ansys workbench 2022有限元分析入门与提高

合集下载

学会使用AnsysWorkbench进行有限元分析和结构优化

学会使用AnsysWorkbench进行有限元分析和结构优化

学会使用AnsysWorkbench进行有限元分析和结构优化Chapter 1: Introduction to Ansys WorkbenchAnsys Workbench是一款广泛应用于工程领域的有限元分析和结构优化软件。

它的功能强大,能够帮助工程师在设计过程中进行力学性能预测、应力分析以及结构优化等工作。

本章节将介绍Ansys Workbench的基本概念和工作流程。

1.1 Ansys Workbench的概述Ansys Workbench是由Ansys公司开发的一套工程分析软件,主要用于有限元分析和结构优化。

它集成了各种各样的工具和模块,使得用户可以在一个平台上进行多种分析任务,如结构分析、热分析、电磁分析等。

1.2 Ansys Workbench的工作流程Ansys Workbench的工作流程通常包括几个基本步骤:(1)几何建模:通过Ansys的几何建模功能,用户可以创建出需要分析的结构的几何模型。

(2)加载和边界条件:在这一步骤中,用户需要为结构定义外部加载和边界条件,如施加的力、约束和材料特性等。

(3)网格生成:网格生成是有限元分析的一个关键步骤。

在这一步骤中,Ansys Workbench会将几何模型离散化为有限元网格,以便进行分析计算。

(4)材料属性和模型:用户需要为分析定义合适的材料属性,如弹性模量、泊松比等。

此外,用户还可以选择适合的分析模型,如静力学、动力学等。

(5)求解器设置:在这一步骤中,用户需要选择适当的求解器和设置求解参数,以便进行分析计算。

(6)结果后处理:在完成分析计算后,用户可以对计算结果进行后处理,如产生应力、位移和变形等结果图表。

Chapter 2: Finite Element Analysis with Ansys Workbench本章将介绍如何使用Ansys Workbench进行有限元分析。

我们将通过一个简单的示例,演示有限元分析的基本步骤和方法。

ansys有限元分析基本流程

ansys有限元分析基本流程

A N S Y S有限元分析基本流程-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章实体建模第一节基本知识建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。

建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。

一、实体造型简介1.建立实体模型的两种途径①利用ANSYS自带的实体建模功能创建实体建模:②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。

2.实体建模的三种方式(1)自底向上的实体建模由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。

(2)自顶向下的实体建模直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。

(3)混合法自底向上和自顶向下的实体建模可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。

自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。

二、ANSYS的坐标系ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。

①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。

②显示坐标系:定义了列出或显示几何对象的系统。

③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。

④单元坐标系:确定材料特性主轴和单元结果数据的方向。

1.全局坐标系全局坐标系和局部坐标系是用来定位几何体。

在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。

总体坐标系是一个绝对的参考系。

ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。

有限元分析ANSYS简单入门教程

有限元分析ANSYS简单入门教程

有限元分析ANSYS简单入门教程有限元分析(finite element analysis,简称FEA)是一种数值分析方法,广泛应用于工程设计、材料科学、地质工程、生物医学等领域。

ANSYS是一款领先的有限元分析软件,可以模拟各种复杂的结构和现象。

本文将介绍ANSYS的简单入门教程。

1.安装和启动ANSYS2. 创建新项目(Project)点击“New Project”,然后输入项目名称,选择目录和工作空间,并点击“OK”。

这样就创建了一个新的项目。

3. 建立几何模型(Geometry)在工作空间内,点击左上方的“Geometry”图标,然后选择“3D”或者“2D”,根据你的需要。

在几何模型界面中,可以使用不同的工具进行绘图,如“Line”、“Rectangle”等。

4. 定义材料(Material)在几何模型界面中,点击左下方的“Engineering Data”图标,然后选择“Add Material”。

在材料库中选择合适的材料,并输入必要的参数,如弹性模量、泊松比等。

5. 设置边界条件(Boundary Conditions)在几何模型界面中,点击左上方的“Analysis”图标,然后选择“New Analysis”并选择适合的类型。

然后,在右侧的“Boundary Conditions”面板中,设置边界条件,如约束和加载。

6. 网格划分(Meshing)在几何模型界面中,点击左上方的“Mesh”图标,然后选择“Add Mesh”来进行网格划分。

可以选择不同的网格类型和规模,并进行调整和优化。

7. 定义求解器(Solver)在工作空间内,点击左下方的“Physics”图标,然后选择“Add Physics”。

选择适合的求解器类型,并输入必要的参数。

8. 运行求解器(Run Solver)在工作空间内,点击左侧的“Solve”图标。

ANSYS会对模型进行求解,并会在界面上显示计算过程和结果。

Ansys Workbench有限元分析

Ansys Workbench有限元分析

Ansys Workbench培训大纲 Ansys有限元分析Ansys Workbench的基础知识,包括基本操作、几何建模方法、网格划分方法、mechanical基础等内容;Ansys Workbench的工程应用,包括线性静态结构分析、模态分析、谐响应分析、随机振动分析、瞬态动力学、显示动力学分析、热分析、线性屈曲分析和结构非线性分析、接触分析及流体动力学分析等相关知识1. Workbench技术Workbench技术特点CAD-CAE协同仿真概述DesignModeler建模功能综述实体模型的建立,板壳、梁模型的建立DM几何修补工具,创建参数化模型,DM与DS的双向整合针对有限元分析的几何建模技巧与特殊要求从CAD导入几何模型2.DesignModeler建模DM 用户界面DM 草图模式DM 3D几何体DM高级3D几何体DM 概念建模DM 参数化模型3.DesignSimulation基本架构和分析流程DS基础DS通用前处理: 几何模型导入, 接触,网格划分,命名选择,坐标系DS高质量的有限元网格划分技术和使用技巧DS结构静力线性分析的基本流程和使用技巧DS各种工程载荷和边界条件的处理方法DesignSimulation的非线性概述材料、几何、接触非线性的基本过程与应用技巧4.DesignSimulation基本架构和分析流程DS结果后处理:查看,显示,输入结果,结果组合DS如何提高有限元分析的精度DS与CAD软件的交互性及参数传递DS通过参数管理器和多工况多方案的优化方法快速完成分析5.DesignSimulation的工程分析类型疲劳分析动力学分析:瞬态等分析基本过程与技巧DesignSimulation稳态热分析:热分析基础,基本的热传递分析,热分析模式,实例分析:建模,求解及后处理DesignSimulation瞬态热分析:时间与载荷步,子步及平衡迭代,收敛准则,初始温度,阶跃及渐变载荷输出控制,查看瞬态分析结果,耦合场分析:热应力分析有限元基本概念把一个原来是连续的物体划分为有限个单元,这些单元通过有限个节点相互连接,承受与实际载荷等效的节点载荷,并根据力的平衡条件进行分析,然后根据变形协调条件把这些单元重新组合成能够整体进行综合求解。

Ansys+Workbench教程有限元

Ansys+Workbench教程有限元

创建、打开、 创建、打开、保存文档
File菜单或者工具条的 1、创建一个新文档。选择File—New命令。 2、 打开文档。选择File—Open命令。 3 3、保存文档。选择File—Save或Save As命令, File—Save Save As 一般保存为.dsdb格式的文档。
编辑目标
用户可以对给定的目标进行复制、 粘贴、剪切等常规操作。使用Edit菜单 中的各项命令。
导入模型
本手册对该步骤作出如下的规定: 3、导入的文件为.stp格式的文件。 4、导入模型时,路径必须为英文路径。

建立局部坐标系
目的:便于施加载荷与约束 A 结构树中的操作 1、在结构树中添加坐标系分支 选中结构树的Model,点击右键,选取Insert-Coordinate Systems, 便在该分支中插入了该项,展开该项出现Global Coordinate System, 此为总体坐标系。
网格控制
目的: 目的:实现几何模型 原则: 原则:整体网格控制 有限元模型的转化 局部网格细化
用户需要权衡计算成本和网格划分份数之间的矛盾。细密的网格可以 使结果更精确,但是会增加计算时间和需要更大的存储空间。由于有限元 分析是依靠节点来传递载荷和约束,所以网格质量的好坏直接影响到求解 结果的准确度,网格划分是至关重要的前处理步骤之一。 一般如果不对模型进行网格控制,在求解开始时会自动生成系统默认 的网格。但此时的网格质量一般无法满足求解精度的要求,为获得高质量 的网格,一般先从整体控制网格然后再对局部网格进行细化。
显示/ 显示/隐藏目标
1、隐藏目标 在图形窗口的模型上选择一个目标,单击鼠标右键,在弹出的选 项里选择 ,该目标即被隐藏。用户还可以在结构树中选取一 来隐藏目标。 当一个目标被隐 个目标,单击鼠标右键,选择 2、显示目标 在图形窗口中单击鼠标右键,在弹出的选项里选择Go To— Hidden Bodies in Tree,系统自动在结构树Geometry项中弹出被隐 藏的目标,以蓝色加亮方式显示,在结构树中选中该项,单击右键, 选择 显示该目标。

有限元分析ANSYS简单入门教程

有限元分析ANSYS简单入门教程
有USER(用户自定义,默认 )SI(国际单位制)、BFT(英 制)等
10
3、实例练习
练习 -带孔矩形板(续)
交互操作
3. 设定分析模块. a. Main Menu: Preferences b. 选择 Structural. c. 选择 OK.
解释
使用“Preferences” 对话框 选择分析模块,以便于对菜单 进行过滤。如果不进行选择, 所有的分析模块的菜单都将显 示出来。例如这里选择了结构 模块,那么所有热、电磁、流 体的菜单将都被过滤掉,使菜 单更简洁明了.
解释
3、实例练习
交互操作
6. 定义材料属性.
a. Preprocessor > Material Props > Constant- Isotropic
(各向同性)
b. 选择 OK to 定义材料 1.
c. 在EX框中输入2e5(弹 性模量).
d.在PRXY框中输入0.3 (泊松比).
f. 选择OK 定义材料属性 并关闭对话框.
-Modeling- Create > -Areas > Circle > -Solid Circle
f. 输入圆心坐标WP X值100, WP Y值50,半径Radius值 20.
g. 选择 OK.
h. Main Menu: Preprocessor >
-Modeling- Operate > Booleans- > Subtract > Areas
结果数据 - ANSYS计算的结果(位移、应力、应变、 温度等).
2、文件管理
ANSYS数据库 (续)
1-4b. 存储数据库操作. 存储操作将数据从内存以数据库文件(以db为扩展名) 写入硬盘,是数据库当前状态的一个备份.

ansys workbench 2022有限元分析入门与提高

ansys workbench 2022有限元分析入门与提高

ansys workbench 2022有限元分析入门与提高ANSYSWorkbench2022是一款很受欢迎的有限元分析软件,它能够帮助工程师快速解决各种类型的结构力学问题和复杂材料性质的分析问题。

本文将针对有限元分析的基础知识介绍ANSYS Workbench 2022,并以实际的例子探讨ANSYS Workbench 2022如何帮助工程师解决结构有限元分析中的问题。

1. ANSYS Workbench 2022有限元分析:软件简介ANSYS Workbench 2022是一款建立在ANSYS有限元解决器之上的强大的软件工具,可以帮助工程师解决许多结构力学问题和复杂材料性质的问题,比如振动和强度分析。

有限元分析是一种分析技术,它可以帮助研究工程师计算并分析各种不同类型的材料在不同环境下的行为。

ANSYS Workbench 2022包含了大量的有限元分析功能,使工程师能够对实际的物理系统进行有效的分析。

2. ANSYS Workbench 2022有限元分析:功能概述ANSYS Workbench 2022能够结合了有限元分析的众多功能,此外还提供了高度的可扩展性和易用性,使用户能够快速解决各种复杂的结构力学问题,具体功能如下:(1)多种结构力学分析:ANSYS Workbench 2022提供了多种不同类型的结构力学分析,比如强度分析、温度分析、振动分析、时域分析等,可以帮助研究工程师精确的计算物体的特性。

(2)网格划分:ANSYS Workbench 2022可以帮助研究者快速地对实际物体进行网格划分,并以其为基础进行数值模拟计算。

(3)对结果进行可视化:ANSYS Workbench 2022可以帮助研究者清楚地看到模拟结果,以便客观地理解结果。

3. ANSYS Workbench 2022有限元分析:实际案例下面以空气盒子为实际例子,介绍如何利用ANSYS Workbench 2022使用有限元分析来解决实际模型的问题。

基于ANSYS workbench的汽车传动轴有限元分析和优化设计

基于ANSYS workbench的汽车传动轴有限元分析和优化设计

基于ANSYS workbench的汽车传动轴有限元分析和优化设计使用ANSYS Workbench进行汽车传动轴的有限元分析和优化设计是一种常见的方法。

以下是基于ANSYS Workbench的汽车传动轴有限元分析和优化设计的一般步骤:1.创建几何模型:使用CAD软件创建传动轴的几何模型,并将其导入到ANSYS Workbench中。

确保几何模型准确、完整,并符合设计要求。

2.网格划分:对传动轴几何模型进行网格划分,将其划分为离散的单元。

选择合适的网格划分方法和单元类型,以确保模型的准确性和计算效率。

3.材料属性定义:定义传动轴所使用的材料的力学性质,如弹性模量、泊松比、密度等。

确保选择适当的材料模型,以准确模拟材料的行为。

4.载荷和约束定义:定义施加在传动轴上的载荷,如扭矩、轴向力等。

同时,定义约束条件,如固定轴承端点、自由转动等。

5.设置分析类型和求解器:根据实际情况选择适当的分析类型,如静态、动态、模态等。

配置求解器设置,选择合适的求解器类型和参数。

6.进行有限元分析:运行有限元分析,计算传动轴的应力、变形和振动等。

根据分析结果,评估传动轴的性能和强度。

7.优化设计:根据有限元分析的结果,对传动轴的结构进行优化设计。

通过调整传动轴的几何形状、材料或其他参数,以提高其性能。

8.重新进行有限元分析:对优化后的设计进行再次有限元分析,以验证优化结果。

如果需要,可以多次进行重复优化和分析的步骤。

9.结果评估和优化验证:评估优化结果的有效性,并验证传动轴在实际工况下的性能。

根据需求进行修正和改进。

请注意,基于ANSYS Workbench的有限元分析和优化设计需要一定的专业知识和技能。

ANSYS有限元分析步骤2

ANSYS有限元分析步骤2

前缀名 BEAM PLANE SOLID
2、按不同的分析类型可分为不同的单元库(是否为耦合分析) 例如:结构分析单元库、电磁场矢量单元库等
一、前处理
(3)单元的节点和自由度
1、节点
节点是有限元之间虚拟的连接点,是有限元处理载荷时的重要依 据。它是构建模型的最小的元素,由节点构成线,线构成面,面 而构成体。同时节点也是ANSYS中计算各种物理量的最小单元, 例如solid70单元是8节点, 一个单元就是一个立方体, 节点就是这 个立方体上的8个顶点。这个立方体单元受到的外力作用都要通过 节点来加载, 外力的作用不是直接作用在这个单元上, 而是通过节 点来使这个立方体单元发生变形。
实体建模—体(圆柱)
Solid Cylinder:通过圆柱底面圆心和半径,以及圆柱的 长度定义圆柱
Hollow Cylinder:通过空心圆柱底面圆心和内外半径, 以及长度定义空心圆柱
Partial Cylinder:通过空心圆柱底面圆心和内外半径, 以及圆柱开始和结束角度、长度定义任意弧长空心圆柱
布尔操作—Overlap交迭运算
交迭运算用于连接两个或多个图形,以生成三个或更多个新的图形的集 合。交迭命令除了在交迭域周围生成了多个边界外,与加运算非常类似。交 迭运算生成的是多个相对简单的区域,而加运算生成一个相对复杂的区域。
注意:交运算区域必须与原始图形有相同的维数
布尔操作—Glue粘接运算
实体建模—面(正多边形)
Triangle:正三角形 Square:正方形 Pentagon:正五边形 Septagon:正九边形 Octagon:正八边形 By Inscribed Rad:设置内切圆的半径来绘制正多边形 By Circumscr Rad:设置外接圆的半径来绘制正多边形 By Side Length:根据边长来绘制正多边形 By Vertices:在工作平面上选取顶点绘制多边形

02-03有限元分析基础-ANSYSworkbench基础操作

02-03有限元分析基础-ANSYSworkbench基础操作

四、有限元分析中的单位制
1.在ANSYS Workbench中需要通过主菜单中的 Unit设置单位;
2.在经典ANSYS中,通过命令/Units,Label 定义,其中Label表示单位制的名称;常用有: SI:国际单位制(m,kg,s,K) 其他单位见书上P47
总结
主要介绍ANSYS Workbench基本操作的界 面,怎么通过工具箱选取要分析的类型,通 过建模、划分网格、定义边界条件(对于静 力学分析来说有约束、力),然后增加求解 条件,查看分析结果。 注意分析过程中,单位的设置。
三、ANSYS Workbench基本操作
2.ANSYS Workbench操作界面介绍
主菜单
项目规划区 工具箱 消息区域 定制区域
进程
三、ANSYS Workbench基本操作
ቤተ መጻሕፍቲ ባይዱ2.1 主菜单区
三、ANSYS Workbench基本操作
2.2 工具箱区
三、ANSYS Workbench基本操作
2.3 项目规划区 可用一个流程图来定义一个或一组工作项 目。 可从Analysis Systems中拖拽所要分析的 类型。
三、ANSYS Workbench基本操作
2.3 项目规划区
表示数据确定 待更新 修正或更新 上游数据变化,须刷新 缺少数据
操作时间
熟悉软件的启动方式 熟悉ANSYS Workbench操作界面 了解各个工具条的拖拽使用 熟悉各个符号的意思
车辆结构有限元分析
常熟理工学院(东南校区)
汽车工程学院——胡顺安
第二章 有限元分析基础
有限元分析理论基础 ANSYS Workbench基本操作 有限元分析中的单位制

ANSYS有限元分析基本步骤

ANSYS有限元分析基本步骤

h
16
2.3 加载和求解
2.3.3 选择求解方法 选择合适的求解方法GUI操作如下:【Main Menu】/【Solution】(求解器)/【Analysis Type】(分析类型 )/【Sol’n Controls】(求解控制),弹出【Solution Controls】对话框,如图2-15所示。
h
23
2.4 结果后处理
图2-5
h
24
第2章
有限元分析基本步骤
1
h
基本步骤
2.1 ANSYS有限元分析典型步骤 2.2 有限元模型的建立 2.3 加载和求解 2.4 结果后处理
h
2
2.1 ANSYS有限元分析典型步骤
ANSYS有限元典型分析大致分为三大步骤: 1)建立有限元模型; 2)加载和求解; 3)结果后处理和结果查看。
h
3
2.2 有限元模型的建立
h
10
2.2 有限元模型的建立
图2-1
h
11
2.2 有限元模型的建立
• 单击【Isotropic】,弹出【Linear Isotropic Properties for Material Number 1】对话框,见图2-2。在【EX】输入栏中 输入弹性模量,在【PRXY】输入栏中输入泊松比。如图2-2所示。
h
21
图2-4
h
22
2.4 结果后处理
时间历程后处理器 进入时间历程后处理器的方法如下: • GUI: 【Main Menu】/【TimeHist Postproc】(时间历程后处理器)。图2-4所示为在通用后处理器中显示的某平面应力 问题的分析结果示意图。
图2-5为某节点反作用力与时间的关系图。

ANSYS Workbench 2020有限元分析从入门到精

ANSYS Workbench 2020有限元分析从入门到精

作者介绍
同名作者介绍
这是《ANSYS Workbench 2020有限元分析从入门到精通(升级版)》的读书笔记模板,暂无该书作者的介 绍。
读书笔记
读书笔记
这是《ANSYS Workbench 2020有限元分析从入门到精通(升级版)》的读书笔记模板,可以替换为自己的 心得。
精彩摘录
精彩摘录
第13章接触分析
13.1接触分析简介 13.2项目分析1——虎钳接触分析 13.3项目分析2——装配体接触分析 13.4本章小结
第14章特征值屈曲分析
14.1特征值屈曲分析简介 14.2项目分析1——钢管特征值屈曲分析 14.3项目分析2——金属容器特征值屈曲分析 14.4项目分析3——工字梁特征值屈曲分析 14.5本章小结
本书以ANSYS Workbench 2020为操作平台,详细介绍软件的功能和应用,内容丰富,涉及面广,能使读者 在掌握软件操作的同时,也能掌握解决相关工程领域实际问题的思路与方法,并能自如地解决本领域所出现的问 题。全书分为5部分共19章,第1部分从ANSYS Workbench 2020平台的各个功能模块着手介绍常用命令的使用以 及几何建模、网格划分和后处理的相关知识;第2部分以项目范例为引导,主要讲解在Workbench平台中进行的结 构静力学分析、模态分析、谐响应分析、响应谱分析、瞬态动力学分析和随机振动分析等;第3部分作为结构有限 元分析的进阶部分,主要讲解在Workbench平台中进行的显示动力学分析、结构非线性分析、接触分析、线性屈 曲分析等;第4部分以项目范例为引导,主要讲解在Workbench平台中进行的热力学分析、疲劳分析、流体动力学 分析和结构优化分析等;第5部分主要介绍多物理场耦合分析中的电磁热耦合分析。本书工程实例丰富、讲解详尽, 内容循序渐进、深入浅出,适合不同基础的读者。

第二章ANSYS,workbench,有限元模拟,精华教程,入门与提高

第二章ANSYS,workbench,有限元模拟,精华教程,入门与提高

第二章 结构矩阵分析由于有限元方法起源于力学中的结构分析,本章的作用是通过三个典型问题说明有限元方法应用于结构分析时的一般步骤,并借此了解有限元方法的一些基本概念。

§2-1平面桁架(直接法,结构矩阵分析中常用的力法,处理静定问题,位移法,可处理静定&静不定)本节讨论的对象是图2-1所示的平面桁架。

组成桁架的各杆为等截面直杆,外载荷p 直接作用于杆的铰接点(结点)上。

为简单起见不妨设各杆的截面积均为A,材料的弹性模量均为E。

我们可按下述步骤求得桁架的变形和内力。

1、结构的离散化 对结点及单元编号取组成桁架的每根杆为一个单元(该问题本身为一离散结构的力学问题),以①, ②, ③ 加以编号;取杆的铰接点为结点,以1、2、3加以编号(总体结点序号)。

如图2-2所示,即:我们所讨论的桁架包括三个单元、三个结点。

各单元(杆)仅在结点处连接。

2、建立总体坐标系 并确定结点坐标和自由度为了描述结构的平衡需要建立一个坐标系,称为总体坐标系,以区别于以后出现的“局部坐标系”。

总体坐标系的选择原则上不受限制,但希望使用方便。

本节所选的总体坐标系示于图2-2,坐标原点与结点1重合。

以u, v 分别表示沿 x, y 方向的位移分量, p, q 分别表示力沿 x, y 轴的力分量(投影)。

在总体坐标系中各结点的坐标为:它们将作为程序的输入数据(几何参数)。

每个结点有两个自由度,对结点1、2、3分别为若暂时不考虑支承约束条件,整个结构的结点自由度为3、单元分析(建立结点力与结点位移之间的关系) 取一个一般性的单元,设它的两个结点在结构中的编号为i, j (单元内部的结点序号)。

由材料力学可知,杆的轴向刚度为EA/L 。

其中L为杆的长度:图2-1x u p 图2-2图2-3 (x 1, y 1)=(0, 0 )、(x 2, y 2)=(a, a )、(x 3, {u 1,v 1}T 、 {u 2 ,v 2}T 、 {u 3, v 3}T {u 1 v 1 u 2 v 2 u 3 v 3 }T(1)单元局部坐标系现选取一典型单元对其进行单元分析,对所分析的单元按如下方式建立一个坐标系: 原点:与结点i 重合, x ’轴:沿 i ,j 方向, y ’轴:与x ’轴垂直。

有限元分析基础ANSYS基础操作共30页文档

有限元分析基础ANSYS基础操作共30页文档
23、一切节省,归根到底都归Байду номын сангаас为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
有限元分析基础ANSYS基础操作
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈

ANSYSWorkbench入门基础

ANSYSWorkbench入门基础

ANSYSWorkbench入门基础开篇引用应力分析张教主的两段语录。

1.目前多数企业的分析结果不是由分析工程师承担责任,而是由设备设计工程师或者部门领导承担责任,因此有效地向非专业人士解答分析结果是分析工程师的职责!2.学软件不是要把每个功能都搞清楚用途,而是要去找到你需要的功能在哪里。

ANSYS Workbench是与ANSYS 经典(Mechanical APDL)并列的一款全新前端界面,可以对复杂机械系统的结构静力学、结构动力学、刚体动力学、流体动力学、结构热力学、电磁场以及耦合场等进行分析模拟。

1.求解问题描述首先熟悉下操作界面,主要有分析系统、组件系统及定制系统。

说明:系统除了绘图外,其余操作命令没有后退键,只能通过删除取消。

我们首先要明确需要应力分析的结构和分析的问题,压力容器无非就是考虑变形、位移、应力强度,应力线性化或自振周期等问题。

目的明确后,我们才能做到有的放矢。

压力容器有限元数值求解主要是结构静力学,模态分析以及之间的耦合分析。

2.仿真思路2.1 明确自己需要分析的问题,在工具栏中拖入项目向导栏。

2.2 按照模块的内容,依次完成:Engineering Data创建→Geometry创建/导入→Model(指定材料、指定接触类型,网格划分)→Setup(添加约束及载荷)→Solution(求总变形、应力强度、应力线性化)→Results。

3.Workbench 求解操作步骤3.1 Engineering Date 材料点击所需材料后方的+,出现书本的标记,则表示已经引入到工程中,可以作为几何模型的材料作为选择使用了。

材料库里面缺少镍、锆、钽等特种金属的材料库,对于材料库没有的材料我们需要新建材料。

通常我们需要定义材料特性:密度、泊松比、杨氏模量、热膨胀系数(根据需要)。

我们在选择材料性能的时候,往往会被下面一堆类似的参数弄得不知道怎么勾选,Isotropic 各向同性材料,材料属性可以在不同的方向测量,测量结果相同,即材料性质与所取方向无关。

有限元分析workbench

有限元分析workbench

添加约束2
在四个孔圆柱面(按住ctrl键选择四个圆柱表面) 上添加圆柱面约束,设置“Axial”方向为 “Free”,“Radial”和“Tangential”都为 “Fixed”。
添加载荷1
在端面上添加推力“Pressure”,力的大小为 “6.895MPa”。
添加载荷2
在圆柱面上添加轴承力“Bearing Load”,力的大 小为“5.1758e7N”,方向如图,可以点击红黑箭 头换向。
单击每个求解参数; 分别设置“mode”项内容为1至6。
单击“求解”命令图标
生成报告文件
保存分析结果
保存文件类型为“.dsdb”
有限元分析 ANSYS Workbench
TSINGHUA CADTC 2011-10-17
ANSYS Workbench
ANSYS Workbench是ANSYS开发的新一代 的CAE应用和开发平台,简称“AWE”。 与经典的ANSYS环境相比,具有友好的 WINDOWS风格界面,操作更加简单,易 学易用。
2
仿真的一般步骤:
1. 打开ANSYS Workbench软件或在其它CAD软件中打开内嵌的ANSYS Workbench软件。
2. 选择新建仿真(new Simulation)进入仿真环境。 3. 如果是直接打开的ANSYS Workbench软件,则导入CAD软件创建的几
何模型; 4. 添加材料信息; 5. 设定接触选项(对于装配件); 6. 设定网格划分参数并进行网格划分; 7. 选择分析类型,例如静态分析、模态等; 8. 施加载荷和约束; 9. 设定求解(结果)参数; 10. 进行求解; 11. 观察求解结果。
采用自动网格划分,单元尺寸为“10mm”

ansys workbench 2022有限元分析入门与提高

ansys workbench 2022有限元分析入门与提高

ansys workbench 2022有限元分
析入门与提高
ANSYS Workbench 2022有限元分析入门与提高包括以下内容:
1、建立工作空间:在Workbench中建立工作空间,定义坐标系,添加模型文件和数据,进行设置和定义。

2、建立有限元模型:使用ANSYS Parametric Design Language (APDL) 在Workbench环境中建立有限元模型,并设置材料属性,计算参数,设置单元类型,建立网格,建立边界条件和载荷,进行算例验证等。

3、计算和结果处理:运行分析计算,对计算结果进行处理,生成图像,绘制应力-应变曲线,优化设计参数,分析接触应力,确定材料属性等。

4、应用:应用有限元分析的知识和技巧,求解各类有限元分析问题,如梁柱系统,结构强度,静力学,热传导,流体力学,等等。

基于ANSYS Workbench的主轴箱有限元分析及优化设计

基于ANSYS Workbench的主轴箱有限元分析及优化设计
o tm i a i n i a e p i z to s t k n. Compa e o t e r s t i ie e e e t a a y i f o i i a e dso k, t y r d t h e ul of f n t l m n n l s s o rg n l h a t c s he d — n m i n t tc c a a t r r r a l m p o e a c a d s a i h r c e s a e g e ty i r v d. Ke y wo ds h a t c r : e dso k;s a i n l s s m o a n l s s o t i a i n d s g t tc a a y i ; d l a a y i ; p i z to e i n m
尺寸 P l为 8 4 5 7 . mm, 4 为 6 . 2 P 9 6 mm, 6 为 2 3 P 5.
4 mm, 6 P7为 3 4 5 mm, 行 圆 整 后 P1为 8 5 5 .4 进 7 mm ,
[ ]MigC n ,QagZ a ,T oH n n u neo iee t 5 n og i h o a a .If ec fd f n n l fr
4 8 2 0 .7
比 较
减 少
2 8l 3.
降 低
0. 0 7 07
提 高
2 7 9. 9
降 低
0. 1 74
f1 轴箱 优化 尺寸 对一 阶固有 频率 的灵 敏度 a主
5 结 束 语




首先 通过 对 主 轴 箱 进 行 有 限元 分 析 , 到 主轴 得
本 文建 立 了主 轴 箱 的 有 限 元 模 型 , 以铣 削 工 况

ANSYS有限元分析——课程

ANSYS有限元分析——课程

2)模态分析 - 计算线性结构的自振频率及振形. 谱分 析 是模态分析的扩展,用于计算由于随机振动引 起的结构应力和应变 (也叫作 响应谱或 PSD).
3)谐响应分析 - 确定线性结构对随时间按正弦曲线 变化的载荷的响应.
4)瞬态动力学分析 - 确定结构对随时间任意变化的 载荷的响应. 可以考虑与静力分析相同的结构非线 性行为.
1.2.4 ANSYS的三个基本功能模块 1、前处理模块 (1)实体建模:自顶向下和自低向上两种建模方法 (2)网格划分:延伸划分、映像划分、自由划分和自适
应划分。
2、求解模块 3、后处理模块POST1和POST2 1.2.5 ANSYS 10.0程序功能 (下一章节叙述)
第二章 ANSYS主要功能与模块
● 线性结构静力分析
● 非线性结构静力分析
♦ 几何非线性:大变形、大应变、应力强化、旋 转软化
♦ 材料非线性:塑性、粘弹性、粘塑性、超弹性、 多线性弹性、蠕变、肿胀等
♦ 接触非线性:面面/点面/点点接触、柔体/柔体 刚体接触、热接触
♦ 单元非线性:死/活单元、钢筋混凝土单元、非 线性阻尼/弹簧元、预紧力单元等
John Swanson 博士创建,是目前世界CAE行业最大公 司。
1.2.2 ANSYS10.0 创新之处 1.2.3 ANSYS 10.0 使用环境
ANSYS及ANSYS/LS-DYNA程序可运行与PC机、 NT工作站、UNIX工作站及巨型计算机等各类计算机 及操作系统中,其数据文件在其所有的产品系列和工 作平台上均兼容。并与多种CAD软件共享数据。
ANSYS程序自身有着较为强大三维建模能力,仅靠 ANSYS的GUI(图形界面)就可建立各种复杂的几何模型; 此外,ANSYS还提供较为灵活的图形接口及数据接口。 因而,利用这些功能,可以实现不同分析软件之间的模 型转换。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ansys workbench 2022有限元分析入门与提高
ANSYSworkbench2022ANSYS公司最新的有限元分析软件,是用于对各类工程仿真的全功能软件,可实施亚秒精度的计算,模拟复杂工况,用于传统的构分析、热分析、声学分析、流体分析、电磁场分析等,也可用于解决各种更具挑战性的工程问题。

本文将介绍ANSYS workbench 2022如何帮助用户入门有限元分析,也将提出学习建议,以便用户有效地提高有限元分析技能。

ANSYS workbench 2022有限元分析入门
ANSYS workbench 2022提供了一系列的初学者指南,通过简单的指导,可以帮助新手快速掌握有限元分析的基本概念和技术。

例如,通过使用“建模”模块,用户可以了解如何构建分析模型,如何设置材料属性和体积,以及如何定义节点、单元和其他分析参数。

此外,“ Solution”模块可以帮助用户了解如何设置求解参数,如构建参数、设定边界条件等。

另外,ANSYS Workbench 2022还可以帮助用户解决各种复杂的工程问题,例如多体动力学、大范围的多相流体动力学、复杂的材料响应分析以及复杂的时空响应分析等。

学习有限元分析技能提高
除了初学者指南,ANSYS Workbench 2022也提供了各种视频实例,用户可以通过视频实例了解有限元分析的各个细节,如如何使用POST2模块和Meshing模块,如何用ANSYS Workbench 2022设置新的分析,以及如何使用绘图工具进行数据可视化等。

此外,用户还可以通过网上或学术会议等,观看有关有限元分析的报告,以深入的理解分析技术,也可以参加各种培训课程,如《ANSYS Workbench 2022有限元分析实战》,让用户深入了解分析技术,从而提高应用有限元分析技能。

结论
总而言之,ANSYS Workbench 2022是一款强大的有限元分析软件,可以帮助用户快速入门,提升对有限元分析的认识。

但是,想要真正提高有限元分析技能,用户还需要参加培训课程,观看相关报告,积极参与网上讨论以及实践应用等,以实现有效提升。

相关文档
最新文档