2023年高考数学二轮复习讲练测 (新高考) 专题02 正余弦定理在解三角形
2024届新高考数学复习:专项(正弦定理、余弦定理及解三角形)历年好题练习(附答案)
2024届新高考数学复习:专项(正弦定理、余弦定理及解三角形)历年好题练习[基础巩固]一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3 ,则A =( )A .π6B .56 πC .π4D .π4 或34 π2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解 C .无解D .有解但解的个数不确定3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π24.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .25.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23 ,则b =( )A.14 B .6 C .14 D .66.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.钝角三角形ABC 的面积是12 ,AB =1,BC =2 ,则AC =( ) A .5 B .5 C .2 D .18.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522 m9.在△ABC 中,cos C 2 =5,BC =1,AC =5,则AB =( ) A .42 B .30 C .29 D .25二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13 ,则cos (π+B )=________.12.[2023ꞏ全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.[提升练习]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ꞏcos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 14.[2023ꞏ全国甲卷(理)]已知四棱锥P -ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .6215.[2022ꞏ全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB 取得最小值时,BD =________.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C 等于________.参考答案1.C 由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×33=2,又a <b ,∴A为锐角,∴A =π4 .2.C 由正弦定理bsin B =c sin C ,∴sin B =b sin C c =40×320 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.C 由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12 ,又C 为△ABC 内角,∴C =π3 . 4.C 由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12,∴sin A =1-cos 2A =3 ,∴S △ABC =12 bc sin A =12 ×4×3 =3 . 5.D ∵b sin A =3c sinB ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ꞏcos B =9+1-2×3×23 =6,∴b =6 .6.B ∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.B ∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22 ,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ꞏBC ꞏcos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ꞏBC cos 135°=1+2+2×2 ×22 =5,∴AC =5 .8.A 由正弦定理得ACsin B =AB sin C ,∴AB =AC ꞏsin Csin B =50×22sin (180°-45°-105°)=502 . 9.A ∵cos C 2 =5 ,∴cos C =2cos 2C 2 -1=2×⎝⎛⎭⎫55 2-1=-35 .在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ꞏBC ꞏcos C =25+1-2×5×1×⎝⎛⎭⎫-35 =32,所以AB =42 ,故选A.10.23 π答案解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23 π.11.①90° ②-13答案解析:①∵c =a ꞏcos B ,∴c =a ꞏa 2+c 2-b 22ac ,得a 2=b 2+c 2,∴∠A =90°;②∵cosB =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.2答案解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC =1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×ADsin 30°,所以AD =23ACAC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6ACAC +2.由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC (AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.13.AB ∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×3 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7 <0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.C如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ꞏAC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ꞏBC=13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ꞏBC sin ∠PCB =42 ,故选C.15.3 -1答案解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4 ,AB =(-x -1)2+(0-3)2 =x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.125答案解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C+cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125 .。
备战2024高考数学二轮复习讲义第二讲-转化思想在解三角形中的应用
第2讲转化思想在解三角形中的应用转化思想是高中生必备的灵活性思维方式,也是解决数学问题的有效途径之一,其要点在于将陌生的问题情形转化为熟悉的情形,将复杂、抽象的数学问题简单化、直观化,或从不同角度切入以分析问题,逐步探索出解决问题的有效方法。
解三角形作为高中数学教学的重要内容之一,对于学生数学思维品质有着较高要求,需要学生运用三角形相关知识,结合已有条件求出三角形的三个边或三个角,其中便涉及到对转化思想的运用,例如将题干内的抽象语言转化为直观的图形、“爪型”问题的相关求解、边角互化的应用及三角形内角转化在解三角形中都有广泛的重要应用,而本文会重点就转化思想在解三角形中的几类应用展开详细讲解。
【应用一】转化思想在解三角形边角互化中的应用形如我们在学习解三角形时,会学习正弦定理及其变化的相关应用,对于基础型的“对边对角”类型,我们可以利用正弦定理直接求解,但有时也会遇到形如“cos cos sin b C c B a A +=、cos sin 0a C C b c --=、222sin sin sin sin sin A C A C B ++=、()()2sin sin sin sin sin A B A B C +-=”等类型的等式来求对应角的问题,那么此时我们该如何求解呢?我们不妨重新学习一下正弦定理,基本公式为R Cc B b A a 2sin sin sin ===(其中R 为ABC ∆外接圆的半径),可变形为①CR c B R b A R a sin 2,sin 2,sin 2===②,2sin ,2sin ,2sin Rc C R b B R a A ===③CB A c b a sin :sin :sin ::=其实上面3个变形已经解释了边角互化的本质,即R 2能否被抵消掉,能同时被抵消则可以实现边角互化。
我们在做题过程中遇见“边是一次”时,通常边化角;遇见“正弦乘积是二次或边与正弦乘积是二次”时,通常角化边后用余弦定理求解;例如下面这两道例题:本题是模考或高考中解三角形较常规的题型,解题关键突破口在于利用正弦定理进行边角互化求角,通过刚才分析,我们发现这是边为一次的齐次类型,我们可以边化角,即得到sin cos sin sin sin A B A B B C =+,此时我们发现有三个角,于是我们可以利用三角形内角和为︒180,进行角度转化,那么要替换哪个角呢?通过观察我们发现,B A 、角的正余弦值是乘积关系,于是我们可以替换C 角,即()sin cos sin sin sin A B A B B A B =++1cos A A =+,利用辅助角公式化简即可求值。
高考数学二轮复习 第二篇 专题通关攻略 专题2 三角函数及解三角形 专题能力提升练七 2.2.2 三
专题能力提升练七三角恒等变换与解三角形(45分钟80分)一、选择题(每小题5分,共30分)1.cos15°-4sin215°cos15°=()A. B. C.1D.【解析】选D.cos 15°-4sin215°cos 15°=cos 15°-2sin 15°×2sin 15°cos 15°=cos 15°-2sin 15°sin 30°=cos 15°-sin 15°=2cos(15°+30°)=.2.(2018·永州二模)已知△ABC的内角A,B,C的对边分别是a,b,c,若+=2a,则△ABC是()A.等边三角形B.锐角三角形C.等腰直角三角形D.钝角三角形【解析】选 C.因为+=2a,所以由正弦定理可得,+=2sinA≥2=2,所以sin A=1,当=时,“=”成立,所以A=,b=c,所以△ABC是等腰直角三角形.3.(2018·全国卷Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB= ( )A.4B.C.D.2【解析】选A.cos C=2cos2-1=2×-1=-,在△ABC中,由余弦定理AB2=CA2+CB2-2CA·CB·cos C,得AB2=25+1-2×1×5×=32,所以AB=4.4.若向量a=,向量b=(1,sin22.5°),则a·b=( )A.2B.-2C.D.-【解析】选A.由题得a·b=tan67.5°+=tan 67.5°+=tan 67.5°-tan 22.5°=tan 67.5°-==2×=2×=2.【加固训练】(2018·会宁一中一模)已知x为锐角,=,则a的取值X围为( ) A.[-2,2] B.(1,)C.(1,2]D.(1,2)【解析】选C.由=,可得:a=sin x+cos x=2sin,又x∈,所以x+∈,所以a的取值X围为(1,2].5.在锐角△ABC中,A=2B,则的取值X围是( )A.(-1,3)B.(1,3)C.(,)D.(1,2)【解析】选D.====3-4sin2B.因为△ABC是锐角三角形,所以得<B<⇒sin2B∈.所以=3-4sin2B∈(1,2).6.(2018·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C= ()A. B. C. D.【解析】选C.由题意S△ABC=absin C=,即sin C=,由余弦定理可知sin C=cos C,即tan C=1,又C∈(0,π),所以C=.【加固训练】(2018·某某一模) 已知△ABC中,sinA,sinB,sinC成等比数列,则的取值X围是( )A. B.C.(-1,]D.【解析】选 B.由已知可知sin2B=sin A·sin C,即b2=ac,cos B==≥=,即0<B≤,sin B+cos B=sin∈(1,],原式==,设t=sin B+cos B,即原式==t-(1<t≤),函数是增函数,当t=1时,函数等于0,当t=时,函数等于,所以原式的取值X围是.二、填空题(每小题5分,共10分)7.(2018·全国卷Ⅱ)已知tan=,则tanα=________.【解析】因为tan=tan=,所以=,解得tan α=.答案:【加固训练】(2018·某某市一模) 已知cos=,则sin2α=________.【解析】sin 2α=sin=-cos2=1-2cos2=1-2×=-.答案:-8.为了竖起一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC 比AB长0.5米,为了稳定广告牌,要求AC越短越好,则AC最短为________.【解题指南】首先根据余弦定理找出边BC与AC之间的关系,用边BC表示出边AC,结合函数知识即可求解.【解析】由题意设BC=x(x>1)米,AC=t(t>0)米,依题设AB=AC-0.5=(t-0.5)米,在△ABC中,由余弦定理得:AB2=AC2+BC2-2AC·BCcos 60°,即(t-0.5)2=t2+x2-tx,化简并整理得:t=(x>1),即t=x-1++2,因为x>1,故t=x-1++2≥2+,当且仅当x=1+时取等号,此时取最小值2+. 答案:2+三、解答题(每小题10分,共40分)9.(2018·全国卷Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB.(2)若DC=2,求BC.【解析】(1)在△ABD中,由正弦定理得=.由题设知,=,所以sin∠ADB=.由题意知,∠ADB<90°,所以cos∠ADB==.(2)由题意及(1)知,cos∠BDC=sin∠ADB=.在△BCD中,由余弦定理得BC2=BD2+DC2-2·BD·DC·cos∠BDC=25+8-2×5×2×=25. 所以BC=5.10.如图,在△ABC中,AB=2,cosB=,点D在线段BC上.(1)若∠ADC=,求AD的长.(2)若BD=2DC,△ACD的面积为,求的值.【解题指南】(1)首先利用同角三角函数间的基本关系求得sin B的值,然后利用正弦定理即可求得AD的长.(2)首先利用三角形面积间的关系求得S△ABC,然后利用三角形面积公式结合余弦定理即可求得的值.【解析】(1)在三角形中,因为cos B=,所以sin B=,在△ABD中,由正弦定理得=,又AB=2,∠ADB=,sin B=.所以AD=.(2)因为BD=2DC,所以S△ABD=2S△ADC,S△ABC=3S△ADC,又S△ADC=,所以S△ABC=4,因为S△ABC=AB·BCsin∠ABC,所以BC=6,因为S△ABD=AB·ADsin∠BAD,S△ADC=AC·ADsin∠CAD,S△ABD=2S△ADC,所以=2·,在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BCcos∠ABC.所以AC=4,所以=2·=4.11.已知函数f(x)=2sinxcosx+2cos2x-1(x∈R).(1)求函数f(x)的最小正周期及在区间上的最大值和最小值.(2)若f(x0)=,x0∈,求cos2x0的值.【解析】(1)f(x)=2sin xcos x+2cos2x-1=(2sin xcos x)+(2cos2x-1)=sin 2x+cos 2x=2sin,所以函数f(x)的最小正周期为π;因为x∈,所以2x+∈,sin∈,所以函数f(x)=2sin在区间上的最大值为2,最小值为-1.(2)由(1)可知f(x0)=2sin,又因为f(x0)=,所以sin=,由x0∈,得2x0+∈,从而cos=-=-,所以cos 2x0=cos=cos cos +sin sin =12.在△ABC中,D是边BC上的点,AB=AD=,cos∠BAD=.(1)求sinB.(2)若AC=4,求△ADC的面积.【解题指南】(1)直接利用余弦定理和正弦定理求出结果.(2)利用(1)的结论和余弦定理求出三角形的面积.【解析】(1)在△ABD中,BD2=AB2+AD2-2AB·AD·cos∠BAD=7+7-2×××=12,得BD=2.由cos∠BAD=,得sin∠BAD=,在△ABD中,由正弦定理得=,所以sin B=×=.(2)因为sin B=,B是锐角,所以cos B=,设BC=x,在△ABC中,AB2+BC2-2AB·BC·cos B=AC2,即7+x2-2·x··=16,化简得:x2-2x-9=0,解得x=3或x=-(舍去),则CD=BC-BD=3-2=,由∠ADC和∠ADB互补,得sin∠ADC=sin∠ADB=sin B=,所以△ADC的面积S=·AD·DC·sin∠ADC=×××=.【加固训练】(2018·某某二模)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为acsin2B.(1)求sinB的值.(2)若c=5,3sin2C=5sin2B·sin2A,且BC的中点为D,求△ABD的周长.【解析】(1)由S△ABC=acsinB=acsin2B,得sin B=2sin B·cos B,因为0<B<π,所以sin B>0,故cos B=,又sin2B+cos2B=1,所以sin B=.(2)由(1)和3sin2C=5sin2B·sin2A得16sin2C=25sin2A,由正弦定理得16c2=25a2,因为c=5,所以a=4,BD=a=2,在△ABD中,由余弦定理得:AD2=c2+BD2-2c·BD·cos B=52+22-2×5×2×=24,所以AD=2.所以△ABD的周长为c+BD+AD=7+2.(建议用时:50分钟)1.(2018·某某一模)南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S=,c>b>a),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A.82平方里B.83平方里C.84平方里D.85平方里【解析】选C.由题意可得:a=13,b=14,c=15代入:S===84,则该三角形田面积为84平方里.2.已知△ABC的三个内角A,B,C的对边分别为a,b,c,若2sin=1,且a=2,则△ABC 的面积的最大值为( )A. B. C. D.2【解析】选B.sin=,-=,A=,由于a=2为定值,由余弦定理得4=b2+c2-2bccos ,即4=b2+c2+bc.根据基本不等式得4=b2+c2+bc≥2bc+bc=3bc,即bc≤,当且仅当b=c时,等号成立.S△=bcsin A≤··=.3.在△ABC中,a,b,c分别是内角A,B,C的对边,sinAcosB-(c-cosA)·sinB=0,则边b=________.【解析】由sin Acos B-(c-cos A)·sin B=0,得sin Acos B+cos Asin B=csin B,所以sin C=csin B,即=sin B,由正弦定理=,故b==1.答案:14.在△ABC中,角A,B,C的对边分别为a,b,c,设△ABC的面积为S,若3a2=2b2+c2,则的最大值为________.【解析】因为3a2=2b2+c2,所以3a2=3b2-b2+3c2-2c2,所以b2+2c2=3(b2+c2-a2)=6bccos A,所以==tan A.由题得a2=,所以 cos A===≥=,所以tan A=≤=,当且仅当b=c时取等号.所以的最大值为.答案:【加固训练】(2018·某某中学模拟)在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知a=,(b2+c2-3)tanA=bc,2cos2=(-1)cosC,则△ABC的面积等于________.【解析】条件(b2+c2-3)tan A=bc即为(b2+c2-a2)tan A=bc,由余弦定理得2bccos Atan A=bc,所以得sin A=,又A为锐角,所以A=.又2cos2=1+cos(A+B)=1-cos C=(-1)cos C,所以cos C=,得C=,故B=.在△ABC中,由正弦定理得=,所以c===.故△ABC的面积S=acsin B=×××sin =.答案:5.△ABC的内角A,B,C的对边分别为a,b,c,已知(b-c)2=a2-bc.(1)求sinA.(2)若a=2,且sinB,sinA,sinC成等差数列,求△ABC的面积.【解析】(1)由(b-c)2=a2-bc,得b2+c2-a2=bc,即=,由余弦定理得cos A=,因为0<A<π,所以sin A=.(2)由sin B,sin A,sin C成等差数列,得sin B+sin C=2sin A,由正弦定理得b+c=2a=4,所以16=(b+c)2,所以16=b2+c2+2bc.由(1)得16=a2+bc,所以16=4+bc,解得bc=,所以S△ABC=bcsin A=××=.6.(2018·某某一模)△ABC的内角为A,B,C的对边分别为a,b,c,已知=+.(1)求sin(A+B)+sinAcosA+cos(A-B)的最大值.(2)若b=,当△ABC的面积最大时,求△ABC的周长.【解题指南】(1)先根据正弦定理将边角关系转化为角的关系,再根据三角公式转化为二次函数求解.(2)根据余弦定理利用基本不等式求解.【解析】(1)由=+得:=,a=bcos C+csin B,即sin A=sin Bcos C+sin Csin B,所以cos B=sin B,B=;由sin(A+B)+sin Acos A+cos(A-B)=(sin A+cos A)+sin Acos A,令t=sin A+cos A,原式=t2+t-,当且仅当A=时,上式取最大值,最大值为.(2)S=acsin B=ac,b2=a2+c2-2accos B,即2=a2+c2-ac≥(2-)ac,ac≤2+,当且仅当a=c=等号成立;S max=,周长L=a+b+c=2+.7.(2018·某某二模) 如图,在平面四边形ABCD中,AB=2,AC=2,∠ADC= ∠CAB=90°,设∠DAC=θ.(1)若θ=60°,求BD 的长度;(2)若∠ADB=30°,求tanθ.【解题指南】(1)在△ABD中,利用余弦定理直接求出BD.(2)在△ABD中,写出正弦定理再化简即得解.【解析】(1)由题意可知,AD=1.在△ABD中,∠DAB=150°,AB=2,AD=1,由余弦定理可知,BD2=(2)2+12-2×2×1×=19,BD=.(2)由题意可知,AD=2cos θ,∠ABD=60°-θ,在△ABD中,由正弦定理可知,=,所以=4,所以tan θ=.。
利用正余弦定理解决三角形面积问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学
【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题02利用正余弦定理解决三角形面积问题目录一览一、梳理必备知识二、基础知识过关三、典型例题讲解四、解题技巧实战五、跟踪训练达标六、高考真题衔接1.正弦定理R CcB b A a 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径)2sin ,2sin ,2sin ;a R A b R B c R C ⇔===(边化角)sin ,sin ,sin ;222a b c A B C R R R⇔===(角化边)2.余弦定理:222222222cos 2cos 2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩⇒2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩3.三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆=12++为三角形ABC 的内切圆半径一、梳理必备知识4.三角形内角和定理:在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.【常用结论】①在ABC ∆中,sin sin ;a b A B A B >⇔>⇔>②sin 2sin 2,.2A B A B A B π==+=则或③在三角函数....中,sin sin A B A B >⇔>不成立。
但在三角形...中,sin sin A B A B >⇔>成立一、单选题1.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a =c =,30B =︒,则ABC 的面积为().A.2B .4C .2D .42.已知在ABC 中,4AB =,3AC =,cos 2A =,则ABC 的面积为()A .3B .C .6D .3.在ABC 中,,,a b c 分别是角,,A B C 所对的边,2,,sin 2sin 3c A B C ===,则ABC 的面积为()A B .C .2D .4【答案】B【分析】由正弦定理求得24b c ==,利用面积公式进行求解.【详解】由正弦定理得:24b c ==,二、基础知识过关4.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22230,=︒+-=A b c a ABC 的面积为()A .12B C .1D .25.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为π3A =,b c +==a ()A .B .5C .8D .6.在ABC 中,已知3a =,c =60C =︒,则ABC 的面积为()A B C D3二、填空题7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =2,b =1,1cos 3C =,则△ABC 的面积为______.【答案】38.在ABC 中,设a 、b 、c 分别是三个内角A 、B 、C 所对的边,2b =,1c =,面积12ABC S ∆=,则内角A 的大小为__.9.在△ABC 中,若7a =,3b =,8c =,则△ABC 的面积等于______________.【技巧实战1】1.记ABC 中角,,A B C 所对的边分别为,,a b c ,已知2A B =,32b c =.(1)求tan tan CB;(2)若ABC的周长为5ABC 的面积.2.已知ABC 的内角A 、B ,C 所对的边分别为a 、b 、c ,且cos 1cos 2A +=-.(Ⅰ)求角A 的值.(Ⅱ)若ABC 的面积为()7b c b c +=>,求a 的值.四、解题技巧实战3.ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有()sin 20C A B +=.(1)求角C ;(2)当4a =,c =时,求ABC 的面积.1.(2022春·广西南宁·高一校考阶段练习)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若222b c a bc +=+,且8bc =,五、跟踪训练达标(1)求角A.(2)求△ABC 的面积.2.(2023·高一单元测试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin cos a C A .(1)求角A .(2)若a =2c =求△ABC 的面积.3.(2023秋·宁夏石嘴山·高三石嘴山市第三中学校考期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量()cos ,cos m A B = ,(),2n a c b =- ,且//m n.(1)求角A 的大小;(2)若4a b ==,ABC 面积.4.(2022秋·云南楚雄·高二校考阶段练习)已知ABC 角,,A B C 所对的边分别为,,a b c ,ABC 的周长为2,且sin sin A B C +=.(1)求边c 的长;(2)若ABC 的面积为23sin C ,求角C 的度数.5.(2023·全国·高三专题练习)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos 2cos a C c A b B +=.(1)求B ;(2)若b =ABC 的面积为ABC 的周长.6.(山西省部分学校2023届高三下学期质量检测试题)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,()1cos sin c B C +=.(1)求角B 的大小;(2)若2b =,4a c +=,求ABC 的面积.7.(2023·安徽淮北·统考一模)设ABC 内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin sin c C b B C A a a-=-,4b =.(1)求角B 的大小(2)若c =ABC 的面积.8.(广东省广州市2023届高三综合测试(一)数学试题)记ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知223cos cos 222C A a c b +=.(1)证明:sin sin 2sin A C B +=;(2)若2b =,3AB AC ⋅=uu u r uuu r ,求ABC 的面积.9.(湖北省八市2023届高三下学期3月联考数学试题)在ABC 中,记角,,A B C 的对边分别为,,a b c ,已知π2sin 6b A a c ⎛⎫+=+ ⎪⎝⎭,且2c =,点D 在线段BC 上.(1)若3π4ADC ∠=,求AD 的长;(2)若2,BD DC ABC = 的面积为sin sin BAD CAD ∠的值.10.(江西省金溪县第一中学2023届高三一轮复习验收考试数学(理)试题)已知在非钝角ABC 中,角,,A B C所对的边分别为1,,,cos sin 2a b c c a B B ⎛⎫=+ ⎪⎝⎭.(1)求sin A ;(2)若ABC 的面积为1,且__________(在下面两个条件中任选一个),求ABC 的周长.①2a =;②2a c =.注:如选择多个条件分别解答,按第一个解答计分.11.(广东省广州市南沙区东涌中学2023届高三上学期期中数学试题)已知ABC 的内角,,A B C 的对边分别为,,a b c ,满足()274sincos222A B C -+=,(1)求A ;(2)D 是线段BC 边上的点,若2,3AD BD CD ===,求ABC 的面积..12.(云南省保山市、文山州2022-2023学年高二上学期期末考试数学试题)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 2cos 0b A a B c A ++=.(1)求角A 的大小;(2)若BC 边上的中线23AD =,且ABC S = ABC 的周长.2π由(1)有:2π3A =,所以ABC S △由余弦定理知222a b c bc =++,即1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))ABC的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a,b,求ABC的面积;(2)若sin A C=2,求C.六、高考真题衔接2.(2022年全国新高考II 卷数学试题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin 3A C =,求b .3.(2021年全国新高考II 卷数学试题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.4.(2022年北京市高考数学试题)在ABC 中,sin 2C C =.(1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.25.(2022年浙江省高考数学试题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC 的面积.。
2023届高考数学二轮复习微专题:正、余弦定理在解三角形中的应用 含答案解析
3 正、余弦定理在解三角形中的应用1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知C =60°,b =6,c =3,则A =________.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为a 2+b 2-c 24,则C=________.4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.5.在△ABC 中,B =120°,AB =2,A 的平分线AD =3,则AC =________.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.设向量m =(a ,c ),n =(cos C ,cos A ). (1)若m ∥n ,c =3a ,求角A ;(2)若m ·n =3b sin B ,cos A =45,求cos C 的值.8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos A =35,tan (B -A)=13.(1)求tan B 的值;答案及解析1.答案:75°.解析:由正弦定理b sin B =c sin C ,可得sin B =b sin C c =22,结合b <c ,可得B =45°,则A=180°-B -C =75°.2.答案:π3.解析:由正弦定理可得2sin B cos B =sin A cos C +sin C cos A =sin B ,在△ABC 中,sin B ≠0,可得cos B =12,在△ABC 中,可得B =π3.3.答案:π4.解析:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .△ABC 的面积为a 2+b 2-c 24,∴S △ABC =12ab sin C =a 2+b 2-c 24,∴sin C =a 2+b 2-c 22ab =cos C ,∵0<C <π,∴C =π4.4.答案:8.解析:因为0<A <π,所以sin A =1-cos 2A =154,又S △ABC =12bc sin A =158bc =315,所以bc =24,解方程组⎩⎪⎨⎪⎧b -c =2,bc =24得b =6,c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =62+42-2×6×4×⎝⎛⎭⎫-14=64,所以a =8.5.答案: 6.解析:如图所示,由正弦定理易得AB sin ∠ADB =AD sin B ,即2sin ∠ADB =3sin B ,故sin ∠ADB =22,即∠ADB =π4,在△ABC ,知∠B =120°,∠ADB =π4,即∠BAD =π12.由于AD 是∠BAC 的平分线,故∠BAC=2∠BAD =π6.在△ABC 中,∠B =120°,∠BAC =30°,易得∠ACB =30°.在△ABC 中,由正弦定理得AC sin ∠ABC =AB sin ∠ACB ,即AC sin60°=2sin30°,所以AC = 6.6.答案:9.解析:由题意得12ac sin120°=12a sin60°+12c sin60°,即ac =a +c ,得1a +1c =1,得4a+c =(4a +c )⎝⎛⎭⎫1a +1c =c a +4ac +5≥2c a ·4a c +5=4+5=9,当且仅当c a =4ac,即c =2a 时,取等号.7.答案:(1)π6;(2)3-8215.解析:(1)∵m ∥n ,∴a cos A =c cos C .由正弦定理,得sin A cos A =sin C cos C .化简得sin2A =sin2C .∵A ,C ∈(0,π),∴2A =2C 或2A +2C =π,从而A =C (舍去)或A +C =π2,∴B =π2.在Rt △ABC 中,tan A =a c =33,A =π6.(2)∵m ·n =3b sin B ,∴a cos C +c cos A =3b sin B .由正弦定理,得sin A cos C +sin C cos A =3sin 2B ,从而sin(A +C )=3sin 2B .∵A +B +C =π,∴sin(A +C )=sin B .从而sin B =13.∵cos A =45>0,A ∈(0,π),∴A ∈⎝⎛⎭⎫0,π2,sin A =35.∵sin A >sin B ,∴a >b ,从而A >B ,B 为锐角,cos B =223. ∴cos C =-cos(A +B )=-cos A cos B +sin A sin B =-45×223+35×13=3-8215.8.答案:(1)3;(2)78.解析:(1)在△ABC 中,由cos A =35,得A 为锐角,所以sin A =1-cos 2A =45,所以tan A=sin A cos A =43,所以tan B =tan[(B -A )+A ]=tan (B -A )+tan A 1-tan (B -A )·tan A=13+431-13×43=3. (2)在三角形ABC 中,由tan B =3,所以sin B =31010,cos B =1010, 由sin C =sin(A +B )=sin A cos B +cos A sin B =131050,由正弦定理b sin B =c sin C ,得b =c sin Bsin C =13×31010131050=15.所以△ABC 的面积S =12bc sin A =12×15×13×45=78.。
专题3-2 解三角形最值范围与图形归类-2023年高考数学二轮复习讲练测(全国通用)(原卷版)
专题3-2解三角形最值、范围与图形归类目录讲高考 ............................................................................................................................................................................... 1 题型全归纳 ...................................................................................................................................................................... 2 【题型一】最值与范围1:角与对边 .................................................................................................................... 2 【题型二】最值与范围2:角与邻边 .................................................................................................................... 2 【题型三】范围与最值3:有角无边型 ............................................................................................................... 3 【题型四】最值与范围4:边非对称型 ............................................................................................................... 4 【题型五】最值:均值型 .......................................................................................................................................... 4 【题型六】图形1:内切圆与外接圆 .................................................................................................................... 4 【题型七】图形2:“补角”三角形 .................................................................................................................... 6 【题型八】图形3:四边形与多边形 .................................................................................................................... 7 【题型九】三大线1:角平分线应用 .................................................................................................................... 8 【题型十】三大线2:中线应用 ............................................................................................................................. 8 【题型十一】三大线3:高的应用 ......................................................................................................................... 9 【题型十二】证明题 ................................................................................................................................................. 10 专题训练 (10)讲高考1.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==. (1)求ABC 的面积;(2)若sin sin A C =,求b .2.(2022·全国·统考高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-. (1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.3.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B =++.(1)若23C π=,求B ;(2)求222a b c +的最小值.4.(2021·全国·统考高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.5.(2021·北京·统考高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ∠;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC题型全归纳【题型一】最值与范围1:角与对边【讲题型】例题1.已知ABC 的内角,,A B C 所对的边分别为()()22,,,sin sin sin sin sin a b c B C A B C -=- (1)求A ;(2)已知a =.例题2.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,已知22222202b c a ca b c b c+-+=+-+. (1)求角A 的值;1.在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且2sin 2cos )A ABC +sin 30A -. (1)求A 的大小;(2)若2a =,求ABC ∆的周长L 的取值范围.2.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a,b,c ,且()222πcos B b a c ac sinAcosA---=(1)求角A ;(2)若a =bc 的取值范围.【题型二】最值与范围2:角与邻边【讲题型】例题1..已知ABC 为锐角三角形,角,,A B C 所对边分别为,,a b c ,ABC 满足:222sin sin sin sin sin A B C B C +-≤.(1)求角A 的取值范围;1..在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求角B ;(2)若△ABC 为锐角三角形,且2c =,求△ABC 面积的取值范围.2.在ABC 中,设A ,B ,C 所对的边长分别为a ,b ,c ,且()()()sin sin sin c b C a b A B -=-+. (1)求A ;(2)若2b =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.【题型三】范围与最值3:有角无边型【讲题型】例题1.三角形ABC 中,已知222sin sin +sin sin sin A B A B C +=,其中,角A B C 、、所对的边分别为a b c 、、.(△)求角C 的大小; (△)求a b c+的取值范围.例题2.在锐角三角形ABC,若 (I)求角B(II)求的取值范围【练题型】1.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =. (△)若a =5c =,求b (△)求cos sin A C +的取值范围.ac c b a c b a 3))((=+++-A A cos sin 3+2.在锐角三角形ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,且2sin sin cos sin cos C B a BB b A-=.(1)求A ;(2)求bc的取值范围.【题型四】最值与范围4:边非对称型【讲题型】例题1.在ABC ∆中,,,a b c 分别是角,,A B C 的对边()()3a b c a b c ab +++-=.(1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求2a b -的范围.【练题型】在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin 2sin sin A C B A C +=+. (△)求角B 的大小;(△)若ABC 为锐角三角形,2b =,求2a c -的取值范围.【题型五】最值:均值型【讲题型】例题1.已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ;(2)若24a S =,求c bb c+的最大值.【练题型】1.在△ABC 中,设AD 为BC 边上的高,且AD =BC BC ,b ,c 分别表示角B ,C 所对的边长,则的取值范围是_.【题型六】图形1:内切圆与外接圆【讲题型】例题1.在①ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知4b =,2c =,且sin sin sin()C B A B =+-. (1)求角A 和边a 的大小; (2)求①ABC 的内切圆半径.例题2.ABC 中,已知1AB =,7BC =D 为AC 上一点,2AD DC =,AB BD ⊥. (1)求BD 的长度;(2)若点P 为ABD △外接圆上任意一点,求2+PB PD 的最大值.b cc b+【讲技巧】外接圆:1.外接圆的圆心到三角形的三个顶点的距离相等。
高考数学二轮复习几何特征在解三角形中的应用
=sin 45°cos 30°+cos 45°sin 30°
= 面积6比+4 为2相,似比的平方,SS12=c-a2b2=sin
sin2A C-sin
B2
3
=sin 75s°in-26s0in°45°2=
4
6+ 4
2-
22
2
12345678
3 =8-44 3
16 =2-3 3=6+3 3.
12345678
5.(2022·长沙质检)△ABC的内角A,B,C的对边分别为a,b,c,其中A =60°,B=45°,若将六个和△ABC全等的三角形围成如图的正六边
形,设其面积为S1,阴影部分面积为S2,则
S1 S2
=_3___3_+__6_.
12345678
因为A=60°,B=45°,则C=75°,
所以sin C=sin 75°=sin(45°+30°)
12345678
设∠ABC=θ,则∠ADC=π-θ,
∵在△ABC中,AC2=AB2+BC2-2AB·BC·cos θ,
在△ACD中,AC2=AD2+CD2-2AD·CD·cos(π-θ),
∴AB2+BC2-2AB·BC·cos θ=AD2+CD2+2AD·CD·cos θ,
则61-60cos θ=25+24cos θ,
6.(2022·山东学期联考)在△ABC 中,内角 A,B,C 所对的边分别为 a,b, c,已知 3tan Atan B-tan A-tan B= 3,角 C 的平分线 CD 交 AB 于 D. (1)求证:CD3 =C1A+C1B;
12345678
∵ 3tan Atan B-tan A-tan B= 3, ∴ 3(tan Atan B-1)=tan A+tan B, ∴1t-antAan+AttaannBB=- 3, ∴tan(A+B)=- 3, ∴tan∠ACB= 3, ∵0<∠ACB<π,∴∠ACB=π3, ∵CD为角平分线,∴S△ABC=S△ACD+S△BCD,
高考数学(理科)二轮复习【专题2】三角变换与解三角形(含答案)
第2讲 三角变换与解三角形考情解读 (1)高考中常考查三角恒等变换有关公式的变形使用,常和同角三角函数的关系或诱导公式结合.(2)利用正弦定理或余弦定理解三角形或判断三角形的形状、求值等,经常和三角恒等变换结合进行综合考查.1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)tan 2α=2tan α1-tan 2α.3.三角恒等式的证明方法(1)从等式的一边推导变形到另一边,一般是化繁为简. (2)等式的两边同时变形为同一个式子. (3)将式子变形后再证明.4.正弦定理 a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 5.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab .变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B , a 2+b 2-c 2=2ab cos C .6.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.热点一 三角变换例1 (1)已知sin(α+π3)+sin α=-435,-π2<α<0,则cos(α+2π3)等于( )A .-45B .-35C.45D.35(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2思维启迪 (1)利用和角公式化简已知式子,和cos(α+23π)进行比较.(2)先对已知式子进行变形,得三角函数值的式子,再利用范围探求角的关系. 答案 (1)C (2)B解析 (1)∵sin(α+π3)+sin α=-435,-π2<α<0,∴32sin α+32cos α=-435, ∴32sin α+12cos α=-45, ∴cos(α+2π3)=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β,∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现张冠李戴的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.设函数f (x )=cos(2x +π3)+sin 2x .(1)求函数f (x )的最小正周期和最大值;(2)若θ是第二象限角,且f (θ2)=0,求cos 2θ1+cos 2θ-sin 2θ的值.解 (1)f (x )=cos(2x +π3)+sin 2x =cos 2x cos π3-sin 2x sin π3+1-cos 2x 2=12-32sin 2x .所以f (x )的最小正周期为T =2π2=π,最大值为1+32.(2)因为f (θ2)=0,所以12-32sin θ=0,即sin θ=33,又θ是第二象限角,所以cos θ=-1-sin 2θ=-63. 所以cos 2θ1+cos 2θ-sin 2θ=cos 2θ-sin 2θ2cos 2θ-2sin θcos θ=(cos θ+sin θ)(cos θ-sin θ)2cos θ(cos θ-sin θ)=cos θ+sin θ2cos θ=-63+332×(-63)=6-326=2-24.热点二 解三角形例2 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a =2sin A ,cos B cos C +2a c +bc =0.(1)求边c 的大小;(2)求△ABC 面积的最大值.思维启迪 (1)将cos B cos C +2a c +bc=0中的边化成角,然后利用和差公式求cos C ,进而求c .(2)只需求ab 的最大值,可利用cos C =a 2+b 2-c 22ab和基本不等式求解.解 (1)∵cos B cos C +2a c +bc =0,∴c cos B +2a cos C +b cos C =0,∴sin C cos B +sin B cos C +2sin A cos C =0, ∴sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =-12,∵C ∈(0,π)∴C =2π3,∴c =a sin A·sin C = 3.(2)∵cos C =-12=a 2+b 2-32ab ,∴a 2+b 2+ab =3,∴3ab ≤3,即ab ≤1. ∴S △ABC =12ab sin C ≤34.∴△ABC 面积最大值为34.思维升华 三角形问题的求解一般是从两个角度,即从“角”或从“边”进行转化突破,实现“边”或“角”的统一,问题便可突破. 几种常见变形:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径; (3)sin(A +B )=sin C ,cos(A +B )=-cos C .(1)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba 等于( )A. 2 B .2 2 C. 3 D .2 3(2)(2014·江西)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932C.332 D .3 3 答案 (1)A (2)C解析 (1)因为a sin A sin B +b cos 2A =2a ,由正弦定理得sin 2A sin B +sin B cos 2A =2sin A ,即sin B =2sin A , 即sin B sin A =2,b a =sin B sin A= 2. (2)∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得ab =6.∴S △ABC =12ab sin C =12×6×32=332.热点三 正、余弦定理的实际应用例3 (2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 思维启迪 (1)直接求sin B ,利用正弦定理求AB .(2)利用余弦定理和函数思想,将甲乙距离表示为乙出发后时间t 的函数.解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1 040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.思维升华 求解三角形的实际问题,首先要准确理解题意,分清已知与所求,关注应用题中的有关专业名词、术语,如方位角、俯角等;其次根据题意画出其示意图,示意图起着关键的作用;再次将要求解的问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识建立数学模型,从而正确求解,演算过程要简练,计算要准确;最后作答.如图,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A 地侦察发现,在南偏东60°方向的B 地,有一艘某国军舰正以每小时13海里的速度向正西方向的C 地行驶,企图抓捕正在C 地捕鱼的中国渔民.此时,C 地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的速度赶往C 地救援我国渔民,能不能及时赶到?(2≈1.41,3≈1.73,6≈2.45)解 过点A 作AD ⊥BC ,交BC 的延长线于点D .因为∠CAD =45°,AC =10海里,所以△ACD 是等腰直角三角形.所以AD =CD =22AC =22×10=52(海里).在Rt △ABD 中,因为∠DAB =60°,所以BD =AD ×tan 60°=52×3=56(海里). 所以BC =BD -CD =(56-52)(海里).因为中国海监船以每小时30海里的速度航行,某国军舰正以每小时13海里的速度航行,所以中国海监船到达C 点所用的时间t 1=AC 30=1030=13(小时),某国军舰到达C 点所用的时间t 2=BC 13=5×(6-2)13≈5×(2.45-1.41)13=0.4(小时). 因为13<0.4,所以中国海监船能及时赶到.1.求解恒等变换问题的基本思路一角二名三结构,即用化归转化思想“去异求同”的过程,具体分析如下:(1)首先观察角与角之间的关系,注意角的一些常用变换形式,角的变换是三角函数变换的核心.(2)其次看函数名称之间的关系,通常“切化弦”. (3)再次观察代数式的结构特点. 2.解三角形的两个关键点(1)正、余弦定理是实现三角形中边角互化的依据,注意定理的灵活变形,如a =2R sin A ,sin A =a2R (其中2R 为三角形外接圆的直径),a 2+b 2-c 2=2ab cos C 等,灵活根据条件求解三角形中的边与角.(2)三角形的有关性质在解三角形问题中起着重要的作用,如利用“三角形的内角和等于π”和诱导公式可得到sin(A +B )=sin C ,sin A +B 2=cos C2等,利用“大边对大角”可以解决解三角形中的增解问题等.3.利用正弦定理、余弦定理解决实际问题的关键是如何将实际问题转化为数学问题,抽象出三角形模型.真题感悟1.(2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.用降幂公式化简得:4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.故选C.2.(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 答案 6-24解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c .由余弦定理得cos C =a 2+b 2-c 22ab=a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab 22ab≥2⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab =6-24,故6-24≤cos C <1,且3a 2=2b 2时取“=”.故cos C 的最小值为6-24.押题精练1.在△ABC 中,已知tan A +B2=sin C ,给出以下四个结论: ①tan Atan B=1;②1<sin A +sin B ≤2;③sin 2A +cos 2B =1;④cos 2A +cos 2B =sin 2C . 其中一定正确的是( )A .①③B .②③C .①④D .②④ 答案 D解析 依题意,tan A +B2=sinA +B 2cos A +B 2=2sin A +B 2cos A +B22cos2A +B 2=sin (A +B )1+cos (A +B )=sin C 1+cos (A +B )=sin C . ∵sin C ≠0,∴1+cos(A +B )=1,cos(A +B )=0.∵0<A +B <π,∴A +B =π2,即△ABC 是以角C 为直角的直角三角形.对于①,由tan Atan B=1,得tan A =tan B ,即A =B ,不一定成立,故①不正确;对于②,∵A +B =π2,∴sin A +sin B =sin A +cos A =2sin(A +π4),∴1<sin A +sin B ≤2,故②正确; 对于③,∵A +B =π2,∴sin 2A +cos 2B =sin 2A +sin 2A =2sin 2A ,其值不确定,故③不正确;对于④,∵A +B =π2,∴cos 2A +cos 2B =cos 2A +sin 2A =1=sin 2C ,故④正确.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,q =(2a,1),p =(2b -c ,cos C ),且q ∥p . (1)求sin A 的值;(2)求三角函数式-2cos 2C1+tan C+1的取值范围.解 (1)∵q =(2a,1),p =(2b -c ,cos C )且q ∥p ,∴2b -c =2a cos C , 由正弦定理得2sin A cos C =2sin B -sin C ,又sin B =sin(A +C )=sin A cos C +cos A sin C , ∴12sin C =cos A sin C . ∵sin C ≠0,∴cos A =12,又∵0<A <π,∴A =π3,∴sin A =32.(2)原式=-2cos 2C 1+tan C+1=1-2(cos 2C -sin 2C )1+sin C cos C=1-2cos 2C +2sin C cos C =sin 2C -cos 2C =2sin(2C -π4),∵0<C <23π,∴-π4<2C -π4<1312π,∴-22<sin(2C -π4)≤1,∴-1<2sin(2C -π4)≤2,即三角函数式-2cos 2C1+tan C+1的取值范围为(-1,2].(推荐时间:60分钟)一、选择题1.(2014·浙江)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位答案 C解析 因为y =sin 3x +cos 3x =2sin(3x +π4)=2sin[3(x +π12)],又y =2cos 3x =2sin(3x +π2)=2sin[3(x +π6)],所以应由y =2cos 3x 的图象向右平移π12个单位得到.2.已知α∈(π2,π),sin(α+π4)=35,则cos α等于( )A .-210 B.7210C .-210或7210D .-7210答案 A解析 ∵α∈(π2,π),∴α+π4∈(34π,54π),∵sin(α+π4)=35,∴cos(α+π4)=-45,∴cos α=cos(α+π4-π4)=cos(α+π4)cos π4+sin(α+π4)sin π4=-45×22+35×22=-210.3.在△ABC 中,若sin C sin A =3,b 2-a 2=52ac ,则cos B 的值为( )A.13B.12C.15D.14 答案 D解析 由正弦定理:c a =sin C sin A=3,由余弦定理:cos B =a 2+c 2-b 22ac =c 2-52ac2ac =12×c a -54=32-54=14.4.(2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形. 5.已知tan β=43,sin(α+β)=513,其中α,β∈(0,π),则sin α的值为( ) A.6365 B.3365C.1365D.6365或3365答案 A解析 依题意得sin β=45,cos β=35.注意到sin(α+β)=513<sin β,因此有α+β>π2(否则,若α+β≤π2,则有0<β<α+β≤π2,0<sin β<sin(α+β),这与“sin(α+β)<sin β”矛盾),则cos(α+β)=-1213,sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β=6365. 6.已知△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且tan B =2-3a 2-b 2+c2,BC →·BA →=12,则tan B 等于( )A.32B.3-1 C .2 D .2- 3答案 D解析 由题意得,BC →·BA →=|BC →|·|BA →|cos B=ac cos B =12,即cos B =12ac, 由余弦定理, 得cos B =a 2+c 2-b 22ac =12ac⇒a 2+c 2-b 2=1, 所以tan B =2-3a 2-b 2+c 2=2-3,故选D. 二、填空题7.已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=________. 答案 -255解析 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0,可得sin α=-1010.故2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α) =22sin α=-255. 8.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,则b =________.答案 4解析 由sin A cos C =3cos A sin C 得:a 2R ·a 2+b 2-c 22ab =3·b 2+c 2-a 22bc ·c 2R , ∴a 2+b 2-c 2=3(b 2+c 2-a 2),a 2-c 2=b 22, 解方程组:⎩⎪⎨⎪⎧a 2-c 2=2b a 2-c 2=b 22,∴b =4. 9.已知0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45,则cos(α+π4)=________. 答案 82-315解析 因为0<α<π2<β<π, 所以π4<β-π4<3π4,π2<α+β<3π2. 所以sin(β-π4)>0,cos(α+β)<0. 因为cos(β-π4)=13,sin(α+β)=45, 所以sin(β-π4)=223,cos(α+β)=-35. 所以cos(α+π4)=cos[(α+β)-(β-π4)] =cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4) =-35×13+45×223=82-315. 10.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从D 处再攀登800米方到达C 处,则索道AC 的长为________米.答案 40013解析 如题图,在△ABD 中,BD =400米,∠ABD =120°.因为∠ADC =150°,所以∠ADB =30°.所以∠DAB =180°-120°-30°=30°.由正弦定理,可得BD sin ∠DAB =AD sin ∠ABD. 所以400sin 30°=AD sin 120°,得AD =4003(米). 在△ADC 中,DC =800米,∠ADC =150°,由余弦定理,可得AC 2=AD 2+CD 2-2×AD ×CD ×cos ∠ADC=(4003)2+8002-2×4003×800×cos 150°=4002×13,解得AC =40013(米).故索道AC 的长为40013米.三、解答题11.(2014·安徽)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值. 解 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理得a =2b ·a 2+c 2-b 22ac. 因为b =3,c =1,所以a 2=12,a =2 3.(2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13. 由于0<A <π,所以sin A =1-cos 2A =1-19=223. 故sin ⎝⎛⎭⎫A +π4=sin A cos π4+cos A sin π4=223×22+⎝⎛⎭⎫-13×22=4-26. 12.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1, 从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ).(2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 13.已知角A 、B 、C 是△ABC 的三个内角,若向量m =(1-cos(A +B ),cos A -B 2),n =(58,cos A -B 2),且m ·n =98. (1)求tan A tan B 的值;(2)求ab sin C a 2+b 2-c 2的最大值. 解 (1)m ·n =58-58cos(A +B )+cos 2A -B 2=98-18cos A cos B +98sin A sin B =98, ∴cos A cos B =9sin A sin B 得tan A tan B =19. (2)tan(A +B )=tan A +tan B 1-tan A tan B =98(tan A +tan B )≥98·2tan A tan B =34. (∵tan A tan B =19>0, ∴A ,B 均是锐角,即其正切值均为正)ab sin C a 2+b 2-c 2=sin C 2cos C =12tan C =-12tan(A +B )≤-38, 所求最大值为-38.。
专题02不等式与复数(6大核心考点)(课件)-2025年高考数学二轮复习讲练测(新教材新高考)
3
3
7.(2022•乙卷)已知 = 1 − 2,且 + ҧ + = 0,其中,为实数,则( A )
A. = 1, = −2
B. = −1, = 2
C. = 1, = 2 D. = −1, = −2
8.(多选题)(2022•新高考Ⅱ)若,满足 2 + 2 − = 1,则(BC )
1
1
= , = 时等号成立,所以D正确
2
4
故选:BCD
考点题型二:和式与积式
【对点训练4】(多选题)(2023·湖北·高三校联考期中)已知 > 1, > 1,且 + = 3,则(
A.3 + 3 ≤ 2 − 3 4
B.
2
2
≥ 2 −
2025
高考二轮复习讲练测
专题02 不等式与复数
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04
知识建构
方法技巧
真题研析
核心考点
01
考情分析
有关不等式的高考试题,是历年高考重点考查的知识点之一,其应用范围涉及高中
数学的很多章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围
等问题,考试形式多以一道选择题为主,分值5分.复数的代数运算、代数表示及其几
小于它们的几何平均数.
+
不等式可变形为:( + )2 ≥ 4 或 ≤ ( 2 )2 ,其
中 , ∈ + .
【答案】D
【解析】因为2 + = −1,
第02讲 正弦定理与余弦定理(教师版)-2023年新高二暑期数学衔接(新人教版)
第02讲正弦定理与余弦定理【学习目标】1.借助向量的运算,探索三角形边长与角度的关系,掌握余弦定理、正弦定理2.能用余弦定理、正弦定理解决简单的实际问题【基础知识】一、三角形中的诱导公式在△ABC 中1.()()sin sin ,cos cos A B C A B C +=+=-;2.()()sin 2sin 2,cos 2cos 2A B C A B C +=-+=;3.sincos 22A B C +=,cos sin 22A B C+=.二、正弦定理1.在三角形ABC 中,各边和它所对角的正弦的比相等,即2sin sin sin a b cR A B C===.其中R 是三角形ABC 外接圆的半径.2.正弦定理的其他形式:①a =2R sin A ,2sin ,2sin b R B c R C ==;②sin A =,sin B =2b R ,sin C =2c R;③a ∶b ∶c =sin :sin :sin A B C .【解读】①适用范围:正弦定理对任意的三角形都成立.②结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.③揭示规律:正弦定理指出的是三角形中三条边与对应角的正弦之间的一个关系式,它描述了三角形中边与角的一种数量关系.3.利用正弦定理求解“角角边”型:已知两角和任一边.已知角B ,C 和边a .4.利用正弦定理求解“边边角”型:已知两边和其中一边的对角.已知角A和边a,b(有解).5.在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解6.利用正弦定理判断三角形形状①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状,此时要注意应用A+B+C=π这个结论.三、余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即2222cosa b c bc A=+-,2222cosb ac ac B=+-,2222cosc a b ab C=+-.2.余弦定理的变形:cos A=2222b c abc+-,cos B=2222a c bac+-,cos C=2222a b cac+-.3.由余弦定理可知,若C为锐角,则cos C>0,即a2+b2>c2;若C为钝角,则cos C<0,即a2+b2<c2;若C为直角,则cos C=0,即a2+b2=c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.4.利用余弦定理求解“边边边”型,即已知三边.已知边a,b,c.5.利用余弦定理求解“边角边”型,即已知两边及夹角.已知边a,b 和角C.6.利用余弦定理求解(3)“边边角”型,即已知两边和其中一边的对角.已知边a,b 和角A.7.给出a 2+b 2-c 2=λab 形式求角,可用余弦定理;若::3:5:7a b c =,则cos 120C =;若,,a b c 成等差数列,或,,a b c 成等比数列,则1cos 2C ≥8.三角形中多次使用正、余弦定理问题三角形中多次使用正、余弦定理是图形问题求解时的常用策略,求解时要借助相等角、互补角、相等的线段在几个三角形中分别使用正、余弦定理,列出多个关系式,相加或相减,或解方程组进行求解.四、三角形面积公式1.111sin sin sin 222S ab C bc A ca B ===2.S =(p =a +b +c2),3.S=rp(R为三角形外接圆半径,r为三角形内切圆半径,p=a+b+c).24.△ABC的面积S=.五、解三角形的应用1.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.2.与测量有关的几类角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角相对于某正方向的水平角,如南偏东30°,北偏西45°等.(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)视角观察物体时,从物体两端引出的光线在人眼光心处所成的夹角(5)坡度(坡比)【考点剖析】考点一:利用正弦定理求角例1.(2022学年广西凭祥市高级中学高一下学期第一次素质检测)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2,1,30a b B ===︒,则A =()A .30°B .60︒C .90︒D .120︒【答案】C【解析】由正弦定理可得21sin sin 30A =︒,故sin 1A =,而()0,A π∈,故90A =︒,故选C.考点二:利用正弦定理求边例2.(2022学年河南省创新发展联盟高一下学期阶段性检测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =4A π=,512B π=,则c =()A .B .3C .D .2【答案】B【解析】由题意得3C A B ππ=--=,由正弦定理得sin sin c aC A =,得sin 3sin a C c A==.故选B考点三:利用余弦定理求角例3.(2022学年山西省高一下学期第三次月考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若22230a ac c --=,且13c b =,则角A 的余弦值为()A .16B .14C .15D .13【答案】A【解析】由22230a ac c ---得()()30a c a c -+=,3a c =或a c =-(舍)()2222223cos 223c c a b c a A bc c c+-+-==⨯⋅222109166c c c -==.故选A .考点四:利用余弦定理求边例4.(2022年天津市南开区普通高中学业水平合格性考试)在ABC 中,若3,45BC AC C ==∠=︒,则AB 的长为__________.【解析】由余弦定理2222cos c a b ab C =+-,即(22232352c =+-⨯⨯⨯=,所以c =,考点五:求三角形的面积例5.(2022学年北京市第六十六中学高一下学期线上诊断)已知的内角A ,B ,C 所对的边分别为a ,b ,c ,且()226a b c +-=,60C =︒,则△ABC 的面积为()AB C D .【答案】A【解析】因为60C =︒,故222222cos 60c a b ab a b ab =+-︒=+-,而()226a b c +-=,故2222226c a b ab a b ab =++-=+-,故2ab =,故三角形的面积为1sin 602242ab ⨯⨯︒=⨯=,故选A .考点六:判断三角形的形状例6.(2022学年江苏省徐州市沛县高一下学期第一次学情调研)在ABC 中,角,,A B C 所对的边分别是,,a b c ,且2cos c a B =,则ABC 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】A【解析】因为2cos c a B =,所以sin 2sin cos C A B =,即()sin sin cos cos sin 2sin cos A B A B A B A B +=+=,整理得到()sin cos cos sin sin 0A B A B A B -=-=,因为0A π<<,0B π<<,所以A B ππ-<-<,即0A B -=,A B =,ABC 为等腰三角形.故选A 考点七:三角变换与解三角形的交汇例7.(2022届山东师范大学附属中学高三下学期考前检测)在①2sin cos sin b C B c B =+,②cos cos 2B bC a c=-两个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,且________.(1)求角B ;(2)若a c +=点D 是AC 的中点,求线段BD 的取值范围.【解析】(1)解:选①,由2sin cos sin b C B c B =+及正弦定理可得2sin sin cos sin sin B C C B C B =+,所以,sin sin cos C B C B =,因为B 、()0,C π∈,所以,sin 0C >,则sin 0B B =>,所以,tan B =,3B π∴=;选②,由cos cos 2B bC a c=-及正弦定理可得()sin cos 2sin sin cos B C A C B =-,所以,()2sin cos sin cos cos sin sin sin A B B C B C B C A =+=+=,A 、()0,B π∈,sin 0A ∴>,所以,1cos 2B =,则3B π=.(2)解:因为a c +=所以,0a <<由已知AD DC = ,即BD BA BC BD -=- ,所以,2BD BA BC =+uu u r uu r uu u r,所以,()222242BD BA BCBA BC BA BC =+=++⋅ ,即())22222242cos33BD c a ac c a ac a c ac a aπ=++=++=+-=-22993,3244a a ⎛⎡⎫=+=-+∈ ⎪⎢ ⎣⎭⎝⎭,所以,342BD ≤<.考点八:四边形中的解三角形例8.(2022届安徽师范大学附属中学高三下学期适应性考试)如图,圆内接四边形ABCD中,4cos 5B =-,3AD BC ==,5CD =.(1)求边AC 的长;(2)设BAC α∠=,ACB β∠=,求()sin 2αβ+的值.【解析】(1)圆内接四边形ABCD 中,4cos cos 5B D D B π+==-=,,在△ACD 中,由余弦定理得22242cos 925235105AC AD CD AD CD D =+-⋅=+-⨯⨯⨯=,所以边AC(2)依题意,3sin 5B ==,在△ABC 中,a B βπ+=-,B 为钝角,由正弦定理得:sin sin AC BCB α=,即33sin 5sin BC B AC α⨯===而α为锐角,则cos 50α=,所以()()()sin 2sin sin sin cos cos sin a B B B B βπαααα+=-+=-=-3455=+考点九:三角形中的最值与范围例9.(2022届湖北省黄冈中学高三下学期5月适应性考试)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =且满足222sin sin sin sin sin A C B A C +=-.(1)求角B 的大小;(2)求ABC 的面积的最大值.【解析】(1)由正弦定理得222a cb ac +-=-,由余弦定理得2221cos 22a cb B ac +-∠==-,()0,B π∠∈,∴2π3B ∠=;(2)因为2222cos b a c ac B =+-∠,223ac ac ac ≥+=,当且仅当a c =时,等号成立,所以4ac ≤,所以11sin 4222ABC S ac B =∠≤⨯⨯ ,所以ABC综上,2π3B ∠=,ABC考点十:解三角形中的开放题例10.(2022届江苏省南京市天印高级中学高三下学期考前模拟)在①a =②AC边上的高为2,③sin 7B =这三个条件中任选一个,补充在下面问题中并完成解答.问题:记 ABC 内角A ,B ,C 的对边分别为a ,b ,c ,已知60A ∠=︒,1c b =+,______.(1)求c 的值;(2)若点D 是边BC 上一点,且ADB ABC ∠-∠=3π,求AD 的长.【解析】(1)解:选条件①:1a c b ==+,由余弦定理2221cos 22b c a A bc +-==,则260b b +-=,解得2b =,则13=+=c b ;选条件②:AC由三角形的面积公式()11sin 2b b A +=,解得2b =,3c =.选条件③:sin 7B =,由题意可知B C <,所以cos B ===因为πA B C ++=,()sin sin sin cos cos sin C A B A B A B =+=+,1272714=⨯,由正弦定理得sin sin B b C c =,71bb =+,解得2b =,3c =.(2)选条件①:因为ADB ABC ∠-∠=3π,所以3ADB ABC π∠=∠+,222cos 2a c b B ac +-===sin B则1sin sin37214ADB ABCπ⎛⎫∠=∠+⨯=⎪⎝⎭,由正弦定理sin sinAD ABB ADB=∠,3sin72sin14AB BADADB===∠;选条件②;因为ADB ABC∠-∠=3π,所以3ADB ABCπ∠=∠+,222cos2a c bBac+-===sin7B,则1sin sin32ADB ABCπ⎛⎫∠=∠+⨯⎪⎝⎭由正弦定理sin sinAD ABB ADB=∠,3sin2sinAB BADADB===∠;选条件③:1sin sin32ADB ABCπ⎛⎫∠=∠+⨯⎪⎝⎭,由正弦定理sin sinAD ABB ADB=∠,3sin72sin14AB BADADB==∠.考点十一:解三角形的应用例11.(2022学年上海市华东师范大学第二附属中学高一下学期5月月考)市政部门要在一条道路路边安装路灯,如图所示截面中,要求灯柱AB与地面AD垂直,灯杆为线段BC,2π3ABC∠=,路灯C采用锥形灯罩,射出光线范围为π3ACD∠=,A、B、C、D在同一平面内,路宽24AD=米,设ππ126BACθθ⎛⎫∠=≤≤⎪⎝⎭.(1)求灯柱AB 的高()h h θ=;(2)市政部门应该如何设置θ的值才能使路灯灯柱AB 与灯杆BC 所用材料的总长度最小?最小值为多少?(结果精确到0.01)【解析】(1)在ACD △中,2πππ()326CDA θθ∠=--=+,由sin sin AD AC ACD CDA =∠∠,得sin sin AD CDA AC ACD ⋅∠=∠π6θ⎛⎫=+ ⎪⎝⎭,在ABC 中,π3ACB θ∠=-,由sin sin AB ACACB ABC=∠∠,得sin sin AC ACB h ABC ⋅∠=∠ππ32sin sin 63θθ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭ππ126θ⎛⎫≤≤ ⎪⎝⎭.(2)ABC 中,由sin sin BC AC BAC ABC =∠∠,得sin sin AC BAC BC ABC ⋅∠=∠π32sin sin 6θθ⎛⎫=+ ⎪⎝⎭,∴ππ32sin sin 63AB BC θθ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭π32sin sin 6θθ⎛⎫++ ⎪⎝⎭ππ32sin [sin()sin ]8(cos )(sin )63θθθθθθθ⎛⎫=++=++ ⎪⎝⎭16sin 2θ=+∵ππ126θ≤≤,∴ππ263θ≤≤,∴当π12θ=时,AB BC +取得最小值821.86+≈,故路灯灯柱AB 与灯杆BC 所用材料的总长度最小,最小值约为21.86米【真题演练】1.(2021年高考全国卷Ⅱ)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A .B .C 三点,且A .B .C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A .C 两点到水平面A B C '''的高度差AA CC ''-约为 1.732≈)()A .346B .373C .446D .473【答案】B 【解析】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+,由题,易知ADB △为等腰直角三角形,所以AD DB =.所以''100''100AA CC DB A B -=+=+.因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 304︒=︒-︒=︒︒-︒︒=,所以210042''1)273A B ⨯⨯==≈,所以''''100373AA CC A B -=+≈.故选B .2.(2020年高考全国卷Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A .19B .13C .12D .23【答案】A【解析】 在ABC中,2cos 3C =,4AC =,3BC =根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB =,即3AB =由 22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =.故选A .3.(2021年高考全国卷Ⅱ)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,60B =︒,223a c ac +=,则b =________.【答案】【解析】由题意,1sin 24ABC S ac B ac === ,所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =(负值舍去).4.(2020年高考全国卷Ⅰ卷)如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥ ,AB =,1AC =,由勾股定理得2BC ==,同理得BD =,BF BD ∴==在ACE △中,1AC =,AE AD ==,30CAE ∠= ,由余弦定理得2222cos30132112CE AC AE AC AE =+-⋅=+-⨯= ,1CF CE ∴==,在BCF 中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.5.(2021新高考全国卷Ⅰ)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.【解析】(1)证明:由正弦定理知,2sin sin b cR ABC ACB==∠∠,2sin b R ABC ∴=∠,2sin c R ACB =∠,2b ac = ,2sin 2sin b R ABC a R ACB ∴⋅∠=⋅∠,即sin sin b ABC a C ∠=,sin sin BD ABC a C ∠= .BD b ∴=;解法二:证明:由正弦定理知,22,sin sin ,sin sin ,sin sin ,sin sin sin ,.b cb Cc ABC ABC Cb b ac b C ABC aa Cb ABC BD ABC BD b =∴=∠∠=∴=∠∴=∠=∠∴= 又(2)解法一:由(1)知BD b =,2AD DC = ,23AD b ∴=,13DC b =,在ABD ∆中,由余弦定理知,2222222222()1393cos 221223b bc BD AD AB b c BDA BD AD b b b +-+--∠===⋅⋅,在CBD ∆中,由余弦定理知,2222222221()1093cos 12623b b a BD CD BC b a BDC BD CD b b b +-+--∠===⋅⋅,BDA BDC π∠+∠= ,cos cos 0BDA BDC ∴∠+∠=,即2222221391090126b c b a b b --+=,得2221136b c a=+,2b ac = ,2231160c ac a ∴-+=,3c a ∴=或23c a =,在ABC ∆中,由余弦定理知,22222cos 22a c b a c acABC ac ac+-+-∠==,当3c a =时,7cos 16ABC ∠=>(舍);当23c a =时,7cos 12ABC ∠=;综上所述,7cos 12ABC ∠=.6.(2021新高考全国卷Ⅱ)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【解析】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则sin 8C ==,因此,11sin 452284ABC S ab C ==⨯⨯⨯=△;(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.7.(2020新高考山东卷)在①ac =,②sin 3c A =,③=c这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分.【解析】解法一:由sin A B =可得:ab=不妨设(),0a b m m ==>,则:2222222cos 322c a b ab C m m m m =+-=+-⨯⨯=,即c m =.选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==.选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:3sin 2A ==,此时:sin 32c A m =⨯=,则:c m ==选择条件③的解析:可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+ ⎪⎝⎭,∴sinA =,∴tanA =∴23A π=,∴6B C π==,若选①,ac =,∵a ==,2=∴c=1;若选②,3csinA =,则332=,c =;若选③,与条件=c 矛盾.8.(2020年高考全国卷Ⅱ)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+【过关检测】1.(2022届上海市高三高考冲刺卷)如图,在ABC 中,已知45B ∠=︒,D 是BC 边上的一点,5,7,3AD AC DC ===,则AB 的长为()A.B.CD【答案】D【解析】在ACD △中,由余弦定理得:2224992511cos 227314AC CD AD C AC CD +-+-===⋅⨯⨯,因为()0,πC ∈,所以sin 14C =,在ABC 中,由正弦定理得:sin sin AB AC C B =,7sin 45=︒,解得:2AB =,故选D2.(2022学年辽宁省铁岭市清河高级中学高一下学期期中)在ABC 中,已知()sin 2sin cos C B C B =+,那么ABC 一定是()A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形【答案】B【解析】因为()sin 2sin cos C B C B =+,sin()sin B C A +=,所以sin 2sin cos C A B =,所以由正余弦定理得22222a c b c a ac+-=⋅,化简得22a b =,所以a b =,所以ABC 为等腰三角形.故选B.3.(2022学年河南省洛阳市创新发展联盟高一下期5月阶段检测)在ABC 中,AC =2,6A π=,若ABC 有解,则BC 的取值范围为()A .[1,2)B .[1,+∞)C.)+∞D .[2,+∞)【答案】B【解析】因为ABC 有解,所以BC ≥AC sin A =1.故选B4.(多选)(2022学年辽宁师范大学附属中学高一下学期5月考试)在ABC 中,,,a b c 分别为A ∠,B Ð,C ∠的对边,下列叙述正确的是()A .若ABC 为钝角三角形,则222a b c +<B .若ABC 是锐角三角形,则不等式sin cos A B >恒成立C .sin cos a b C c B =+,则4C π∠=D .若tan A tan tan 0B C ++<,则ABC 为钝角三角形【答案】BCD【解析】对于A 中,由余弦定理可得222cos 02a b c C ab+-=<,所以角C 为钝角,但是ABC 为钝角三角形,不一定是角C 为钝角,故选项A 不正确;对于B 中,若ABC 是锐角三角形,可得2A B π+>,所以2A B π>-,且0,022A B ππ<<<<,可得022B ππ<-<,所以sin sin()cos 2A B B π>-=,即不等式sin cos A B >恒成立,所以B 正确;对于C 中,因为sin cos a b C c B =+,由正弦定理得sin sin sin sin cos A B C C B =+,又由sin sin()sin cos cos sin A B C B C B C =+=+,所以sin cos cos s sin sin sin c s i o n B C B C B C C B =++,可得sin cos sin sin B C B C =,因为(0,)B π∈,可得sin 0B >,所以cos sin C C =,即tan 1C =,又因为(0,)C π∈,所以4C π=,所以C 正确;对于D 中,在ABC 中,可得tan tan tan tan()1tan tan A BC A B A B+=-+=--,所以tan tan tan tan tan tan A B A B C C +=-,因为tan tan tan 0A B C ++<,可得tan tan tan 0A B C <,所以tan ,tan ,tan A B C 必有一个小于0,不妨设tan 0C <,可得(,)2C ππ∈,所以ABC 为钝角三角形,所以D 正确;故选BCD5.(多选)(2022学年吉林省长春市东北师范大学附属中学高一下学期期中)如图,在平面四边形ABCD中,AB AC ⊥,AC ,3AD =,BD =则CD 的值可能为()A .1B CD .2【答案】CD【解析】设ADB θ∠=,在ABD △中,由正弦定理得sin sin sin AB BD BAD BADθ==∠∠,即sin AB BAD θ⋅∠=,由余弦定理得2222cos 33AB AD BD AD BD θθ=+-⋅⋅⋅=-,又2BAD DAC π∠=+∠,在DAC △中,由余弦定理得22222cos 926sin CD AD AC AD AC DAC AB BAD=+-⋅⋅⋅∠=+-∠)()75sin 7572sin θθθϕ=-+=-+,其中sin ,cos 33ϕϕ==,所以当()sin 1θϕ+=时,minCD =、B 错误,C 正确;当()71sin 72θϕ+=时,2CD =,D 正确.故选CD.6.(2022学年四川省内江市第六中学高一下学期期中)在△ABC 中,角A 、B 、C 所对边分别为a 、b 、c ,且3cos 3cos 2a B b A c -=,则tan tan AB=______.【答案】5【解析】由正弦定理知,3sin cos 3sin cos 2sin 2sin()A B B A C A B -==+,即3sin cos 3sin cos 2sin cos 2sin cos A B B A A B B A -=+,,故sin cos 5sin cos A B B A =,故tan 5tan AB=.7.(2022学年三湘名校教育联盟高一下学期5月联考)如图,无人机在离地面高300m 的A 处,观测到山顶M 处的仰角为15 、山脚C 处的俯角为45 ,已知60MCN ∠= ,则山的高度MN 为___m .【答案】450【解析】∵//AD BC ,∴45ACB DAC ∠=∠= ,∵AC ==,又180465705MCA ∠-=-= ,154560MAC ∠=+= ,∴45AMC ∠= ,在△AMC 中,由正弦定理得sin 60sin45MC ==,∴sin 60450m MN MC MCN =∠== .8.(2022届四川省宜宾市叙州区第一中学校高三下学期高考适应性考试)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C +=.(1)求角A 的大小;(2)若2B D D C =,2AD =,且AD 平分BAC ∠,求ABC 的面积.【解析】(1)tan tan tan tan tan tan 0tan()1tan tan B CB C B C B C B C++=⇒+==-故tan A =又(0,)60A A π∈⇒=︒;(2)设BC 边的高为h ,所以11sin 22ABD S AB AD BAD BD h =⨯∠=⨯ ,11sin 22ABC S AC AD DAC CD h =⨯∠=⨯ 又AD 是角平分线,所以BAD DAC ∠=∠所以AB BDAC DC=,即2c b =,又ABC ABD ACD S S S =+ ,则111sin 602sin 302sin 30222bc c b ︒=⋅⋅︒+⋅⋅︒,解得b =c =,1sin 6022ABC S bc =︒=△.9.(2022学年湖北省十堰市部分高中高二下学期5月联考)在①sin sin2B Ca C c +=,②sin cos 0a B A =,cos )sinb a Cc A -=这三个条件中任选一个,补充在下面问题的横线上并作答.问题:在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,__________,ABC 的面积为2.(1)求角A 的大小和a 的值;(2)设点P 是ABC 的边AC 上一点,且满足AP BP =,求APPC的值.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)解:选①由sin sin2B C a C c +=,得sin sin sin cos 2A A C C =.因为sin 0C >,所以cos sin 2sin cos 222A A A A ==.因为cos 02A ≠,所以1sin 22A =,由()0,A π∈,得3A π=.因为ABC 的面积1sin 32S bc A c ===所以2c =,由余弦定理得22294237a b c bc =+-=+-⨯=,得a =选②由sin cos 0a B A =,得sin sin cos A B B A =,所以tan A =得3A π=.因为ABC 的面积1sin 3242S bc A c ==⨯=,所以2c =,由余弦定理,得22294237a b c bc =+-=+-⨯=,得a =cos )sin b a C c A -=,cos sin sin B A C C A =.因为sin sin()sin cos cos sin B A C A C +A C =+=,cos cos cos sin sin A C C A A C C A -=,cos sin sin C A C A =.因为sin 0C >,sin A A =,即tan A =由()0,A π∈,得3A π=.因为ABC 的面积1sin 3242S bc A c ==⨯=,所以2c =,由余弦定理,得22294237a b c bc =+-=+-⨯=,得a =(2)由(1)知2AB =,60A ∠=︒,因为PA PB =,所以ABP △是正三角形,所以2AP AB ==,321PC =-=,从而2AP PC=.10.(2022学年河南省濮阳市第一高级中学高一下学期期中)已知村庄B 在村庄A 的东偏北45 方向,且村庄,A B 之间的距离是)41-千米,村庄C 在村庄A 的北偏西75 方向,且村庄C 在村庄B 的正西方向,现要在村庄B 的北偏东30 方向建立一个农贸市场D ,使得农贸市场D 到村庄C 的距离是到村庄B .(1)求村庄B C 、之间的距离;(2)求农贸市场D 到村庄,B C 的距离之和.【解析】(1)由题意可得4AB =,120BAC ∠=︒,45,15,CBA BCA ∠=∠= 在ABC 中,由正弦定理可得sin sin BC AB BAC ACB =∠∠,4124故BC =即村中B ,C 之间的距离为千米;(2)村庄C 在村庄B 的正西方向,因为农贸市场D 在村庄的北偏东30°的方向,所以120CBD ∠=︒.在BCD △中,由余弦定理可得2222cos CD BC BDBC BD CBD =+-⋅∠,因为CD=,所以(2223BD BD =++,解得BD =则CD =故BD CD +=即农贸市场D到村庄B 、C 的距离之和为(千米.。
2023届高考数学二轮复习提升练之三角函数与解三角形——(11)正弦定理和余弦定理【配套新教材】
(11)正弦定理和余弦定理【配套新教材】1.已知A ,B ,C 为ABC △的三个内角,且其对边分别为a ,b ,c ,若22a b -=,且sin()sin A B B+=A =( ). A.π6B.π3C.2π3D.5π62.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0b A B =,a =3b =,则C =( ).A.π6B.π4C.π3D.5π123.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若222a c b ab -+=,则sin C 的值为( ).A.124.在ABC △中,c =,1b =,30B =︒,则ABC △的面积等于( ).5.在ABC △中,若c =b ,60B =︒,则C 等于( ). A.30°或150°B.60°C.30°D.150°6.已知,,a b c 分别为ABC △三个内角,,A B C 的对边,且2cos 2,4,ABCc B a b a S=-==则b =( )A.3B.C.6D.7.在ABC 中,角,,A B C 的对边分别为,,a b c ,且2221cos ()cos ,43c b A a c B b a c =+---=-,则ABC 的面积为( )C.28.(多选)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,若a =222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是( ).A.tan 2C =B.3π4A =C.bD.ABC △的面积为69. (多选)如图,在平面四边形ABCD 中,已知180B D ∠+∠=︒,2AB =,BC =4CD =,AD =,下列四个结论中正确的是( ).A.90B D ∠=∠=︒B.四边形ABCD 的面积为C.6AC =D.四边形ABCD 的周长为6+10. (多选)下列解三角形的过程中,只能有1个解的是( ). A.3a =,4b =,30A =︒ B.3a =,4b =,3cos 5B = C.3a =,4b =,30C =︒D.3a =,4b =,30B =︒120C =︒,且a b +=5,则c =___________.12.在ABC △中,3,4,,AB AC D E ==为BC 上两点且BD DE EC ==,若AD =则AE 的长为_____________.13.设ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若1π,26a B C ===,则b =______.14.在ABC △中,内角,,A B C 的对边分别为,,a b c .已知22sin 2BB . (1)若cos cos ,2c b A c B b =+=,求ABC △的面积; (2)若ABC △外接圆半径2R =,求a c +的取值范围.15.在①5cos cos cos 4a C c A b B +=,②π5sin()5sin()12B B ++-=,③π(0,)2B ∈,13cos2cos 25B B =-.这三个条件中任进一个,补充在下面问题中并作答.已知ABC △中,内角,,A B C 所对的边分别为,,a b c ,且________. (1)求tan2B 的值; (2)若1211tan ,54A c =-=,求ABC △的周长与面积.答案以及解析1.答案:A解析:由sin()sin sin sin A B CB B+==得sin C B =,由正弦定理得c =,又22a b -=,则2227a b b ==,由余弦定理得222222cos 2b c a A bc +-===,由(0,π)A ∈得π6A =,故选A.2.答案:D解析:sin cos 0b A B =,sin sin cos 0B A A B ∴=.sin 0A ≠,sin 0B B ∴=,tan B ∴(0,π)B ∈,π3B ∴=. sin sin a bA B=,sin 2sin 32a B Ab ∴===.a b <,π4A ∴=,ππ5ππ3412C ∴=--=.故选D. 3.答案:C解析:由余弦定理,得2221cos 22a b c C ab +-==.因为(0,π)C ∈,所以π3C =,sin C =.故选C. 4.答案:D解析:3c =,1b =,30B =︒,∴由正弦定理可得1sin 2sin 1c BC b===(0,π)C ∈,可得60C =︒或120°,18090A B C ∴=--=︒︒或30°,1sin 2ABC S bc A ∴==△.故选D. 5.答案:C解析:在ABC △中,由正弦定理可得sin sin c b C B==1sin 2C =,因为c b <,所以C B <,可得30C =︒,故选C. 6.答案:A解析:由正弦定理及2cos 2c B a b =-得2sin cos 2sin sin C B A B =-.又因为在ABC △中,sin sin()A B C =+,所以2sin cos 2sin()sin C B B C B =+-,整理得2sin cos sin B C B =.因为在ABC △,sin 0B ≠,所以2cos 1C =,即1cos 2C =.又因为(0,π)C ∈,所以π3C =.又1sin 42ABC S ab C a ===△,所以3b =,故选A.7.答案:B 解析:1cos ()cos ,3sin sin a b c b A a c B A B=+-== 1,sin sin cos (sin sin )cos sin 3c C B A A C B C ∴=+-, 1sin sin()sin cos 3C A B C B ∴=+-,又1π(B),sin sin sincos 3C A C C C B =-+∴=-.又 2sin 0,cos ,sin 3C B B ≠∴=∴由余弦定理得2222cos b a c ac B =+-,2222cos a c b ac B ∴+-=.又22224,42,33b ac ac ac --=-∴=⨯∴=,11sin 322ABCS ac B ∴==⨯⨯=故选B. 8.答案:AD解析:因为222sin a b c ab C +-=,所以222sin sin cos 222a b c ab C C C ab ab +-===,所以sin tan 2cos CC C==,故A 正确.因为cos sin a B b A c +=,所以利用正弦定理可得sin cos sin sin sin A B B A C +=. 因为π()C A B =-+,所以sin sin[π()]sin()C A B A B =-+=+,所以sin cos sin sin sin()sin cos cos sin A B B A A B A B A B +=+=+,即sin sin cos sin B A A B =.因为(0,π)B ∈,所以sin 0B ≠,所以tan 1A =,又(0,π)A ∈,所以π4A =,故B 错误. 因为tan 2C =,22sin cos 1C C +=,(0,π)C ∈,所以sin C =cos C =sin sin()sin cos cossin B A C A CA C =+=+==. 因为sin sina bA B=,所以sinsina Bb A ===C 错误. 11sin 622ABC S ab C ===△,故D 正确.故选AD.9.答案:ACD解析:在ABC △中,可得2222cos 43222AC AB BC AB BC B B =+-⋅=+-⨯⨯,在ACD △中,可得2222cos 201624cos AC AD DC AD DC D D =+-⋅=+-⨯,可得3636B D -=-B D , 因为180B D ∠+∠=︒,所以cos cos B D =-,可得cos 0B =,又因为B 为三角形的内角,所以90B ∠=︒,所以90B D ∠=∠=︒,所以A 正确;因为1122ABCACDABCD S S SAB BC AD DC =+=⋅+⋅四边形112422=⨯⨯⨯=,所以B 不正确;在Rt ABC △中,可得6AC ,所以C 正确;四边形ABCD 的周长l AB BC AD DC =+++=246+=+D 正确.故选ACD. 10.答案:BCD解析:根据题意,在选项A 中,sin 42sin sin sin 33aA B A b B =⇒==,因为1223<<B 在ππ,64⎛⎫ ⎪⎝⎭和3π5π,46⎛⎫⎪⎝⎭上各有一个解,并且这两个解与角A 的和都小于π,所以A 不满足;在选项B 中,3a =,4b =,3cos 5B =,根据余弦定理可得2222cos b a c ac B =+-,即2181695c c =+-,解得5c =或75c =-(舍去),所以只有1个解,所以B 满足题意;在选项C 中,条件为“边角边”,所以有唯一解,所以C 满足题意;在选项D 中,sin 33sin sin sin 48a A A B b B =⇒==,因为3182<,所以角A 在π0,6⎛⎫ ⎪⎝⎭和5π,π6⎛⎫ ⎪⎝⎭上各有一个解,当解在5π,π6⎛⎫⎪⎝⎭时,角B 与角A 的和大于π,所以只有1个解,所以D 满足题意,故选BCD.12.解析:由题意,在ADB △中,由余弦定理得222cos 2AD DB AB ADB AD DB +-∠=⋅;在ADC △中,由余弦定理得222cos 2AD DC AC ADC AD DC +-∠=⋅.又π,cos cos 0ADC ADB ADC ADB ∠+∠=∴∠+∠=,即222222022AD DB AB AD DC AC AD DB AD DC+-+-+=⋅⋅.又3,4,AB AC AD ===.5,BD DE EC BC ==∴=π4,cos 25BAC C ∴∠=∴=.易知1533CE BC ==.在AEC △中,由余弦定理得2222554732cos 16249359AE AC CE AC CE C =+-⋅⋅⋅=+-⨯⨯⨯=,AE ∴. 13.答案:1解析:在ABC △中,因为1sin ,0π2B B =<<, 所以π6B =或5π6B =.又因为ππ,6B C C +<=,所以π6B =, 所以ππ2ππ663A =--=. 因为sin sin a b A B =,所以sin 1sin a Bb A==.14.答案:(2)4]解析:本题考查正、余弦定理的应用,三角形面积公式以及边的取值范围的求解. (1)由22sin 2BB =,得1cos B B -=,cos 1B B +=,所以π1 sin()62B +=, 因为B 是三角形内角,所以π5π66B +=,得2π3B =. 由cos cos c b A c B =+,及正弦定理得sin sin cos sin cosC B A C B =+⋅,又sin sin()C A B =+,整理得(sin sin )cos 0A C B -=,因为2π3B =,所以sin sin A C =,即a c =.又2π,23B b ==,所以AC ,所以122ABC S =⨯=△. (2)由正弦定理2sin sin a c R A C ==,得π2sin 4sin ,2sin 4sin 4sin()3a R A A c R C C A =====-, 所以π4sin 4sin()3a c A A +=+-4sin 2sin A A A =+-π2sin 4sin()3A A A =+=+.因为π3A B +=,所以πππ2π0,3333A A <<<+<,πsin()13A <+≤,所以π4sin()43A <+≤,所以a c +∈.故a c +的取值范围为4]. 15.答案:(1)247(2)338解析:本题考查正弦定理、余弦定理、三角形的面积公式、三角恒等变换. (1)若选①:由正弦定理得5sin cos sin cos sin cos 4A C C AB B +=, 故5sin()sin cos 4A CB B +=,而在ABC △中,sin()sin(π)sin A C B B +=-=, 故5sin sin cos 4B B B =,又(0,π)B ∈, 所以sin 0B ≠,则4cos 5B =,则3sin 3sin ,tan 5cos 4B B B B ==, 故22tan 24tan 21tan 7B B B ==-.若选②:由π5sin()5sin()12B B ++-=,化简得1cos sin 5B B -=,代入22cos sin 1B B +=中,整理得225sin 5sin 120B B +-=,即(5sin 3)(5sin 4)0B B -+=,因为(0,π)B ∈,所以sin 0B >,所以3sin 5B =, 则4sin 3cos ,tan 5cos 4B B B B ===, 故22tan 24tan 21tan 7B B B ==-. 若选③:因为13cos2cos 25B B =-, 所以2132cos 1cos 25B B -=-,即2122cos cos 025B B --=,则34(2cos )(cos )055B B +-=. 因为π(0,)2B ∈,所以4cos 5B =,则3sin 3sin ,tan 5cos 4B B B B ==, 故22tan 24tan 21tan 7B B B ==-. (2)因为sin 12tan cos 5A A A ==-,且22sin cos 1,(0,π)A A A +=∈, 所以512cos ,sin 1313A A =-=. 由(1)得43cos ,sin 55B B ==,则1245333sin sin()sin cos cos sin 13513565C A B A B A B =+=+=⨯-⨯=, 由正弦定理得65sin sin sin 12a b c A B C ===,则135,4a b ==. 故ABC △的周长为11a b c ++=,ABC △的面积为11133333sin 5224658ABCSab C ==⨯⨯⨯=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题02 正余弦定理在解三角形中的高级应用与最值问题【命题规律】解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.【核心考点目录】核心考点一:倍长定比分线模型 核心考点二:倍角定理 核心考点三:角平分线模型 核心考点四:隐圆问题核心考点五:正切比值与和差问题 核心考点六:四边形定值和最值 核心考点七:边角特殊,构建坐标系核心考点八:利用正、余弦定理求解与三角形的周长、面积有关的问题 核心考点九:利用正、余弦定理求解三角形中的最值或范围【真题回归】1.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==. (1)求ABC 的面积;(2)若sin sin A C =b .3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(2022·全国·高考真题)记ABC的内角A,B,C的对边分别为a,b,c,已知cos sin21sin1cos2A BA B=++.(1)若23Cπ=,求B;(2)求222a bc+的最小值.【方法技巧与总结】1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin222S ab C ac B bc A===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.【核心考点】核心考点一:倍长定比分线模型【规律方法】如图,若P 在边BC 上,且满足PC BP λ=,AP m =,则延长AP 至D ,使PD AP λ=,连接CD ,易知AB ∥DC ,且DC c λ=,(1)AD AP λ=+.180BAC ACD ∠+∠=︒.【典型例题】例1.(2022·福建·厦门双十中学高三期中)如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+,若2AC =,3AB =,则||AP 的值为( )A B C D例2.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.例3.(2022·湖南·宁乡一中高三期中)设a ,b ,c 分别为ABC 的内角A ,B ,C 的对边,AD 为BC 边上的中线,c =1,23BAC π∠=,12sin cos sin sin sin 2c A B a A b B b C =-+.(1)求AD 的长度;(2)若E 为AB 上靠近B 的四等分点,G 为ABC 的重心,连接EG 并延长与AC 交于点F ,求AF 的长度.例4.(2022·广西柳州·高三阶段练习(文))已知2()sin cos f x x x x =,将()f x 的图象向右平移π0<<2ϕϕ⎛⎫ ⎪⎝⎭单位后,得到()g x 的图象,且()g x 的图象关于,06π⎛⎫⎪⎝⎭对称.(1)求ϕ;(2)若ABC 的角,,A B C 所对的边依次为,,a b c ,且182A g ⎛⎫=- ⎪⎝⎭,=1,=2b c ,若点D 为BC 边靠近C 的三等分点,试求AD 的长度.例5.(2022·全国·高三专题练习)在ABC 中,D 为BC 上靠近点C 的三等分点,且1AD CD ==.记ABC 的面积为S .(1)若sin 2sin C B =,求S ; (2)求S 的取值范围.例6.(2022·全国·高三专题练习)已知a ,b ,c 分别是ABC 内角A ,B ,C 所对的边,且满足1cos 2c A b a =-,若P 为边AB 上靠近A 的三等分点,1CP =,求:(1)求C 的值; (2)求2+a b 的最大值.例7.(2022·全国·高三专题练习)在①ANBN=AMN S =△AC AM =这三个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,3B π=,c =8,点M ,N 是BC 边上的两个三等分点,3BC BM =,___________,求AM 的长和ABC 外接圆半径.例8.(2022·湖北·高三期中)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知()sin sin()a c A a B C -=-,b =(1)求角B ;(2)若AC 边上的点D 满足2CD DA =,BD =ABC 的面积.核心考点二:倍角定理 【规律方法】例9.(2022·广西·灵山县新洲中学高三阶段练习(文))在锐角ABC 中,角A B C ,,所对的边为a b c ,,,且()cos 1cos a B b A ⋅=+.(1)证明:2A B =(2)若2b =,求a 的取值范围.例10.(2022·黑龙江·哈师大附中高三阶段练习)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 是ABC 的面积,()222sin SB C a c +=-.(1)证明:A =2C ;(2)若a =2,且ABC 为锐角三角形,求b +2c 的取值范围.例11.(2022·福建龙岩·高三期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知22sin sin sin sin B C A C -=.(1)证明:2B C =;(2)若A 是钝角,2a =,求ABC 面积的取值范围.例12.(2022·江苏·宝应中学高三阶段练习)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =; (2)求4cos a bb B+的最小值.例13.(2022·江苏连云港·高三期中)在ABC 中,AB =4,AC =3. (1)若1cos 4C =-,求ABC 的面积;(2)若A =2B ,求BC 的长.例14.(2022·浙江·绍兴鲁迅中学高三阶段练习)在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且满足()22sin sin sin sin A B B A B -=+.(1)证明:2A B =. (2)求bc 的取值范围.核心考点三:角平分线模型 【规律方法】斯库顿定理:如图,AD 是ABC △的角平分线,则2·AD AB AC BD DC =⋅-,可记忆:中方=上积一下积.【典型例题】例15.(2022·湖北·武汉市武钢三中高三阶段练习)ABC 中,2AB =,1AC =,BD BC λ=,()0,1λ∈. (1)若120BAC ∠=︒,12λ=,求AD 的长度; (2)若AD 为角平分线,且1AD =,求ABC 的面积.例16.(2022·黑龙江齐齐哈尔·高三期中)在锐角ABC 中,内角A B C ,,的对边分别为a b c ,,,且满足cos cos cos c a bC A B+=+ (1)求角C 的大小;(2)若c =A 与角B 的内角平分线相交于点D ,求ABD △面积的取值范围.例17.(2022·江苏泰州·高三期中)在①sin (cos cos )sin sin sin C a B b A a B a A b B +-=+;②22sin sin cos cos B A B B A A -=两个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a b , .(1)求角C 的大小;(2)若∠ACB 的角平分线CD 交线段AB 于点D ,且4,4CD BD AD ==,求△ABC 的面积.例18.(2022·辽宁·东北育才学校高三阶段练习)已知向量()3sin ,cos a x x =,()cos ,cos b x x =-,函数()32f x a b =⋅+. (1)求函数()y f x =的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ACB 的角平分线交AB 于点D ,若()f C 恰好为函数()f x 的最大值,且此时()CD f C =,求3a +4b 的最小值.例19.(2022·河北·高三阶段练习)已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中=4a ,=3b . (1)若点D 为AB 的中点且=2CD ,求ACB ∠的余弦值;(2)若ACB ∠的角平分线与AB 相交于点E ,当c CE ⨯取得最大值时,求CE 的长.例20.(2022·全国·高三专题练习)在ABC 中,内角,,A B C 的对边分别为,,a b c ,且______.在①cos cos2b C B π⎛⎫-= ⎪⎝⎭;②2ABC S BC =⋅△;③tan tan tan A C A C +=这三个条件中任选一个,补充在上面的问题中,并进行解答. (1)求角B 的大小;(2)若角B 的内角平分线交AC 于D ,且1BD =,求4a c +的最小值.例21.(2022·贵州贵阳·高三开学考试(理))已知ABC 的内角,,A B C 对应的边分别是,,a b c , 内角A 的角平分线交边BC 于D 点, 且 4=AD .若(2)cos cos 0b c A a C ++=, 则ABC 面积的最小值是( )A .16B .C .64D .核心考点四:隐圆问题 【规律方法】若三角形中出现(1)b a λλ=>,且c 为定值,则点C 位于阿波罗尼斯圆上.【典型例题】例22.(2022·全国·高三专题练习(文))阿波罗尼奥斯是与阿基米德、欧几里得齐名的古希腊数学家,以他姓名命名的阿氏圆是指平面内到两定点的距离的比值为常数()0,1λλλ>≠的动点的轨迹.已知在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且sin 2sin A B =,cos cos 3a B b A +=,则ABC 面积的最大值为( )A .3B .C .6D .例23.(2022·全国·高三专题练习)阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山人时期的“数学三巨匠”,以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹.已知在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin A B =,cos cos 2a B b A +=,则ABC ∆面积的最大值为( )AB C .43D .53例24.(2022·全国·高三专题练习)阿波罗尼斯(古希腊数学家,约公元前262—190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆,现有ABC ,6AC =,sin 2sin C A =,则当ABC 的面积最大时,BC 的长为______.例25.(2022·全国·高三专题练习)阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”,以他名字命名的阿波罗尼斯圆是指平面内到两定点距离之比为定值λ(0,1λλ>≠)的动点的轨迹.已知在ABC 中,角,,A B C 的对边分别为,,a b c ,sin 2sin ,A B =cos cos 2,a B b A +=则ABC 面积的最大值为__________.例26.(2022·全国·高三专题练习)波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有ABC ∆,4,sin 2sin AC C A ==,则当ABC ∆的面积最大时,AC 边上的高为_______________.核心考点五:正切比值与和差问题 【规律方法】例27.(2022·江苏南通·高三期中)在ABC 中,点D 在边BC 上,且AD BD =,记BDCDλ=. (1)当13λ=,π3ADB ∠=,求ABAC ;(2)若tan 2tan BAC B ∠=,求λ的值.例28.(2022·河南焦作·高三期中(文))在锐角ABC 中,,,a b c 分别为角,,A B C 所对的边,2b =,且ABC 的面积2S =.(1)若4sin 5A =,求a ; (2)求tan B 的最大值.例29.(2022·江西·芦溪中学高三阶段练习(理))已知在ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,且222b a c ac =+-,1b =(1)若)tan tan 1tan tan A C A C -=+,求边c 的值; (2)若2a c =,求ABC 的面积.例30.(2022·江西赣州·高三期中(理))在ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且满足(2)a c BA BC cCB CA -⋅=⋅.(1)求角B 的大小; (2)若tan tan 4tan tan B B A C+=,求sin sin AC 的值.例31.(2022·湖南·高三阶段练习)在ABC 中,内角A ,B ,C 满足22222a b c +=且90B ≠︒. (1)求证:tan 3tan C A =; (2)求111tan tan tan A B C++的最小值.例32.(2022·全国·高三专题练习)已知三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,且222tan tan tan a b c A B Cλλ+=>(1). (1)当,14A a π==,2λ=时,求c 的值;(2)判断ABC 的形状.例33.(2022·湖北·高三开学考试)在ABC 中,内角,,A B C 满足2222sin sin 2sin A B C +=. (1)求证:tan 3tan C A =; (2)求123tan tan tan A B C++最小值.例34.(2022·江苏南京·高三开学考试)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知222222a b a b c c ab -+-=. (1)若4C π=,求A ,B ;(2)若△ABC 为锐角三角形,求2cos ab B的取值范围.例35.(2022·全国·高三专题练习)已知锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若向量(,sin )m a b C =-,(3,sin sin )n c b A B =-+,(0)m n λλ=≠,则1tan 24b Cc +的最小值为( )A B .C D例36.(2022·山西吕梁·高三阶段练习)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且22222a c b +=,则tan tan BC=______.例37.(2022·河南安阳·高三阶段练习(文))在ABC 中,角,,A B C 所对的边分别为,,a b c ,若113tan tan sin B C bc A+=⋅,且()1sin sin 2C B A -=,则22c b -=__________.核心考点六:四边形定值和最值 【规律方法】正常的四边形我们不去解释,只需多一次余弦定理即可,我们需要注意一些圆内接的四边形,尤其是拥有对角互补的四边形,尤其一些四边形还需要引入托勒密定理.勒密定理:在四边形ABCD 中,有AB CD AD BC AC BD ⋅+⋅≥⋅,当且仅当四边形ABCD 四点共圆时,等号成立.【典型例题】例38.(2022·甘肃·兰州西北中学高三期中(理))在四边形ABCD 中,2,3AB BC CD AD ====,则四边形ABCD 面积的最大值为______.例39.(2022·江苏无锡·高三期中)如图,在平面四边形ABCD 中,cos AB BD ABD =∠.(1)判断ABD △的形状并证明;(2)若AB =,BC =,12BC =,求四边形ABCD 的对角线AC 的最大值.例40.(2022·山西忻州·高三阶段练习)在平面四边形ABCD 中,20AB AD ==,π3BAD ∠=,2π3BCD ∠=.(1)若5π12ABC ∠=,求BC 的长; (2)求四边形ABCD 周长的最大值.例41.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数()((1sin cos 1sin cos f x x x x x ⎡⎤⎡⎤=-⋅-⎣⎦⎣⎦.(1)求()f x 的最小正周期T 和单调递减区间;(2)四边形ABCD 内接于⊙O ,BD =2,锐角A 满足314A f ⎛⎫=- ⎪⎝⎭,求四边形ABCD 面积S 的取值范围.例42.(2022·辽宁·朝阳市第一高级中学高三阶段练习)如图,在平面凹四边形ABCD 中,=2AB ,=3BC ,60B ∠=︒.(1)若sin sin AD A CD C =且=1AD ,求凹四边形ABCD 的面积; (2)若120ADC ∠=︒,求凹四边形ABCD 的面积的最小值.例43.(2022·全国·高三阶段练习(理))如图,在平面四边形ABCD 中,AD CD ⊥,()090BAD BCD θθ∠=∠=<<,6AB BC +=.(1)若=2BC AB ,75θ=,求对角线AC 的长;(2)当AD CD =,=3BC 时,求平面四边形ABCD 的面积的最大值及此时θ的值.例44.(2022·上海·华师大二附中高三开学考试)设()()cos sin f x x x ϕ=--,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,已知03f π⎛⎫= ⎪⎝⎭. (1)求()f x 的最小值;(2)已知凸四边形ABCD 中,()114,7AB AC AD f A ====,求ABCD 面积的最大值.核心考点七:边角特殊,构建坐标系 【规律方法】利用坐标法求出轨迹方程 【典型例题】例45.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .若2a +2228b c +=,则ABC △的面积的最大值为______.【解析】:方法1:如图,在ABC ∆中,以线段AB 所在的直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,则,02c A ⎛⎫- ⎪⎝⎭,,02c B ⎛⎫ ⎪⎝⎭,设(,)C x y ,得222c x y ⎡⎤⎛⎫-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦222822c x y c ⎡⎤⎛⎫++=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,整理得222544x y c +=-,当ABC ∆面积最大时0x =,故12ABC S c ∆=⨯=285c =时,ABC ∆.方法2:如图,设AD x =,BD y =,CD h =,由22228a b c ++=,得()()22222(h y h x x +++++2)8y =,即222222()8h x y x y ++++=,又2222x yx y ++222()(2x y x y ++当且仅当x y =时取等号),所以2252()82h x y ++,又1()2ABC S x y h x∆=+=+22y =⨯1)2x y⎤+=⎥⎦15)25x y⎤+⨯⨯⎥⎦2252()25225h x y++(当且仅当)x y+=时,等号成立,即h,将h=与x y=代人222222()8h x y x y++++=中,得x y==⎭.所以ABC∆.方法3:由三角形面积公式,得1sin2ABCS ab C∆=,即()222222211sin1cos44ABCS a b C a b C∆==-,由22228a b c++=,得22282a b c+=-,由余弦定理,得283cos2cCab-=,所以()222222211sin1cos44ABCS a b C a b C∆==-=()22222222831831142416cca b a bab⎡⎤-⎛⎫-⎢⎥⋅-=-⎪⎢⎥⎝⎭⎣⎦()()2222242835161616a b c cc+--=-+(当且仅当a b=时取等号),当285c=时,42516cc-+,取得最大值45,即245ABCS∆,所以ABC∆面积的最大值为(也可以用基本不等式求2ABCS∆的最大值,即42516ABCcS∆=-+()2225165145165c cc-=⋅,所以ABC∆).方法4:在ABC∆中,由余弦定理,得2222cosc a b ab C=+-,由22228a b c++=,得()222222cos8a b a b ab C+++-=,即()22384cosa b ab C+=+,又222a b ab+,所以84cos6ab C ab+,即(32cos)4ab C-,故432cosabC-,又1sin2ABCS ab C∆=,所以2sin32cosABCCSC∆-,令2sin()32cosxf xx=-,(0,)xπ∈,得26cos4()(32cos)xf xx-'=-,令6cos40x-=,得2cos3x=,即当2cos3x=时,sin x=ABC∆.例46.在ABC△中,角A,B,C所对的边分别为a,b,c.若a b==ABC△所在的平面内存在点M ,使得2223MA MB MC +==3,则ABC △的面积的最大值为______.【解析】:以AB 所在直线为x 轴,AB 边的垂直平分线为y 轴,建立如图所示的平面直角坐标系,设(,0)A m -,(,0)B m ,(0,)C n ,(,)M x y ,0m >,0n >.由223MA MB +=,得2222()()3x m y x m y +++-+=,即22232x y m +=-①,又21MC =,故22()1x y n +-=②,其中①式可以看作以(0,0)的圆的轨迹方程,②式可以看作以(0,)n 为圆心,半径为1的圆的轨迹方程,由题意知两圆有公共点,即点M ,则2311(3)2n m -③,又a b =得223m n +=④,由③,④得223016m <,因为ABC S mn ∆=,所以()22223ABCSm n m∆==-,2223924m m ⎛⎫=--+⎪⎝⎭,当22316m =时,2ABC S ∆取得最大值575256,故BC S ∆的最大值核心考点八:利用正、余弦定理求解与三角形的周长、面积有关的问题 【规律方法】与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin 222S ab C ac B bc A ===,一般是已知哪一个角就使用哪个公式.【典型例题】例47.(2022·重庆一中高三期中)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,且满足()22sin cos cos B A C B =-+.(1)证明:a ,b ,c 成等比数列;(2)若a c >且22252a cb +=,ABC ABC 的周长.例48.(2022·山东聊城·高三期中)已知ABC 中,A 、B 、C 所对边分别为a 、b 、c ,且2b a =,3c =. (1)若2π3C =,求ABC 的面积; (2)若2sin sin 1B A -=,求ABC 的周长.例49.(2022·山西·高三阶段练习)在①cos sin c A C =;②()(sin sin )()sin a b A B c C -+=-;③3cos cos b A a B c +=+这三个条件中任选一个,补充在下面的问题中,并解决该问题.问题:在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足___________. (1)求角A 的大小;(2)若D 为线段CB 延长线上的一点,且2,CB BD AD AC ===,求ABC 的面积.例50.(2022·云南云南·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(cos sin )b c A A =-.(1)求角C ;(2)若c =,D 为边BC 的中点,ADC △的面积1S =且B A >,求AD 的长度.例51.(2022·全国·武功县普集高级中学模拟预测(理))如图,△ABC 中,点D 为边BC 上一点,且满足AD CDAB BC=.(1)证明:πBAC DAC ∠+∠=;(2)若AB =2,AC =1,BC =ABD 的面积.核心考点九:利用正,余弦定理求解三角形中的最值或范围 【规律方法】对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.【典型例题】例52.(2022·黑龙江·大庆实验中学高三开学考试)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()2sin 2sin 2sin a c A c a C b B -+-=.(1)求B ;(2)若ABC 为锐角三角形,且2b =,求ABC 周长的取值范围.例53.(2022·宁夏六盘山高级中学高三期中(理))已知向量()cos ,sin a x x =,()3sin ,sin =b x x ,函数()12=⋅-f x a b .将函数()f x 的图像向左平移π4个单位长度后得到函数()g x 的图像.(1)求函数()g x 的零点;(2)若锐角ABC 的三个内角,,A B C 的对边分别是a ,b ,c ,且()1f A =,求b ca+的取值范围.例54.(2022·山东菏泽·高三期中)已知函数()()πsin cos sin π2f x x x x x m ⎛⎫=--+ ⎪⎝⎭.(1)在下列三个条件中选择一个作为已知,使得实数m 的值唯一确定,并求出使函数()f x 在区间[]0,a 上最小值为12-时,a 的取值范围;条件①:()f x 的最大值为1;条件②:()f x 的一个对称中心为7π,012⎛⎫⎪⎝⎭;条件③:()f x 的一条对称轴为π3x =.(2)若12m =-,在锐角ABC 中,若()1f A =,且能盖住ABC 的最小圆的面积为π,求+AB AC 的取值范围.例55.(2022·河南·汝阳县一高高三阶段练习(理))已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos sin sin cos a A A B b B =+,且ab .(1)求角C 的大小;(2)若△ABC 为锐角三角形,且2c =,求△ABC 面积的取值范围.例56.(2022·湖南·安仁县第一中学模拟预测)在,ABC 中内角A ,B ,C 所对应的边分别为,,.a b c 已知22cos 2sin sin 12A B A B -⎛⎫-= ⎪⎝⎭ (1)求角C 的大小. (2)若1c =,求ABCS 的最大值.例57.(2022·山东·日照市教育科学研究中心高三期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点D 满足3BD BC =,且0AD AC ⋅=. (1)若b =c ,求A 的值; (2)求B 的最大值.例58.(2022·河南·驻马店市第二高级中学高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知()()22232cos b c b c a abc C -+-=.(1)求tan A ;(2)若b c +=ABC 面积的最大值.例59.(2022·湖北黄冈·高三阶段练习)在①πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭;②S BA CA =⋅;③tan (2)tan c A b c C =-.三个条件中选一个,补充在下面的横线处,并解答问题.在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,ABC 的面积为S ,且满足___________ (1)求A 的大小;(2)设ABC 的面积为D 在边BC 上,且2BD DC =,求AD 的最小值.【新题速递】一、单选题1.(2022·河南驻马店·高三期中(文))在ABC 中,已知30B =︒,1b =,则AB AC ⋅的最小值为( ) A .-1B .14-C .13-D .12-2.(2022·黑龙江·大庆实验中学高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知()()()sin sin sin sin a b A B c C B +-=+,若角A 的内角平分线AD 的长为3,则4b c +的最小值为( )A .21B .24C .27D .363.(2022·山西·高三阶段练习)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .点D 为BC 的中点,π1,3AD B ==,且ABC c =( )A .1B .2C .3D .44.(2022·山东菏泽·高三期中)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos sin 0a C C b c --=,则ABC 外接圆面积与ABC 面积之比的最小值为( ).A B C D5.(2022·湖北·高三期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c tan tan A B =+,下列结论正确的是( ) A .6A π=B .当2a =,4c =时,ABC 的面积为C .若AD 是BAC ∠的角平分线,且AD =112b c+=D .当b c -=ABC 为直角三角形6.(2022·贵州·模拟预测(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,D 是边AB 上一点,CD 平分ACB ∠,且CD =cos cos 2cos a B b A c C +=,则2a b +的最小值是( )A .4+B .6C .3+D .47.(2022·宁夏·银川一中高三阶段练习(理))已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 是锐角三角形,且满足()()0b a a b ac -+-=,若△ABC 的面积2S =,则()()c a b c b a +-+-的取值范围是( )A .()88, B .()0,8C .⎝D .8)8.(2022·重庆·西南大学附中高三阶段练习)已知O 是三角形ABC 的外心,若()2AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin B C +=m 的最大值为( ) A .6 B .65C .145D .3二、多选题9.(2022·江苏南通·高三期中)在圆O 的内接四边形ABCD 中,2AB =,6BC =,4CD DA ==,则( )A .27BD =B .四边形ABCD 的面积为C .12AO BD ⋅=D .16AC BD ⋅=10.(2022·江苏淮安·高三期中)在ABC 中,角A,B,C 所对的边分别为,,a b c ,若2228a b c ++=,则下列四个选项中哪些值可以作为三角形的面积( )AB C D 11.(2022·湖北·高三阶段练习)已知ABC 外接圆的面积为π,内角A ,B ,C 的对边分别为a ,b ,c ,且sin A ,sin B ,sin C 成等比数列,设ABC 的周长和面积分别为P ,S ,则( )A .π03B <≤B .0b <≤C .0P <≤D .0S <≤12.(2022·山西太原·高三期中)已知,,a b c 分别是ABC 内角,,A B C 的对边,cos 0C <,且tan bB c=,则下列结论正确的是( ) A .06B π<<B .sin cos 0BC +=C .5cos cos cos (1,]4A B C ++∈D .5cos cos cos (1,]4A B C ++∈-三、填空题13.(2022·四川成都·高三阶段练习(文))在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若2sin 3tan ,2c B a A a ==;则当角A 最大时,ABC 的面积为______.14.(2022·四川南充·高三期中(文))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若()sin sin2B Ca A Cb ++=,且ABC 内切圆面积为4π,则ABC 周长的最小值是______. 15.(2022·安徽·砀山中学高三阶段练习)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,5sin()cos 06a B b A ππ⎛⎫++-= ⎪⎝⎭,10a =,若点M 满足25BM BC =,且MAB MBA ∠=∠,则AMC 的面积为_________________.16.(2022·全国·高三专题练习)已知A 、B 、C 、D 四点共圆,且AB =1,CD =2,AD =4,BC =5,则P A 的长度为______.四、解答题17.(2022·黑龙江·哈师大附中高三阶段练习)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 是ABC 的面积,()222sin SB C a c +=-.(1)证明:A =2C ;(2)若a =2,且ABC 为锐角三角形,求b +2c 的取值范围.18.(2022·河北·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足)cos cos 2sin a C c A b B +=,且c b >.(1)求角B ;(2)若b =ABC 周长的取值范围.19.(2022·湖北·高三期中)如图,在平面凹四边形ABCD 中,2AB =,3BC =,120ADC ∠=,角B 满足:(1sin cos )(cossin )cos 222B B BB B ++-=.(1)求角B 的大小;(2)求凹四边形ABCD 面积的最小值.20.(2022·湖北襄阳·高三期中)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知sin()cos .B C a B c ++=(1)求角A 的大小;(2)若ABC 为锐角三角形,且6b =,求ABC 面积的取值范围.21.(2022·湖北·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且()2c a a b =+.(1)求证:2C A =;(2)若ABC 为锐角三角形,求sin 3sin B A +的取值范围.22.(2022·安徽·砀山中学高三阶段练习)在ABC 中,sin sin sin sin sin sin sin C B A BA B C-+=+,(1)求角C 的大小;(2)求sin 22πsin 4B B +⎛⎫+ ⎪⎝⎭的取值范围.。