全等三角形中考题(精选200题)

合集下载

三角形全等测试题及答案

三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。

答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。

答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。

()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。

()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。

答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。

答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。

证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。

10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。

证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。

全等三角形的判定中考题

全等三角形的判定中考题

全等三角形的判定中考题一、已知两个三角形两边及夹角分别相等,根据哪种全等判定定理可以确定这两个三角形全等?A. SSS(三边相等)B. SAS(两边及夹角相等)C. ASA(两角及夹边相等)D. AAS(两角及非夹边相等)(答案:B)二、在△ABC与△DEF中,若∠A=∠D,∠C=∠F,且AC=DF,则依据哪个判定定理可证明两三角形全等?A. SSSB. SASC. ASAD. AAS(答案:C)三、若△PQR与△STU中,PQ=ST,QR=TU,且∠Q=∠T,但∠Q并非PQ与QR的夹角,则根据哪个判定不能直接证明两三角形全等?A. SSSB. SASC. ASAD. 以上均不可(答案:D)四、两个三角形中,如果两个角和一条边分别相等,且这条边是这两个角的夹边,应使用哪个全等判定定理?A. SSSB. SASC. ASAD. AAS(答案:C)五、在△ABC与△MNP中,若AB=MN,BC=NP,且∠B=∠N,但∠B不是AB和BC的夹角,则不能直接通过哪个判定证明两三角形全等?A. SSSB. SASC. AASD. 以上都不是直接证明的依据(答案:B)六、若两个三角形的两个角及非夹边分别相等,应依据哪个全等判定定理来确定它们全等?A. SSSB. SASC. ASAD. AAS(答案:D)七、在△XYZ与△LMN中,若XY=LM,YZ=MN,且∠YZX=∠LMN,但∠YZX并非XY与YZ的夹角,则不能直接应用哪个全等判定?A. SSSB. SAS(答案)C. 这种情况无法判定三角形全等D. AAS八、已知△ABC与△DEF中,∠A=∠D,∠B=∠E,若要证明两三角形全等,还需满足以下条件中的哪一个?A. AB=DEB. AC=EF(非夹角对应的边)C. BC=DF(夹角对应的边,即SAS情况)(答案)D. ∠C=∠F(已有两角相等,再加一角无法判定全等)。

全等经典200题——性质及判定

全等经典200题——性质及判定

板块一 全等三角形的认识【例1】 1、考查下列命题:①有两边及一角对应相等的两个三角形全等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数有_________个.2、(2009四川遂宁)已知ABC ∆中,AB BC AC =≠,作与ABC ∆只有一条公共边,且与ABC ∆全等的三角形,这样的三角形一共能作出 个.3、(2009山东)如图,在Rt ABC ∆中,AB AC AD BC =⊥,,垂足为D .E F 、分别是CD AD 、上的点,且CE AF =.如果62AED ∠=︒,那么DBF ∠=__________.4、(2009浙江)如图,已知ABC ∆中,90ABC AB BC ∠=︒=,,三角形的顶点在相互平行的三条直线123l l l ,,上,且12l l ,之间的距离为2,23l l ,之间的距离为3,则AC 的长是______.FDBACBAl 3l 2l 1【例2】 如图所示,ABD CDB ∆∆≌,下面四个结论中,不正确的是( )A.ABD ∆和CDB ∆的面积相等B.ABD ∆和CDB ∆的周长相等C.A ABD C CBD ∠+∠=∠+∠D.AD BC ∥,且AD BC =DCBA【例3】 如图所示,AB AD =,BC DC =,E F 、在AC 上,AC 与BD 相交于P .图中有几对全等三角形?请一一找出来,并简述全等的理由.FAE P DCB【补充】在AB 、AC 上各取一点E 、D ,使AE AD =,连接BD 、CE 相交于O 再连结AO 、BC ,若12∠=∠,则图中全等三角形共有哪几对?并简单说明理由.21E ODCBA【例4】 (2008年巴中市高中阶段教育学校招生考试)如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.FEDCBA【补充】如图所示:AB CD ∥,AB CD =.求证:AD BC ∥.DCBA【例5】 (哈尔滨市2008 年初中升学考试)已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.F E ODCB A【补充】(2008年宜宾市)已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.ODCBAODCBA【补充】(2008年成都市高中阶段教育学校统一招生考试)如图,在梯形ABCD 中,AD BC ∥,E 为CD 中点,连结AE 并延长AE 交BC 的延长线于点F .求证:FC AD =.FEDCBA【例6】 如图,AB CD ,相交于点O ,OA OB =,E 、F 为CD 上两点,AE BF ∥,CE DF =.求证:AC BD ∥. OF E DCBA【补充】已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.F E CBA【例7】 如图,90DCE CD CE AD AC BE AC ∠=︒=⊥⊥,,,,垂足分别为A B ,,试说明AD AB BE +=EDCBA【例8】 (2008年全国初中数学联赛)如图,设ABC ∆和CDE ∆都是正三角形,且62EBD ∠=︒,则AEB ∠ 的度数是( )图1AD BCEA .124︒B .122︒C .120︒D .118︒【例10】 如图所示, 已知AB DC =,AE DF =,CE BF =,证明:AF DE =.F DC BA【例11】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.PFEDCBA【补充】E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.GA BCDEF【例12】 在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.M EDC B A【补充】如图所示:AF CD =,BC EF =,AB DE =,A D ∠=∠.求证:BC EF ∥.A BCD EF【例13】 (1)如图,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?GFEDCB A【例14】 如图,ABC ∆中,AB BC =,90ABC ∠=︒,D 是AC 上一点,且CD CB AB ==,DE AC ⊥交AB 于E 点.求证:AD DE EB ==.CB DEA【例15】 (2008年全国初中数学联赛天津赛区)ABC ∆中,90B ∠=︒,M 为AB 上一点,使得AM BC =,N 为BC 上一点,使得CN BM =,连AN 、CM 交于P 点.试求APM ∠的度数,并写出你的推理证明的过程.图3PDM N B C A【例16】 (第19届“希望杯”初二试题)如图,I 是ABC △的内心,且CA AI BC +=.若80BAC ∠=︒,求ABC∠和AIB ∠的大小.ABCI【例17】 已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.PDQCBEA【例18】⑴如左下图,在矩形ABCD中,E为CB延长线上一点且AC CE=,F为AE的中点.求证:BF FD⊥.⑵如右下图,在ABC∆中,BE、CF分别为边AC、AB的高,D为BC的中点,DM EF⊥于M.求证:FM EM=.F EDCBAMFED CBA【例19】如图,已知60ABD ACD∠=∠=︒,且1902ADB BDC∠=︒-∠.求证:ABC∆是等腰三角形.DCBA【例20】如图,ABC∆为边长是1的等边三角形,BDC∆为顶角()BDC∠是120︒的等腰三角形,以D为顶点作一个60︒角,角的两边分别交AB于M,AC于N,连接MN,形成一个AMN∆.求AMN∆的周长.AMNB CD【例21】 (2006浙江省绍兴市)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?⑴ 阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略). 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:ABC ∆、111A B C ∆均为锐角三角形,11AB A B =,11BC B C =,1C C ∠=∠.求证:111ABC A B C ∆∆≌.(请你将下列证明过程补充完整.) ⑵ 归纳与叙述:由⑴可得到一个正确结论,请你写出这个结论.【习题1】 (济南市2008年高中阶段学校招生考试)已知:如图,AB DE ∥,AC DF ∥,BE CF =. 求证:AB DE =.FEDC B A【习题2】 已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.家庭作业【习题3】如图,矩形ABCD 中,E 是AD 上一点,CE EF ⊥交AB 于F 点,若2DE =,矩形周长为16,且CE EF =,求AE 的长.EDCBF A【习题4】在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E .求证:当BE 是B ∠的角平分线时,有AD BC AB +=.【备选1】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.ABCDEO月测备选【备选2】 如图所示,在ABC △中,AD BC ⊥于点D ,2B C ∠=∠.求证:AB BD CD +=.C D BA【备选3】 如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF . (1)求证:BG =CF .(2)请你判断BE +CF 与EF 的大小关系,并说明理由.FE DCBAG。

八年级数学全等三角形中考真题汇编[解析版]

八年级数学全等三角形中考真题汇编[解析版]

八年级数学全等三角形中考真题汇编[解析版]一、八年级数学轴对称三角形填空题(难)1.如图,在等边ABC ∆中取点P 使得PA ,PB ,PC 的长分别为3, 4, 5,则APC APB S S ∆∆+=_________.【答案】936 【解析】【分析】把线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS 证得△ADB ≌△APC ,连接PD ,根据旋转的性质知△APD 是等边三角形,利用勾股定理的逆定理可得△PBD 为直角三角形,∠BPD =90︒,由△ADB ≌△APC 得S △ADB =S △APC ,则有S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD ,根据等边3S △ADP +S △BPD =332+12×3×4=936+. 【详解】将线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,连接PD∴AD =AP ,∠DAP =60︒,又∵△ABC 为等边三角形,∴∠BAC =60︒,AB =AC ,∴∠DAB +∠BAP =∠PAC +∠BAP ,∴∠DAB =∠PAC ,又AB=AC,AD=AP∴△ADB ≌△APC∵DA =PA ,∠DAP =60︒,∴△ADP 为等边三角形,在△PBD 中,PB =4,PD =3,BD =PC =5,∵32+42=52,即PD 2+PB 2=BD 2,∴△PBD 为直角三角形,∠BPD =90︒,∵△ADB ≌△APC ,∴S △ADB =S △APC ,∴S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD =34×32+12×3×4=9364+. 故答案为:9364+.【点睛】本题考查了等边三角形的性质与判定,解题的关键是熟知旋转的性质作出辅助线进行求解.2.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF和△CDA中,∠BDF=∠CDA,∠A=∠DFB,BD=CD,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,故③正确.作GM⊥AB于M.如图所示:∵∠GBM=∠GBH,GH⊥BC,∴GH=GM<DG,∴S△DGB>S△GHB,∵S△ABE=S△BCE,∴S四边形ADGE<S四边形GHCE.故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.3.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP ,MP ,根据SSS 定理可得△ANP ≌△AMP ,故可得出结论;②先根据三角形内角和定理求出∠CAB 的度数,再由AD 是∠BAC 的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC =60°;③根据∠1=∠B 可知AD =BD ,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD =12AD ,再由三角形的面积公式即可得出结论. 【详解】 ①连接NP ,MP .在△ANP 与△AMP 中,∵AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩,∴△ANP ≌△AMP ,则∠CAD =∠BAD ,故AD 是∠BAC 的平分线,故此选项正确;②∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°﹣∠2=60°,∴∠ADC =60°,故此选项正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上,故此选项正确;④∵在Rt △ACD中,∠2=30°,∴CD =12AD ,∴BC =BD +CD =AD +12AD =32AD ,S △DAC =12AC •CD =14AC •AD ,∴S △ABC=12AC •BC =12AC •32AD =34AC •AD ,∴S △DAC :S △ABC =1:3,故此选项正确. 故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.4.如图,已知∠MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 2=4,则△A n B n A n +1的边长为_____.【答案】2n .【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=8,A 4B 4=8B 1A 2=16,A 5B 5=16B 1A 2…进而得出答案.【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∵∠MON =30°,∵OA 2=4,∴OA 1=A 1B 1=2,∴A 2B 1=2,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=8,A 4B 4=8B 1A 2=16,A 5B 5=16B 1A 2=32,以此类推△A n B n A n +1的边长为 2n .故答案为:2n .【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA 5=2OA 4=4OA 3=8OA 2=16OA 1是解题的关键.5.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD,再根据角的和差关系得到∠ECB =∠ACB-2∠ACD,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB-∠ACD=50°,即∠DCB=50°,从而求出∠BDC即可.【详解】∵CD平分∠ACE,∴∠ACE=2∠ACD=2∠ECD,∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.6.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=2,则CP+PM+DM的最小值是_____.【答案】34.【解析】【分析】如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.【详解】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,则OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,∴CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,则C′T=OT=2,∴D′T=42,∴C′D′=34,∴CP+PM+DM的最小值是34.故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.7.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .8.如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为________.【答案】9 2【解析】【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【详解】延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=14S△ABH,S△CDH=14S△ABH,∵S△OBD−S△AOE=S△ADB−S△ABE=S△ADH−S△CDH=S△ACD,∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为12×3×3=92.故填:92.【点睛】本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题.9.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO 时,△POQ 是等腰三角形,如图2所示当点P 在BO 上时∵PO=AP-AO=2t-10,OQ=t当PO=QO 时,210t t -=解得10t = 故答案为:103或10 【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.10.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.【答案】036【解析】【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠ =01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠ = 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【点睛】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.二、八年级数学轴对称三角形选择题(难)11.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是 ( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形 【答案】C【解析】【分析】根据题意,作出相应的图形,然后对相应的角进行标记;本题先证明P 1,O ,P 2三点构成的三角形中1260POP ∠=︒,然后证边12OP OP OP ==,得到P 1,O ,P 2三点构成的三角形为等腰三角形,又因为该等腰三角形有一个角为60︒,故得证P 1,O ,P 2三点构成的三角形是等边三角形。

初中中考复习之三角形全等(精编含答案)

初中中考复习之三角形全等(精编含答案)

中考复习之三角形全等一、选择题:1.图是一个风筝设计图,其主体部分(四边形ABCD ABCD)关于)关于BD 所在的直线对称,所在的直线对称,AC AC 与BD 相交于点O ,且AB≠AD,则下列判断不正确...的是【的是【 】】 A .△ABD≌△CBD .△ABD≌△CBD B B B.△ABC≌△ADC .△ABC≌△ADC .△ABC≌△ADC C C C.△AOB≌△COB .△AOB≌△COB .△AOB≌△COB D D D.△AOD≌△COD .△AOD≌△COD .△AOD≌△COD2.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件是【的条件是【 】】A. AB=ACB. ∠BAC=90°C. BD=AC A. AB=AC B. ∠BAC=90° C. BD=ACD. ∠B=45°D. ∠B=45°D. ∠B=45°3.如图,已知点A 、D 、C 、F 在同一条直线上,在同一条直线上,AB=DE AB=DE AB=DE,,BC=EF BC=EF,要使△ABC≌△DEF,还需要添加一个条件,要使△ABC≌△DEF,还需要添加一个条件是【是【 】】 A A.∠BCA=∠F .∠BCA=∠F .∠BCA=∠F B B B.∠B=∠E .∠B=∠E .∠B=∠EC .BC∥EF .BC∥EFD .∠A=∠EDF .∠A=∠EDF4.如图,AB∥CD,如图,AB∥CD,E E ,F 分别为AC AC,,BD 的中点,若AB=5AB=5,,CD=3CD=3,则,则EF 的长是【的长是【 】】A .4B .3C .2D .15.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是【等的是【 】】 (A) (A)两条边长分别为两条边长分别为4,5,它们的夹角为β (B) (B)两个角是两个角是β,它们的夹边为4(C) (C)三条边长分别是三条边长分别是4,5,5 (D)5 (D)两条边长是两条边长是5,一个角是β6.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO≌△NMO,则只需测出其长度的线段是【的线段是【 】】 A A..PO B .PQ C PQ C..MO D .MQ7.如图,在菱形ABCD 中,对角线AC AC,,BD 相交于点O ,且AC≠BD,则图中全等三角形有【AC≠BD,则图中全等三角形有【 】】A.4对B. 6对.C.8对D.10对二、填空题:1.在Rt△ABC 中,∠ACB=90°,中,∠ACB=90°,BC=2cm BC=2cm BC=2cm,CD⊥AB,在,CD⊥AB,在AC 上取一点E ,使EC=BC EC=BC,过点,过点E 作EF⊥AC 交CD 的延长线于点F ,若EF=5cm EF=5cm,则,则AE= cm AE= cm..2.如图所示,如图所示,AB=DB AB=DB AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件 ,, 使使ΔABC≌ΔDBE DBE.. ( (只需添只需添加一个即可加一个即可) )3.如图所示,已知点A 、D 、B 、F 在一条直线上,在一条直线上,AC=EF AC=EF AC=EF,,AD=FB AD=FB,要使△ABC≌△FDE,还需添加一个条件,,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是这个条件可以是 ..(只需填一个即可)(只需填一个即可)4.如图,点D ,E 分别在线段AB AB,,AC 上,上,BE BE BE,,CD 相交于点O ,AE=AD AE=AD,要使△ABE≌△ACD,需添加一个条,要使△ABE≌△ACD,需添加一个条件是件是 (只需一个即可,图中不能再添加其他点或线)(只需一个即可,图中不能再添加其他点或线).5.如图.点D 、E 在△ABC 的边BC 上,AB=AC AB=AC,,AD=AE AD=AE..请写出图中的全等三角形请写出图中的全等三角形 ( ( (写出一对即可写出一对即可写出一对即可)).6.如图,己知AC=BD AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是 ( ( (填一个即可填一个即可填一个即可) )三、解答题:1.已知:如图,AB AE =,1=2ÐÐ,=B E ÐÐ,求证:BC ED =2.如图,已知AB=DC AB=DC,,DB=AC(1)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.(2)在()在(11)的证明过程中,需要作辅助线,它的意图是什么?)的证明过程中,需要作辅助线,它的意图是什么?3.如图,点D 在AB 上,点E 在AC 上,上,AB=AC AB=AC AB=AC,∠B=∠C.求证:,∠B=∠C.求证:,∠B=∠C.求证:BE=CD BE=CD BE=CD..4.如图,AB∥CD,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB AB,,AC 于E ,F 两点,再分别以E ,F为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP AP,交,交CD 于点M 。

全等三角形32道经典题

全等三角形32道经典题

B O P A C Q E D
2.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个 更小的正三角形,……如此继续下去,结果如下表: 所剪次数 正三角形个数 1 4 2 7 3 10 4 13 … … n an
则 an=________________(用含 n 的代数式表示). O B E D C C A
9.如图(10),AC∥DE, BC∥EF,AC=DE 求证:AF=BD E C F A
A
C N M N E D B M E 图② D A
D B B
C
A 图①
10. 已知: 如图,B,C,E 三点在同一条直线上,AC ∥ DE ,AC CE ,ACD B . 求证: △ABC ≌△CDE . D A
三、简答题 1、已知:如图,AD=BC,AC=BD.求证:OD=OC
D O
C
A
B
2、如图,AB∥CD(1)用直尺和圆规作 C 的平分线 CP,CP 交 AB 于点 E(保留作图痕迹,不
写作法) (2)在(1)中作出的线段 CE 上取一点 F,连结 AF。要使△ACF≌△AEF,还需要添加 一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不 要求证明)。 A B
A E C E’
A E D l E
A E D ’ D l D’ F ’ B
A E
B
l B C’ C (2)
’ B ′ C (3) ′ ′
C (4)
D
16.如图,在梯形 ABCD 中,AD∥BC,E 为 CD 中点,连接 AE 并延长 AE 交 BC 的延长线于 ′ 点 F.(1)求证:CF=AD;(2)若 AD=2,AB ′ =8,当 BC 为多少时,点 B 在线段 AF 的垂 直平分线上,为什么? A D

全等三角形中考题(精选200题)

全等三角形中考题(精选200题)

一、选择题1.(铜仁)如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A.5B.4C.3D.22.(凉山州)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个3.(西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)4.(江西)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.∠BCA=∠DCA B.∠BAC=∠DAC C.∠B=∠D=90°D.C B=CD5.(沈阳)如图所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点F,连接CF,则图中全等三角形共有()A.1对B.2对C.3对D.4对6 .(成都)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF7.(十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个8.(临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD 的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有()A.3对B.4对C.5对D.6对9 .(乌鲁木齐)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(4)(6)(1) D.(2)(3)(4)10.(四川)下列说法中,正确的是()A.两腰对应相等的两个等腰三角形全等B.两锐角对应相等的两个直角三角形全等C.两角及其夹边对应相等的两个三角形全等D.面积相等的两个三角形全等11.(温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个12.(贵港)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE⊥BC垂足分别是D、E.则图中全等的三角形共有()A.2对B.3对C.4对D.5对13.(遵义)如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=()A.60°B.50°C.45°D.30°14.(厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF15.(双鸭山)如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个16.(鄂州)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.517.(乌兰察布)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数为()A.45°B.60°C.55°D.75°18.(滨州)如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.B E=CD B.BE>CDC.B E<CD D.大小关系不确定19.(临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()A.边角边B.角边角C.边边边D.角角边20.(随州)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定21.(龙岩)如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点,则图中阴影部分的面积是()A.4B.3C.2D.22.(聊城)如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°23.(丽水)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B.C.D.724.(綦江县)如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④25.(重庆)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤26.(黄冈)如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是()A.B E=AF B.∠DAF=∠BECC.∠AFB+∠BEC=90°D.A G⊥BE27.(安顺)如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,有如下四个结论:①AC=BD;②AC⊥BD;③等腰梯形ABCD是中心对称图形;④△AOB≌△DOC.则正确的结论是()A.①④B.②③C.①②③D.①②③④28.(包头)如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ABC绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G.则旋转后的图中,全等三角形共有()A.2对B.3对C.4对D.5对29.(眉山)如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD是平行四边形,下列结论中错误的是()A.△ACE以点A为旋转中心,逆时针方向旋转90°后与△ADB重合B.△ACB以点A为旋转中心,顺时针方向旋转270°后与△DAC重合C.沿AE所在直线折叠后,△ACE与△ADE重合D.沿AD所在直线折叠后,△ADB与△ADE重合30.(临安市)如图直角梯形ABCD中,AD∥BC,AB⊥BC,∠BCD=45°,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1B.2C.3D.不能确定二、填空题1.(中山)如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=_______°.2 .(遂宁)已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出_______个.3.(中山)如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,且AO平分∠BAC,那么图中全等三角形共有_______对.4.(十堰)如图,在△ABC中,AD平分∠BAC,AB=AC-BD,则∠B:∠C的值是_______.5.(天津)如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于_______°.6.(荆州)如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE=_______°.7.(河南)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为_______.8.(安徽)如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是_______.9.(安顺)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_______cm.10.(宿迁)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是_______.三、解答题1.(扬州)(1)计算:;(2)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.2.(南京)如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.3.(保山)如图,▱ABCD的两条对角线AC、BD相交于点O.(1)图中有哪些三角形是全等的?(2)选出其中一对全等三角形进行证明.4.(宁德)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:_______,并给予证明.5.(柳州)如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_______°,BC=_______.(2)请你在图中找出一点D,再连接DE、DF,使以D、E、F为顶点的三角形与△ABC全等,并加以证明.6.(吉林)如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF于点D,且AD平分∠FAC,请写出图中两对全等三角形,并选择其中一对加以证明.7.(达州)如图所示,将一长方形纸片ABCD折叠,使点C与点A重合,点D 落在点E处,折痕为MN,图中有全等三角形吗?若有,请找出并证明.8.(长春)如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.9.(丽水)已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.10.(吉林)如图,AB=AC,AD⊥BC于点D,AD=AE,AB平分∠DAE交DE 于点F,请你写出图中三对全等三角形,并选取其中一对加以证明.11.(宜昌)如图,在△ABC与△ABD中,BC=BD.设点E是BC的中点,点F 是BD的中点.(1)请你在图中作出点E和点F;(要求用尺规作图,保留作图痕迹,不写作法与证明)(2)连接AE,AF.若∠ABC=∠ABD,请你证明△ABE≌△ABF.12.(衢州)如图,AB∥CD.(1)用直尺和圆规作∠C的平分线CP,CP交AB于点E(保留作图痕迹,不写作法).(2)在(1)中作出的线段CE上取一点F,连接AF.要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不要求证明).13.(盐城)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,△ABC与△DEF全等吗?证明你的结论.14.(河池)如图所示,在平行四边形ABCD中,AE⊥BD,FC⊥BD,垂足分别为E,F.(1)写出图中所有的全等三角形;(2)选择(1)中的任意一对全等三角形进行证明.15.(大连)如图,在△ABC中,AB=AC,点D、E分别是AB、AC的中点,点F是BE、CD的交点.请写出图中两组全等的三角形,并选出其中一组加以证明.(要求:写出证明过程中的重要依据)16.(常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.17.(河南)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知,在△ABC中,AB=AC,P是△ABC中内任意一点,将AP绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP则BQ=CP.”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.之后,他将点P移到等腰三角形ABC外,原题中其它条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.18.(宁波)如图,△ABC中,AB=AC,过点A作GE∥B C,角平分线BD、CF 相交于点H,它们的延长线分别交GE于点E、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.19.(金华)如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是_______.(2)根据你添加的条件,再写出图中的一对全等三角形_______.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)20.(顺义区)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.21.(绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C 点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)22.(南充)如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC 的中线还是角平分线?请说明你判断的理由.23.(内江)如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.24.(漳州)如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F,求证:AB=FC.25.(梧州)如图,AB是∠DAC的平分线,且AD=AC.求证:BD=BC.26.(乐山)如图,AC∥DE,BC∥EF,AC=DE.求证:AF=BD.27 .(深圳)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.28.(内江)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.29.(淮安)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.30.(德州)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE 交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.31.(楚雄州)如图,点A,E,B,D在同一直线上,AE=DB,AC=DF,AC∥DF.请探索BC与EF有怎样的位置关系?并说明理由.32.(黄石)如图,C、F在BE上,∠A=∠D,AC∥DF,BF=EC.求证:AB=DE.33.(赤峰)如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.34.(北京)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.35.(重庆)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.36.(云南)如图,在梯形ABCD中,AD∥BC,AB=DC,若点M为线段AD 上任意一点(M与A、D不重合).问:当点M在什么位置时,MB=MC,请说明理由.37.(泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.38.(安徽)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.39.(张家界)如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.40.(南昌)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.41.(黄冈)如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.求证:BE=AF.42.(北京)已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.43.(岳阳)如图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同-直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)(2)选择(1)中你写出的一个命题,说明它正确的理由.44.(陕西)如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.45.(日照)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:(1)AE=BF;(2)AE⊥BF.46.(内江)如图,在△ABD和△ACE中,有下列四个等式:(1)AB=AC;(2)AD=AE;(3)∠1=∠2;(4)BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题.(要求写出已知,求证及证明过程)47.(海南)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.48.(防城港)如图,在△ABC和△ABD中,现给出如下三个论断:①AD=BC;②∠C=∠D;③∠1=∠2.请选择其中两个论断为条件,另一个论断为结论,构造一个命题.(1)写出所有的真命题(写成“_______⇒_______”形式,用序号表示):(2)请选择一个真命题加以证明.你选择的真命题是_______⇒_______.49.(长春)如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB 与DQ交于M,BP与CQ交于E,CP与DQ交于F.求证:PM=QM.50.(安徽)如图,已知长方形ABCD,过点C引∠A的平分线AM的垂线,垂足为M,AM交BC于E,连接MB,MD.(1)求证:BE=DC;(2)求证:∠MBE=∠MDC.51.(武汉)如图,在四边形ABCD中,对角线AC、BD相交于点O,已知∠ADC=∠BCD,AD=BC,求证:AO=BO.52.(广安)某学校花台上有一块形如图所示的三角形ABC地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,今只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由.53.(武汉)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?54.(韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.55.(娄底)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.56.(宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.57.(中原区)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE 折叠这个三角形,使C点与AB边上的一点D重合.当∠A为多少时,点D恰为AB的中点?写出一个你认为适当的角度,并利用此角的大小证明D为AB的中点.58.(河南)如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.59.(南充)已知:如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.60.(莱芜)两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.61.(常德)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP 为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.62.(江西)如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA 上的点,(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.63.(上海模拟)如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.64.(自贡)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.65.(大田县)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.66.(内江)如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.67.(宿迁)已知如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠ADF=∠CBE.68.(潍坊)如图,四边形ABCD为平行四边形,AD=2,BE∥AC,DE交AC 的延长线于F点,交BE于E点.(1)求证:EF=DF;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求DE的长.69.(昆明)己知:如图,点P为平行四边形ABCD中CD边的延长线上一点,连接BP,交AD,于点E,探究:当PD与CD有什么数量关系时,△ABE≌△DPE.画出图形并证明△ABE≌△DPE.70.(梅州)如图,AC是平行四边形ABCD的对角线.(1)请按如下步骤在图中完成作图(保留作图痕迹):①分别以A,C为圆心,以大于AC长为半径画弧,弧在AC两侧的交点分别为P,Q.②连接PQ,PQ分别与AB,AC,CD交于点E,O,F;(2)求证:AE=CF.71.(德阳)如图,已知平行四边形ABCD中,点E为BC边的中点,延长DE,AB相交于点F.求证:CD=BF.72.(厦门)如图,在平行四边形ABCD中,E、F分别是AB、CD上的点,且∠DAF=∠BCE.(1)求证:△DAF≌△BCE;(2)若∠ABC=60°,∠ECB=20°,∠ABC的平分线BN交AF与M,交AD于N,求∠AMN的度数.73.(莆田)已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.(1)观察图形并找出一对全等三角形:△_______≌△_______,请加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?74.(衢州)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.75.(黔东南州)如图,在平行四边形ABCD中,过A、C分别作对角线的垂线,垂足分别为E、F.(1)图中有哪几对三角形全等请指出来;(2)求证:AE=CF.76.(长春)如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.77.(泸州)如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.线段DF与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.即DF=_______.(写出一条线段即可)78.(嘉兴)如图,矩形ABCD中,M是CD的中点.求证:(1)△ADM≌△BCM;(2)∠MAB=∠MBA.79.(潼南县)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.80.(陕西)如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC 为边做正方形ABEF和正方形BCMN连接FN,EC.求证:FN=EC.81.(青海)如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,O A1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么正方形A1B1C1O绕O点转动,两个正方形重叠部分的面积等于多少?为什么?82.(随州)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.83.(长沙)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.84.(崇左)如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A 到EF的距离AH始终保持与AB长相等,问在E、F移动过程中:(1)∠EAF的大小是否有变化?请说明理由.(2)△ECF的周长是否有变化?请说明理由.85.(资阳)如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).(1)求证:BE=DG,且BE⊥DG;(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB 所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)86.(湘潭)如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形,连接BG,DE.(1)观察图形,猜想BG与DE之间的大小关系,并证明你的结论;(2)若延长BG交DE于点H,求证:BH⊥DE.87.(南充)如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.88.(佛山)如图,在正方形ABCD中,CE⊥DF.若CE=10cm,求DF的长.89.(肇庆)如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.(1)求证:AE=BF;(2)若BC=cm,求正方形DEFG的边长.90.(丽水)如图,正方形ABCD中,E与F分别是AD,BC上一点.在①AE=CF,②BE∥DF,③∠1=∠2中,请选择其中一个条件,证明BE=DF.(1)你选择的条件是_______(只需填写序号).(2)证明.91.(肇庆)如图,已知点E为正方形ABCD的边BC上一点,连接AE,过点D作DG⊥AE,垂足为G,延长DG交AB于点F.求证:BF=CE.92.(茂名)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC 到点F使CF=AE.(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.93.(淮安)如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于E.(1)求证:∠DEF=∠CBE;(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.94(长春)在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=CD,E、F分别在AD、CD上,DE=CF,AF、BE交于点P.请你量一量∠BPF的度数,并证明你的结论.95.(梅州)用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H 时,如图甲,通过观察或测量BG与EH的长度,你能得到什么结论并证明你的结论;(2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.96.(临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.97.(锦州)如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.98.(岳阳)如图,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与A重合,两边分别与AB、AD重合.将直角绕点A按逆时针方向旋转,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时,作∠EAF的平分线交CD于G,连接EG.求证:(1)BE=DF;(2)BE+DG=EG.99.(宜昌)在梯形ABCD中,AD∥BC,AB=CD,E为AD中点.(1)求证:△ABE≌△DCE;(2)若BE平分∠ABC,且AD=10,求AB的长.100.(深圳)如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,∠BAE=∠MCE,∠MBE=45°.(1)求证:BE=ME;(2)若AB=7,求MC的长.101.(湘潭)如图,梯形ABCD,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F.(1)请写出图中4组相等的线段(已知的相等线段除外);(2)从你写出的4组相等的线段中选一组加以证明.102.(北京)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=2EA,CF=2FD.求证:∠BEC=∠CFB.103.(重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E 是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)求证:∠MPB=90°-∠FCM.104.(盐城)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;(2)求证:AB=BC;(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求的值.105.(泰安)如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.106.(北京)问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1)当∠BAC=90°时,依问题中的条件补全右图;观察图形,AB与AC的数量关系为_______;当推出∠DAC=15°时,可进一步推出∠DBC的度数为_______;可得到∠DBC与∠ABC度数的比值为_______;(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.107.(乐山)如图,在等腰梯形ABCD中,A D∥BC,G是边AB上的一点,过点G作GE∥DC交BC边于点E,F是EC的中点,连接GF并延长交DC的延长线于点H.求证:BG=CH.。

最新江苏全等三角形中考题(朱韬精选200题

最新江苏全等三角形中考题(朱韬精选200题

一、选择题1.(铜仁)如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A.5B.4C.3D.22.(凉山州)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个3.(西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)4.(江西)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.∠BCA=∠DCA B.∠BAC=∠DAC C.∠B=∠D=90°D.CB=CD5.(沈阳)如图所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点F,连接CF,则图中全等三角形共有()A.1对B.2对C.3对D.4对6.(成都)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF7.(十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个8.(临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有()A.3对B.4对C.5对D.6对9.(乌鲁木齐)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2)B.(1)(2)(3)C.(4)(6)(1)D.(2)(3)(4)10.(四川)下列说法中,正确的是()A.两腰对应相等的两个等腰三角形全等B.两锐角对应相等的两个直角三角形全等C.两角及其夹边对应相等的两个三角形全等D.面积相等的两个三角形全等11.(温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个12.(贵港)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE⊥BC垂足分别是D、E.则图中全等的三角形共有()A.2对B.3对C.4对D.5对13.(遵义)如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=()A.60°B.50°C.45°D.30°14.(厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF15.(双鸭山)如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个16.(鄂州)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.517.(乌兰察布)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数为()A.45°B.60°C.55°D.75°18.(滨州)如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.BE=CD B.BE>CDC.BE<CD D.大小关系不确定19.(临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()A.边角边B.角边角C.边边边D.角角边20.(随州)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定21.(龙岩)如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点,则图中阴影部分的面积是()A.4B.3C.2D.22.(聊城)如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°23.(丽水)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B.C.D.724.(綦江县)如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④25.(重庆)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S △APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤26.(黄冈)如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是()A.BE=AF B.∠DAF=∠BECC.∠AFB+∠BEC=90°D.AG⊥BE27.(安顺)如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,有如下四个结论:①AC=BD;②AC⊥BD;③等腰梯形ABCD是中心对称图形;④△AOB≌△DOC.则正确的结论是()A.①④B.②③C.①②③D.①②③④28.(包头)如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ABC绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G.则旋转后的图中,全等三角形共有()A.2对B.3对C.4对D.5对29.(眉山)如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD是平行四边形,下列结论中错误的是()A.△ACE以点A为旋转中心,逆时针方向旋转90°后与△ADB重合B.△ACB以点A为旋转中心,顺时针方向旋转270°后与△DAC重合C.沿AE所在直线折叠后,△ACE与△ADE重合D.沿AD所在直线折叠后,△ADB与△ADE重合30.(临安市)如图直角梯形ABCD中,AD∥BC,AB⊥BC,∠BCD=45°,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1B.2C.3D.不能确定二、填空题1.(中山)如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=_______°.2.(遂宁)已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出_______个.3.(中山)如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,且AO平分∠BAC,那么图中全等三角形共有_______对.4.(十堰)如图,在△ABC中,AD平分∠BAC,AB=AC-BD,则∠B:∠C的值是_______.5.(天津)如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于_______°.6.(荆州)如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE=_______°.7.(河南)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为_______.8.(安徽)如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是_______.9.(安顺)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_______cm.10.(宿迁)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是_______.三、解答题1.(扬州)(1)计算:;(2)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.2.(南京)如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.3.(保山)如图,▱ABCD的两条对角线AC、BD相交于点O.(1)图中有哪些三角形是全等的?(2)选出其中一对全等三角形进行证明.4.(宁德)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:_______,并给予证明.5.(柳州)如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_______°,BC=_______.(2)请你在图中找出一点D,再连接DE、DF,使以D、E、F为顶点的三角形与△ABC全等,并加以证明.6.(吉林)如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF于点D,且AD平分∠FAC,请写出图中两对全等三角形,并选择其中一对加以证明.7.(达州)如图所示,将一长方形纸片ABCD折叠,使点C与点A重合,点D 落在点E处,折痕为MN,图中有全等三角形吗?若有,请找出并证明.8.(长春)如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.9.(丽水)已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.10.(吉林)如图,AB=AC,AD⊥BC于点D,AD=AE,AB平分∠DAE交DE 于点F,请你写出图中三对全等三角形,并选取其中一对加以证明.11.(宜昌)如图,在△ABC与△ABD中,BC=BD.设点E是BC的中点,点F 是BD的中点.(1)请你在图中作出点E和点F;(要求用尺规作图,保留作图痕迹,不写作法与证明)(2)连接AE,AF.若∠ABC=∠ABD,请你证明△ABE≌△ABF.12.(衢州)如图,AB∥CD.(1)用直尺和圆规作∠C的平分线CP,CP交AB于点E(保留作图痕迹,不写作法).(2)在(1)中作出的线段CE上取一点F,连接AF.要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不要求证明).13.(盐城)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,△ABC与△DEF全等吗?证明你的结论.14.(河池)如图所示,在平行四边形ABCD中,AE⊥BD,FC⊥BD,垂足分别为E,F.(1)写出图中所有的全等三角形;(2)选择(1)中的任意一对全等三角形进行证明.15.(大连)如图,在△ABC中,AB=AC,点D、E分别是AB、AC的中点,点F是BE、CD的交点.请写出图中两组全等的三角形,并选出其中一组加以证明.(要求:写出证明过程中的重要依据)16.(常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.17.(河南)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知,在△ABC中,AB=AC,P是△ABC中内任意一点,将AP绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP则BQ=CP.”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.之后,他将点P移到等腰三角形ABC外,原题中其它条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.18.(宁波)如图,△ABC中,AB=AC,过点A作GE∥BC,角平分线BD、CF 相交于点H,它们的延长线分别交GE于点E、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.19.(金华)如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是_______.(2)根据你添加的条件,再写出图中的一对全等三角形_______.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)20.(顺义区)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.21.(绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C 点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)22.(南充)如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC 的中线还是角平分线?请说明你判断的理由.23.(内江)如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.24.(漳州)如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F,求证:AB=FC.25.(梧州)如图,AB是∠DAC的平分线,且AD=AC.求证:BD=BC.26.(乐山)如图,AC∥DE,BC∥EF,AC=DE.求证:AF=BD.27.(深圳)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.28.(内江)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.29.(淮安)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.30.(德州)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE 交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.31.(楚雄州)如图,点A,E,B,D在同一直线上,AE=DB,AC=DF,AC∥DF.请探索BC与EF有怎样的位置关系?并说明理由.32.(黄石)如图,C、F在BE上,∠A=∠D,AC∥DF,BF=EC.求证:AB=DE.33.(赤峰)如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.34.(北京)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.35.(重庆)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.36.(云南)如图,在梯形ABCD中,AD∥BC,AB=DC,若点M为线段AD 上任意一点(M与A、D不重合).问:当点M在什么位置时,MB=MC,请说明理由.37.(泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.38.(安徽)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.39.(张家界)如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.40.(南昌)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.41.(黄冈)如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.求证:BE=AF.42.(北京)已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.43.(岳阳)如图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同-直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)(2)选择(1)中你写出的一个命题,说明它正确的理由.44.(陕西)如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.45.(日照)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:(1)AE=BF;(2)AE⊥BF.46.(内江)如图,在△ABD和△ACE中,有下列四个等式:(1)AB=AC;(2)AD=AE;(3)∠1=∠2;(4)BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题.(要求写出已知,求证及证明过程)47.(海南)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.48.(防城港)如图,在△ABC和△ABD中,现给出如下三个论断:①AD=BC;②∠C=∠D;③∠1=∠2.请选择其中两个论断为条件,另一个论断为结论,构造一个命题.(1)写出所有的真命题(写成“_______⇒_______”形式,用序号表示):(2)请选择一个真命题加以证明.你选择的真命题是_______⇒_______.49.(长春)如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB 与DQ交于M,BP与CQ交于E,CP与DQ交于F.求证:PM=QM.50.(安徽)如图,已知长方形ABCD,过点C引∠A的平分线AM的垂线,垂足为M,AM交BC于E,连接MB,MD.(1)求证:BE=DC;(2)求证:∠MBE=∠MDC.51.(武汉)如图,在四边形ABCD中,对角线AC、BD相交于点O,已知∠ADC=∠BCD,AD=BC,求证:AO=BO.52.(广安)某学校花台上有一块形如图所示的三角形ABC地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,今只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由.53.(武汉)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?54.(韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:F⊥AD;(2)若DE∥AC,且DE=1,求AD的长.55.(娄底)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.56.(宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.57.(中原区)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE 折叠这个三角形,使C点与AB边上的一点D重合.当∠A为多少时,点D恰为AB的中点?写出一个你认为适当的角度,并利用此角的大小证明D为AB的中点.58.(河南)如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.59.(南充)已知:如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.60.(莱芜)两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.61.(常德)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP 为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.62.(江西)如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA 上的点,(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.63.(上海模拟)如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.64.(自贡)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.65.(大田县)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.66.(内江)如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.67.(宿迁)已知如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠ADF=∠CBE.68.(潍坊)如图,四边形ABCD为平行四边形,AD=2,BE∥AC,DE交AC 的延长线于F点,交BE于E点.(1)求证:EF=DF;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求DE的长.69.(昆明)己知:如图,点P为平行四边形ABCD中CD边的延长线上一点,连接BP,交AD,于点E,探究:当PD与CD有什么数量关系时,△ABE≌△DPE.画出图形并证明△ABE≌△DPE.70.(梅州)如图,AC是平行四边形ABCD的对角线.(1)请按如下步骤在图中完成作图(保留作图痕迹):①分别以A,C为圆心,以大于AC长为半径画弧,弧在AC两侧的交点分别为P,Q.②连接PQ,PQ分别与AB,AC,CD交于点E,O,F;(2)求证:AE=CF.71.(德阳)如图,已知平行四边形ABCD中,点E为BC边的中点,延长DE,AB相交于点F.求证:CD=BF.72.(厦门)如图,在平行四边形ABCD中,E、F分别是AB、CD上的点,且∠DAF=∠BCE.(1)求证:△DAF≌△BCE;(2)若∠ABC=60°,∠ECB=20°,∠ABC的平分线BN交AF与M,交AD于N,求∠AMN的度数.73.(莆田)已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.(1)观察图形并找出一对全等三角形:△_______≌△_______,请加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?74.(衢州)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.75.(黔东南州)如图,在平行四边形ABCD中,过A、C分别作对角线的垂线,垂足分别为E、F.(1)图中有哪几对三角形全等请指出来;(2)求证:AE=CF.76.(长春)如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.77.(泸州)如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.线段DF与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.即DF=_______.(写出一条线段即可)78.(嘉兴)如图,矩形ABCD中,M是CD的中点.求证:(1)△ADM≌△BCM;(2)∠MAB=∠MBA.79.(潼南县)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.80.(陕西)如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC 为边做正方形ABEF和正方形BCMN连接FN,EC.求证:FN=EC.81.(青海)如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,O A1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么正方形A1B1C1O绕O点转动,两个正方形重叠部分的面积等于多少?为什么?82.(随州)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.83.(长沙)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.84.(崇左)如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A 到EF的距离AH始终保持与AB长相等,问在E、F移动过程中:(1)∠EAF的大小是否有变化?请说明理由.(2)△ECF的周长是否有变化?请说明理由.85.(资阳)如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).(1)求证:BE=DG,且BE⊥DG;(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB 所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)86.(湘潭)如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形,连接BG,DE.(1)观察图形,猜想BG与DE之间的大小关系,并证明你的结论;(2)若延长BG交DE于点H,求证:BH⊥DE.87.(南充)如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.88.(佛山)如图,在正方形ABCD中,CE⊥DF.若CE=10cm,求DF的长.89.(肇庆)如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.(1)求证:AE=BF;(2)若BC=cm,求正方形DEFG的边长.90.(丽水)如图,正方形ABCD中,E与F分别是AD,BC上一点.在①AE=CF,②BE∥DF,③∠1=∠2中,请选择其中一个条件,证明BE=DF.(1)你选择的条件是_______(只需填写序号).(2)证明.91.(肇庆)如图,已知点E为正方形ABCD的边BC上一点,连接AE,过点D作DG⊥AE,垂足为G,延长DG交AB于点F.求证:BF=CE.92.(茂名)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC 到点F使CF=AE.(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.93.(淮安)如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于E.(1)求证:∠DEF=∠CBE;(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.94(长春)在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=CD,E、F分别在AD、CD上,DE=CF,AF、BE交于点P.请你量一量∠BPF的度数,并证明你的结论.95.(梅州)用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H 时,如图甲,通过观察或测量BG与EH的长度,你能得到什么结论并证明你的结论;(2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.96.(临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.97.(锦州)如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.98.(岳阳)如图,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与A重合,两边分别与AB、AD重合.将直角绕点A按逆时针方向旋转,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时,作∠EAF的平分线交CD于G,连接EG.求证:(1)BE=DF;(2)BE+DG=EG.99.(宜昌)在梯形ABCD中,AD∥BC,AB=CD,E为AD中点.(1)求证:△ABE≌△DCE;(2)若BE平分∠ABC,且AD=10,求AB的长.100.(深圳)如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,∠BAE=∠MCE,∠MBE=45°.(1)求证:BE=ME;(2)若AB=7,求MC的长.101.(湘潭)如图,梯形ABCD,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F.(1)请写出图中4组相等的线段(已知的相等线段除外);(2)从你写出的4组相等的线段中选一组加以证明.102.(北京)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=2EA,CF=2FD.求证:∠BEC=∠CFB.103.(重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E 是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)求证:∠MPB=90°-∠FCM.104.(盐城)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;(2)求证:AB=BC;(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求的值.105.(泰安)如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.106.(北京)问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1)当∠BAC=90°时,依问题中的条件补全右图;观察图形,AB与AC的数量关系为_______;当推出∠DAC=15°时,可进一步推出∠DBC的度数为_______;可得到∠DBC与∠ABC度数的比值为_______;(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.107.(乐山)如图,在等腰梯形ABCD中,AD∥BC,G是边AB上的一点,过点G作GE∥DC交BC边于点E,F是EC的中点,连接GF并延长交DC的延长线于点H.求证:BG=CH.108.(桂林)如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O.(1)图中共有_______对全等三角形;(2)写出你认为全等的一对三角形,并证明.109.(湛江)如图所示,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于点O.请在图中找出一对全等的三角形,并加以证明.。

全等三角形证明中考题精选[有答案解析]

全等三角形证明中考题精选[有答案解析]

全等三角形证明中考题精选[有答案解析]七年级数学下---全等三角形证明题1如图,已知人。

是厶ABC勺中线,分别过点B、C作BEL AD于点E,CF丄AD交AD的延长线于点F,求证:BE=CF2•如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中/(1)操作发现:如图2,固定△ ABC使厶DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_____________②设△ BDC的面积为$,△ AEC的面积为S,则(2)猜想论证S与S2的数量关系是 _____________当厶DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S与S2的数量关系仍然成立,并尝试分别作出了△BDC ffiA AEC中BC CE边上的高,请你证明小明的猜想.(3)拓展探究已知/ABC=60,点D是角平分线上一点,BD=CD=, DE// AB交BC于点E (如图4).若在射线BA 上存在点F,使S A DC=S BDE,请直接写出相应的BF的长.3.如图,把一个直角三角形ACB(/ACB=90 )绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F, G分别是BD BE上的点,BF=BG延长CF与DG交于点H. (1)求证:CF=DG (2)求出/ FHG勺度数.全等三角形证明中考题精选[有答案解析]4•如图所示,在△ ABC 中,D E 分别是AB AC 上的点,DE// BQ 如图①,然后将厶ADE 绕A 点顺 时针旋转一定角度,得到图②,然后将 BD CE 分别延长至M N,使DM=BD EN=CE 得到图③, 请解答下列问题:(1)若AB=AC 请探究下列数量关系:① 在图②中,BD 与CE的数量关系是_ _ ;② 在图③中,猜想AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,并证明你的猜想;(2)若AB=I?AC( k > 1),按上述操作方法,得到图④,请继续探究: AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,直接写出你的猜想,不必证明.4. (1)如图,在△ ABC ffiA ADE 中, AB 二AC AD=AE Z BAC K DAE=90 .① 当点D 在AC 上时,如图1,线段BD CE 有怎样的数量关系和位置关系? 直接写出你猜想的结论;② 将图1中的△ ADE 绕点A 顺时针旋转口角(O °VaV 90°),如图2,线段BD CE 有怎样的数量 关系和位置关系?请说明理由.(2)当厶ABC^P ^ADE 满足下面甲、乙、丙中的哪个条件时,使线段 BD CE 在(1)中的位置关系 仍然成立?不必说明理由.甲: AB AC=AD AE=1, / BAC K DA 字90°;乙:AB AC=AD AE M 1,K BAC K DAE=90 ;丙: 6. CD 经过/ BCA 顶点C 的一条直线,CA=CB E, F 分别是直线CD 上两点,且/ BEC K CFA Ka.(1)若直线CD 经过/ BCA 的内部,且E, F 在射线CD 上,请解决下面两个问题:①如图 1,若/ BCA=90 , Ka =90°,则 BE ______________ CF; EF ___________ |BE - AF| (填“〉”, “v”或“=”);②如图2,若0°<Z BCA : 180°,请添加一个关于Ka 与/ BCA 关系的条件—AB: AC=AD AE M 1,/ BAC K DAE^ 90E__________ ,使①中的两个结论仍然成立,并证明两个结论成立.7. 如图,已知 AB=AC (1)若 CE=BD 求证:GE=G ;⑵若CE=mBD (m 为正数),试猜想GE 与 GD 有何关系.(只写结论,不证明)8. (1)已知:如图①,在△ AOBf^A COD 中, OA=OJ 3OC=OD / AOB M COD=60,求证:① AC=BD ②/ APB=6(度;(2)如图②,在△ AOBf^A COD 中,若 OA=OBOC=O , / AOB M COD a ,贝U AC 与 BD 间的等量关系式为 _____________ ; Z APB 的大小为 _____________ ;(3)如图③,在△ AOBf^ACOD 中,若 OA=?OBOC=?OD(k > 1),Z AOB ZCOD a ,贝U AC 与 BD间的等量关系式为 10.已知:EG// AF, AB=AC DE=DF 求证:BE=CF参考答案与试题解析(2)如图3,若直线CD 经过/ BCA 的外部,/ a =Z BCA 请提出EF, BE AF 三条线段数量关系的 合理猜想(不要求证明)•Z APB 的大小为 _____2. 解:(1)①DEC绕点C旋转点D恰好落在AB边上,••• AC=CD:/ BAC=90 -Z B=90°- 30° =60°,二厶ACD是等边三角形,•••/ ACD=60,又TZ CDE Z BAC=60 ,:Z ACD Z CDE 二DE// AC;②T Z B=30°,Z C=90,二CD=AC=AB /• BD=AD=AC2根据等边三角形的性质,△ ACD的边AC AD上的高相等,•••△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S=S2;故答案为:DE// AC S=S;(2)如图,•「△ DEC是由厶ABC绕点C旋转得到,••• BC=CE AC=CD T Z ACN Z BCN=90,Z DCM Z BCN=180 - 90° =90°,•••Z ACN Z DCM T在厶ACNm DCM中,fZACM=ZDCHI ZCND=ZH=90°,[AC=CD•△ACN^A DCM( AAS, • AN=DM•△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S i=S2;3、解(1)证明:•••在厶CBF ft^ DBG K答.fBC=BD答《二,:BF=BG•△CBF^A DBG( SAS , • CF=DQ(2)解:•••△ CBF^A DBG •Z BCF Z BDG又T Z CFB Z DFH •Z DHF Z CBF=60 ,•Z FHG=180 -Z DHF=180 - 60°=120°.4、解答:解:(1)①结论:BD=CE BDL CE②结论:BD=CE BDL CE;理由如下:T Z BAC Z DAE=90• Z BAC-Z DAC Z DAE-Z DAC 即Z BAD Z CAE ft^ ABD与△ ACE中, AB=ACT*4皿ZCAE •△ABD^A ACE(SAS • BD=CEb AD=AE延长BD交AC于F,交CE于H.在厶ABF 与厶HCF 中,T Z ABF=/ HCF Z AFB=/ HFC •Z CHF Z BAF=90••• BDL CE(2)结论:乙.AB AC=AD AE / BAC K DAE=905.6.解答:解:(1)①IK BCA=90,/a =90°,.・.K BCE K CBE=90,/ BCE K ACF=90 , • K CBE K ACF v CA=CB K BEC K CFA •△ BCE^A CAF •- BE=CF EF=|BE- AF|. ②所填的条件是:Ka +K BCA=180 . I AE=AD 卩. 7 •••△ CAE^A BAD( SAS , AC 二 AB • / ACE K ABD v DM=BD EN=CE • BM=CN 在厶 ABM ffiA ACN 中, r 瓏二 CN ••• ZAC14=ZAbr 〔AB 二AC • △ ABMm ACN( SAS , • AM=AN •/ BAM K CAN 即K MAN K BAC (2)AM=?AN 在厶BADfy CAE 中 解答: / CAE=/ BAD K MAN K BAC全等三角形证明中考题精选[有答案解析]证明:在厶 BCE 中,/ CBE# BCE=180 -Z BEC=180 — /a. v/ BCA=180 —/a,•••/ CBE Z BCE Z BCA 又v/ ACF Z BCE Z BCA CBE Z ACF又v BC=CA / BEC Z CFA •△BCE^A CAF( AAS •- BE=CF CE=AF又v EF=C- CE, • EF=|BE- AF|.(2) EF=BE+AF7.解证明:(1)过D作DF// CE交BC于F,答: 贝UZ E=Z GDF v AB=AC •/ ACB Z ABC/ DF/ CE •/ DFB Z ACB•Z DFB Z ACB Z ABC • DF=DB v CE=BD •- DF=CE 在厶GDF^ GEC中, (ZE 二ZGDFI ZDGF=ZEGC ,[DF=EC•△GDF^A GEC(AAS. • GE=GD• / AOB Z BOC Z COD Z BOC 即:/ AOC Z BOD 答:又v OA=OB OC=OD •△ AOC^A BOD • AC=BD②由①得:/ OAC Z OBDv/ AEO Z PEB / APB=180 — (/ BEP+Z OBD, / AOB=180 —(/ OAC Z AEO , • Z APB Z AOB=60 .(2) AC=BD a(3) AC=?BD 180°—a.。

2024年中考数学《全等三角形》专题练习附带答案

2024年中考数学《全等三角形》专题练习附带答案

2024年中考数学《全等三角形》专题练习附带答案学校:___________班级:___________姓名:___________考号:___________知识重点1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。

(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、选择题1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.如图,△ABC≌△EDC,AC=3cm,DC=5cm,则BE=()A.1cm B.2cm C.3cm D.4cm3.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.30°C.35°D.25°4.小亮设计了如下测量一池塘两端AB的距离的方案:先取一个可直接到达点A,B的点O,连接AO,BO,延长AO至点P,延长BO至点Q,使得OP=AO,OQ=BO再测出PQ的长度,即可知道A,B之间的距离.他设计方案的理由是()A.SAS B.AAS C.ASA D.SSS5.如图,点F,E在AC上AD=CB,∠D=∠B添加一个条件,不一定能证明△ADE≌△CBF的是()A.AD∥BC B.DE∥FB C.DE=BF D.AE=CF6.如图所示∠E=∠D,CD⊥AC于点C,BE⊥AB于点B,AE交BC于点F,且BE=CD,则下列结论不一定正确的是()A.AB=AC B.BF=EF C.AE=AD D.∠BAE=∠CAD 7.如图,OD平分∠AOB,DE⊥AO于点E,DE=5 F是射线OB上的任意一点,则DF的长度不可能是()A.4 B.5 C.5.5 D.68.如图,AD是△BAC的平分线,DE⊥AB于点E,S△ABC=32,DE=4,AB=9,则AC的长是()A.5 B.6 C.7 D.8二、填空题9.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF 相等,那么判定△ABC与△DEF全等的依据是.10.若△ABC≌△DEF,A与D,B与E分别是对应顶点∠A=50°,∠B=60°则∠F=. 11.如图,△ABC的面积为25cm2,BP平分∠ABC,过点A作AP⊥BP于点P,则△PBC的面积为;12.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,已知BC=8,DE=2则△BCE 的面积等于.13.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=7cm,CE=5cm,则DE= cm.三、解答题14.如图,点B,C,E,F在同一直线上,AB=DF,AC=DE,BE=CF.求证:AB∥DF.15.如图,在Rt△ABC中∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≅△ABC.16.如图,在四边形ABCD中,∠B=∠C=90°,E是BC的中点,AE平分∠DAB.求证:CD+AB=AD.17.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:(1)OD=OE;(2)OB=OC.18.如图,在△ABC中AC>AB,射线AD平分∠BAC,交BC于点E,点F在边AB的延长线上AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.19.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案1.A2.B3.C4.A5.D6.B7.A8.C9.HL10.70°11.12.5cm212.813.1214.解:∵ BE=CF∴BE−CE=CF−CE∴BC=FE∵ AB=DF,AC=DE∴△ABC≌△DFE(SSS)∴∠B=∠F∴AB∥DF.15.证明:∵DE⊥AC,∠DEC=90°又∵∠B=90°∴∠DEC=∠B=90°∵CD∥AB,∴∠A=∠DCE在△CED和△ABC中{∠DCE=∠A CE=AB∠DEC=∠B∴△CED≅△ABC(ASA).16.证明:如图,过点E作EF⊥AD于F∵∠B=90°,AE平分∠DAB∴BE=EF在Rt△EFA和Rt△EBA中{EF=EBAE=AE∴Rt△EFA和≌Rt△EBA(HL).∴AF=AB∵E是BC的中点∴BE=CE=EF在Rt△EFD和Rt△ECD中{EF=ECDE=DE∴Rt△EFD和≌Rt△ECD(HL).∴DF=CD∴CD+AB=DF+AF=AD∴CD+AB=AD.17.(1)证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC ∴OD=OE(2)证明:∵CD⊥AB,BE⊥AC∴∠BDO=∠CEO=90°在△BDO和△CEO中{∠BDO=∠CEO DO=CO∠BOD=∠COE∴△BDO≌△CEO(ASA)∴OB=OC18.(1)证明:射线AD平分∠BAC∴∠CAE=∠FAE 在△AEC和△AEF中{AC=AF∠CAE=∠FAE AE=AE∴△AEC≌△AEF(SAS);(2)解:∵△AEC≌△AEF(SAS)∴∠AEC=∠AEF∵∠AEB=50°∴∠AEC=180°−∠AEB=180°−50°=130°∴∠AEF=∠AEC=130°∴∠BEF=∠AEF−∠AEB=80°∴∠BEF为80°.19.18.(1)解:∵∠BAC=90°,∠ABC=60°∴∠ACB=30°∵AD平分∠BAC,CE平分∠BAC∴∠CAD=12∠BAC=45°,∠ACE=12∠ACB=15°∵∠AOE是△AOC的外角∴∠AOE=∠CAD+∠ACE=60°;(2)证明:在AC上截取CF=CD,连接OF∵CE平分∠ACB∴∠DCO=∠FCO在△DCO和△FCO中{CD=CF∠DCO=∠FCOOC=OC∴△DCO≌△FCO(SAS)∴∠COD=∠COF∵∠AOE=60°∴∠COD=∠COF=60°∴∠AOF=180°−∠AOE−∠COF==60°∴∠AOE=∠AOF∵AD平分∠BAC∴∠EAO=∠FAO在△EAO和△FAO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF∴△EAO≌△FAO(ASA)∴AE=AF∵AC=AF+CF∴AC=AE+CD.。

三角形全等判定专题训练题

三角形全等判定专题训练题

三角形全等的判定专题训练题1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。

求证:△ABD ≌△ACD 。

5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 。

求证:AC ⊥CE 。

2、如图(2):AC ∥EF ,AC=EF ,AE=BD 。

求证:△ABC ≌△EDF 。

3、 如图(3):DF=CE ,AD=BC ,∠D=∠C 。

求证:△AED ≌△BFC 。

4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。

求证:(1)∠B=∠C ,(2)BD=CE6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。

求证:(1)AF=EG ,(2)BF ∥DG 。

7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC 。

求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM 。

8、如图(8):A 、B 、C 、D 四点在同一直线上,(图1)DC B A F E (图2)D C BA FE (图3)D C B A E(图4)D CB A E (图5)DC B A G FE(图6)D C B AN M(图7)C BA求证:△ABE ≌△DCF 。

9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。

求证:AB=AC 。

11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点。

求证:PA=PD 。

12、如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。

求证:EB ∥CF 。

13、如图(13)△ABC ≌△EDC 。

求证:BE=AD 。

中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。

九年级中考临考专题训练:全等三角形(含答案)

九年级中考临考专题训练:全等三角形(含答案)

2021中考临考专题训练:全等三角形一、选择题1. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS2. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去()A.只带①B.只带②C.只带③D.带①和②4. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A .3B .-3C .2D .-25. (2019•张家界)如图,在ABC △中,90C ∠=︒,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于A .4B .3C .2D .16. 如图,已知在四边形ABCD 中,∠BCD=90°,BD 平分∠ABC ,AB=6,BC=9,CD=4,则四边形ABCD 的面积是 ( )A .24B .30C .36D .427. 现已知线段a ,b (a<b ),∠MON=90°,求作Rt △ABO ,使得∠O=90°,OA=a ,AB=b.小惠和小雷的作法分别如下:小惠:①以点O 为圆心、线段a 的长为半径画弧,交射线ON 于点A ;②以点A 为圆心、线段b 的长为半径画弧,交射线OM 于点B ,连接AB ,△ABO 即为所求. 小雷:①以点O 为圆心、线段a 的长为半径画弧,交射线ON 于点A ;②以点O 为圆心、线段b 的长为半径画弧,交射线OM 于点B ,连接AB ,△ABO 即为所求. 则下列说法中正确的是 ( ) A .小惠的作法正确,小雷的作法错误B .小雷的作法正确,小惠的作法错误C .两人的作法都正确D.两人的作法都错误8. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()二、填空题9. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)10. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.11. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,小于AC的长为半径画弧与AB,AC分别交于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=°.12. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).13. 如图,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为 .14. 如图,AB ∥CD ,点P 到AB ,BD ,CD 的距离相等,则∠BPD 的度数为________.15. 如图,点O 在△ABC 的内部,且到三边的距离相等.若∠BOC =130°,则∠A=________°.16. (2019•襄阳)如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC △≌△DCB △的是__________(只填序号).三、解答题17. (2019•泸州)如图,AB CD ∥,AD 和BC 相交于点O ,OA OD =.求证:OB OC =.18. 如图所示,在△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF.(1)请你用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗); (2)选择(1)中你写的一个命题,说明它的正确性.19. 如图,四边形ABCD 是正方形,以边AB 为直径作☉O ,点E 在BC 边上,连接AE 交☉O 于点F ,连接BF 并延长交CD 于点G . (1)求证:△ABE ≌△BCG. (2)若∠AEB=55°,OA=3,求的长.(结果保留π)20. (2019•苏州)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.21. 如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=AB,连接AG,AD.求证:(1)△BAD≌△CGA;(2)AD⊥AG.22. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.23. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.24. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.2021中考 临考专题训练:全等三角形-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】C[解析] 由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.4. 【答案】A[解析] 如图,过点D 作DE ⊥AB 于点E.∵点D 的坐标是(0,-3), ∴OD=3.∵AD 是△OAB 的角平分线, ∴ED=OD=3,即点D 到AB 的距离是3.5. 【答案】C【解析】如图,过点D 作DE AB ⊥于E ,∵8AC =,13DC AD =,∴18213CD =⨯=+, ∵90C ∠=︒,BD 平分ABC ∠,∴2DE CD ==,即点D 到AB 的距离为2,故选C .6. 【答案】B[解析]过点D 作DH ⊥AB 交BA 的延长线于H.∵BD 平分∠ABC ,∠BCD=90°, ∴DH=CD=4,∴四边形ABCD 的面积=S △ABD +S △BCD =AB ·DH +BC ·CD=×6×4+×9×4=30.7. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.8. 【答案】C[解析] 选项A 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等. 选项C 中,如图①,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE 和CF ,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D 中,如图②,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C ,∴△BDE ≌△CEF .故能判定两个小三角形全等.二、填空题9. 【答案】答案不唯一,如AB =CD [解析] 由已知AB ∥CD 可以得到一对角相等,还有BD =DB ,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.10. 【答案】∠B =∠D11. 【答案】125[解析] 由题意可得AD 平分∠CAB.∵∠C=90°,∠B=20°,∴∠CAB=70°.∴∠CAD=∠BAD=35°.∴∠ADB=180°-20°-35°=125°.12. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).13. 【答案】120°[解析]如图,设AC ,DB 的交点为H.∵△ACD ,△BCE 都是等边三角形, ∴CD=CA ,CB=CE ,∠ACD=∠BCE=60°, ∴∠DCB=∠ACE ,在△DCB 和△ACE 中,∴△DCB ≌△ACE , ∴∠CAE=∠CDB ,又∵∠DCH +∠CHD +∠BDC=180°,∠AOH +∠AHO +∠CAE=180°,∠DHC=∠OHA ,∴∠AOH=∠DCH=60°, ∴∠AOB=180°-∠AOH=120°.14. 【答案】90°[解析] ∵点P 到AB ,BD ,CD 的距离相等,∴BP ,DP 分别平分∠ABD ,∠BDC.∵AB ∥CD ,∴∠ABD +∠BDC =180°. ∴∠PBD +∠PDB =90°.故∠BPD =90°.15. 【答案】80[解析] ∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB.∴∠A =180°-(∠ABC +∠ACB)=180°-2(∠OBC +∠OCB)=180°-2(180°-∠BOC)=80°.16. 【答案】②【解析】∵已知ABC DCB ∠=∠,且BC CB =,∴若添加①A D ∠=∠,则可由AAS 判定ABC △≌DCB △;若添加②AC DB =,则属于边边角的顺序,不能判定ABC △≌DCB △; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC △≌DCB △. 故答案为:②.三、解答题17. 【答案】∵AB CD ∥,∴A D ∠=∠,B C ∠=∠,在AOB △和DOC △中,A D B C OA OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC △≌△,∴OB OC =.18. 【答案】解:(1)如果①③,那么②;如果②③,那么①.(2)对于“如果①③,那么②”说明如下:因为BE ∥AF ,所以∠AFD =∠BEC.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,AD =BC ,所以△ADF ≌△BCE.所以DF =CE.所以DF -EF =CE -EF ,即DE =CF.对于“如果②③,那么①”说明如下:因为BE ∥AF ,所以∠AFD =∠BEC.因为DE =CF ,所以DE +EF =CF +EF ,即DF =CE.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,DF =CE ,所以△ADF ≌△BCE ,所以AD =BC.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形,AB 为☉O 的直径,∴∠ABE=∠BCG=∠AFB=90°,AB=BC ,∴∠BAF +∠ABF=90°,∠ABF +∠EBF=90°,∴∠EBF=∠BAF ,在△ABE 与△BCG 中,∴△ABE ≌△BCG (ASA).(2)连接OF ,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°-55°=35°,∴∠BOF=2∠BAE=70°.∵OA=3, ∴的长==.20. 【答案】 (1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =∠=︒,,∴18065250BAE ∠=︒-︒⨯=︒,∴50FAG ∠=︒,∵BAC EAF △≌△,∴28F C ∠=∠=︒,∴502878FGC ∠=︒+︒=︒.21. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高,∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°.∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎨⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD.∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG .22. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON.(2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC , ∴Rt △ODC ≌Rt △OEC.∴OD =OE.设BE =x.∵BO =4,∴OE =OD =4+x.∵AD =BE =x ,∴AO =OD +AD =4+2x =10.∴x =3.∴OD =4+3=7.23. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF , ∴△ABE ≌△CAF(ASA).∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . ∵CD =2BD ,△ABC 的面积为15, ∴S △ACD =10.∴S △ABE +S △CDF =10.24. 【答案】(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC ,∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C ,∴OC ⊥DC ,∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°,∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB ,∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径, ∴∠CAP =∠ACB =90°,在Rt △ABC 与Rt △CP A 中,⎩⎨⎧AB =CP AC =AC, ∴Rt △ABC ≌Rt △CP A (HL).。

全等三角形测试题及答案

全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。

4. SAS全等条件指的是_________。

三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。

()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。

()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。

8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。

若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。

五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。

10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。

答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。

8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。

全等三角形中考真题汇编[解析版]

全等三角形中考真题汇编[解析版]

全等三角形中考真题汇编[解析版]—s八年级数学轴对称三角形填空题(难)2•如图所示ABC为等边三角形,P是M49C内任一点,PDWAB? PE//BC.PF//AC若厶 43C的周长为12cm,则PD+PE+PF二C航.【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,AAHE和AAHE是等边三角形,然后得到一系列长度相等的线段•最后求替换求和即可.【详解】解:・.• PD I I 4B, PE〃BC•・.四边形HBDP是平行四边形APD-HB• • • MBC为等边三角形周长为12CmAZ B二ZA 二60。

应二4…• PE//BCAZAHE=ZB=60°AZAHE=ZA=60°.• .AAHE是等边三角形AHE二AH•・・ ZHFP 二ZA二60°••・ ZHFP二ZAHE二60。

.・・AAHE是等边三角形,AFP 二PH/\PD 十PE 十PF 二BH 十(HP+PE)二BH 十HE 二BH 十AH 二AB 二4cm故答案为4cm •5 cm时,ZA OB的度数是度.【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.2•如图,点P是AoB内任意一点,OP二5加,点P与点C关于射线QA对称,点P与点D关于射线OB对称,连接CD交OA于点匕交OB于点F,当的周长是D【答案】30【解析】【分析】根据轴对称得岀OA为PC的垂直平分线’OB是PD的垂直平分线,根据线段垂宜平分线性质得出ZCOA ZAOP:LZCOPfZPoB/DOB IZPOD、PE二CE, OP二OC二5cm2 2PF二FD, OP二OD二5crr\求岀ZkCOD是等边三角形,即可得岀答案.【详解】解:如图示:连接0C.0D,〕点P与点C关于射线OA对称,点P与点D关于射线OB对称•/ .0A为PC的垂直平分线,OB是PD的垂直平分线,VOP 二5cm,:• ZCOA 二ZAOP 二LZCoP, ZPoB 二ZDOB 二LZPOD. PE二CEt OP二OC二5cm, PF二FD, 2 2 OP 二OD 二5cm,VA PEF的周长是5cm,.・・ PE十EF十PF二CE十EF十FD二CD二5cm,CD 二OD 二OD 二5cm»AA OCD是等边三角形,/\Z8D 二60、5 cm时,ZA OB的度数是度.:• ZAoB二AAOP 十ZBoP二丄AC OP + 丄ADOP二IZCoD 二30° ,2 2 2故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判左,能求出ACOD是等边三角形是解此题的关键.3•如图,点P是ZAOB内任意一点,0P二5cm,点M和点N分別是射线0A和射线0B上的动点,PN + PM+MN的最小值是5cm,则ZAOB的度数是__________________________________________ .【答案】30°【解析】试题解析:分别作点P关于OA、OB的对称点C、D旌接CD,分别交OA、OB于点M、N,连接OC、ODxPMxPNsMN,如图所示…点P关于OA的对称点为D,关于OB的对称点为C ,APM-DM r OP^OD , ZDOA=ZPOA ;T点P关于OB的对称点为C,APN-CN , OP二OC r ZCOB二ZPOB .AOC二OP二OD , ZAOB二- ZcOD fVPN十PM十MN的最小值是5cm/\PM+PN十MN二5 ,ADM 十CN + MN二5, 即CD二S二OPjAOC二OD二CD r即AOCD是等边三角形. ・・・ZCOD二60°zZAOB二30。

全等三角形考试题及答案

全等三角形考试题及答案

全等三角形考试题及答案一、选择题1. 两个三角形全等的条件是:A. 两个角相等B. 三条边相等C. 两边夹一角相等D. 两角夹一边相等答案:D2. 已知△ABC≌△DEF,其中AB=DE,AC=DF,∠A=∠D,那么BC与EF 的关系是:A. BC=EFB. BC>EFC. BC<EFD. 不能确定答案:A二、填空题1. 如果两个三角形的对应边成比例,且对应角相等,则这两个三角形______。

答案:相似2. 在△ABC中,∠A=∠B=50°,则∠C=______。

答案:80°三、解答题1. 已知△ABC≌△DEF,且AB=5cm,BC=7cm,求DE的长度。

答案:DE=5cm2. 已知△ABC≌△DEF,且∠A=∠D=60°,∠B=∠E=50°,求∠C和∠F 的度数。

答案:∠C=∠F=70°四、证明题1. 已知△ABC≌△DEF,且∠A=∠D=90°,AB=DE,AC=DF,证明:BC=EF。

答案:根据直角三角形全等的判定定理HL,因为∠A=∠D,AB=DE,AC=DF,所以△ABC≌△DEF,因此BC=EF。

2. 已知△ABC≌△DEF,且∠A=∠D,∠B=∠E,证明:∠C=∠F。

答案:根据全等三角形对应角相等的性质,因为△ABC≌△DEF,所以∠C=∠F。

五、应用题1. 一块三角形的木板ABC需要与另一块三角形的木板DEF进行拼接,已知AB=DE,BC=EF,∠A=∠D,∠B=∠E,判断两块木板是否可以拼接。

答案:可以拼接,因为根据SAS判定定理,△ABC≌△DEF。

2. 已知一个等腰三角形ABC,其中AB=AC,∠A=50°,求∠B和∠C的度数。

答案:因为AB=AC,所以∠B=∠C,又因为三角形内角和为180°,所以∠B=∠C=(180°-50°)/2=65°。

中考数学专题练习:全等三角形(含答案)

中考数学专题练习:全等三角形(含答案)

中考数学专题练习:全等三角形(含答案)1.(·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC2.(·黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c4.(·原创) 如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,当BC∥OA时,下列结论正确的是( )A.∠OAD=2∠ABOB.∠OAD=∠ABOC.∠OAD+2∠ABO=180°D.∠OAD+∠ABO=90°5.(·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.AD=3,BE=1,则DE的长是( )A.32B.2 C.2 2 D.106.(·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件____________________________,使△BED与△FED全等.7.(·原创)如图,已知△ABC≌△ADE,若AB=6,C为AD的中点,则AC的长为______.8.(·包河区二模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E,若BD=3,CE=2,则DE=______.9.(·宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.10.(·菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.11.(·泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.12.(·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=CD,求证:AG=DH.13.(·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.14.(·温州) 如图,在四边形 ABCD 中,E 是 AB 的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当 AB=6 时,求 CD 的长.15.(·恩施)如图,点 B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交 BE于点O.求证:AD与BE互相平分.16.(·广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.1.(·阜阳模拟)如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是( )A.PD=DQB.DE=12 ACC.AE=12CQD.PQ⊥AB2.(·原创)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A.76° B.62°C.42° D.76°、62°或42°都可以3.(·原创)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A.75° B.70° C.65° D.60°4.(·德阳)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连接AH,已知ED=2,求AH的值.5.(·合肥45中一模) 如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证:DG=BE;(2)连接FC,求∠FCN的度数;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=m,BC=n(m、n为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由点B向点C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含m、n的代数式表示tan∠FCN的值,若∠FCN的大小发生改变,请画图说明.参考答案【基础训练】1.C 2.B 3.D 4.A 5.B 6.BD =EF(答案不唯一) 7.3 8.5 9.证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠ACB=∠ACD.在△CDA 和△CBA 中,⎩⎨⎧∠B=∠D,∠ACB=∠ACD,AC =AC ,∴△CDA≌△CBA(AAS).∴CB=CD.10.解:DF =AE.证明:∵AB∥CD ,∴∠C=∠B. ∵CE=BF,∴CE-EF =BF -FE,∴CF=BE. 又∵CD=AB,∴△DCF≌△ABE(SAS), ∴DF=AE.11.证明:方法一:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴∠OBC=∠OCB ,∴BO=CO.方法二:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴AB=DC,又∵∠AOB=∠DOC , ∴△ABO≌△DCO(AAS ),∴BO =CO. 12.证明:∵AB∥CD ,∴∠A=∠D.又∵CE∥BF ,∴∠AHB=∠DGC.在△ABH 和△DCG 中,⎩⎨⎧∠A=∠D∠AHB=∠DGC AB =CD,∴△ABH≌△DCG(AAS), ∴AH=DG.又∵AH=AG +GH,DG =DH +GH,∴AG=DH. 13.(1)证明:∵AB=AC,∴∠B=∠ACF.在△ABE 和△ACF 中,⎩⎨⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)解:75.14.(1)证明:由AD∥EC 可知∠A =∠CEB, 又因为E 是 AB 的中点,所以AE =EB, 且∠AED=∠B ,所以△AED≌△EBC(ASA). (2)解:由(1)△AED≌△EBC 可知AD =EC, 又因为AD∥EC ,所以四边形AECD 为平行四边形, 又因为AB =6,则CD =AE =3. 15.证明:如解图,连接 BD ,AE . ∵AB∥ED ,∴∠ABC=∠DEF. ∵AC∥FD ,∴∠ACB=∠DFE. ∵ FB=CE, ∴BC=EF. 在△ACB 和 △DFE 中,⎩⎨⎧∠ABC=∠DEF,BC =EF ,∠ACB=∠DFE.∴△ACB ≌ △DFE(ASA). ∴ AB=DE.∵AB∥ED ,∴四边形ABDE 是平行四边形.∴AD 与BE 互相平分.16.证明:(1)∵四边形ABCD 是矩形, ∴AD=BC, AB =DC.∵△AEC 是由△ABC 折叠而成的, ∴AD=BC =EC,AB =DC = AE.在△ADE 和△CED 中,⎩⎨⎧AD =CEDE =ED AE =CD,∴△ADE≌△CED(SSS);(2)由(1)△ADE≌△CED 可得∠AED=∠CDE , ∴FD=EF,∴△DEF 是等腰三角形. 【拔高训练】 1.D 2.B 3.C 4.(1)证明:∵EF⊥EC ,∴∠CEF=90°, ∴∠AEF+∠DEC=90°, ∵四边形ABCD 是矩形,∴∠AEF+∠AFE=90°, ∠DEC+∠DCE=90°, ∴∠AEF=∠DCE ,∠AFE=∠DEC , ∵AE=DC,∴△AEF≌△DCE(AAS), ∴DE=AF,∵AE=DC =AB =2DE,∴AB=2AF, ∴F 为AB 的中点.(2)解:由(1)知AF =FB,且AE∥BH , ∴∠FBH=∠FAE=90°, ∠AEF=∠FHB , ∴△AEF≌△BHF(AAS),∴AE=HB, ∵DE=2, 且AE =2DE, ∴AE=4,∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32,∴AH=4 2.5.(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS).∴DG=BE;(2)解:如解图1,过点F作FH⊥BN于点H.∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°, ∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△AEB(AA S),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∴∠FCN=∠CFH=12(180°-∠FHC).∵∠FHC=90°, ∴∠FCN=45°.(3)解:当点E由点B向点C运动时,∠FCN的大小总保持不变,理由如下:如解图2,过点F 作FH⊥BN于点H,由已知可得∠EAG=∠BAD=∠AEF=90°, 结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△AGD(AAS),△EFH∽△AEB,∴EH=AD=BC=n, ∴CH=BE,∴EHAB=FHBE=FHCH;在Rt△FCH中,tan∠FCN=FHCH=EHAB=nm.∴当点E由点B向点C运动时,∠FCN的大小总保持不变,且tan∠FCN=n m .。

中考数学全等三角形100道【让你变nb】

中考数学全等三角形100道【让你变nb】

全等100道想NB 的家伙有福了!零星级题目(秒杀)1、已知:如图,求∠A+∠B+∠C+∠D+E 的度数= ————考点:根据三角形的内角和等于0180,与外角的性质综合运用。

2、如图2:有一个五角星ABCDE ,那么∠A+∠B+∠C+∠D+∠E= ————3、如图3:有一个等腰三角形ABC ,AB >BC,AB=AC ,中线BD 把△ABC 的周长分为15和9两部分,求此三角形各边的长。

☆ 考点:三角形“三线”的综合运用。

4、如图4,:在∠A: ∠B: ∠C=3:4:5,BD 、CE 分别是AC 、AB 边上的高,BD 、CE 交于点H ,求∠BHC 的度数。

E D C B AA图2 BCD E 图3AB C D A EDB C H 图4★一星级题目(秒杀)【题型一】公共边类型的全等三角形图形1 图形2 图形3注意隐含条件AD=AD 隐含条件AB=BA 隐含条件AC=CA1、 在ABC ∆中,AB=AC,AD 平分∠BAC ,求证:ABD ∆≌ACD ∆记忆 ★等腰三角形底边上的高、底边上的中线、顶角的角平分线是同一条线段,简称“三线合一”2、如图,已知:AD AB =,CD CB =. 求证:BD AC ⊥.3 已知:如图,在ABC ∆中,M 在BC 上,D 在AM 上,DC DB AC AB ==,求证:MC MB =4、如图, ∠ABC=∠DCB, ∠ACB=∠DBC,求证:AC=DB.点拨:要证明交叉在一起的两个三角形全等,可以用“分离法” A B CD AB CD B CA DD C B A A B C D5. 已知:(如图)21,∠=∠∠=∠D A . 求证:DO AO =点拨:注意隐含条件:公共边相等、对顶角相等6、 如图:AC ⊥BC,AD ⊥BD,AD=BC,CE ⊥AB,DF ⊥AB,垂足分别是E,F ,求证:CE=DF.7、已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .【题型二】边加减类型的全等三角形图形1 图形2 图形3 图形48、已知点B,E,C,F 在同一条直线上,AB=DF,AC=DE,BE=CF. 求证:∠A=∠ D.C D AE F B A D B E F C(1)AB F EC D(4) A B F E D C(2) A B E F D C (3) ∵ BE=CF ∴ BE-EF=CF-EF ∴ BF=CE ∵ BE=CF ∴ BE+EF=CF+EF∴ BF=CE∵ BE=CF ∴ BE+EF=CF+EF ∴ BF=CE ∵ BE=CF∴ BE-EF=CF-EF ∴ BF=CE9、如图,已知:.,,CF BE DE AC DF AB ===求证:DF AB//.10、如图,已知:BF CE DF AE CD AB ===,,.求证:(1)DE AF =;(2)AE ∥DF.11.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF , 求证:△ABC ≌△DEF .B C D EFAA DBE CF求证:△AFC≌△DEB.13. 已知B,E,F,D在同一条直线上,AB=CD, ∠B=∠D,BF=DE.求证:(1)AE=CF, (2) AE∥CF,(3) ∠AFE=∠CED14、. 已知:如图,AB=DC,AC=DB,BE=CE.求证:AE=DE.15、已知:如图,点C是线段AB的中点, CE=CD,∠ACD=∠BCE, 求证:AE=BD.★★二星级题目(抽杀)1、如图:已知点C为线段AB上一点,△ACM、△BCN是等边三角形.EDCBANM O2.如图:已知△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC 于点G ,•在GD 的延长线上取点E ,使DE=DB ,连结AE 、CD . 求证:△AGE ≌△DAC3、如图:已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:ABE ≌△CAD ;(2)求∠BFD 的度数.4.已知:如图,△ABC 和△ADE 是有公共顶点的等腰三角形. 求证:(1)BD=CE ;(2)∠1=∠2.5、(2010四川宜宾)如图,分别过点C 、B 作△ABC 的BC 边上 的中线AD 及其延长线的垂线,垂足分别为E 、F . 求证:BF =CE .6、在ABC ∆中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E . (1)当直线MN 绕点C 旋转到图1的位置时, 求证:①ADC ∆≌CEB ∆; ②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立, 说明理由.7.已知:如图,AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E 。

全等三角形(历年中考题)

全等三角形(历年中考题)

全等三角形专题(一) 姓名:1.如图,OP 平分,MON PA ON∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2C.3D. 42.如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。

有以下四个结论:①AF ⊥BC ;②△ADG ≌△ACF ; ③O 为BC 的中点; ④AG :DE =3:4,其中正确结论的序号是 .(错填得0分,少填酌情给分)3.如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连结BE 、EC . 试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.4.八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案: ACDEON(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (Ⅱ)∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.5.(2010湖南娄底)如图10,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ; (2)AB =BC +AD6.(2010江苏扬州)电子跳蚤游戏盘是如图所示的△ABC ,AB =6,AC =7,BC =8.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第一次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第一次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第三次落点)处,且BP 3=BP 2;……;跳蚤按上述规则一致跳下去,第n 次落点为P n (n 为正整数),则点P 2007与P 2010之间的距离为( )A .1B .2C .3D .47.(2010安徽蚌埠)在ABC ∆中,E D 、分别是AC BC 、上的点,CD BD CE AE 2,2==, BE AD 、交于点F ,若3=∆ABC S ,则四边形DCEF的03第8题面积为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.(铜仁)如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A.5B.4C.3D.22.(凉山州)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个3.(西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)4.(江西)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.∠BCA=∠DCA B.∠BAC=∠DAC C.∠B=∠D=90°D.C B=CD5.(沈阳)如图所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点F,连接CF,则图中全等三角形共有()A.1对B.2对C.3对D.4对6 .(成都)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF7.(十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个8.(临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD 的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有()A.3对B.4对C.5对D.6对9 .(乌鲁木齐)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(4)(6)(1) D.(2)(3)(4)10.(四川)下列说法中,正确的是()A.两腰对应相等的两个等腰三角形全等B.两锐角对应相等的两个直角三角形全等C.两角及其夹边对应相等的两个三角形全等D.面积相等的两个三角形全等11.(温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个12.(贵港)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE⊥BC垂足分别是D、E.则图中全等的三角形共有()A.2对B.3对C.4对D.5对13.(遵义)如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=()A.60°B.50°C.45°D.30°14.(厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF15.(双鸭山)如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个16.(鄂州)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.517.(乌兰察布)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数为()A.45°B.60°C.55°D.75°18.(滨州)如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.B E=CD B.BE>CDC.B E<CD D.大小关系不确定19.(临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()A.边角边B.角边角C.边边边D.角角边20.(随州)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定21.(龙岩)如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点,则图中阴影部分的面积是()A.4B.3C.2D.22.(聊城)如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°23.(丽水)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B.C.D.724.(綦江县)如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④25.(重庆)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤26.(黄冈)如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是()A.B E=AF B.∠DAF=∠BECC.∠AFB+∠BEC=90°D.A G⊥BE27.(安顺)如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,有如下四个结论:①AC=BD;②AC⊥BD;③等腰梯形ABCD是中心对称图形;④△AOB≌△DOC.则正确的结论是()A.①④B.②③C.①②③D.①②③④28.(包头)如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ABC绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G.则旋转后的图中,全等三角形共有()A.2对B.3对C.4对D.5对29.(眉山)如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD是平行四边形,下列结论中错误的是()A.△ACE以点A为旋转中心,逆时针方向旋转90°后与△ADB重合B.△ACB以点A为旋转中心,顺时针方向旋转270°后与△DAC重合C.沿AE所在直线折叠后,△ACE与△ADE重合D.沿AD所在直线折叠后,△ADB与△ADE重合30.(临安市)如图直角梯形ABCD中,AD∥BC,AB⊥BC,∠BCD=45°,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1B.2C.3D.不能确定二、填空题1.(中山)如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=_______°.2 .(遂宁)已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出_______个.3.(中山)如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,且AO平分∠BAC,那么图中全等三角形共有_______对.4.(十堰)如图,在△ABC中,AD平分∠BAC,AB=AC-BD,则∠B:∠C的值是_______.5.(天津)如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于_______°.6.(荆州)如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE=_______°.7.(河南)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为_______.8.(安徽)如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是_______.9.(安顺)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_______cm.10.(宿迁)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是_______.三、解答题1.(扬州)(1)计算:;(2)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.2.(南京)如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.3.(保山)如图,▱ABCD的两条对角线AC、BD相交于点O.(1)图中有哪些三角形是全等的?(2)选出其中一对全等三角形进行证明.4.(宁德)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:_______,并给予证明.5.(柳州)如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_______°,BC=_______.(2)请你在图中找出一点D,再连接DE、DF,使以D、E、F为顶点的三角形与△ABC全等,并加以证明.6.(吉林)如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF于点D,且AD平分∠FAC,请写出图中两对全等三角形,并选择其中一对加以证明.7.(达州)如图所示,将一长方形纸片ABCD折叠,使点C与点A重合,点D 落在点E处,折痕为MN,图中有全等三角形吗?若有,请找出并证明.8.(长春)如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.9.(丽水)已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.10.(吉林)如图,AB=AC,AD⊥BC于点D,AD=AE,AB平分∠DAE交DE 于点F,请你写出图中三对全等三角形,并选取其中一对加以证明.11.(宜昌)如图,在△ABC与△ABD中,BC=BD.设点E是BC的中点,点F 是BD的中点.(1)请你在图中作出点E和点F;(要求用尺规作图,保留作图痕迹,不写作法与证明)(2)连接AE,AF.若∠ABC=∠ABD,请你证明△ABE≌△ABF.12.(衢州)如图,AB∥CD.(1)用直尺和圆规作∠C的平分线CP,CP交AB于点E(保留作图痕迹,不写作法).(2)在(1)中作出的线段CE上取一点F,连接AF.要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不要求证明).13.(盐城)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,△ABC与△DEF全等吗?证明你的结论.14.(河池)如图所示,在平行四边形ABCD中,AE⊥BD,FC⊥BD,垂足分别为E,F.(1)写出图中所有的全等三角形;(2)选择(1)中的任意一对全等三角形进行证明.15.(大连)如图,在△ABC中,AB=AC,点D、E分别是AB、AC的中点,点F是BE、CD的交点.请写出图中两组全等的三角形,并选出其中一组加以证明.(要求:写出证明过程中的重要依据)16.(常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.17.(河南)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知,在△ABC中,AB=AC,P是△ABC中内任意一点,将AP绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP则BQ=CP.”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.之后,他将点P移到等腰三角形ABC外,原题中其它条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.18.(宁波)如图,△ABC中,AB=AC,过点A作GE∥B C,角平分线BD、CF 相交于点H,它们的延长线分别交GE于点E、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.19.(金华)如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是_______.(2)根据你添加的条件,再写出图中的一对全等三角形_______.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)20.(顺义区)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.21.(绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C 点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)22.(南充)如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC 的中线还是角平分线?请说明你判断的理由.23.(内江)如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.24.(漳州)如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F,求证:AB=FC.25.(梧州)如图,AB是∠DAC的平分线,且AD=AC.求证:BD=BC.26.(乐山)如图,AC∥DE,BC∥EF,AC=DE.求证:AF=BD.27 .(深圳)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.28.(内江)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.29.(淮安)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.30.(德州)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE 交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.31.(楚雄州)如图,点A,E,B,D在同一直线上,AE=DB,AC=DF,AC∥DF.请探索BC与EF有怎样的位置关系?并说明理由.32.(黄石)如图,C、F在BE上,∠A=∠D,AC∥DF,BF=EC.求证:AB=DE.33.(赤峰)如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.34.(北京)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.35.(重庆)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.36.(云南)如图,在梯形ABCD中,AD∥BC,AB=DC,若点M为线段AD 上任意一点(M与A、D不重合).问:当点M在什么位置时,MB=MC,请说明理由.37.(泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.38.(安徽)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.39.(张家界)如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.40.(南昌)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.41.(黄冈)如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.求证:BE=AF.42.(北京)已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.43.(岳阳)如图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同-直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)(2)选择(1)中你写出的一个命题,说明它正确的理由.44.(陕西)如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.45.(日照)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:(1)AE=BF;(2)AE⊥BF.46.(内江)如图,在△ABD和△ACE中,有下列四个等式:(1)AB=AC;(2)AD=AE;(3)∠1=∠2;(4)BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题.(要求写出已知,求证及证明过程)47.(海南)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.48.(防城港)如图,在△ABC和△ABD中,现给出如下三个论断:①AD=BC;②∠C=∠D;③∠1=∠2.请选择其中两个论断为条件,另一个论断为结论,构造一个命题.(1)写出所有的真命题(写成“_______⇒_______”形式,用序号表示):(2)请选择一个真命题加以证明.你选择的真命题是_______⇒_______.49.(长春)如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB 与DQ交于M,BP与CQ交于E,CP与DQ交于F.求证:PM=QM.50.(安徽)如图,已知长方形ABCD,过点C引∠A的平分线AM的垂线,垂足为M,AM交BC于E,连接MB,MD.(1)求证:BE=DC;(2)求证:∠MBE=∠MDC.51.(武汉)如图,在四边形ABCD中,对角线AC、BD相交于点O,已知∠ADC=∠BCD,AD=BC,求证:AO=BO.52.(广安)某学校花台上有一块形如图所示的三角形ABC地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,今只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由.53.(武汉)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?54.(韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.55.(娄底)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.56.(宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.57.(中原区)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE 折叠这个三角形,使C点与AB边上的一点D重合.当∠A为多少时,点D恰为AB的中点?写出一个你认为适当的角度,并利用此角的大小证明D为AB的中点.58.(河南)如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.59.(南充)已知:如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.60.(莱芜)两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.61.(常德)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP 为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.62.(江西)如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA 上的点,(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.63.(上海模拟)如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.64.(自贡)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.65.(大田县)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.66.(内江)如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.67.(宿迁)已知如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠ADF=∠CBE.68.(潍坊)如图,四边形ABCD为平行四边形,AD=2,BE∥AC,DE交AC 的延长线于F点,交BE于E点.(1)求证:EF=DF;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求DE的长.69.(昆明)己知:如图,点P为平行四边形ABCD中CD边的延长线上一点,连接BP,交AD,于点E,探究:当PD与CD有什么数量关系时,△ABE≌△DPE.画出图形并证明△ABE≌△DPE.70.(梅州)如图,AC是平行四边形ABCD的对角线.(1)请按如下步骤在图中完成作图(保留作图痕迹):①分别以A,C为圆心,以大于AC长为半径画弧,弧在AC两侧的交点分别为P,Q.②连接PQ,PQ分别与AB,AC,CD交于点E,O,F;(2)求证:AE=CF.71.(德阳)如图,已知平行四边形ABCD中,点E为BC边的中点,延长DE,AB相交于点F.求证:CD=BF.72.(厦门)如图,在平行四边形ABCD中,E、F分别是AB、CD上的点,且∠DAF=∠BCE.(1)求证:△DAF≌△BCE;(2)若∠ABC=60°,∠ECB=20°,∠ABC的平分线BN交AF与M,交AD于N,求∠AMN的度数.73.(莆田)已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.(1)观察图形并找出一对全等三角形:△_______≌△_______,请加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?74.(衢州)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.75.(黔东南州)如图,在平行四边形ABCD中,过A、C分别作对角线的垂线,垂足分别为E、F.(1)图中有哪几对三角形全等请指出来;(2)求证:AE=CF.76.(长春)如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.77.(泸州)如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.线段DF与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.即DF=_______.(写出一条线段即可)78.(嘉兴)如图,矩形ABCD中,M是CD的中点.求证:(1)△ADM≌△BCM;(2)∠MAB=∠MBA.79.(潼南县)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.80.(陕西)如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC 为边做正方形ABEF和正方形BCMN连接FN,EC.求证:FN=EC.81.(青海)如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,O A1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么正方形A1B1C1O绕O点转动,两个正方形重叠部分的面积等于多少?为什么?82.(随州)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.83.(长沙)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.84.(崇左)如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A 到EF的距离AH始终保持与AB长相等,问在E、F移动过程中:(1)∠EAF的大小是否有变化?请说明理由.(2)△ECF的周长是否有变化?请说明理由.85.(资阳)如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).(1)求证:BE=DG,且BE⊥DG;(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB 所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)86.(湘潭)如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形,连接BG,DE.(1)观察图形,猜想BG与DE之间的大小关系,并证明你的结论;(2)若延长BG交DE于点H,求证:BH⊥DE.87.(南充)如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.88.(佛山)如图,在正方形ABCD中,CE⊥DF.若CE=10cm,求DF的长.89.(肇庆)如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.(1)求证:AE=BF;(2)若BC=cm,求正方形DEFG的边长.90.(丽水)如图,正方形ABCD中,E与F分别是AD,BC上一点.在①AE=CF,②BE∥DF,③∠1=∠2中,请选择其中一个条件,证明BE=DF.(1)你选择的条件是_______(只需填写序号).(2)证明.91.(肇庆)如图,已知点E为正方形ABCD的边BC上一点,连接AE,过点D作DG⊥AE,垂足为G,延长DG交AB于点F.求证:BF=CE.92.(茂名)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC 到点F使CF=AE.(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.93.(淮安)如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于E.(1)求证:∠DEF=∠CBE;(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.94(长春)在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=CD,E、F分别在AD、CD上,DE=CF,AF、BE交于点P.请你量一量∠BPF的度数,并证明你的结论.95.(梅州)用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H 时,如图甲,通过观察或测量BG与EH的长度,你能得到什么结论并证明你的结论;(2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.96.(临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.97.(锦州)如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.98.(岳阳)如图,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与A重合,两边分别与AB、AD重合.将直角绕点A按逆时针方向旋转,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时,作∠EAF的平分线交CD于G,连接EG.求证:(1)BE=DF;(2)BE+DG=EG.99.(宜昌)在梯形ABCD中,AD∥BC,AB=CD,E为AD中点.(1)求证:△ABE≌△DCE;(2)若BE平分∠ABC,且AD=10,求AB的长.100.(深圳)如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,∠BAE=∠MCE,∠MBE=45°.(1)求证:BE=ME;(2)若AB=7,求MC的长.101.(湘潭)如图,梯形ABCD,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F.(1)请写出图中4组相等的线段(已知的相等线段除外);(2)从你写出的4组相等的线段中选一组加以证明.102.(北京)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=2EA,CF=2FD.求证:∠BEC=∠CFB.103.(重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E 是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)求证:∠MPB=90°-∠FCM.104.(盐城)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;(2)求证:AB=BC;(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求的值.105.(泰安)如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.106.(北京)问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1)当∠BAC=90°时,依问题中的条件补全右图;观察图形,AB与AC的数量关系为_______;当推出∠DAC=15°时,可进一步推出∠DBC的度数为_______;可得到∠DBC与∠ABC度数的比值为_______;(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.107.(乐山)如图,在等腰梯形ABCD中,A D∥BC,G是边AB上的一点,过点G作GE∥DC交BC边于点E,F是EC的中点,连接GF并延长交DC的延长线于点H.求证:BG=CH.。

相关文档
最新文档