高等数学公式-专插本资料

合集下载

专升本高数公式大全

专升本高数公式大全

专升本高数公式大全1.二次函数的图像方程:f(x)=a(x-h)²+k2.平面直角坐标方程:Ax+By+C=03.二次曲线方程:Ax² + By² + Cxy + Dx + Ey + F = 04.圆的标准方程:(x-a)²+(y-b)²=r²5.椭圆的标准方程:(x-a)²/b²+(y-b)²/a²=16.双曲线的标准方程:(x-a)²/b²-(y-b)²/a²=17.抛物线的标准方程:(x-a)²=4p(y-b)8.三角函数的正余弦和差公式:(1) sin(A ± B)= sinAcosB ± cosAsinB(2) cos(A ± B) = cosAcosB ∓ sinAsinB(3) tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)9.三角函数的倍角公式:(1) sin2A = 2sinAcosA(2) cos2A = cos²A - sin²A(3) tan2A = (2tanA) / (1 - tan²A)10.三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cosA) / 2](2) c os(A/2) = ±√[(1 + cosA) / 2](3) tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]注:±的选取根据A的象限确定。

11.三角方程的化简公式:(1) sin²x + cos²x = 1(2) 1 + tan²x = sec²x(3) 1 + cot²x = csc²x12.导数的基本公式:(1) (cf(x))' = cf'(x)(2)(f(x)±g(x))'=f'(x)±g'(x)(3)(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(4)(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²(5)(f(g(x)))'=f'(g(x))g'(x)(6)(f(x)⋅g(x)⋅h(x))'=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'( x)13.微分的基本公式:(1) dy = f'(x)dx(2) dy = dx/g'(y)(3) dy = p(x)dx + q(x)dx² + r(x)f'(x)14.积分的基本公式:(1) ∫cf(x)dx = c∫f(x)dx(2) ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx(3) ∫f'(x)dx = f(x) + C(4) ∫f'(g(x))g'(x)dx = f(g(x)) + C15.牛顿-莱布尼兹公式:∫[a, b]f(x)dx = F(b) - F(a)注:其中F(x)为f(x)的一个原函数。

专插本高等数学常用公式

专插本高等数学常用公式
z = f [u(x, y),v(x, y)] ∂z = ∂z ⋅ ∂u + ∂z ⋅ ∂v ∂x ∂u ∂x ∂v ∂x
当u = u(x, y),v = v(x, y)时,
du = ∂u dx + ∂u dy dv = ∂v dx + ∂v dy
∂x ∂y
∂x ∂y
高等数学复习公式
常数项级数:
高等数学复习公式
3、根据r1 , r2的不同情况,按下表写出(*)式的通解:
r1,r2的形式
(*)式的通解
两个不相等实根 ( p2 − 4q > 0)
y = c1er1x + c2er2x
两个相等实根 ( p2 − 4q = 0)
y = (c1 + c2 x)er1x
一对共轭复根 ( p2 − 4q < 0)
x
=
∫ csc2
xdx
=
−ctgx
+
C
∫ sec x ⋅tgxdx = sec x + C
∫ csc x ⋅ ctgxdx = −csc x + C
∫ a xdx = a x + C ln a
∫ shxdx = chx + C
∫ chxdx = shx + C
∫ dx = ln(x + x2 ± a2 ) + C x2 ± a2
1− tg 2α
sin 3α = 3sinα − 4sin3 α cos3α = 4 cos3 α − 3cosα tg3α = 3tgα − tg3α
1− 3tg 2α
·半角公式:
α sin

1− cosα cos α = ±

专升本高等数学公式定理大全

专升本高等数学公式定理大全

专升本高等数学公式定理大全一、导数相关公式和定理:1.基本导数公式:-常数函数导数为零:(k)'=0-幂函数导数:(x^n)'=n*x^(n-1)- 指数函数导数:(a^x)' = a^x * ln(a)- 对数函数导数:(log_a(x))' = 1 / (x * ln(a)) 2.常用导数公式:- sin(x)' = cos(x)- cos(x)' = -sin(x)- tan(x)' = sec^2(x)- cot(x)' = -csc^2(x)- sec(x)' = sec(x) * tan(x)- csc(x)' = -csc(x) * cot(x)- arcsin(x)' = 1 / sqrt(1 - x^2)- arccos(x)' = -1 / sqrt(1 - x^2)- arctan(x)' = 1 / (1 + x^2)3.高阶导数公式:-(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)-(f(g(x)))'=f'(g(x))*g'(x)-(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/g^2(x)4.微分中值定理:-罗尔定理:若函数在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则存在c∈(a,b),使得f'(c)=0。

-拉格朗日定理:若函数在[a,b]上连续,在(a,b)内可导,那么存在c∈(a,b),使得[f(b)-f(a)]/[b-a]=f'(c)。

-柯西中值定理:若函数u(x)和v(x)在[a,b]上连续,在(a,b)内可导,并且v'(x)≠0,那么存在c∈(a,b),使得[u(b)-u(a)]/[v(b)-v(a)]=u'(c)/v'(c)。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式全集在高等数学中,有许多重要的公式需要掌握。

下面是一些常用的高等数学公式全集:1.点与直线公式:1)点到直线的距离公式:设直线方程为Ax+By+C=0,点P(x0,y0)为直线外一点,则点P到直线的距离为d=,Ax0+By0+C,/√(A^2+B^2)。

2)点到直线的垂足坐标公式:设直线方程为Ax+By+C=0,点P(x0,y0)为直线外一点,点Q(x1,y1)为点P到直线的垂足,则x1=(B^2*x0-A*B*y0-A*C)/(A^2+B^2),y1=(-A*B*x0+A^2*y0-B*C)/(A^2+B^2)。

2.导数的四则运算:1)和差法则:(f+g)'=f'+g',(f-g)'=f'-g'。

2)积法则:(f*g)'=f'*g+f*g'。

3)商法则:(f/g)'=(f'*g-f*g')/g^24)复合函数法则:(f(g(x)))'=f'(g(x))*g'(x)。

3.不定积分的基本公式:1)幂函数不定积分公式:∫x^n dx = (x^(n+1)) / (n+1) + C,其中n不等于-12)指数函数不定积分公式:∫a^x dx = (a^x) / ln(a) + C,其中a为常数且a不等于13)三角函数不定积分公式:∫sin x dx = -cos x + C,∫cos x dx = sin x + C,∫sec^2 x dx = tan x + C。

4.定积分的基本公式:1)定积分的基本公式:∫[a, b]f(x) dx = F(b) - F(a),其中F(x)为f(x)的一个原函数。

2)分部积分公式:∫[a, b]u(x)v'(x) dx = u(x)v(x)∣[a, b] -∫[a, b]u'(x)v(x) dx。

5.泰勒级数展开:若函数f(x)在x=a处具有n阶导数,则泰勒级数展开可表示为f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn(x),其中Rn(x)为余项。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。

存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。

的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。

收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。

高等数学专升本公式集合

高等数学专升本公式集合

高等数学专升本公式集合以下是高等数学专升本常用公式集合:1.导数公式:1)反函数求导:如果y=f(x) (x在某区间上连续、可导),f'(x)≠0,且存在f'(x)的逆函数,则y=f^(-1)(x)在对应的区间上可导,且有(f^(-1))'(x) = 1 / f'(f^(-1)(x));2)乘积法则:(uv)' = u'v + uv';3)商法则:(u/v)' = (u'v - uv') / v^2;4)链式法则:(F(g(x)))' = F'(g(x)) * g'(x),其中F(u)是u的原函数。

2.积分公式:1)基本积分公式:∫x^n dx = x^(n+1) / (n+1) + C (这里C是常数);2)分部积分法:∫u dv = uv - ∫v du;3)替换法:设x=g(t),则dx=g'(t) dt,将dx替换为g'(t) dt 来进行积分。

3.泰勒级数公式:1)常用泰勒级数展开:- e^x = 1 + x + x^2 / 2! + x^3 / 3! + ...;- sin x = x - x^3 / 3! + x^5 / 5! - ...;- cos x = 1 - x^2 / 2! + x^4 / 4! - ...;- ln(1+x) = x - x^2 / 2 + x^3 / 3 - ...。

4.极限公式:1)常用极限:- lim(x→0) (sin x / x) = 1;- lim(x→∞) (1 + 1/x)^x = e;- lim(x→a) (f(x))^g(x) = lim(x→a) e^(g(x) * ln(f(x)))。

5.级数公式:1)常用级数:-等比数列求和:∑(n=0)^(∞) ar^n = a / (1-r),其中|r|<1;-幂级数求和:∑(n=0)^(∞) a(n)x^n,其中a(n)是常数。

专升本高等数学公式

专升本高等数学公式

专升本高等数学公式高等数学(专升本)是一门重要的学科,其中涉及了许多重要的公式和定理。

下面是一些在这门课程中常见的高等数学公式:一、极限1.基本极限公式:- 常数函数极限:lim(c) = c (c为常数)- 幂函数极限:lim(x^n) = a^n (n为常数)- 三角函数极限:lim(sin x) = sin a (a为常数)- 指数函数极限:lim(a^x) = a^a (a为常数)- 对数函数极限:lim(log_a x) = log_a a (a为常数)- 指数函数、对数函数极限:lim(a^x - 1) = ln a (a为正常数)- 指数函数、对数函数极限:lim(log_a (1 + x)) = ln a (a为正常数)2.无穷小与无穷大的性质:-无穷小的乘除性质-无穷小与有界量的乘除性质-无穷小的常数倍性质-无穷小与有界量的加减性质-无穷大的加减乘除性质-无穷小与无穷大的关系3.极限的运算法则:-四则运算法则-复合函数法则-两个无穷小量乘积的极限二、导数和微分1.基本导数公式:-变量常数的导数:d(c)=0(c为常数)- 幂函数导数:d(x^n) = nx^(n-1) (n为常数)- 三角函数导数:d(sin x) = cos x (d为常数)- 三角函数导数:d(cos x) = -sin x (d为常数)- 指数函数导数:d(a^x) = a^xlna (a为常数)- 对数函数导数:d(log_a x) = 1/(xlna) (a为常数,且x>0) 2.复合函数导数:-链式法则:d(f(g(x)))=f'(g(x))*g'(x)3.导数的法则:- 和差法则:d(u ± v) = du/dx ± dv/dx- 积法则:d(uv) = u * dv/dx + v * du/dx- 商法则:d(u/v) = (v * du/dx - u * dv/dx) / v^2三、不定积分1.基本积分公式:- 幂函数积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n不等于-1) - 指数函数积分:∫(a^x)dx = (a^x)/(lna) + C (a不等于1) - 三角函数积分:∫sin x dx = -cos x + C- 三角函数积分:∫cos x dx = sin x + C- 三角函数积分:∫sec^2 x dx = tan x + C- 三角函数积分:∫csc^2 x dx = -cot x + C- 对数函数积分:∫(1/x)dx = ln,x, + C2.基本积分性质:-积分的线性性质-积分的分部积分法-积分的换元法-积分的替换法四、微分方程1.常微分方程:- 一阶线性齐次方程:dy/dx + p(x)y = 0- 一阶线性非齐次方程:dy/dx + p(x)y = f(x)-二阶齐次方程:y''+p(x)y'+q(x)y=0-二阶非齐次方程:y''+p(x)y'+q(x)y=f(x)2.常微分方程的解法:-变量分离法-齐次方程的解法-一阶线性非齐次方程的解法-二阶齐次方程的解法-二阶非齐次方程的解法这些公式和定理是高等数学(专升本)中的一部分,掌握了这些公式对于学习和理解高等数学非常重要。

专升本高数公式大全

专升本高数公式大全

导数公式:根本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式: ·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ中值定理与导数应用:拉格朗日中值定理。

专升本同学必备的高等数学公式大全.

专升本同学必备的高等数学公式大全.

高等数学公式高等数学公式导数公式:(tgx)'=sec2x(ctgx)'=-csc2x(secx)'=secx⋅tgx(cscx)'=-cscx⋅ctgx(ax)'=axlna(logax)'=1xlna(arcsinx)'=1-x21(arccosx)'=--x21(arctgx)'=1+x21(arcctgx)'=-1+x基本积分表:三角函数的有理式积分:⎰tgxdx=-lncosx+C⎰ctgxdx=lnsinx+C⎰secxdx=lnsecx+tgx+C⎰cscxdx=lncscx-ctgx+Cdx1x=arctg+C⎰a2+x2aadx1x-a=ln⎰x2-a22ax+a+Cdx1a+x=ln⎰a2-x22aa-x+Cdxx=arcsin+C⎰a2-x2aπ2ndx2=sec⎰cos2x⎰xdx=tgx+Cdx2⎰sin2x=⎰cscxdx=-ctgx+C⎰secx⋅tgxdx=secx+C⎰cscx⋅ctgxdx=-cscx+Cax⎰adx=lna+Cx⎰shxdx=chx+C⎰chxdx=shx+C⎰dxx2±a2=ln(x+x2±a2)+Cπ2 In=⎰sinxdx=⎰cosnxdx=00n-1In-2n⎰⎰⎰xa222x+adx=x+a+ln(x+x2+a2)+C22xa22222x-adx=x-a-lnx+x2-a2+C22xa2x2222a-xdx=a-x+arcsin+C22a222u1-u2x2dusinx=,cosx=,u=tg,dx=2221+u1+u1+u2一些初等函数:两个重要极限:1 / 12高等数学公式ex-e-x双曲正弦:shx=2ex+e-x双曲余弦:chx=shxex-e-x双曲正切:thx==chxex+e-xarshx=ln(x+x+1)archx=±ln(x+x2-1)11+xarthx=ln21-x三角函数公式: ·诱导公式:limsinx=1x→0x1lim(1+)x=e=2.718281828459045...x→∞x·和差角公式: ·和差化积公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ sinαsinβtg(α±β)= tgα±tgβ1 tgα⋅tgβctgα⋅ctgβ 1ctg(α±β)=ctgβ±ctgαsinα+sinβ=2sinα+β22α+βα-βsinα-sinβ=2cossin22α+βα-βcosα+cosβ=2coscos22α+βα-βcosα-cosβ=2sinsin22cosα-β2 / 12高等数学公式 ·倍角公式:sin2α=2sinαcosαcos2α=2cos2α-1=1-2sin2α=cos2α-sin2αctg2α-1ctg2α=2ctgα2tgαtg2α=1-tg2α·半角公式:sin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tgα-tg3αtg3α=1-3tg2αsintgα2=±=±-cosαα+cosαcos=±222-cosα1-cosαsinαα1+cosα1+cosαsinα==ctg=±==1+cosαsinα1+cosα21-cosαsinα1-cosαα2 ·正弦定理:abc===2R ·余弦定理:c2=a2+b2-2abcosC sinAsinBsinCarcsinx=·反三角函数性质:π2-arccosx arctgx=π2-arcctgx高阶导数公式——莱布尼兹(Leibniz)公式:(uv)(n)k(n-k)(k)=∑Cnuvk=0n=u(n)v+nu(n-1)v'+中值定理与导数应用: n(n-1)(n-2)n(n-1) (n-k+1)(n-k)(k)uv''+ +uv+ +uv(n)2!k!拉格朗日中值定理:f(b)-f(a)=f'(ξ)(b-a)f(b)-f(a)f'(ξ)=F(b)-F(a)F'(ξ)曲率:当F(x)=x时,柯西中值定理就是拉格朗日中值定理。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数: 一些函数展开成幂级数: 可降阶的高阶微分方程类型一:()()n y f x = 解法(多次积分法):(1)()()n duu y f x f x dx -=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dpp y f x p dx =⇒=⇒令一阶微分方程类型三:''(,')y f y y = 解法:'(,)dp dp dy dp p y p f y p dx dy dx dy =⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y )((一阶齐次线性)。

若不等于0,通解⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x Q e y dx x p dx x p )()()((一阶齐次非线性)。

一阶齐次非线性方程的通解是对应齐次方程的通解与它的一个特解之和。

三、线性微分方程类型一:''()'()0y P x y Q x y ++=(二阶线性齐次微分方程) 解法:找出方程的两个任意线性不相关特解:12(),()y x y x 则:1122()()()y x c y x c y x =+类型二:''()'()()y P x y Q x y f x ++=(二阶线性非齐次微分方程)解法:先找出对应的齐次微分方程的通解:31122()()()y x c y x c y x =+ 再找出非齐次方程的任意特解()p y x ,则:1122()()()()p y x y x c y x c y x =++ 类型三:'''0y py q ++=(二阶线性常系数齐次微分方程)解法(特征方程法):21,20p q λλλ++=⇒=(一)122121240x x p q y c e c e λλλλ∆=->⇒≠⇒=+(二)12120()x y c c x e λλλλ∆=⇒==⇒=+(三)12120,(cos sin )x i i y e c x c x αλαβλαβββ∆<⇒=+=-⇒=+导数公式:基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:一些初等函数: 两个重要极限: ·和差角公式: ·和差化积公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ中值定理与导数应用: :空间解析几何和向量代数 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 柱面坐标和球面坐标: 曲线积分:。

专升本高等数学常用公式

专升本高等数学常用公式

1.偶函数关于y 轴对称。

f(-x)=f(x).奇函数关于原点对称。

f(-x)=-f(x)2.等价无穷小:sinx~x tanx~x arctanx~x arcsinx~x 1-cosx~~22x ln(1+x)~x1-x e ~x1-xa ~xlnaax x a→-+1)1(3.若)()(0~lim 0x f x f x x =称f(x)在点x 处连续。

4.若)0()0(00+≠-x f x f 时,x 为)(x f 的跳跃间断点。

)()(0lim 0x f A x f x x ≠=→或f(x)在点0x 处无定义,则点x 为可去间断点。

5.零点定理:f(a)f(b)<0,则f(ζ)=06.000)()()(limx x x f x f x f x x --='→ h x f h x f x f x x )()()(000lim-+='→7.求导公式:x x 2sec )(tan ='x x 2csc )(cot -='x x x cot csc )(csc -='x x x tan sec )(sec ='xxaa a •='ln )(xx ee =')(a x x a ln 1)(log =' 211)(arcsin x x -='211)(arccos x x --='211)(arctan x x +='211)cot (x x arc +-=' x x f x x f x f x ∆'-∆+'=''→)()(lim )(08.N 阶导数公式: 1!)1()(+-=⇒=n nna ax n x x ynn n x n y x y )1()!1()1()1ln(1+--=⇒+=-9.罗尔定理:闭连、开导、两头平 即f(a)=f(b). 10.拉格朗日中值定理:))(()()(a b f a f b f -'=-ξ11.柯西中值定理:)()()()()()(ξξg f b g a g b f a f ''=--12.泰勒公式:10100300200000)()!1()()(!)()(!3)()(!2)())(()()(++-+=⇒+-++-'''+-''+-'+=n n n n nn x x n f x R x R x x n x f x x x f x x x f x x x f x f x f ξ13.旋转体体积:以x 轴旋转:dx x f V b a2)]([⎰=π 。

高等数学公式大全(专插本专用)

高等数学公式大全(专插本专用)

高等数学公式导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R Cc Bb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

专升本高等数学公式大全

专升本高等数学公式大全

专升本高等数学公式大全1.极限公式:- $\lim\limits_{x\to a}(c)=c$,常数函数的极限等于常数c- $\lim\limits_{x\to a}(x)=a$,自变量x的极限等于自变量x的值a- $\lim\limits_{x\to a}(x^n)=a^n$,幂函数的极限等于它的自变量的值的n次幂- $\lim\limits_{x\to a}(c\cdot f(x))=c\cdot\lim\limits_{x\to a}(f(x))$,常数与函数的乘积的极限等于常数与函数极限的乘积- $\lim\limits_{x\to a}(f(x)+g(x))=\lim\limits_{x\toa}(f(x))+\lim\limits_{x\to a}(g(x))$,函数和的极限等于函数极限的和- $\lim\limits_{x\to a}(f(x)-g(x))=\lim\limits_{x\toa}(f(x))-\lim\limits_{x\to a}(g(x))$,函数差的极限等于函数极限的差- $\lim\limits_{x\to a}(f(x)\cdot g(x))=\lim\limits_{x\to a}(f(x))\cdot \lim\limits_{x\to a}(g(x))$,函数积的极限等于函数极限的积- $\lim\limits_{x\toa}(\frac{f(x)}{g(x)})=\frac{\lim\limits_{x\toa}(f(x))}{\lim\limits_{x\to a}(g(x))}$,函数商的极限等于函数极限的商(如果分母函数不等于0)2.微分和导数公式:- $y=f(x)$,则$dy=f'(x)\cdot dx$,微分形式为微分=导数乘以微小增量-$(c)'=0$,常数的导数等于0- $(x^n)'=nx^{n-1}$,幂函数的导数等于自变量的幂次减1再乘以原来的幂次-$(e^x)'=e^x$,指数函数的导数等于指数函数本身- $(\ln x)'=\frac{1}{x}$,自然对数函数的导数等于1除以自变量3.积分公式:- $\int c\,dx=cx$- $\int x^n\,dx=\frac{x^{n+1}}{n+1}+C$,幂函数的不定积分等于自变量的幂次加1再除以幂次加1再加上常数C- $\int e^x\,dx=e^x+C$,指数函数的不定积分等于自身再加上常数C- $\int \frac{1}{x}\,dx=\ln,x,+C$,自然对数函数的不定积分等于自然对数绝对值再加上常数C。

专升本高数公式大全

专升本高数公式大全

专升本高数公式大全1.初等函数的性质- 一次函数的表达式:y = kx + b,其中k为斜率,b为截距。

- 二次函数的表达式:y = ax² + bx + c,其中a、b、c为常数。

-绝对值函数的表达式:y=,x。

2.导数与微分的基本公式- 函数极限的定义:lim(x→a) f(x) = L。

- 导数的定义:f'(x) = lim(Δx→0) [f(x+Δx) - f(x)] / Δx。

-基本导数公式:- (1) 若f(x) = xⁿ,则f'(x) = nxⁿ⁻¹。

-(2)若f(x)=eˣ,则f'(x)=eˣ。

- (3) 若f(x) = sin(x),则f'(x) = cos(x)。

- (4) 若f(x) = cos(x),则f'(x) = -sin(x)。

- (5) 若f(x) = ln(x),则f'(x) = 1/x。

3.极限的基本性质-极限的四则运算:- (1) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B,则lim(x→a) [f(x)±g(x)] = A±B。

- (2) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B,则lim(x→a) [f(x)g(x)] = AB。

- (3) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B(B≠0),则lim(x→a) [f(x)/g(x)] = A/B。

- (4) 若lim(x→a) f(x) = A,则lim(x→a) [c·f(x)] = c·A。

4.函数的极值与最值-函数的极值:设f(x)在x₀处有定义,称f(x)在x₀处有极小值,如果存在εₒ>0,使得当0<,x-x₀,<εₒ时,恒有f(x)≥f(x₀)。

-函数的最值:设f(x)在区间I上有定义,x₀∈I,如果对于任意x∈I,恒有f(x)≥f(x₀),则称f(x)在x₀处有最小值。

专接本高等数学知识点与公式

专接本高等数学知识点与公式

专接本高等数学知识点与公式高等数学是一门具有较高难度的数学学科,包括微积分、线性代数、概率论与数理统计等内容。

下面将从微积分中的重要知识点与公式进行详细介绍。

一、极限与连续1.极限的定义:设函数f(x)在点x=a的一些去心邻域内有定义,如果对于任意给定的正数ε,总存在正数δ,使得当0<,x-a,<δ时,有,f(x)-A,<ε,那么就说函数f(x)当x趋于a时的极限是A。

2.重要极限:(1)lim(x→0) (sinx/x) = 1(2)lim(x→∞) (1+x)^1/x = e(3)lim(x→∞) (1+1/x)^x = e(4)lim(x→0) [(1+x)^a-1]/x = a(5)lim(x→∞) [(1+1/x)^x]^x = e^x二、导数与微分1.导数的定义:函数f(x)在点x=a处的导数,记作f'(a),表示函数在该点处的切线斜率。

2.常用导数公式:(1)(xn)' = nx^(n-1),其中n为正整数;(2)(e^x)'=e^x;(3)(sinx)' = cosx;(4)(cosx)' = -sinx;(5)(tanx)' = sec^2x;(6)(loga(x))' = 1/(x ln a),其中a为底数。

3. 微分的定义:设函数y=f(x)在点x0处可导,则称dy=f'(x0)dx 为函数y=f(x)在点(x0,f(x0))处的微分。

三、微分中值定理与泰勒展开1.微分中值定理:设函数f(x)在[a,b]闭区间上连续,在(a,b)内可导,则存在特定点c∈(a,b),使得f'(c)=[f(b)-f(a)]/(b-a)。

2.泰勒展开:(1)设函数f(x)在点x=a处n阶可导,则有f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+…+f^n(a)(x-a)^n/n!+R_n(x),其中R_n(x)为拉格朗日余项。

专接本高数公式汇总

专接本高数公式汇总

专接本高等数学知识点与公式一、三角函数1特殊角度:2和差角公式:3和差化积公式:4倍角公式:5化简公式:1cos sin 22=+x x x x 22sec tan 1=+x x 22csc cot 1=+2arccos arcsin π=+x x 6三角函数图象:角度函数030456090角a 的弧度0π/6π/4π/3π/2sin 01/2√2/2√3/21cos 1√3/2√2/21/20tan√3/31√32sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos 2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=± αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==x sin xcos x tan xcot 二、极限运算相关公式1极限存在:1.1准则I (夹逼准则):如果数列n x 、n y 及n z 满足条件:(1)从某项起,即N n ∈∃0,当0n n >时,有n n n z x y ≤≤,(2)a z a y n n n n ==∞→∞→lim ,lim ,那么数列n x 的极限存在,且a x n n =∞→lim .1.2准则I ':(1)当),(00r x U x ∈(或M x >)时,)()()(x h x f x g ≤≤,(2)A x h A x g x x x x x x ==∞→→∞→→)(lim ,)(lim )()(00,那么则)(lim )(0x f x x x ∞→→存在,且等于A .1.3准则II :单调有界数列必有极限.2有界函数⨯无穷小=无穷小:01sinlim 0=⋅→xx x 3高次幂:0,000≠≠b a ,m 和n 为非负整数时,有⎪⎪⎩⎪⎪⎨⎧<∞>==++++++++----∞→mn m n m n ba b x b x b x b a x a x a x a n n n n m m m m n ,,0,......lim 0020110221104.第一重要极限:1sin lim0=→xxx5.第二重要极限:e x x x =+∞→)11(lim ,e x x x =+→10)1(lim ,特别地en n n =+∞→)11(lim 6.无穷小替换公式:0→x 时x sin ~x x tan ~x x arcsin ~x x arctan ~x)1ln(x +~x1-xe ~xx cos 1-~22x 11-+nx ~nx 三连续与间断:1连续:[]0)()(lim lim 000=-∆+=∆→∆→∆x f x x f y x x 或()()00lim x f x f x x =→2间断:()⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧≠≠≠≠→→→+- )(lim )(lim )(lim 000震荡型无穷型)(特点是:极限不存在第二类:非第一类函数值可去型:极限值右极限跳跃型:左极限第一类:x f x f x f x f x x x x x x 四、导数定义:1点导数:()x x f x x f x yx f x x ∆-∆+=∆∆='→∆→∆)()(lim lim00000或()000-)()(lim 0x x x f x f x f x x -='→2导函数:()xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆)()(limlim003切线:))((000x x x f y y -'=-法线:)()(1000x x x f y y -'-=-五导数公式:1基本初等函数导数公式:(1)0)(='C (C 是常数)(2)1)(-='μμμx x (3)x x cos )(sin ='(4)x x sin )(cos -='(5)x x 2sec )(tan ='(6)x x 2csc )(cot -='(7)x x x tan sec )(sec ='(8)x x x cot csc )(csc -='(9)a a a x x ln )(='(10)x x e e =')((11)ax x a ln 1)(log ='(12)xx 1)(ln ='(13)21)(arcsin x ='(14)21)(arccos x -='(15)211)(arctan x x +='(16)211)cot (x x arc +-='2复合函数的求导法则:du dy dx dy =•dxdu 或)()()(x u f x y ψ''='3.反函数的导数公式:)(1)(y x f ϕ'='.4.隐函数的求导方法:))(,(=x y x F 求上式中确定的隐函数)(x y 的导数的方法是:上式两边对自变量x 求导,在求导时应用复合函数的求导法则,把y 看作中间变量.5.由参数方程确定的函数的求导方法一阶导:)()(t t dx dy ϕψ''=二阶导:)(1)()(22t t t dx y d ϕϕψ'⋅'⎪⎪⎭⎫ ⎝⎛''=6.对数求导法将函数表达式的等号两边取对数,利用对数性质将表达式化简,然后利用复合函数的求导法则,将等式两边对自变量求导,最后得到函数的导数,这种求导数的方法称为对数求导法.六中值定理:1罗尔定理:如果函数)(x f 满足(1)在闭区间[]b a ,上连续;(2)在开区间),(b a 内可导;(3)在区间端点处函数值相等,即)()(b f a f =,那么在),(b a 内至少有一点ξ(b a <<ξ),使得0)(='ξf 2拉格朗日中值定理:如果函数)(x f 满足(1)在闭区间[]b a ,上连续;(2)在开区间()b a ,内可导,那么在()b a ,内至少存在一点ξ()b a <<ξ,使得()()()a b f b f a f -'=-ξ)(.推论如果函数)(x f 在区间I 上的导数为零,那么)(x f 在区间I 上是一个常数.七洛必达法则:()()x F x f lim=()()x F x f ''lim .八导数的几何应用:1函数单调性的判定法设函数)(x f 在[]b a ,上连续,在()b a ,可导.(1)如果在()b a ,内0)(>'x f ,那么函数)(x f 在[]b a ,上单调增加;(2)如果在()b a ,内0)(<'x f ,那么函数)(x f 在[]b a ,上单调减少.如果把这个判定法中的闭区间换成其它各种区间(包括无穷区间),结论也成立.2函数的极值2.1极值存在的第一种充分条件:设函数)(x f 在点0x 处连续,且在0x 的某个去心邻域),(00δx U 内可导.(1)若),(00x x x δ-∈时,0)(>'x f ,而在),(00δ+∈x x x 时,0)(<'x f ,则)(x f 在0x 处取得极大值;(2)若),(00x x x δ-∈时,0)(<'x f ,而在),(00δ+∈x x x 时,0)(>'x f ,则)(x f 在0x 处取得极小值;(3)若),(00δx U x ∈时,)(x f '的符号保持不变,则)(x f 在0x 处没有极值.2.2极值存在的第二种充分条件设函数)(x f 在点0x 处具有二阶导数且0)(0='x f ,0)(0≠''x f ,那么(1)当0)(0<''x f 时,函数)(x f 在0x 处取得极大值;(2)当0)(0>''x f 时,函数)(x f 在0x 处取得极小值.3函数最大值和最小值的求法:极值点与端点值比较得最值4曲线的凹凸性、拐点4.1曲线的凹凸及拐点概念:4.2曲线)(x f y =的凹凸性及拐点的判定方法.(1)凹凸性判断:设)(x f 在区间[]b a ,上连续,在()b a ,内具有一阶和二阶导数,那么①如果在()b a ,内0)(>''x f ,则)(x f 在[]b a ,上的图形是凹的;②如果在()b a ,内0)(<''x f ,则)(x f 在[]b a ,上的图形是凸的.当区间不是闭区间时,判定方法类似.(2)拐点判断:区间()b a ,上曲线)(x f y =存在拐点的判定方法①求)(x f '';②令0)(=''x f ,求出该方程在()b a ,内的根,另外,求出)(x f ''不存在的点;③设函数)(x f y =在点0x 处连续,在0x 的某一去心邻域内二阶可导,且0)(0=''x f (或)(0x f ''不存在),那么当)(x f ''在0x 左右两侧邻近异号时,则点()()00,x f x 是曲线)(x f y =的拐点;当)(x f ''在0x 左右两侧邻近同号时,则点()()00,x f x 不是曲线)(x f y =的拐点.九、导数在经济中的应用1边际函数:经济函数对其自变量的导数,称为该经济函数的边际函数(边际值).例如如果某产品的成本函数)(x C C =,其中x 表示产量,则)(x C C '='称为边际成本.2需求弹性:设)(P Q Q =为某种商品的需求函数,其中P 表示价格,称dP dQ -=η•Qp为该商品的需求价格弹性,简称为需求弹性.需求弹性的经济含义:价格每上涨%1时所引起的需求量减少的百分数.3成本:某产品的总成本是指生产一定数量的产品所需的全部经济资源投入的价格或费用总额,它由固定成本和可变成本组成.平均成本是生产一定量产品,平均每单位产品的成本,边际成本是总成本的导数.在其它生产要素不变的情况下,产品的成本是产量的函数,设C 为成本,1C 为固定成本.2C 为可变成本,C 为平均成本,C '为边际成本,Q 为产量,则有总成本函效)()(21Q C C Q C C +==平均成本函数QQ C Q C Q Q C Q C C )()()21+===边际成本函数)(Q C C '='4收益:总收益是生产者出售一定量产品得到的全部收入.平均收益是生产者出售一定量产品,平均每出售单位产品所得到的收入,即单位产品的售价;边际收益为总收益的导数.收益为产量的函数,设P 为商品价格,Q 为商品量,R 为总收益,R 为平均收益,R '为边际收益,则有商品价格)(Q P P =总收益函数)()(Q QP Q R R ==平均收益函数)()()Q P QQ R x R R ===边际收益函效)()()(Q P Q P Q x R R +'='='5利润:利润是生产者出售一定量产品所得到的总收益与总成本之差.CR L -=当边际收益与边际成本相等时,利润最大,即C R '='.十不定积分的性质:(1)[]⎰⎰⎰±=±dx x g dx x f dx x g x f )()()()((2)⎰⎰≠=)0( )()(k dx x f k dx x kf (3)[])()(x f dx x f dxd =⎰或dx x f dx x f d )()(=⎰(4)C x F dx x F +='⎰)()(或Cx F x dF ⎰+=)()(十一基本积分公式:(1)⎰=Cdx 0(2)⎰⎰+==∙Cx dx dx 1(3)⎰++=+C x dx x 111μμμ(4)⎰+=C a adx a xxln 1(5)⎰+=C x dx xln 1(6)⎰+=Ce dx e xx (7)⎰+-=Cx xdx cos sin (8)⎰+=Cx xdx sin cos (9)⎰+=Cx dx tan sec 2(10)⎰+-=Cx xdx cot csc 2(11)⎰+=C x xdx x sec tan sec (12)⎰+-=C x xdx x csc cot csc (13)⎰+=-C x dx xarcsin 112(14)⎰+=--Cx dx xarccos 112(15)⎰+=+C x dx x arctan 112(16)⎰+=+-C x arc dx x cot 112十二第二类换元法积分:1()22,x a x f -令ta x sin =⎪⎭⎫ ⎝⎛≤≤-22ππt 2()22,x a x f +令ta x tan =⎪⎭⎫ ⎝⎛<<-22ππt 3()22,a x x f -令ta x sec =⎪⎭⎫⎝⎛≤<<≤πππt t 220或十三分部积分法:⎰⎰-=vduuv udv 十四定积分基本性质:1.()()[]⎰±b adx x g x f =()()dxx g dx x f baba⎰⎰±2.()⎰badx x kf =()⎰badx x f k (k 是常数).3.()⎰badx x f =()⎰cadx x f +()⎰bcdx x f (c 是常数).4.如果在区间[]b a ,上()1≡x f .则()⎰b a dx x f =⎰badx =a b -.5.如果在区间[]b a ,上()0≥x f .则()0≥⎰b adx x f (b a <).推论1如果在区间[]b a ,上,()()x g x f ≤.则()()⎰⎰≤babadx x g dx x f (b a <).推沦2()()dx x f dx x f baba⎰⎰≤(b a <).题型u ,dv 的选法目的()⎰⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫dx x x e x P x ncos sin ()x P u n =,dxx x e dv x ⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫=cos sin 降低n 次多项式()x P n 的次数()⎰⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫dx x x x x P n arccos arcsin ln ⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫=x x x u arccos arcsin ln ,()dxx P dv n =“消”函数符号ln ,x arcsin 等⎰⎩⎨⎧⎭⎬⎫dx x x e xcos sin ⎪⎩⎪⎨⎧=⎩⎨⎧⎭⎬⎫=dx e dv x x u x cos sin 或⎪⎩⎪⎨⎧⎩⎨⎧⎭⎬⎫==dx x x dv e u xcos sin “回头积分”6.设M 及m 分别是函数()x f 茌区间[]b a ,上的最大值及最小值,则()()()a b M dx x f a b m ba -≤≤-⎰(b a <).7.(定积分中值定理)如果函数()x f 在闭区间[]b a ,上连续,则在[]b a ,上至少存在一个点ξ,使下式成立:()()()a b f dx x f ba-=⎰ξ()b a ≤≤ξ十五变上限函数的导数:(1)()[]x f dxdt t f d x ϕϕ=⎥⎦⎤⎢⎣⎡⎰)(0)(•()x ϕ'上限含有未知变量(函数)的导数:上限代入被积函数乘以上限的导数(2)()[]x f dxdt t f d b x ϕϕ-=⎥⎦⎤⎢⎣⎡⎰)()(•()x ϕ'下限含有未知变量(函数)的导数:下限代入被积函数乘以下限的导数,然后添负号(3)()[]x f dxdt t f d x x φφϕ=⎥⎦⎤⎢⎣⎡⎰)()()(•()()[]x f x ϕφ-'•()x ϕ'上、下限含有未知变量(函数)的导数:上限代入被积函数乘以上限的导数—下限代入被积函数乘以下限的导数.十六积分区间对称,被积函数的奇偶性1.若)(x f 在[]a a ,-上连续且为偶函数,则()=⎰-dx x f aa ()dx x f a⎰02.2.若)(x f 在[]a a ,-上连续且为奇函数,则()0=⎰-dx x f aa.十七分部积分法:[]du v uv udv bab a b a ⎰⎰-=十八无穷限反常积分:1()dx x f a ⎰+∞()dxx f ta t ⎰+∞→=lim 2()dx x f b⎰∞-()dxx f btt ⎰-∞→=lim 3()dx x f ⎰+∞∞-=()dx x f ⎰∞-0+()dx x f ⎰+∞=()dx x f tt ⎰-∞→0lim +()dxx f tt ⎰+∞→0lim十九多元函数微分法及应用zyz x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy yv dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z yy x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22二十多元函数的极值及其求法:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-<-⎩⎨⎧><>-===== 不确定时值时, 无极为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x 二十一常数项级数:是发散的调和级数:等差数列:等比数列:nnn n q q q q q n n 1312112)1(32111112+++++=++++--=++++-二十二级数审敛法:散。

专升本高等数学公式大全

专升本高等数学公式大全

专升本高等数学公式大全函数的导数公式:1.常数函数的导数为0:(k)'=0;2. 幂函数的导数公式:(x^n)' = nx^(n-1);3. 指数函数的导数公式:(a^x)' = a^x * ln(a);4. 对数函数的导数公式:(loga^x)' = 1/(x * ln(a));5.三角函数的导数公式:- (sinx)' = cosx;- (cosx)' = -sinx;- (tanx)' = sec^2(x);- (cotx)' = -csc^2(x);- (secx)' = secx * tanx;- (cscx)' = -cscx * cotx;极限公式:1. 常数的极限是它本身:lim (c) = c;2.极限的线性性质:- lim (f(x) ± g(x)) = lim (f(x)) ± lim (g(x));- lim (k * f(x)) = k * lim (f(x));3.极限的乘法法则:- lim (f(x) * g(x)) = lim (f(x)) * lim (g(x));4.极限的除法法则:- lim (f(x) / g(x)) = lim (f(x)) / lim (g(x));5.无穷的极限:- lim (x -> ±∞) (1/x) = 0;- lim (x -> ±∞) (a^x) = 0 (a > 1);- lim (x -> ±∞) (ln(x)) = ±∞;- lim (x -> ±∞) (e^x) = ±∞;一元函数的微分公式:1.常数函数的微分为0:d(c)=0;2. 幂函数的微分公式:d(x^n) = nx^(n-1)dx;3. 指数函数的微分公式:d(a^x) = a^xdx * ln(a);4. 对数函数的微分公式:d(loga^x) = (1/x)dx / ln(a);5.三角函数的微分公式:- d(sinx) = cosxdx;- d(cosx) = -sinxdx;- d(tanx) = sec^2(x)dx;- d(cotx) = -csc^2(x)dx;- d(secx) = secxtanxdx;- d(cscx) = -cscxcotxdx;不定积分的公式:1. 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C;2. 指数函数的不定积分:∫a^x dx = (a^x)/ln(a) + C;3. 对数函数的不定积分:∫(1/x) dx = ln,x, + C;4.三角函数的不定积分:- ∫sinx dx = -cosx + C;- ∫cosx dx = sinx + C;- ∫tanx dx = -ln,cosx, + C;- ∫cotx dx = ln,sinx, + C;- ∫secx dx = ln,secx + tanx, + C;- ∫cscx dx = ln,cscx - cotx, + C;以上仅是高等数学中的一部分公式,通过掌握和运用这些公式,可以更好地应对专升本考试中的数学相关题目。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x Cx dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec seccsc sinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率: .1;0.)1(limM s M M :.,1322aK a K y y dsd sK M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y na b x f y y y y n a b x f y y y na b x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=babadtt f ab dxx f ab y k rm m kF A p F s F W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121221221221c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB j z z y y x x MM d zyxz y xz y xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz by ax c z b y a x q p z qyp x cz by ax ptz z nt y y mtx x p n m s t p z z n y y m x x CB A DCz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用 zy z x y x y x y x y x F F y zF F x z z y x F dx dyF F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy yu dx x u du y x v v y x u u x vv z x u u z x z y x v y x u f z t vv z t u u z dt dz t v t u f z y y x f x y x f dz z dzz u dy y u dx x u du dy yz dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J yu x u G F J x v v x G F J x u G G F F vG u G v F uFv u G F J v u y x G v u y x F vu v u∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F GG F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y xx z xzz y zy -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档