配对的可能,它们之间就可形成局部双链,这一过程称为核酸杂交,生成的双链称为杂化双链。核酸杂交技术是目前研究核酸结构、功能常用的手段之一。
第二单元核酸的结构和功能
第一节核酸的基本组成单位——核苷酸
核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类。DNA是遗传信息的贮存和携带者,RNA主要参与遗传信息表达的各过程。
一、核苷酸分子组成
核酸也称为多核苷酸,是由数十个以至数千万计的核苷酸构成的生物大分子,也即核酸的基本组成单位是核苷酸。核苷酸分子由碱基、核糖或脱氧核糖和磷酸三种分子连接而成。碱基与糖通过糖苷键连成核苷,核苷与磷酸以酯键结合成核苷酸。
贮存在DNA核苷酸顺序中的遗传信息通过转录,转送至mRNA的核苷酸顺序,后者决定蛋白质合成的氨基酸排列顺序,也即mRNA可作为蛋白质合成的模板。分子中的每3个核苷酸为—组,决定肽链上一个氨基酸,称为遗传密码。遗传密码的特点为:①三个相连核苷酸组成一个密码子,编码一个氨基酸,共有64个密码子;②密码子之间无核苷酸间隔;③一种氨基酸可有多种密码子;④所有生物使用同一套密码子。
参与核苷酸组成的主要碱基有5种。属于嘌呤类化合物的碱基有腺嘌呤(A)和鸟嘌呤(G),属于嘧啶类化合物的碱基有胞嘧啶(C)、尿嘧啶(U)和胸腺嘧啶(T)。
二、核酸(DNA和RNA)
几个或十几个核苷酸通过磷酸二酯键连接而成的分子称寡核苷酸,由更多的核苷酸连接而成的聚合物就是多聚核苷酸。多聚核苷酸链是有方向的(5’— 3’)。
【执业】10.下列关于DNA碱基组成的的叙述正确的是
A.DNA分子中A与T的含量不同
B.同一个体成年期与少儿期碱基组成不同
C.同一个体在不同营养状态下碱基组成不同
D.同一个体不同组织碱基组成不同
E.不同生物来源的DNA碱基组成不同
答案:E
第三节DNA变性及其应用
一、DNA变性和复性的概念
在极端的pH值(加酸或碱)和受热条件下,DNA分子中双链间的氢键断裂,双螺旋结构解开,这就是DNA的变性。依变性因素不同,有DNA的酸、碱变性,或DNA的热变性之分。因为变性时碱基对之间的氢键断开,相邻碱基对之间的堆积力也受到破坏(但不伴有共价键断裂),所以变性后的DNA在260nm的紫外光吸收增强,称为高色效应。在DNA变性中以DNA的热变性意义最大。DNA的热变性又称DNA的解链或融解作用。在DNA热变性过程中,使紫外吸收达到最大增值50%时的温度称为解链温度,又称融解温度Tm)。Tm与DNA分子G+C量有关。
D.DNA的超螺旋结构
E.DNA的核小体结构
【执业】3.属于核酸一级结构的描述是
答案:A
【执业】4.属于核糖核酸二级结构的描述是
答案:B
【执业】5.属于真核生物染色质中DNA的三级结构的描述是
答案:E
【解析】本章为重点章节,其中核酸的分类、组成、DNA分子结构(双螺旋结构)。三种RNA的结构及功能为常考点。DNA的变性也要注意,变性为DNA双键的互补碱基对之间的氢键断裂,其Tm值与G.C所占比例相关。G.C含量越高,Tm值越高。
答案:C
2DNA分子中所含的碱基是
答案:B
三、核酸的一级结构
核苷酸在核酸长链上的排列顺序,就是核酸的一级结构。在任何DNA分子中的脱氧核糖-磷酸,或在任何RNA分子中的核糖-磷酸连成的长链是相同的,而不同的是连在糖环C—1’位上的碱基排列顺序。所以核酸的一级结构也称为碱基序列。
【执业】8.组成多聚核苷酸的骨架成分是(2002)
A.碱基与戊糖
B.碱基与磷酸
C.碱基与碱基
D.戊糖与磷酸
E.戊糖与戊糖
答案:D
【执业】9.组成核酸分子的碱基主要有
A.2种
B. 3种
C.4种
D.5种
E.6种
答案:D
【执业】12.核酸中含量相对恒定的元素是
A.氧
B.氮
C.氢
D.碳
E.磷
答案:E
【助理】5核酸分子中百分比含量相对恒定的元素是(2003)
A.碳(C)
B.氢(H)
C.氧(O)
D.氮(N)
E.磷(P)
答案:E
第二节DNA的结构与功能
一、DNA碱基组成规律
DNA碱基组成有一定的规律,即DNA分子中A的摩尔数与T相等,C与G相等。
【执业】6.DNA碱基组成的规律是
A.A=C,T=G
B.A+T=C+G
C.A=T;C=G
D.(A+T)/(C+G)=1
三、rRNA
rRNA是细胞内含量最多的RNA,约占RNA总量的80%以上。rRNA与核糖体蛋白共同构成核糖体。核糖体由大、小两个亚基组成。真核生物的核糖体小亚基由18SrRNA和30多种核糖体蛋白构成,大亚基则由5S、5.8S及28S三种rRNA与50种核糖体蛋白组成。当大小亚基聚合时,可作为蛋白质合成的场所。
答案:C
【助理】4维系DNA两条链形成双螺旋的化学键是(2003)