2020-2021学年贵阳市八年级上学期期末数学试卷(含答案解析)
人教版2020-2021学年度上学期期末考试数学试卷(Word版 含解析)
人教版2020-2021学年度上学期期末考试数学试卷(全册)一、选择题(本大题共10小题,共30.0分)1.下列关于事件发生可能性的表述,正确的是( )A. 事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B. 体育彩票的中奖率为10%,则买100张彩票必有10张中奖C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D. 掷两枚硬币,朝上的一面是一正面一反面的概率为 132.下列四个银行标志中,既是轴对称图形又是中心对称图形的是( ). A. B. C. D.3.关于 x 的一元二次方程 x 2−5x +2p =0 的一个根为 1 ,则另一根为( ).A. -6B. 2C. 4D. 14.下列关于二次函数 y =2x 2+3 ,下列说法正确的是( ).A. 它的开口方向向下B. 它的顶点坐标是 (2,3)C. 当 x <−1 时, y 随 x 的增大而增大D. 当 x =0 时, y 有最小值是35.如图,AB 为⊙O 的直径,点D 是弧AC 的中点,过点D 作DE ⊥AB 于点E ,延长DE 交⊙OO 于点F ,若AC = 12,AE = 3,则⊙O 的直径长为( )A. 10B. 13C. 15D. 166.某校食堂每天中午为学生提供A 、 B 两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为( )A. 12B. 13C. 14D. 237.如图,某幢建筑物从2.25米高的窗口A 用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A. 2.5米B. 3米C. 3.5米D. 4米8.小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇·哧壁怀古》:“大江东去浪淘尽,千古风流人物。
而立之年督东吴,早逝英年两位数。
2020-2021学年贵州省贵阳市白云区八年级(上)期中数学试卷(解析版)
2020-2021学年贵州省贵阳市白云区八年级第一学期期中数学试卷一、选择题(每小题3分,共30分)1.4的算术平方根是()A.2B.C.﹣2D.±22.以下列各组数为边长,能构成直角三角形的是()A.4,5,6B.5,12,13C.7,14,15D.2,2,23.下列计算正确的是()A.=B.﹣=1C.×=D.=4.如图,以等边△ABC的边BC的中点O为坐标原点建立平面直角坐标系,已知C(1,0),则点A的坐标为()A.(,0)B.(0,)C.(,0)D.(0,)5.点A(2,4)、B(﹣2,4),则点A与点B的对称关系是()A.关于x轴对称B.关于y轴对称C.关于坐标原点中心对称D.以上说法都不对6.下面哪个点在函数y=﹣2x+3的图象上()A.(5,13)B.(﹣1,1)C.(3,0)D.(1,1)7.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为6和14,则b的面积为()A.8B.18C.20D.268.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或9.如图,点A的坐标为(﹣1,0),点P是直线y=x上的一个动点,当线段AP最短时,点P的坐标为()A.(0,0)B.(﹣,)C.(,﹣)D.(﹣,﹣)10.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m二、填空题(每小题4分,共20分)11.实数的相反数为.12.已知,直线y=kx经过点A(1,2),则k=.13.已知点P位于x轴上方,距离x轴4个单位长度,位于y轴右侧,距y轴3个单位长度,则点P坐标是.14.直线l1:y=2x+4沿y轴向下移动4个单位长度得到直线l2,则直线l2的解析式为.15.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC=3,BC=4时,则阴影部分的面积为.三、解答题(共50分)16.计算:(1);(2)(3+2)(3﹣2).17.已知:y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点M(m,4)在这个函数的图象上,求点M的坐标.18.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.19.在平面直角坐标系中,每个小方格的边长为一个单位长度.(1)点A的坐标为,点B的坐标为;(2)点C关于x轴对称点的坐标为;(3)在直线l上找一点N,使△BMN为等腰三角形,点N坐标为.20.甲、乙两人以相同路线前往离学校12km的地方参加植树活动.图中l甲,l乙分别表示甲、乙两人前往目的地所行驶的路程s(km)与时间t(min)的关系,请根据图象回答下列问题:(1)甲比乙早出发min;(2)乙出发min后,两人相遇,这时他们离学校km;(3)甲的速度是km/min,乙的速度是km/min;(4)甲行驶的路程s与时间t的函数关系式为.21.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?22.如图,在平面直角坐标系中,直线AB交坐标轴于点A(0,6),B(8,0),点C为x轴正半轴上一点,连接AC,将△ABC沿AC所在的直线折叠,点B恰好与y轴上的点D重合.(1)求直线AB的解析式;(2)点P为直线AB上的点,请求出点P的坐标使S△COP=.参考答案一、选择题(每小题3分,共30分)1.4的算术平方根是()A.2B.C.﹣2D.±2【分析】根据算术平方根的定义即可求出答案.解:∵22=4,∴4的算术平方根为2,故选:A.2.以下列各组数为边长,能构成直角三角形的是()A.4,5,6B.5,12,13C.7,14,15D.2,2,2【分析】根据勾股定理的逆定理逐个判断即可.解:A.∵42+52≠62,∴以4、5、6为边不能组成直角三角形,故本选项不符合题意;B.∵52+122=132,∴以5、12、13为边能组成直角三角形,故本选项符合题意;C.∵72+142≠152,∴以7、14、15为边不能组成直角三角形,故本选项不符合题意;D.∵22+22≠22,∴以2、2、2为边不能组成直角三角形(是等边三角形),故本选项不符合题意;故选:B.3.下列计算正确的是()A.=B.﹣=1C.×=D.=【分析】利用二次根式加减法法则、乘法计算法则进行计算即可.解:A、和不是同类二次根式,不能合并,故原题计算错误;B、和不是同类二次根式,不能合并,故原题计算错误;C、=,故原题计算正确;D、==,故原题计算错误;故选:C.4.如图,以等边△ABC的边BC的中点O为坐标原点建立平面直角坐标系,已知C(1,0),则点A的坐标为()A.(,0)B.(0,)C.(,0)D.(0,)【分析】根据等边三角形的性质和勾股定理即可得到结论.解:∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AO⊥BC,∴∠AOC=90°,∵C(1,0),∴OC=1,∵点O为边BC的中点,∴BC=2,∴AC=2,∴AO===,∴A(0,),故选:B.5.点A(2,4)、B(﹣2,4),则点A与点B的对称关系是()A.关于x轴对称B.关于y轴对称C.关于坐标原点中心对称D.以上说法都不对【分析】根据两点的横坐标互为相反数,纵坐标相同的两个点关于y轴对称解答.解:∵点A(6,3),点B(6,﹣3)的横坐标互为相反数,纵坐标相同,∴点A与点B关于y轴对称.故选:B.6.下面哪个点在函数y=﹣2x+3的图象上()A.(5,13)B.(﹣1,1)C.(3,0)D.(1,1)【分析】分别将各个点的值代入函数中满足解析式的即在图象上.解:当x=5时,y=﹣7,(5,13)不在函数y=﹣2x+3的图象上;当x=﹣1时,y=5,(﹣1,1)不在函数y=﹣2x+3的图象上;当x=3时,y=﹣3,(3,0)不在函数y=﹣2x+3的图象上;当x=1时,y=1,(1,1)在函数y=﹣2x+3的图象上;故选:D.7.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为6和14,则b的面积为()A.8B.18C.20D.26【分析】运用正方形边长相等,结合全等三角形和勾股定理来求解即可.解:∵a、b、c都是正方形,∴AC=CE,∠ACE=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,∵∠ABC=∠CED=90°,AC=CE,∴△ACB≌△CED(AAS),∴AB=CD,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=6+14=20,故选:C.8.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或【分析】分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选:D.9.如图,点A的坐标为(﹣1,0),点P是直线y=x上的一个动点,当线段AP最短时,点P的坐标为()A.(0,0)B.(﹣,)C.(,﹣)D.(﹣,﹣)【分析】当AP⊥直线y=x时,AP最短,过点P作PB⊥x轴于点B,结合直线的解析式可得出△AOP为等腰直角三角形,再利用等腰直角三角形的性质可得出当线段AP最短时点P的坐标.解:当AP⊥直线y=x时,AP最短,过点P作PB⊥x轴于点B,如图所示.∵直线的解析式为y=x,∴∠AOP=45°,又∵∠APB=90°,∴△AOP为等腰直角三角形,∴BP=OB=OA=,∴点P的坐标为(﹣,﹣).故选:D.10.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.二、填空题(每小题4分,共20分)11.实数的相反数为.【分析】直接利用相反数的定义得出答案.解:实数的相反数为:﹣.故答案为:﹣.12.已知,直线y=kx经过点A(1,2),则k=2.【分析】把点A(1,2)代入y=kx即可解决问题.解:∵直线y=kx经过点A(1,2),∴2=k•1,∴k=2,故答案为2.13.已知点P位于x轴上方,距离x轴4个单位长度,位于y轴右侧,距y轴3个单位长度,则点P坐标是(3,4).【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故答案为:(3,4).14.直线l1:y=2x+4沿y轴向下移动4个单位长度得到直线l2,则直线l2的解析式为y =2x.【分析】根据平移法则上加下减可得出解析式.解:直线l1:y=2x+4沿y轴向下移动4个单位长度得到直线l2,则直线l2的解析式为y =2x+4﹣4,即y=2x,故答案为:y=2x.15.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC=3,BC=4时,则阴影部分的面积为6.【分析】根据勾股定理求出AB,分别求出三个半圆的面积和△ABC的面积,即可得出答案.解:在Rt△ACB中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB===5,所以阴影部分的面积S=×π×()2+π×()2+﹣π×()2=6,故答案是:6.三、解答题(共50分)16.计算:(1);(2)(3+2)(3﹣2).【分析】(1)先把二次根式化简,然后根据二次根式的乘法法则运算;(2)利用平方差公式计算.解:(1)原式==3×2=6;(2)原式=8﹣12=6.17.已知:y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点M(m,4)在这个函数的图象上,求点M的坐标.【分析】(1)根据题意设出函数解析式,把当x=1时,y=﹣6代入解析式,便可求出未知数的值,从而求出其解析式;(2)将点M(m,4)代入函数的解析式中,即可求得m的值.解:(1)根据题意:设y=k(x+2),把x=1,y=﹣6代入得:﹣6=k(1+2),解得:k=﹣2.则y与x函数关系式为y=﹣2(x+2),即y=﹣2x﹣4;(2)把点M(m,4)代入y=﹣2x﹣4,得:4=﹣2m﹣4,解得m=﹣4,所以点M的坐标是(﹣4,4).18.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.【分析】首先根据勾股定理求出BD,再根据勾股定理的逆定理证明∠BDC=90°,根据S四边形ABCD=S△ABD+S△DCB计算即可解决问题;解:在Rt△ABD中,AB=AD=2,∠BAD=90°,∴BD==4,∵CD=4,BC=8,∴BC2=BD2+CD2,∴∠BDC=90°,∴S四边形ABCD=S△ABD+S△DCB=×2×2+×4×4=4+8.19.在平面直角坐标系中,每个小方格的边长为一个单位长度.(1)点A的坐标为(﹣4,4),点B的坐标为(﹣3,0);(2)点C关于x轴对称点的坐标为(﹣2,2);(3)在直线l上找一点N,使△BMN为等腰三角形,点N坐标为(0,4)或(﹣3﹣2,4)或(﹣3+2,4)或(3﹣2,4)或(3+2,4).【分析】(1)根据题意得出点的坐标即可;(2)根据关于x轴对称点的坐标特点得出点的坐标即可;(3)设N(x,4),分三种情况:NB=NM;BN=BM;MB=MN.分别列出x的方程进行解答便可.解:(1)根据题意可得点A的坐标为(﹣4,4),点B的坐标为(﹣3,0),故答案为:(﹣4,4);(﹣3,0);(2)由坐标图可知C(﹣2,﹣2)∴点C关于x轴对称点的坐标为(﹣2,2);故答案为:(﹣2,2);(3)设N点的坐标为(x,4),当NB=NM时,有,解得,x=0,∴N(0,4);当BN=BM时,有,解得,x=﹣3,∴N(﹣3﹣2,4),或N(﹣3+2,4);当MN=BM时,有,解得,x=3,∴N(3﹣2,4),或N(3+2,4),综上,N点的坐标为N(0,4)或(﹣3﹣2,4)或(﹣3+2,4)或(3﹣2,4)或(3+2,4),故答案为:(0,4)或(﹣3﹣2,4)或(﹣3+2,4)或(3﹣2,4)或(3+2,4),20.甲、乙两人以相同路线前往离学校12km的地方参加植树活动.图中l甲,l乙分别表示甲、乙两人前往目的地所行驶的路程s(km)与时间t(min)的关系,请根据图象回答下列问题:(1)甲比乙早出发6min;(2)乙出发6min后,两人相遇,这时他们离学校6km;(3)甲的速度是km/min,乙的速度是1km/min;(4)甲行驶的路程s与时间t的函数关系式为s=t(0≤t≤24).【分析】(1)(2)根据图象可得答案;(3)利用速度=路程÷时间可得答案;(4)首先设甲行驶的路程s与时间t的函数s=kt,然后再代入图象经过的点即可.解:(1)甲比乙早出发6min,故答案为:6;(2)乙出发6min后,两人相遇,这时他们离学校6km,故答案为:6;6;(3)甲的速度:6÷12=(km/min),乙的速度:6÷6=1(km/min),故答案为:;1;(4)设甲行驶的路程s与时间t的函数关系式为s=kt,∵图象经过点(12,6),∴6=12k,解得:k=,∴故答案为:s=t(0≤t≤24).21.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度.(2)由(1)可以得出梯子的初始高度,下滑1米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为5米,可以得出,梯子底端水平方向上滑行的距离.解:(1)根据勾股定理:所以梯子距离地面的高度为:AO===12(米);答:这个梯子的顶端距地面有12米高;(2)梯子下滑了5米即梯子距离地面的高度为OA′=12﹣5=7(米),根据勾股定理:OB′===2(米),∴BB′=OB′﹣OB=(2﹣5)米答:当梯子的顶端下滑1米时,梯子的底端水平后移了(2﹣5)米.22.如图,在平面直角坐标系中,直线AB交坐标轴于点A(0,6),B(8,0),点C为x轴正半轴上一点,连接AC,将△ABC沿AC所在的直线折叠,点B恰好与y轴上的点D重合.(1)求直线AB的解析式;(2)点P为直线AB上的点,请求出点P的坐标使S△COP=.【分析】(1)用待定系数法求一次函数的解析式;(2)在Rt△ABO中由勾股定理得AB=10,由折叠性质可知:AD=AB=10,OD=4,设出OC长,由勾股定理得出x,设P(m,﹣m+6),根据面积求出m,最后得P点坐标.解:(1)设直线AB的关系式:y=kx+b,∵直线AB交坐标轴于点A(0,6),B(8,0),∴,解得,k=﹣,∴直线AB的解析式:y=﹣x+6;(2)由题意可知:OA=6,OB=8,∴在Rt△ABO中由勾股定理得AB=10,由折叠性质可知:AD=AB=10,OD=4,设OC=x,则BC=CD=8﹣x,在△OCD中,由勾股定理得x2+16=(8﹣x)2,解得,x=3,∴C(3,0),∵P在直线AB上,∴设P(m,﹣m+6),∵S△COP=,∴=,解得,m=6或m=10,①当m=6时,﹣m+6=,②当m=10时,﹣m+6=﹣,∴P(6,)或(10,﹣).。
贵州省贵阳市普通中学2022-2023学年高一上学期期末监测考试数学试题(1)
贵阳市普通中学2021-2022学年度第一学期期末监测考试试题高一数学一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确地选项填写在答题卷地相应位置上.)1 已知集合{}3782A x x x =-<-,{}2340B x x x =--<,则A B = ( )A. {}4x x < B. {}34x x << C. {}13x x -<< D. {}43x x -<<【结果】C 【思路】【思路】求出集合A ,B ,再由交集定义求出A B .【详解】∵集合{}{}37823A x x x x x =-<-=<,{}{}234014B x x x x x =--<=-<<,∴{}13A B x x ⋂=-<<.故选:C .2. 已知命题2:,10p n N n n ∀∈++>,则p 地否定为( )A. 2,10n N n n ∀∈++< B. 2,10n N n n ∀∈++≤C. 2,10n N n n ∃∈++< D. 2,10n N n n ∃∈++≤【结果】D 【思路】【思路】全称命题地否定为存在命题,利用相关定义进行判断即可【详解】全称命题地否定为存在命题,命题2:,10p n N n n ∀∈++>,则p ⌝为2,10n N n n ∃∈++≤.故选:D3. 函数12xy =地定义域为( )A. R B. (,0)(0,)-∞+∞ C. (,0)-∞ D. (0,)+∞【结果】B.【思路】【思路】要使函数12xy =有意义,则需要满足0x ≠即可.【详解】要使函数12x y =有意义,则需要满足0x ≠所以12x y =地定义域为(0)(0)∞∞-⋃+,,,故选:B4. 在平面直角坐标系xoy 中,角α与角β项点都在坐标原点,始边都与x 轴地非负半轴重合,它们地终边有关y 轴对称,若1cos 2α=-,则cos β=( )A.12B. 12-C.D. 【结果】A 【思路】【思路】利用终边相同地角和诱导公式求解.【详解】因为 角α与角β地终边有关y 轴对称,所以2,k k Z βπαπ=-+∈,所以 ()1cos cos 2cos 2k βπαπα=-+=-=,故选:A5. 借助信息技术画出函数ln y x =和||y x x a =-(a 为实数)地图象,当 1.5a =时图象如图所示,则函数| 1.5|ln y x x x =--地零点个数为( )A. 3B. 2C. 1D. 0【结果】B 【思路】的【思路】由| 1.5|ln 0y x x x =--=转化为 1.5y x x =-与ln y x =地图象交点个数来确定正确选项.【详解】令| 1.5|ln 0y x x x =--=, 1.5ln x x x -=,所以函数| 1.5|ln y x x x =--地零点个数即 1.5y x x =-与ln y x =地图象交点个数,结合图象可知 1.5y x x =-与ln y x =地图象有2个交点,所以函数| 1.5|ln y x x x =--有2个零点.故选:B6. 设 1.53cos2,0.3,log 2a b c -===,则a ,b ,c 地大小关系是( )A. a b c <<B. c a b<< C. a c b<< D. b c a<<【结果】C 【思路】【思路】比较a ,b ,c 与0和1地大小即可判断它们之间地大小.【详解】cos20a =<,1.500.30.31b -=>=,()333log 1log 2log 3,0,1c c <=<∈,故a c b <<故选:C.7. 已知1(0,),sin cos 5απαα∈+=-,则下面结论正确地是( )A. 4cos 5α= B. 7sin cos 5αα-=C.sin cos 4tan 15ααα+=-D.sin cos 73sin 2cos αααα-=-+【结果】B 【思路】【思路】先求出34sin cos 55αα==-,再对四个选项一一验证即可.【详解】因为1(0,),sin cos 5απαα∈+=-,又22sin cos 1αα+=,.解得:34sin cos 55αα==-.故A 错误。
2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(三)
2022-2023学年八年级上学期期中考前必刷卷03数学(考试时间:90分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2022·浙江丽水·八年级期末)在以下中国银行、建设银行、工商银行、农业银行图标中,不是..轴对称图形的是( )A .B .C .D .2.(2022·山东·滨州市滨城区教学研究室八年级期中)下列各线段能构成三角形的是( ) A .7cm 、5cm 、12cm B .6cm 、7cm 、14cm C .9cm 、5cm 、11cmD .4cm 、10cm 、6cm3.(2022·河南·漯河市第二实验中学八年级期末)如图所示,图中的两个三角形全等,则∠α等于( )A .50︒B .55︒C .60︒D .65︒4.(2022·江苏·宜兴市和桥镇第二中学七年级期中)如图,在ABC 中,A m ∠=,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠和1ACD ∠的平分线交于点2A ,得22015A A BC ∠∠和2015A CD ∠的平分线交于点2016A ,则2016A ∠为多少度?( )A .20132m B .20142m C .20152m D .20162m5.(2021·重庆·华东师范大学附属中旭科创学校八年级期中)如图,A B C D E F G H I J ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=( )A .180︒B .360︒C .540︒D .720︒6.(2022·山东威海·七年级期末)已知点P 是直线l 外一点,要求过点P 作直线l 的垂线PQ .下列尺规作图错误的是( )A .B .C .D .7.(2022·山东聊城·八年级期末)已知如图,在∠ABC 中,∠ACB 是钝角,依下列步骤进行尺规作图: (1)以C 为圆心,CA 为半径画弧;(2)以B 为圆心,BA 为半径画弧,交前弧于点D ; (3)连接BD ,交AC 延长线于点E明明同学依据作图,写出了下面四个结论,其中正确的是( )A .∠ABC =∠CBEB .BE =DEC .AC ∠BDD .S △ABC =12AC •BE8.(2020·天津市红桥区教师发展中心八年级期中)如图,△ABC 中,点D 是BC 边上一点,DE ∠AB 于点E ,DF ∠BC ,且BD =FC ,BE =DC ,∠AFD =155°,则∠EDF 的度数是( )A .50°B .55°C .60°D .65°9.(2022·河南郑州·七年级期末)乐乐所在的七年级某班学生到野外活动,为测量一池塘两端A ,B 的距离,乐乐、明明、聪聪三位同学分别设计出如下几种方案:乐乐:如图①,先在平地取一个可直接到达A ,B 的点C ,再连接AC ,BC ,并分别延长AC 至D ,BC 至E ,使DC AC =,EC BC =,最后测出DE 的长即为A ,B 的距离.明明:如图②,先过点B 作AB 的垂线BF ,再在BF 上取C ,D 两点,使BC CD =,接着过点D 作BD 的垂线DE ,交AC 的延长线于点E ,则测出DE 的长即为A ,B 的距离.聪聪:如图③,过点B 作BD AB ⊥,再由点D 观测,在AB 的延长线上取一点C ,使∠=∠BDC BDA ,这时只要测出BC 的长即为A ,B 的距离. 以上三位同学所设计的方案中可行的是( )A .乐乐和明明B .乐乐和聪聪C .明明和聪聪D .三人的方案都可行10.(2022·山东烟台·七年级期末)如图,在ABC 中,CAB ∠和CBA ∠的角平分线相交于点P ,连接PA ,PB ,PC ,若PAB △,PAC △,PBC 的面积分别为1S ,2S ,3S ,则有( )A .123S S S <+B .123S S S =+C .123S S S >+D .1232S S S =+11.(2022·重庆沙坪坝·七年级期末)如图,在Rt∠ABC 中,90ABC ∠=,45C ∠=,点E 在边BC 上,将∠ABE 沿AE 翻折,点B 落在AC 边上的点D 处,连结DE 、BD ,若5BD =.下列结论:①AE 垂直平分BD ;②112.5CEA ∠=︒;③点E 是BC 的中点;④∠CDB 的周长比∠CDE 的周长大5.其中正确的个数是( )A .1B .2C .3D .412.(2022·云南红河·八年级期末)如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .813.(2021·福建省泉州实验中学八年级期中)如图,在等边三角形ABC 中,点D ,E 分别是BC ,AB 上的点,且BE =CD ,AD 与CE 相交于点F ,连接BF ,延长FE 至G ,使FG =F A ,若∠ABF 的面积为m ,AF :EF =5:3,则∠AEG 的面积是( )A .25mB .13mC .38mD .35m14.(2022·重庆·四川外国语大学附属外国语学校七年级期末)如图,Rt ABC 中,90BAC ∠=︒,AD BC ⊥于点D .过点A 作AF //BC 且AF AD =,点E 是AC 上一点且AE AB =,连接EF ,DE ,连接FD 交BE 于点G .下列结论中正确的有( )个.①FAE DAB ∠=∠;②BD EF =;③FD 平分AFE ∠;④ABDE ADEF S S =四边形四边形;⑤BD GE =A .2B .3C .4D .5第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2022·河南平顶山·七年级期末)如图,已知∠1=∠2,AC =AE ,不添加任何辅助线,再添加一个合适的条件:______,使∠ABC ∠∠ADE .(只写出一种即可)16.(2022·湖南·澧县教育局张公庙镇中学八年级期末)如图,在Rt ABC ∆中,90C ∠=︒,BE 平分ABC ∠,ED 垂直平分AB 于D .若9AC =,则AE 的值是______.17.(2022·湖北·云梦县实验外国语学校八年级期中)如图,12l l ∥,点D 是BC 的中点,若∠ABC 的面积是10cm 2,则∠BDE 的面积是_______cm 2.18.(2020·浙江·乐清市知临寄宿学校八年级期中)如图所示,∠B 0C = 10°,点A 在OB 上,且OA = 1,按下列要求画图:以点A 为圆心、1为半径向右画弧交OC 于点1A 得到第1条线段1AA ;再以点1A 为圆心、1为半径向右画弧交OB 于点2A ,得到第2条线段12A A ;再以点2A 为圆心、1为半径向右画弧交OC 于点3A ,得到第3条线段23A A …这样画下去,直到得到第n 条线段,之后就不能再画出符合要求的线段了,则n = _________ .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·河南·安阳市第五中学八年级期中)如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C =72°,求∠AEC 和∠DAE 的度数.20.(2022·四川眉山·七年级期末)点C 为BD 上一点,△ABC ∠△CDE ,AB =1,DE =2,∠B =110°.(1)求BD 的长; (2)求∠ACE 的度数.21.(2022·上海市曹杨第二中学附属学校七年级期末)如图,ABC 中,AB AC =,且D 、E 、F 分别是AB 、BC 、AC 边上的点,BE CF =,DEF B ∠=∠,点G 是DF 的中点,猜想EG 和DF 的位置关系,并说明理由.22.(2021·贵州毕节·八年级期末)如图所示,在ABC 中,8AB =,4AC =,点G 为BC 的中点,DG BC ⊥交BAC ∠的平分线AD 于点D ,DE AB ⊥于点E ,DF AC ⊥交AC 的延长线于点F .(1)求证:BE CF =; (2)求AE 的长.23.(2020·福建龙岩·八年级期末)如图,射线OK 的端点O 是线段AB 的中点,请根据下列要求作答:(1)尺规作图:在射线OK 上作点C D ,,连接AC BD ,,使=AC BD >12AB ;(2)利用(1)中你所作的图,求证:ACO BDO ∠=∠.24.(2020·浙江·乐清市知临寄宿学校八年级期中)如图1,∠ABC 是边长为6cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度都为1厘米/秒.当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (秒).(1)当运动时间为t 秒时,BQ 的长为 厘米,BP 的长为 厘米.(用含t 的式子表示) (2)当t 为何值时,∠PBQ 是直角三角形;(3)如图2,连接AQ 、CP ,相交于点M ,则点P ,Q 在运动的过程中,∠CMQ 会变化吗?若变化,则说明理由;若不变,请直接写出它的度数.25.(2022·江苏·扬州市江都区第三中学七年级期中)如图1的图形我们把它称为“8字形”,显然有A B C D ∠+∠=∠+∠;阅读下面的内容,并解决后面的问题:(1)如图2,AP 、CP 分别平分BAD ∠、BCD ∠,若36ABC ∠=︒,16ADC ∠=︒,求P ∠的度数;(2)①在图3中,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,并说明理由.②在图4中,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,直接写出结论,无需说明理由.③在图5中,AP 平分BAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,直接写出结论,无需说明理由.(3)在(2)的条件下,若40GHCS=,CE =15,请直接写出BF 的长.26.(2022·陕西·西安铁一中分校七年级期末)如图①,在Rt ABC △中,90ACB ∠=︒,AC=BC ,l 是过点C 的任意一条直线,过A 作AD ∠l 于D ,过B 作BE ∠l 于E .(1)求证:△ADC ∠△CEB ;(2)如图②延长BE 至F ,连接CF ,以CF 为直角边作等腰Rt FCG ,90FCG ∠=︒,连接AG 交l 于H .试探究BF 与CH 的数量关系.并说明理由;2022-2023学年八年级上学期期中考前必刷卷03(人教版2022)数学·全解全析1 2 3 4 5 6 7 8 9 10 11 12 13 14B C B D B B A D D A C B A D1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A、C、D均能找到这样的一条直线折,使一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.选项B不能找到这样的一条直线折,使一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据三角形三边关系逐一判断即可【详解】A、7+5=12,不能组成三角形,故本选项不符题意;B、6+7<14,不能组成三角形,故本选项不符题意;C、9+5>11,能组成三角形,故本选项符合题意;D、4+6=10,不能组成三角形,故本选项不符题意故选:C【点睛】本题考查了三角形三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成三角形.3.B【分析】由全等三角形的对应角相等,结合三角形内角和定理即可得到答案.【详解】解:根据题意,如图:︒-︒-︒=︒,根据三角形内角和定理,第一个三角形中边长为b的对角为:180606555∠图中的两个三角形是全等三角形,∠第一个三角形中边长为b 的对角等于第二个三角形中的∠α, ∠∠α=55︒. 故选B .【点睛】本题考查了全等三角形的性质以及三角形内角和定理,解题的关键是掌握全等三角形的对应角相等. 4.D【分析】先根据角平分线的定义以及三角形外角的性质证明112A A ∠=∠,同理211124A A A ==∠∠∠,321128A A A ==∠∠∠,4311216A A A ==∠∠∠,由此得出规律11122n n n A A A -==∠∠∠,从而得到答案.【详解】解:∠ABC ∠和ACD ∠的平分线交于点1A ,∠1122ACD ACD ABC A BC ==∠∠,∠∠, ∠111A ABC ACD A A BC ACD +=+=∠∠∠,∠∠∠, ∠1122A A BC ACD +=∠∠∠,111222A A BC ACD ∠+∠=∠, ∠112A A ∠=∠,同理211124A A A ==∠∠∠,321128A A A ==∠∠∠,4311216A A A ==∠∠∠,,∠11122n n n A A A -==∠∠∠,∠201620162016122m A A ==∠∠,故选D .【点睛】本题主要考查了三角形外角的性质,角平分线的定义,图形类的规律探索,熟知三角形外角的性质是解题的关键. 5.B【分析】先根据三角形的外角性质可得1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=,12345∠+∠+∠+∠+∠正好是五边形的外角和为360︒. 【详解】解:如图:∠1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=,12345360∠+∠+∠+∠+∠=︒,∠360A B C D E F G H I J ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=︒. 故选:B .【点睛】本题考查了三角形的外角性质以及多边形的外角和,解题的关键是得出1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=.6.B【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可. 【详解】A 、如图,连接AP 、AQ 、BP 、BQ ,∠AP =BP ,AQ =BQ ,∠点P 在线段AB 的垂直平分线上,点Q 在线段AB 的垂直平分线上, ∠ 直线PQ 垂直平分线线段AB ,即直线l 垂直平分线线段PQ , 本选项不符合题意;B 、B 选项无法判定直线PQ 垂直直线l ,本选项符合题意;C 、如图,连接AP 、AQ 、BP 、BQ ,∠AP = AQ ,BP =BQ ,∠点A 在线段PQ 的垂直平分线上,点B 在线段PQ 的垂直平分线上, ∠ 直线AB 垂直平分线线段PQ ,即直线l 垂直平分线线段PQ , 本选项不符合题意;D、如图,连接AC、BC、DP、PQ,∠AC=BC,AD=BD,∠点C在线段AB的垂直平分线上,点D在线段AB的垂直平分线上,∠ 直线CD垂直平分线线段AB,∠390∠=︒由作图痕迹可知:12∠=∠,∠CD PQ,∠4390∠=∠=︒∠PQ∠AB,本选项不符合题意;故选:B.【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键.7.A【分析】根据作图得到AC=CD,AB=BD,证明∠ABC∠∠DBC,从而得到结论.【详解】解:由作图可知:AC=CD,AB=BD,∠BC=BC,∠∠ABC∠∠DBC(SSS),∠∠ABC=∠CBE,无法证明其余三个选项的结论,故选A.【点睛】本题考查作图-基本作图,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 8.D【分析】证明Rt △FDC ∠Rt △DEB (HL ),由全等三角形的性质得出∠DFC =∠EDB =25°,即可得出答案.【详解】解:∠∠AFD =155°, ∠∠DFC =25°, ∠DF ∠BC ,DE ∠AB , ∠∠FDC =∠DEB =90°,在Rt △FDC 和Rt △DEB 中,CF BD CD BE =⎧⎨=⎩,∠Rt △FDC ∠Rt △DEB (HL ), ∠∠DFC =∠EDB =25°,∠∠EDF =180°−∠BDE −∠FDC =180°−25°−90°=65°. 故选:D .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理和性质定理是解题的关键. 9.D【分析】在三个图中分别证明三角形全等,再根据全等三角形的性质即可得证. 【详解】解:在∠ABC 和∠DEC 中,DC ACDCE ACB EC BC =⎧⎪∠=∠⎨⎪=⎩, ∠∠ABC ∠∠DEC (SAS ), ∠AB =DE ,故乐乐的方案可行; ∠AB ∠BF , ∠∠ABC =90°, ∠DE ∠BF , ∠∠EDC =90°, 在∠ABC 和∠EDC 中,ABC EDC BC CDACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABC ∠∠EDC (ASA ), ∠AB =ED ,故明明的方案可行; ∠BD ∠AB , ∠∠ABD =∠CBD , 在∠ABD 和∠CBD 中,ABD CBD BD BDBDC BDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABD ∠∠CBD (ASA ), ∠AB =BC ,故聪聪的方案可行, 综上可知,三人方案都可行, 故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键. 10.A【分析】过P 点作PD AB ⊥于D PE BC ⊥,于E PF AC ⊥,于F ,先根据角平分线的性质得到PD PE PF ==,再利用三角形面积公式得到123111222S AB PD S AC PF S BC PE =⋅=⋅=⋅,,,然后根据三角形三边的关系对各选项进行判断.【详解】解:过P 点作PD AB ⊥于D PE BC ⊥,于E PF AC ⊥,于F ,如图,CAB ∠和CBA ∠的角平分线相交于点P ,PD PF PD PE ∴==,,PD PE PF ∴==,123111222S AB PD S AC PF S BC PE =⋅=⋅=⋅,,, AB AC BC <+,123S S S ∴<+.故选:A .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形面积公式.11.C【分析】根据翻折后图形大小不变,三角形的外角和,三角形周长,即可判断出正确.【详解】∠ADE 是ABE △翻折而得的∠AB AD =,BAE DAE ∠=∠∠AE 垂直平分BD故①正确;∠Rt ABC 中,90ABC ∠=︒,45C ∠=︒∠45BAC ∠=︒ ∠122.52CAE BAE BAC ∠=∠=∠=︒ ∠BAE ABC CEA ∠+∠=∠∠22.590112.5CEA ∠=︒+︒=︒故②正确;∠ADE 是ABE △翻折而得的∠BE DE =,90ADE ∠=︒∠90EDC ∠=︒∠45C ∠=︒∠45CED ∠=︒∠DE DC =∠DC DE BE ==,但BE CE ≠∠E 不是BC 的中点故③错误;∠55CDB C DC BC BD DC BE EC DC DE EC =++=+++=+++CDE C DC DE EC =++∠5CDB CDE C C -=故④正确.故正确的结论的是:①②④.故选:C .【点睛】本题考查翻折的性质和三角形的知识,解题的关键是掌握翻折的性质,三角形外角和定理,三角形周长等.12.B【分析】先连接CE ,再根据EB =EC ,将FE +EB 转化为FE +CE ,最后根据两点之间线段最短,求得CF 的长,即为FE +EB 的最小值.【详解】解:如图,连接CE ,∠等边∠ABC 中,AD 是BC 边上的中线,∠AD 是BC 边上的高线,即AD 垂直平分BC ,∠EB =EC ,∠BE +EF =CE +EF ,∠当C 、F 、E 三点共线时,EF +EC =EF +BE =CF ,∠等边∠ABC 中,F 是AB 边的中点,∠AD =CF =6,即EF +BE 的最小值为6.故选:B【点睛】本题主要考查了等边三角形的性质,轴对称性质等知识,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.13.A【分析】先根据SAS 定理证出ACD CBE ≅,从而可得60AFG =︒∠,根据等边三角形的判定可得AFG 是等边三角形,再根据SAS 定理证出ACF ABG ≅,从而可得60BGC BAC AFG ∠=∠=︒=∠,根据平行线的判定可得AF BG ∥,从而可得AFG ABF S S m ==,然后根据:5:3AF EF =可得:2:5EG FG =,最后根据三角形的面积公式即可得.【详解】解:∠ABC 是等边三角形,∠,60BC AC AB ACB CBA BAC ==∠=∠=∠=︒,在ACD △和CBE △中,BC AC ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∠()SAS ACD CBE ≅,∠CAD BCE ∠=∠,∠60BCE ACE ACB ∠+∠=∠=︒,∠60AFG CAD ACE BCE ACE ∠=∠+∠=∠+∠=︒,∠FG FA =,∠AFG 是等边三角形,,60AF AG FAG ∴=∠=︒,BAC BAD FAG BAD ∴∠-∠=∠-∠,即CAF BAG ∠=∠,在ACF 和ABG 中,AC AB CAF BAG AF AG =⎧⎪∠=∠⎨⎪=⎩,()SAS ACF ABG ∴≅,ACF ABG ∴∠=∠,又AEC BEG ∠=∠,60BGC BAC ∴∠=∠=︒,BGC AFG ∴∠=∠,AF BG ∴∥,AFG ABF S S m ∴==(同底等高),∠:5:3AF EF =,FG FA =,∠:5:3FG EF =,∠:2:5EG FG =,∠:2:5AEG AFG SS =, ∠2255AEG AFG S S m ==, 即AEG △的面积为25m , 故选:A .【点睛】本题考查了等边三角形的判定与性质、三角形全等的判定与性质等知识点,正确找出两组全等三角形是解题关键.14.D【分析】由“SAS ”可证∠ABD ∠∠AEF ,利用全等三角形的性质判断可求解.【详解】解:∠AD ∠BC ,AF ∠BC ,∠AF ∠AD ,∠∠F AD =∠BAC =90°,∠∠F AE =∠BAD ,故①正确;在∠ABD 和∠AEF 中,AB BE BAD EAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠AEF (SAS ),∠BD =EF ,∠ADB =∠AFE =90°,故②正确;∠AF =AD ,∠DAF =90°,∠∠AFD =45°=∠EFD ,∠FD 平分∠AFE ,故③正确;∠∠ABD ∠∠AEF ,∠S △ABD =S △AEF ,∠S 四边形ABDE =S 四边形ADEF ,故④正确;如图,过点E 作EN ∠EF ,交DF 于N ,∠∠FEN =90°,∠∠EFN =∠ENF =45°,∠EF =EN =BD ,∠END =∠BDF =135°,在∠BGD 和∠EGN 中,BDG ENG BGD EGN BD NE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠BDG ∠∠ENG (AAS ),∠BG =GE ,故⑤正确,故选:D .【点睛】本题考查了全等三角形的判定和性质,平行线的性质,添加恰当辅助线构造全等三角形是解题的关键.15.∠B =∠D (或∠C =∠E 或AB =AD )【分析】根据等式的性质可得∠BAC =∠DAE ,然后利用全等三角形的判定方法,即可解答.【详解】解:∠∠1=∠2,∠∠1+∠DAC =∠2+∠DAC ,∠∠BAC =∠DAE ,∠AE =AC ,∠再添加AB =AD ,利用“SAS”可以证明∠ABC ∠∠ADE ;添加∠B =∠D ,利用“AAS” 可以证明∠ABC ∠∠ADE ;添加∠C =∠E ,利用“ASA” 可以证明∠ABC ∠∠ADE .故答案为:∠B =∠D (或∠C =∠E 或AB =AD ).【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法,是解题的关键. 16.6【分析】先根据角平分线的定义、线段垂直平分线的性质、等腰三角形的性质可得,AE BE ABE CBE A =∠=∠=∠,再根据三角形的内角和定理可得30CBE ∠=︒,设AE BE x ==,则9CE x =-,在Rt BCE 中,根据含30度角的直角三角形的性质即可得.【详解】解:BE 平分ABC ∠,ABE CBE ∴∠=∠, ED 垂直平分AB ,AE BE ∴=,ABE A ∴∠=∠,ABE CBE A ∴∠=∠=∠,又90C ∠=︒,90ABE CBE A ∴∠+∠+∠=︒,解得30CBE ∠=︒,设AE BE x ==,则9CE AC AE x =-=-,在Rt BCE 中,90C ∠=︒,30CBE ∠=︒,2BE CE ∴=,即()29x x =-,解得6x =,即6AE =,故答案为:6.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、含30度角的直角三角形的性质等知识点,熟练掌握含30度角的直角三角形的性质是解题关键.17.5【分析】利用平行线之间的距离相等可得∠ABC 和∠BDE 的高相等,再根据点D 是BC 中点可得∠ABC 的面积是∠BDE 面积的2倍,从而可得结果.【详解】解:∠12l l ∥,∠∠ABC 和∠BDE 的高相等,∠点D 为BC 中点,10ABC S =△cm 2,∠S △ABC=2S △BDE =10cm 2,∠S △BDE =5cm 2,故答案为:5.【点睛】本题主要考查了平行线的性质,利用平行线之间的距离处处相等得出∠ABC 和∠BDE 的高相等是解题的关键.18.8【分析】根据等腰三角形的性质和三角形外角的性质依次可得1A AB ∠的度数,21A AC ∠的度数,32A A B ∠的度数,43A A C ∠的度数,依此得到规律,再根据三角形外角需要小于90°即可求解.【详解】解:由题意可知:1121,AO A A A A A A ==,…;则111212AOA OA A A AA A A A ∠=∠∠=∠,,…; ∠∠BOC =10°,∠12 20A AB BOC ∠=∠=︒,同理可得21324354 30 40 50 60A AC A A B A A C A A B ∠=︒∠=︒∠=︒∠=︒,,,, 65768770 8090A A C A A B A A C ∠=︒∠=︒∠=︒,,,∠第9个三角形将有两个底角等于90°,不符合三角形的内角和定理,∠最多能画8条线段;故答案为:8.【点睛】本题考查了等腰三角形的性质:等腰三角形的两个底角相等:三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和;准确地找到规律是解决本题的关键.19.∠AEC =75°,∠DAE =15°.【分析】根据三角形内角和定理求出∠BAC ,根据角平分线的定义得到∠BAE =∠CAE =12∠BAC =33°,根据三角形的外角性质求出∠AEC ,根据直角三角形的性质求出∠DAE .【详解】解:∠∠BAC +∠B +∠C =180°,∠B =42°,∠C =72°,∠∠BAC =66°,∠AE 平分∠BAC ,∠∠BAE =∠CAE =12∠BAC =33°, ∠∠AEC =∠B +∠BAE =75°,∠AD ∠BC ,∠∠ADE =90°,∠∠DAE =90°-∠AEC =15°.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线,掌握三角形内角和等于180°是解题的关键.20.(1)BD 的长为3;(2)∠ACE 的度数为110°.【分析】(1)利用全等三角形的性质得到CD =AB =1,BC =DE =2,据此即可求得BD 的长;(2)利用全等三角形的性质得到∠ECD =∠A ,再利用三角形的外角性质即可求解.(1)解:∠△ABC ∠△CDE ,AB =1,DE =2,∠CD =AB =1,BC =DE =2,∠BD =BC +CD =2+1=3;(2)解:∠△ABC ∠△CDE ,∠∠ECD =∠A ,∠∠ACD =∠ACE +∠ECD =∠A +∠B ,∠∠ACE =∠B =110°.【点睛】本题考查了全等三角形的性质.全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.21.EG 垂直平分DF ,理由见解析【分析】根据题意,证明BDE ∠CEF △可得ED EF =,根据等腰三角形三线合一,结合G 是DF 的中点,即可得证.【详解】EG 垂直平分DF ,理由如下:AB AC =,B C ∴∠=∠,DEC B BDE DEF FEC ∠=∠+∠=∠+∠,DEF B ∠=∠,BDE CEF ∴∠=∠,在BDE 和CEF △中,B C BDE CEF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,BDE ∴∠()CEF AAS ,ED EF ∴=, 又点G 是DF 的中点,EG ∴垂直平分DF .【点睛】本题考查了等腰三角形的性质,全等三角形的性质与判定,证明BDE ∠CEF △是解题的关键.22.(1)证明见解析(2)6【分析】(1)如图所示,连接BD ,CD ,先利用SAS 证明∠BGD ∠∠CGD 得到BD =CD ,再由角平分线的性质得到DE =DF ,即可利用HL 证明Rt ∠DEB ∠Rt ∠DFC 则BE =CF ;(2)证明Rt ∠ADE ∠Rt ∠ADF (HL ),得到AF =AE ,由(1)得BE =CF ,则AE =AF =AC +CF ,据此求出BE 的长,即可求出AE 的长.(1)解:如图所示,连接BD ,CD ,∠G 是BC 的中点,DG ∠BC ,∠BG =CG ,∠BGD =∠CGD =90°,又∠DG =DG ,∠∠BGD ∠∠CGD (SAS ),∠BD =CD ,∠AD 平分∠BAC ,DE ∠AB ,DF ∠AC ,∠DE =DF ,∠DEB =∠DFC =90°,又∠DB =DC ,∠Rt ∠DEB ∠Rt ∠DFC (HL ),∠BE =CF ;(2)解:在Rt ∠ADE 和Rt ∠ADF 中,AD AD DE DF =⎧⎨=⎩, ∠Rt ∠ADE ∠Rt ∠ADF (HL ),∠AF =AE ,由(1)得BE =CF ,∠AE =AF =AC +CF ,∠AB =AE +BE =AC +CF +BE =AC +2BE ,∠AB =8,AC =4,∠BE =2,∠AE =AB -BE =6.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的性质,熟知全等三角形的性质与判定条件是解题的关键.23.(1)见解析;(2)见解析【分析】(1)根据尺规作图的步骤作图即可;(2)延长CO 至点E 使得OE OC =,连接BE ,先证明AOC BOE ∆≅∆,再证明∠DBE 是等腰三角形即可.【详解】(1)如图1,AC BD 、即为所求.(2)如图2,延长CO 至点E 使得OE OC =,连接BE∠O AB 点为线段的中点,=OA OB ∴,AOC BOE ∆∆在和中,∠=OC OE AOC EOB OA OB =⎧⎪∠∠⎨⎪=⎩,AOC BOE ∴∆≅∆,,AC BE ACO OEB ∴=∠=∠,AC BD =又,BE BD ∴=,BDO OEB ∴∠=∠,ACO BDO ∴∠=∠.【点睛】本题考查了尺规作图和全等三角形,解题的关键是做辅助线把所证的角或线段放到两个全等的三角形中.24.(1)t ,(6﹣t );(2)2或4;(3)∠CMQ不会变化,始终是60°,理由见解析【分析】(1)根据点P、Q的速度都为1厘米/秒.得到BQ=t厘米,AP=t厘米,则BP=AB-AP=(6-t)厘米;(2)分当∠PQB=90°时和当∠BPQ=90°时,两种情况讨论求解即可;(3)只需要证明△ABQ∠△CAP得到∠BAQ=∠ACP,则∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM =∠BAC=60°,即∠CMQ不会变化.(1)解:∠点P、Q的速度都为1厘米/秒.∠BQ=t厘米,AP=t厘米,∠BP=AB-AP=(6-t)厘米,故答案为:t,(6﹣t);(2)解:由题意得:AP=BQ=t厘米,BP=AB-AP=(6-t)厘米,①如图1,当∠PQB=90°时,∠△ABC是等边三角形,∠∠B=60°,∠∠BPQ=30°,∠PB=2BQ,得6﹣t=2t,解得,t=2,②如图2,当∠BPQ=90°时,∠∠B=60°,∠∠BQP=30°,∠BQ=2BP,得t=2(6﹣t),解得,t=4,∠当第2秒或第4秒时,△PBQ 为直角三角形;(3)解:∠CMQ 不变,理由如下:∠△ABC 是等边三角形,∠AB =AC ,∠ABC =∠CAB =60°,在△ABQ 与△CAP 中,60AB CA B CAP AP BQ t =⎧⎪∠=∠=︒⎨⎪==⎩,∠△ABQ ∠△CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°,∠∠CMQ 不会变化.【点睛】本题主要考查了等边三角形的性质,含30度角的直角三角形的性质,全等三角形的性质与判定等等,熟知等边三角形的性质是解题的关键.24.(1)26P ∠=︒ (2)①12P B D ∠=∠+∠(),理由见解析; ②1180()2P B D ∠=︒-∠+∠; ③190+()2P B D ∠=︒∠+∠【分析】(1)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P +∠3=∠1+∠ABC ,∠P +∠2=∠4+∠ADC ,相加得到2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC ,继而得到2∠P =∠ABC +∠ADC ,代入数据得∠P 的值;(2)①按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P AD +∠P =∠PCD +∠D ,∠P AB +∠P =∠4+∠B ,分别用∠2,∠3表示出∠P AD 和∠PCD ,再整理即可得解;②按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAP +∠P +∠4+∠B =360°,∠2+∠P +∠PCD +∠D =360°,分别用∠2,∠3表示出∠BAP 和∠PCD ,再整理即可得解;③按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAD +∠B =∠BCD +∠D ,∠2+∠P =∠PCD +∠D ,分别用∠2,∠3表示出∠BAD 、∠BCD 和∠PCD ,再整理即可得解;(1)解:∠AP 、CP 分别平分∠BAD 、∠BCD,∠∠1=∠2,∠3=∠4,∠∠2+∠3=∠1+∠4,由(1)的结论得:∠P +∠3=∠1+∠ABC ①,∠P +∠2=∠4+∠ADC ②,①+②,得2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC,∠2∠P =∠ABC +∠ADC,∠∠P =12(∠ABC +∠ADC )=12(36°+16°)=26°.(2)12P B D ∠=∠+∠(),理由如下: ①∠AP 平分∠BAD 的外角∠F AD ,CP 平分∠BCD 的外角∠BCE ,∠∠1=∠2,∠3=∠4.由(1)的结论得:∠P AD +∠P =∠PCD +∠D ③,∠P AB +∠P =∠4+∠B ④,∠∠P AB =∠1,∠1=∠2,∠∠P AB =∠2,∠∠P AD=∠P AB+∠BAD=∠2+180°-2∠2=180°-∠2,∠∠2+∠P =∠3+∠B ⑤,③+⑤得∠2+∠P +∠P AD +∠P =∠3+∠B +∠PCD +∠D ,∠∠2+∠P+180°-∠2+∠P=∠3+∠B+180°-∠3+∠D 即2∠P+180°=∠B+∠D+180°,∠12P B D∠=∠+∠().②11802P B D∠=︒-∠+∠(),理由如下:如图4,∠AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∠∠1=∠2,∠3=∠4,∠BAD=180°﹣2∠1,∠BCD=180°﹣2∠3,由题干可知:∠BAD+∠B=∠BCD+∠D,∠(180°﹣2∠1)+∠B=(180°﹣2∠3)+∠D,在四边形APCB中,∠BAP+∠P+∠3+∠B=360°,即(180°﹣∠2)+∠P+∠3+∠B=360°,⑥在四边形APCD中,∠2+∠P+∠PCD+∠D=360°,即∠2+∠P+(180°﹣∠3)+∠D=360°,⑦⑥+⑦得:2∠P+∠B+∠D+∠2﹣∠2+∠3﹣∠3=360°∠2∠P+∠B+∠D=360°,∠11802P B D∠=︒-∠+∠();③1902P B D∠=︒+∠+∠(),理由如下:如图5,∠AP平分∠BAD,CP平分∠BCD的外角∠BCE,∠∠1=∠2,∠3=∠4,由题干结论得:∠BAD+∠B=∠BCD+∠D,即2∠2+∠B=(180°﹣2∠3)+∠D⑧,∠2+∠P=∠PCD+∠D,即∠2+∠P=(180°﹣∠3)+∠D⑨,⑨×2﹣⑧得:2∠P ﹣∠B =180°+∠D, ∠1902P B D ∠=︒+∠+∠().【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8”字形的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.26.(1)证明见解析(2)2BF CH =,理由见解析(3)323【分析】(1)先根据垂直的定义可得90ADC CEB ∠=∠=︒,从而可得90DAC DCA ∠+∠=︒,再根据90ACB ∠=︒可得DAC ECB ∠=∠,然后根据AAS 定理即可得证;(2)作AM CG ∥交直线l 于点M ,连接GM ,先根据ASA 定理证出ACM CBF ≅△△,根据全等三角形的性质可得,CM BF AM CF ==,从而可得AM GC =,再根据ASA 定理证出AMH GCH ≅△△,根据全等三角形的性质可得MH CH =,由此即可得出结论; (3)先根据ADC CEB ≅可得15AD CE ==,再根据AMH GCH ≅△△可得40G AMH HC S S ==△,利用三角形的面积公式可得163MH =,然后根据MH CH =,2BF CH =即可得出答案.(1)证明:,AD DE BE DE ⊥⊥,90ADC CEB ∴∠=∠=︒,90DAC DCA ∴∠+∠=︒,90ACB ∠=︒,90ECB DCA ∴∠+∠=︒,DAC ECB ∴∠=∠,在ADC 和CEB △中,ADC CEB DAC ECB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ADC CEB ∴≅△△.(2)解:2BF CH =,理由如下:如图,作AM CG ∥交直线l 于点M ,连接GM ,180MAC ACG ∴∠+∠=︒,3603609090180ACG BCF ACB FCG ∠+∠=︒-∠-∠=︒-︒-︒=︒,MAC BCF ∠=∠∴,90ACM BCE ∠+∠=︒,90BCE CBF ∠+∠=︒,ACM CBF =∠∴∠,在ACM △和CBF 中,MAC FCB AC CB ACM CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ACM CBF ∴≅△△,,CM BF AM CF ∴==,Rt FCG 是等腰直角三角形,CF GC ∴=,AM GC ∴=,又AM CG ∥,MAH CGH ∴∠=∠,AMH GCH ∠=∠,在AMH 和GCH △中,MAH CGH AM GC AMH GCH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AMH GCH ≅△△,MH CH ∴=,2BF CM CH ∴==.(3)解:如图,作AM CG ∥交直线l 于点M ,连接GM ,ADC CEB ≅△△,15CE =,15AD CE ∴==,AMH GCH ≅△△,40GHC S =, 40G AMH HC S S ∴==△,0124AD MH ∴⋅=,即420115MH =⨯, 解得163MH =, 又MH CH =,2BF CH =,3223BF MH ∴==. 【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的定义,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。
贵州省贵阳市云岩区2021-2022学年八年级上学期期末数学试题
云岩区普通中学2021-2022学年度第一学期期末监测考试八年级数学学科试卷一、选择题(每小题3分,共30分)1.下列实数中的无理数是()AB .0C .12-D .3.142.下列各组数中,能够作为直角三角形的三边长的一组是()A .1,2,3B .2,3,4C .4,5,6D .3,4,53.下列四组数中,二元一次方程235x y -=的解是()A .11x y =⎧⎨=-⎩B .20x y =⎧⎨=⎩C .431x y ⎧=⎪⎨⎪=⎩D .55x y =-⎧⎨=⎩4.贵阳电视塔位于贵阳市云岩区扶风路仙鹤山森林公园内,是贵阳市内海拔最高的标志性建筑物,能在360度旋转观光大厅里俯瞰贵阳全景.小高将位于扶风山麓的阳明祠的位置记为原点建立如图所示的平面直角坐标系,则下列哪个坐标可以表示贵阳电视塔的位置()A .(3,5)-B .(3,5)--C .(3,5)-D .(3,5)5.顶呱呱超市对牛奶销量进行市场占有情况的调查后,最应该关注的是已售出牛奶品牌的()A .中位数B .平均数C .众数D .方差6的可能是()A .点PB .点QC .点MD .点N7.对于命题“若225x =,则5x =”,小江举了一个反例来说明它是假命题,则小江选择的x 值是()A .25x =B .5x =C .10x =D .5x =-8.如图,直线1:31l y x =-与直线2:l y mx n =+相交于点(1,)P b ,则关于x ,y 的方程组31y x y mx n=-⎧⎨=+⎩的解为()A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=⎩D .14x y =⎧⎨=⎩9.某商场销售A ,B ,C ,D 四种商品,它们的单价依次是10元,20元,30元,50元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A .36.5元B .30.5元C .27.5元D .22.5元10.已知正比例函数y kx =(k 为常数且0k ≠),若y 的值随着x 值的增大而增大,则一次函数y kx k =-在平面直角坐标系中的图象大致是()A .B .C .D .二、填空题(每小题4分,共16分)11.27-的立方根是________.12.如图,42D ∠=︒,38C ∠=︒,则ABD ∠=_______︒.13.已知6a b +=,且0a b -=,则2a =__________.14.在平面直角坐标系中,将如图所示的ABC 按照如下图所示的方式依次进行轴对称变换,若点A 坐标是(,)x y ,则经过第2022次变换后所得的点2022A 坐标是__________.三、解答题(本大题7小题,共54分)15.(1)把下列各数填入相应的集合中:14-有理数集合{…};无理数集合{…};(2)小伟把(1(+,请帮小伟化简所列代数式.16.年来,网约车给人们的出行带来了便利,为了了解网约车司机的收入情况,初二的小飞和数学兴趣小组同学从甲乙两家网约车公司分别随机抽取10名司机的月收入(单位:千元)进行统计,其情况如下:甲网约车司机月收入人数情况月收入4千元5千元6千元7千元8千元人数/个12421根据以上信息,整理分析数据如表:平均数中位数众数方差甲网约车公司6m6 1.2乙网约车公司6 4.5n7.6(1)填空:m=________,n=_________;(2)小飞的叔叔决定从两家公司中选择一家做网约车司机,如果你是小飞,你建议他选哪家公司?简述理由.17.某天,小明从菜场附近经过,听到两位阿姨的对话:我今天花了65元,在菜市场买回2斤萝卜、3斤排骨,准备做萝卜排骨汤.我上个星期,也买了1斤萝卜、1斤排骨,花了22元.已知这两个星期,排骨和萝卜的单价都没有改变,请你根据王阿姨和张阿姨的对话求出排骨和萝卜的单价分别是多少元?18.如图,AB CD ,AD 与BC 交于点O ,40C ∠=︒,80AOB ∠=︒,求A ∠的度数.19.如图,在长方形ABCD 中,点B 的坐标为(0,4),点D 的坐标为(2,0).(1)根据点B 与点D 的坐标,在图中画出正确的平面直角坐标系;(2)求经过A ,C 两点的直线的函数表达式.20.如图,在44⨯的方格中,每个小正方形的边长为1.(1)如图1,求线段AB 的长;(2)如图2,若点A 在数轴上表示的数是1-,以A 为圆心,AB 的长为半径画弧,与数轴的正半轴交于点C ,求点C 所表示的数.21.在河道A,B两个码头之间有客轮和货轮通行.一天,客轮从A码头匀速行驶到B码头,同时货轮从B码头出发,运送一批物资匀速行驶到A码头,两船距B码头的距离(km)y与行驶时间(min)x之间的函数关系如图所示,请根据图象解决下列问题:(1)A,B两个码头之间的距离是_________km;(2)已知货轮距B码头的距离与行驶时间的图象表达式为11 2y x,求客轮距B码头的距离2(km)y与时间(min)x之间的函数表达式:(3)求出点P的坐标,并指出点P的横坐标与纵坐标所表示的实际意思.1.A【分析】根据无理数的定义进行判断即可.【详解】A.是无理数,故本选项符合题意;B.0是整数,属于有理数,故本选项不符合题意;C.12 是分数,属于有理数,故本选项不符合题意;D.3.14是有限小数,属于有理数,故本选项不符合题意;故选:A.【点睛】本题考查了无理数的定义,即无限不循环小数,涉及二次根式的化简,熟练掌握上述知识是解题的关键.2.D【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A、12+22≠32,不能构成直角三角形,故此选项不符合题意;B、22+32≠42,不能构成直角三角形,故此选项不符合题意;C、42+52≠62,不能构成直角三角形,故此选项不符合题意;D、32+42=52,能构成直角三角形,故此选项符合题意.故选:D.【点睛】本题考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.3.A【分析】把各选项中x、y的值分别代入方程,使方程左右相等的解才是方程的解.【详解】解:由题意可知:A.11xy=⎧⎨=-⎩,方程左边=23=5=+方程右边,故11xy=⎧⎨=-⎩是方程的解,符合题意;B.2xy=⎧⎨=⎩,方程左边=405-≠,故2xy=⎧⎨=⎩不是方程的解,不符合题意;C.431xy⎧=⎪⎨⎪=⎩,方程左边8=353-≠,故431xy⎧=⎪⎨⎪=⎩不是方程的解,不符合题意;D.55xy=-⎧⎨=⎩,方程左边=10155--≠,故55xy=-⎧⎨=⎩不是方程的解,不符合题意;故选:A【点睛】本题考查二元一次方程的解的定义,使方程左右两边等式成立的未知数的值叫做方程的解;会把x,y的值代入原方程验证二元一次方程的解是解题关键.4.D【分析】根据平面直角坐标系内各象限内点的特点进行解答即可.【详解】解:贵阳电视塔在第一象限内,因此横、纵坐标都应该是正数,所以(3,5)可以表示贵阳电视塔的位置,故D正确.故选:D.【点睛】本题主要考查了平面直角坐标系内各象限内点的特点,熟练掌握各象限内点的横、纵坐标的正负规律是解题的特点.5.C【分析】要调查牛奶销量的市场占有率,即要调查牛奶的销量情况,由此即可得到答案.【详解】解:∵要调查牛奶销量的市场占有率,即要调查牛奶的销量情况,∴最应该关注的是已售出牛奶品牌的众数即可知道哪款牛奶的销量最好,故选C.【点睛】本题主要考查了用众数做决策,熟知众数的定义是解题的关键.6.B 【分析】在哪两个整数之间,即可求解.【详解】解:∵224=,239=,479<<∴23<<在数2和数3之间故选B 【点睛】7.D 【分析】当x =−5时,满足x 2=25,但不能得到x =5,于是x =−5可作为说明命题“若x 2=25,则x =5”是假命题的一个反例.【详解】解:说明命题“若x 2=25,则x =5”是假命题的一个反例可以是x =−5,故D 正确.故选:D .【点睛】本题主要考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.A 【分析】首先把(1,)P b 代入直线1:31l y x =-即可求出b 的值,从而得到P 点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∵直线31y x =-经过点(1,)P b ,∴312b =-=,∴(1,2)P ,∴关于x ,y 的方程组的解为12x y =⎧⎨=⎩.故选:A .【点睛】此题主要考查了二元一次方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次方程组的解.9.B 【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【详解】解:这天销售的四种商品的平均单价是:10×10%+20×15%+30×55%+50×20%=30.5(元),故选:B .【点睛】本题考查了加权平均数的求法,是简单题型,根据各单价分别乘以所占百分比即可获得平均单价.10.C 【分析】根据正比例函数y kx =中,y 的值随着x 值的增大而增大,可得0k >,从而可以判断一次函数图象y kx k =-经过第一、三、四象限.【详解】解:∵正比例函数y kx =中,y 的值随着x 值的增大而增大,∴0k >,∴一次函数y kx k =-的图像经过第一、三、四象限,故选:C 【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出0k >.11.-3【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为:-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.80【分析】由三角形的外角的性质可得ABD D C ∠=∠+∠,代入数据即可得到答案.【详解】解:由题意可知:ABD D C ∠=∠+∠,∵42D ∠=︒,38C ∠=︒,∴=80ABD D C ∠=∠+∠︒.故答案为:80【点睛】本题考查的是三角形的外角的性质,掌握“三角形的外角等于与它不相邻的两个内角之和”是解本题的关键.13.6【分析】先由0a b -=,得出a b =,根据26a a b =+=求解即可.【详解】解:∵0a b -=,∴a b =,∵6a b +=,∴26a a b =+=.故答案为:6.【点睛】本题考查求代数式的值,等式性质,掌握求代数式的值,等式性质是解题关键.14.(),x y --【分析】观察图形可知每四次对称为一个循环组依次循环,用2022除以4,然后根据商和余数的情况确定出变换后的点A 所在的象限,据此即可解答.【详解】解:∵点A 第一次关于x 轴对称后在第四象限,点A 第二次关于y 轴对称后在第三象限,点A 第三次关于x 轴对称后在第二象限,点A 第四次关于y 轴对称后在第一象限,即点A 回到初始位置,∴每四次对称为一个循环组依次循环,∵202245052÷=⋅⋅⋅,∴经过第2022次变换后所得的A 点与第二次变换的位置相同,在第三象限,坐标为(−x ,−y ),故答案为:(−x ,−y ).【点睛】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键,也是本题的难点.15.(1)有理数集合14⎧⎫-⋅⋅⋅⎨⎬⎩⎭;无理数集合}.(2【分析】(1)直接根据有理数和无理数的定义进行分类即可;(2)根据二次根式的乘法和加法法则进行运算即可.【详解】(1)有理数集合1 4⎧⎫-⋅⋅⋅⎨⎬⎩⎭;无理数集合}.(2)解:原式(=+=【点睛】本题考查了有理数和无理数的分类、二次根式的乘法和加法的混合运算,解题关键是熟练掌握和运用运算法则.16.(1)6,4(2)选甲,理由见解析【分析】(1)利用中位数的定义,从低到高对甲网约车公司10名司机的收入进行排序,找到第5和第6名司机的收入,取平均数即为中位数m;观察乙网约车司机月收入人数情况统计图,看哪种收入的司机人数最多,这种收入即为众数n;(2)平均数相同时,比较中位数、众数、方差,从收入稳定性考虑,建议选甲网约车公司.(1)解:根据甲网约车司机月收入人数情况统计表,从低到高对甲网约车公司10名司机的收入进行排序,可知第5和第6名司机的收入均为6千元,因此6m=,观察乙网约车司机月收入人数情况统计图,可知月收入为4千元的司机人数最多,因此4n=,故答案为:6m=,4n=;(2)解:选甲,理由如下:因为甲乙两家网约车公司司机月收入平均数一样,甲的中位数、众数均大于乙,且甲方差小,收入更稳定,所以我会建议叔叔选择甲网约车公司.【点睛】本题考查中位数、众数的定义以及利用方差等统计量作决策,熟练掌握平均数、中位数、众数、方差的意义是解题的关键.17.排骨的单价是21元,萝卜的单价是1元【分析】设排骨的单价是x元,萝卜的单价是y元.根据2斤萝卜、3斤排骨花了65元,1斤萝卜、1斤排骨,花了22元.列方程组326522x yx y+=⎧⎨+=⎩,然后解方程组即可.【详解】解:设排骨的单价是x元,萝卜的单价是y元.根据题意得326522x y x y +=⎧⎨+=⎩,解得211x y =⎧⎨=⎩,答:排骨的单价是21元,萝卜的单价是1元.【点睛】本题考查列二元一次方程组解应用题,掌握列二元一次方程组解应用题的方法与步骤,抓住等量关系列出方程组是解题关键.18.60︒【分析】由AB 与CD 平行,利用两直线平行内错角相等求出B ∠的度数,在AOB 中,利用三角形内角和定理即可求出A ∠的度数.【详解】解:∵AB CD ,40C ∠=︒,∴40B C ∠=∠=︒,∵180A B AOB ∠+∠+∠=︒,∴18060∠=︒-∠-∠=︒A AOB B .【点睛】此题考查了平行线的性质以及三角形内角和定理,熟练掌握平行线的性质及三角形内角和定理是解本题的关键.19.(1)见解析(2)2y x=【分析】(1)先确定点C 为坐标原点,再画出平面直角坐标系即可;(2)确定点A 的坐标,再运用待定系数法求出直线AC 的解析式即可.(1)平面直角坐标系如图所示:(2)由图得点(2,4)A ,点(0,0)C ,设直线AC 表达式为(0)y kx k =≠,把2,4x y ==代入函数表达式得:24k =,解得2k =,所以,直线AC 的表达式为2y x =.【点睛】本题主要考查了确定平面直角坐标系以及运用待定系数法求函数解析式,确定点C 的坐标是解答本题的关键.20.1【分析】(1)根据勾股定理求解即可;(2)根据圆的半径相等得出1===AC AB OA ,利用线段和差计算即可.(1)解:由勾股定理得AB ==(2)如图,∵1===AC AB OA ,∴1=--OC AC AO .∴点C 1-.【点睛】本题考查网格与勾股定理,图形旋转,用数轴上点表示数,掌握网格与勾股定理,图形旋转,用数轴上点表示数是解题关键.21.(1)80(2)2280=-+y x (3)(32,16)P ,点P 的横坐标表示两船在第32分钟相遇,点P 的纵坐标表示两船相遇时距离B 码头16km【分析】(1)根据函数图象可得;(2)根据图象过点(0,80)D ,可设函数表达式为280=+y kx ,把(40,0)代入求出k 即可;(3)联立方程组,求解即可.【详解】(1)根据图象得可知:A 、B 两个码头之间的距离是80千米,故答案为:80;(2)根据图象过点(0,80)D ,可设函数表达式为280=+y kx ,将点(40,0)E 代入得,40800+=k ,解得2k =-.∴2280=-+y x .(3)由题意得1,2280.y x y x ⎧=⎪⎨⎪=-+⎩解得32,16.x y =⎧⎨=⎩∴(32,16)P ,点P 的横坐标表示两船在第32分钟相遇,点P 的纵坐标表示两船相遇时距离B 码头16km .【点睛】本题考查一次函数的应用,解题的关键是熟练掌握待定系数法.。
2021-2022学年八上期末数学题(含答案)
周长=4+5+5=14.
故选D.
【点睛】本题考查的知识点是等腰三角形的性质和三角形的三边关系,解题关键是进行分类讨论,还应验证各种情况是否能构成三角形进行解答.
4.平面直角坐标系中,点(a2+1,2020)所在象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
故选A.
【点睛】本题主要考查轴对称图形,掌握轴对称图形的定义并能正确识别轴对称图形是解答本题的关键.
2.下列实数0, , ,π,其中,无理数共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分:无理数有: , .
故选B.
【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
6.如图,点B,C在线段AD上,AB=CD,AE∥BF,添加一个条件仍不能判定△AEC≌△BFD的是( )
A.AE=BFB.CE=DFC.∠ACE=∠BDFD.∠E=∠F
【答案】B
【解析】
【分析】根据三角形全等的判定定理逐项分析即可.
【详解】解:∵AE∥BF,
∴∠A=∠FBD,
∵AB=CD,
∴AC=BD,
7.满足下列条件时, 不是直角三角形的是( )
A. , , B.
C. D. ,
【答案】C
【解析】
【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.
【详解】解:A、 符合勾股定理的逆定理,故A选项是直角三角形,不符合题意;
B、32+42=52,符合勾股定理的逆定理,故B选项是直角三角形,不符合题意;
(3)乙车出发后小时追上甲车.
贵州省贵阳市花溪区花溪第六中学2022-2023学年八年级上学期期中数学试题(含答案解析)
贵州省贵阳市花溪区花溪第六中学2022-2023学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,平面直角坐标系中点P 的坐标是()A .(2,1)B .(2,1)-C .(1,2)-D .(2,1)--2.下面四组数,其中是勾股数的一组是()A .2,3,4B .0.3,0.4,0.5C .5,12,13D .13.如图,雷达探测器发现了A ,B ,C ,D ,E ,F 六个目标.目标C ,F 的位置分别表示为C (6,120°),F (5,210°),按照此方法表示目标A ,B ,D ,E 的位置时,其中表示正确的是()A .A (4,30°)B .B (1,90°)C .D (4,240°)D .E (3,60°)4.下列曲线中表示y 是x 的函数的是()A .B .C .D .5.在0,2π, 4.3-,227,13,5-,3.14,1.23,1.01001000100001⋯(相邻两个1之间0的个数逐次加1)中,无理数的个数有()A .2个B .3个C .4个D .5个6.下列函数中,是一次函数的是()A .21y x =+B .0y =C .y kx b=+D .13xy =--7.若()21710a b -+-=)A .4B .2C .4±D .2±8的值所对应的点可能落在()A .点A 处B .点B 处C .点C 处D .点D 处9.在ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,且()()2a c a cb +-=,则()A .A ∠为直角B .C ∠为直角C .B ∠为直角D .不是直角三角形10.两个一次函数y ax b =+和y bx a =+在同一平面直角坐标系中的图象可能是()A .B .C .D .二、填空题11.函数()21y a x b =-+-是正比例函数的条件是______________.12x 应该满足的条件是_________.13.一次函数23y x =+的图象过点()11,a y -,()2,a y ,()31,a y +,则1y ,2y ,3y 的大小关系是____________.14.如图,在水塔O 的东北方向24m 处有一抽水站A ,在水塔的东南方向18m 处有一建筑工地B ,在AB 间建一条直水管,则水管AB 的长为_________m .15.如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,且另外两条边长均为无理数,满足这样条件的点C 共__个.三、解答题16.计算:(1)-⨯-()21-+.17.请用画函数的一般步骤作23y x =+的图像,并创作一个小故事(200字以上),将函数的性质,所过的象限等写在小故事中18.如图,在Rt ABC △中,两直角边8AC =,6BC =.(1)求AB 的长;(2)求斜边上的高CD 的长.19.在平面直角坐标系xOy 中,△ABC 的位置如图所示.(1)分别写出以下顶点的坐标:A (,);B (,);C (,).(2)顶点A 关于x 轴对称的点A ′的坐标(,),顶点C 关于y 轴对称的点C ′的坐标(,).(3)求△ABC 的面积.20.甲、乙两人分别从同一公路上的A ,B 两地同时出发骑车前往C 地,两人行驶的路程y (km )与甲行驶的时间x (h )之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A ,B 两地相距km ;乙骑车的速度是km/h ;(2)请分别求出甲、乙两人在0≤x ≤6的时间段内y 与x 之间的函数关系式;(3)求甲追上乙时用了多长时间.参考答案:1.B【分析】根据点的坐标的定义判断即可.【详解】解:由图可得,点P的横坐标是-2,纵坐标是1,故点P的坐标为(-2,1).故选:B.【点睛】本题考查了点的坐标,掌握点的坐标的定义是解答本题的关键.2.C【分析】依题意,勾股数的定义是可以构成一个直角三角形三边的一组正整数;满足勾股定理222+=a b c的一组数,即为勾股数.【详解】由题知,结合勾股数的定义,首先该组数为正整数,然后满足勾股定理;∵B,D选项中的数不为整数,故不是勾股数;A选项是正整数;但是不满足勾股定理22223134+=≠,∴不是勾股数;C选项是正整数;又满足勾股定理:222+==,∴是勾股数;51216913故选:C.【点睛】本题考查勾股数的定义,关键在于能够熟练的掌握和计算,常见的勾股数有3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等.3.C【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别写出坐标A(5,30°),B(2,90°),D(4,240°),E(3,300°),即可判断.【详解】解:按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A不正确;B(2,90°),故B不正确;D(4,240°),故C正确;E(3,300°),故D不正确.故选择:C.【点睛】本题考查新定义坐标问题,仔细分析题中的C、F两例,掌握定义的含义,抓住表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数是解题关键.4.C【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】解:A 、对于x 的每一个取值,y 可能有两个值与之对应,不符合题意;B 、对于x 的每一个取值,y 可能有两个值与之对应,不符合题意;C 、对于x 的每一个取值,y 都有唯一确定的值与之对应,符合题意;D 、对于x 的每一个取值,y 可能有两个值与之对应,不符合题意;故选:C .【点睛】本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数,x 是自变量.5.A【分析】根据无理数的定义即可求解(无理数为无限不循环小数).【详解】解:在0,2π,-4.3,227,13,5-,3.14,1.23,1.01001000100001…(相邻两个1之间0的个数逐次加1)中,无理数有2π,1.01001000100001…(相邻两个1之间0的个数逐次加1)这2个数,故选:A .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.6.D【分析】根据一次函数的定义,即可得到答案.【详解】解:A 、21y x =+不是一次函数,故A 错误;B 、0y =是函数值,不是一次函数,故B 错误;C 、y kx b =+中,若=0k ,不是一次函数,故C 错误;D 、13xy =--是一次函数,故D 正确;故选择:D .【点睛】此题主要考查了一次函数定义,关键是掌握一次函数解析式y kx b =+的结构特征:0k ≠;自变量的次数为1;常数项b 可以为任意实数.7.B【分析】根据非负数的性质列式求出a 、b 的值,然后代入求出a b -的值,再根据算术平方根的定义解答.【详解】解:根据题意得,170a -=,10b -=,解得17a =,1b =,∴17116a b -=-=,4,4的算术平方根的值为2,2,故选:B .【点睛】本题考查了绝对值非负性的应用,算术平方根,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.C的范围,进而得到答案.【详解】解:∵9<10<16,∴34,的值所对应的点可能落在点C 处,故选:C .【点睛】此题主要考查了估算无理数的大小,解题的关键是明确估算无理数大小要用逼近法.9.A【分析】先把等式化为222a c b -=的形式,再根据勾股定理的逆定理判断出此三角形的形状,进而可得出结论.【详解】解:∵()()2a c a cb +-=,∴222a c b -=,即222b c a +=,故此三角形是直角三角形,a 为直角三角形的斜边,∴A ∠为直角.故选:A .【点睛】本题考查了勾股定理的逆定理,掌握由勾股定理的逆定理判定三角形是直角三角形是解题的关键.10.B【分析】首先设定一个为一次函数y 1=ax +b 的图象,再考虑另一条的a ,b 的符号,进而判断是否矛盾,据此逐项分析即可.【详解】A 、如果过第一、二、三象限的图象是y 1,由y 1的图象可知,a >0,b >0;由y 2的图象可知,a >0,b <0,两结论相矛盾,故错误,不符合题意;B 、如果过第一、三、四象限的图象是y 1,由y 1的图象可知,a >0,b <0;由y 2的图象可知,a >0,b <0,两结论不矛盾,故正确,符合题意;C 、如果过第一、二、三象限的图象是y 1,由y 1的图象可知,a >0,b >0;由y 2的图象可知,a >0,b <0,两结论相矛盾,故错误,不符合题意;D 、如果过第二、三、四象限的图象是y 1,由y 1的图象可知,a <0,b <0;由y 2的图象可知,a <0,b >0,两结论相矛盾,故错误,不符合题意.故选:B .【点睛】本题考查了一次函数的图象性质,掌握它的性质是解题的关键.一次函数y kx b =+的图象有四种情况:①当00k b >>,时,函数y kx b =+经过一、二、三象限;②当00k b ><,时,函数y kx b =+经过一、三、四象限;③当00k b <>,时,函数y kx b =+经过一、二、四象限;④当00k b <<,时,函数y kx b =+经过二、三、四象限.11.2a ≠且1b =##1b =且2a ≠【分析】根据正比例函数的定义:y kx =(k 为常数且0k ≠)解答即可.【详解】解:∵函数()21y a xb =-+-是正比例函数,∴20a -≠,10b -=,∴2a ≠且1b =,故答案为:2a ≠且1b =.【点睛】本题考查了正比例函数的定义,熟练掌握正比例函数的定义是解题的关键.12.1x ≤【分析】根据二次根式有意义的条件:被开方数大于或等于0即可求解.【详解】解:由二次根式有意义的条件可得:10x -≥,解得:1x ≤,故答案为:1x ≤.【点睛】本题主要考查二次根式有意义的条件,被开方数大于或等于0.13.123y y y <<【分析】先根据一次函数的解析式判断出函数的增减性,再根据11a a a -<<+即可得出结论.【详解】解:∵一次函数23y x =+中,20k =>,∴y 随着x 的增大而增大.∵一次函数23y x =+的图象过点()11,a y -,()2,a y ,()31,a y +,11a a a -<<+∴123y y y <<,故答案为:123y y y <<.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,牢记“0k >,y 随x 的增大而增大;0k <,y 随x 的增大而减小”是解题的关键.14.30【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.【详解】解:∵OA 是东北方向,OB 是东南方向,∴90AOB ∠︒=,又∵24m OA =,18m OB =,∴30m AB =.∴水管的长为30m .故答案为:30.【点睛】本题考查的知识点是勾股定理的应用,正确运用勾股定理,善于观察题目的信息是解题的关键.15.4【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.【详解】解:根据题意可得以AB 为边画直角△ABC ,使点C 在格点上,且三边都为无理数,满足这样条件的点C 共D,E,F,H4个点.故答案为8.16.(1)613【分析】(1)根据二次根式的混合运算法则计算即可求解;(2)根据二次根式的混合运算法则计算即可求解.【详解】(1)原式6=-6=(2)原式(=13=-13=【点睛】本题考查二次根式的混合运算,解题的关键是掌握二次根式混合运算的顺序.17.见解析【详解】解:列表:x …2-1-012…y…1-1357…描点发画图:小故事:我是一条直线,很有名气的直线,他们给我命名为23y x =+,还很洋气的名字。
人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。
2020-2021学年贵州省贵阳市名校数学八年级第二学期期末教学质量检测试题含解析
2020-2021学年贵州省贵阳市名校数学八年级第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cmB .18cmC .9cmD .36cm2.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .43.如图,在四边形ABCD 中,3AB =,5BC =,130A ∠=︒,100D ∠=︒,AD CD =.若点E ,F 分别是边AD ,CD 的中点,则EF 的长是( )A 2B 3C .2D 54.下列命题是真命题的是( ) A .如果a 2=b 2,那么a=bB .如果两个角是同位角,那么这两个角相等C .相等的两个角是对项角D .在同一平面内,垂直于同一条直线的两条直线平行 5.以下列各组数为边长能构成直角三角形的是( )A .6,12,13B .3,4,7C .8,15,16D .5,12,136.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A .B .C .D .7.下列图形是中心对称图形的是( )A .B .C .D .8.点()0,3P 向右平移m 个单位后落在直线21y x =-上,则m 的值为( ) A .2B .3C .4D .59.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A .B .C .D .10.函数y =k(x +1)和y =kx(k≠0)在同一坐标系中的图象可能是( ) A . B .C .D .二、填空题(每小题3分,共24分)11.已知整数x 、y 满足x +3y =72,则x y +的值是______.12.约分:236a bab=_______.13.计算2(3)- +(3 )2=________.14.如图,在一次测绘活动中,某同学站在点A 处观测停放于B 、C 两处的小船,测得船B 在点A 北偏东75°方向160米处,船C 在点A 南偏东15°方向120米处,则船B 与船C 之间的距离为________米.15.如图,在△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 逆时针旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠B ′AB 等于_____.16.己知关于x 的分式方程1233x k x x +-=--有一个增根,则k =_____________. 17.写一个二次项系数为1的一元二次方程,使得两根分别是﹣2和1._____. 18.如图,在y 轴的正半轴上,自O 点开始依次间隔相等的距离取点1A ,2A ,3A ,4A ,,n A ,分别过这些点作y 轴的垂线,与反比例函数2y x=-()0x <的图象交于点1P ,2P ,3P ,4P ,,n P ,作2111P B A P ⊥,3222P B A P ⊥,4333P B A P ⊥,,111n n n n P B A P ---⊥,垂足分别为1B ,2B ,3B ,4B ,,1n B -,连结12PP ,23PP ,34P P ,,1n n P P -,得到一组112Rt PB P ∆,223Rt P B P ∆,334 Rt P B P ∆,,11n n n Rt P B P --∆,它们的面积分别记为1S ,2S ,3S ,,1n S -,则12S S +=_________,1231n S S S S -++++=_________.三、解答题(共66分)19.(10分)如图,矩形ABCD 中,点E ,F 分别在边AB ,CD 上,点G ,H 在对角线AC 上,EF 与AC 相交于点O ,AG=CH ,BE=DF .(1)求证:四边形EGFH 是平行四边形; (2)当EG=EH 时,连接AF ①求证:AF=FC ;②若DC=8,AD=4,求AE 的长.20.(6分)对于实数a ,b ,定义运算“⊗”:a ⊗b =22()()ab b a b a ab a b ⎧-≥⎨-<⎩,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x 1,x 2是一元二次方程x 2﹣3x +2=0的两个根,则x 1⊗x 2等于( ) A .﹣1B .±2C .1D .±121.(6分)直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,. ①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.22.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?23.(8分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:BC=BD;(2)若BC=15,AD= 20,求AB和CD的长.24.(8分)某校八年级两个班各选派10名学生参加“垃圾分类知识竞赛,各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下班级最高分平均分中位数众数方差八(1)班100 a93 93 12八(2)班99 95 b c8.4(1)求表中a,b,c的值;(2)依据数据分析表,有同学认为最高分在(1)班,(1)班的成绩比(2)班好.但也有同学认为(2)班的成绩更好.请你写出两条支持八(2)班成绩更好的理由.25.(10分)如图,双曲线y=kx经过Rt△BOC斜边上的点A,且满足23AOAB,与BC交于点D,S△BOD=21,求:(1)S△BOC(2)k的值.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.x(元)15 20 25 ……y(件)25 20 15 ……参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:根据三角形的中位线定理即可得到结果.由题意得,原三角形的周长为,故选B.考点:本题考查的是三角形的中位线点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.2、B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF 中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3、C【解析】【分析】,根据勾股定理求出AC,根据三角形中位线定理连接AC,根据等腰三角形的性质、三角形内角和定理求出DAC计算即可.【详解】解:连接AC,100D ∠=︒,AD CD =, 40DAC DCA ∴∠=∠=︒, 90BAC BAD DAC ∴∠=∠-∠=︒,224AC BC AB ∴=-=,点E ,F 分别是边AD ,CD 的中点, 122EF AC ∴==, 故选:C . 【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 4、D 【解析】 【分析】利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项. 【详解】A 、如果a 2=b 2,那么a=±b ,故错误,是假命题;B 、两直线平行,同位角才相等,故错误,是假命题;C 、相等的两个角不一定是对项角,故错误,是假命题;D 、平面内,垂直于同一条直线的两条直线平行,正确,是真命题, 故选D . 【点睛】本题考查了命题与定理的知识,解题的关键是了解平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系等知识,难度不大. 5、D 【解析】解:A .62+122≠132,不能构成直角三角形.故选项错误;B.32+42≠72,不能构成直角三角形.故选项错误;C.82+152≠162,不能构成直角三角形.故选项错误;D.52+122=132,能构成直角三角形.故选项正确.故选D.6、C【解析】观察可得,选项C中的图形与原图中的④、⑦图形不符,故选C.7、C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、A【解析】【分析】根据向右平移横坐标相加,纵坐标不变得出点P平移后的坐标,再将点P平移后的坐标代入y=1x-1,即可求出m的值.【详解】解:∵将点P(0,3)向右平移m个单位,∴点P平移后的坐标为(m,3),∵点(m,3)在直线y=1x-1上,∴1m-1=3,解得m=1.故选A.【点睛】本题考查了点的平移和一次函数图象上点的坐标特征,求出点P平移后的坐标是解题的关键.9、A【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.10、D【解析】【分析】分两种情况分析:当k>0或当k<0时.【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【点睛】本题考核知识点:一次函数和反比例函数的图象. 解题关键点:理解两种函数的性质.二、填空题(每小题3分,共24分)11、2或52【解析】【分析】x y722,且x、y x72,y x2,y2x,,分别求出x 、y【详解】,又x 、y 均为整数,,=0,,∴x=72,y=0或x=18,y=2或x=0,y=8,或.故答案为:或.【点睛】本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.12、2a 【解析】【分析】根据分式的基本性质,分子分母同时除以公因式3ab 即可。
安徽省宣城市2020-2021学年八年级上学期期末考试数学试题(word版含答案)
宣城市2020—2021学年度第一学期期末素质调研测试八年级数学试题考试时间:100分钟,试卷满分100分一、选择题(本题共10小题,每小题3分,共计30分)1.点P(-2,-5)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限2.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中,其中轴对称图形的是A B C D3.函数y x的取值范围是A.x ≥-7B.x>-7且x ≠ 0C.x ≠ 0D.x≥-7且x ≠ 04.如图,△ABC的三边的中线AD,BE,CF相交于点G,且AG:GD=2:1,若S△ABC =18,则图中阴影部分的面积是第4题图第5题图第7题图A.6B.7C.8D.95.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点,过点P分别作两坐标轴的垂线段PC,PD,且PC+PD=5,则直线AB的函数表达式为A.y=x+5B.y=-x+5C.y=x-5D.y=-x-56.一次函数y=(3n-15)x+2n-8的图象不经过第三象限,则n的取值范围是A.4≤n<5B.4<n<5C.n<5D.n>47.如图,点C,F在AD上,AB=DE,AF=DC,要使△ABC△△DEF,可以添加的一个条件是A.AB△DE B.EF△BC C.△B=△E D.△ACB=△DFE8.如图,在Rt△ACB中,△C=90°,△A=36°,线段AB的垂直平分线分别交线段AB、线段AC于D、E两点,则△CBE的度数为A.10°B.12°C.18°D.20°第8题图第10题图9.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为A.45°B.135°C.45°或67.5°D.45°或135°10.如图,△ABC是边长为8的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,点Q同时以相同的速度由B向CB的延长线方向运动(Q与B不重合),过P作PE△AB于E,连接PQ交AB于D,运动过程中线段DE 的长A.3B.4C.5D.不能确定二、填空题(本题共6小题,每题3分,共18分)11.若点P(2x,3x+5)在第二象限,且点P到两坐标轴的距离相等,则点P的坐标是________。
贵州省贵阳市普通中学2020-2021学年高二上学期期末监测通用技术试题(解析版)
贵阳市普通中学2020-2021学年度第一学期期末监测考试试卷高二通用技术2021.1一、选择题(本大题包括20小题,每小题3分,共60分。
每小题只有一个选项符合题意,请将正确选项的序号填入答题卡相应的位置)1. 蜡染是我国古老的少数民族民间传统纺织印染手工艺,也是我省苗族同胞世代相传的传统技艺。
蜡染技术源于()A. 人们对美好事物的需求B. 人们对认识世界的需求C. 人们对遮风挡雨的需求D. 人们对居住的需求【答案】A2. 以下是2020年获得诺贝尔奖的项目,其中属于技术活动的是()A. 哈维·阿尔特、迈克尔·霍顿、查尔斯·赖斯发现丙型肝炎病毒B. 罗杰·彭罗斯发现黑洞的形成是对广义相对论的有力预测C. 赖因哈德·根策尔、安德烈娅·盖兹在银河系中心发现了一个超大质量的致密天体D. 埃玛纽埃勒·沙尔庞捷、珍妮弗·道德纳开发出一种基因组编辑方法【答案】D3. 早在2015年2月,探月工程三期,中国国防科技工业局宣布,探月工程三期再入返回飞行器服务舱为嫦娥五号任务开展在轨验证,已完成调相试验,模拟嫦娥五号着陆器月面采样期间,轨道器的飞行控制过程,验证轨道设计、飞控时序、轨道精度等相关技术项目,为月球轨道交会对接创造良好条件。
下列说法中不.恰当..的是()A. 再入返回飞行器服务舱为嫦娥五号任务月球轨道交会对接创造良好条件体现了技术的目的性B. 再入返回飞行器服务舱为嫦娥五号任务开展在轨验证属于模拟实验C. 为实现嫦娥五号任务而验证、完善相关技术体现了技术是实现设计的基础前提D. 再入返回飞行器服务舱一次完成多项技术验证体现了技术的专利性【答案】D4. 为进一步加强塑料污染治理,建立健全塑料制品长效管理机制。
8月6日,贵州省发展改革委、贵州省生态环境厅联合印发《关于进一步加强塑料污染治理的实施方案》,在方案中规定到2020年底,全省范围餐饮行业禁止使用不可降解的一次性塑料吸管;地级以上城市建成区、景区景点的餐饮堂食服务,禁止使用不可降解的一次性塑料餐具。
2020-2021学年第二学期期末教学质量检测八年级下册人教版数学试卷(五)(word版 含答案)
绝密★启用前2020-2021学年第二学期期末教学质量检测八年级数学试题(五)满分150考试时间120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题 1.在函数y =1x +中,自变量x 的取值范围是( ) A .x≥-1B .x >-1C .x <-1D .x≤-12.下列计算正确的是 ( ) A .3+9=12B .36=18⨯C .5+20=35D .2814=2÷3.如图,直线y =-x +2与x 轴交于点A ,则点A 的坐标是( )A .(2,0)B .(0,2)C .(1,1)D .(2,2)4.若代数式2k-在实数范围内有意义,则一次函数(2)2y k x k =--+的图象可能是( )A .B .C .D .5.下列运算正确的是( ) A .422xy y x -= B .()2239x x -=- C .()32528a a -=-D .642a a a ÷=6.如图所示,直线y x b =-+与直线2y x =都经过点()1,2--A ,则方程组2y x by x =-+⎧⎨=⎩的解为( )试卷第2页,总6页A .12x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =-⎧⎨=-⎩7.某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是( )A .50,8B .50,50C .49,50D .49,88.已知(,)A m n ,(,)B a b ,且6AB =,若33(,)22C m n ,33(,)22D a b ,则CD 的长为( ) A .4B .9C .272D .839.以下列各组数据中,能构成直角三角形的是( ) A .2)3)4B .3)4)7C .5)12)13D .1)2)310.已知平面上四点A)0)0))B)10)0))C)12)6))D)2)6),直线y=mx)3m+6将四边形ABCD 分成面积相等的两部分,则m 的值为( ) A .13B .)1C .2D .1211.若一个四边形的两条对角线相等,则称这个四边形为对角线四边形.下列图形不是对角线四边形的是( ) A .平行四边形B .矩形C .正方形D .等腰梯形12.下列命题中,属于假命题的是( ). A .等角的余角相等B .在同一平面内垂直于同一条直线的两直线平行C .相等的角是对顶角D .有一个角是60°的等腰三角形是等边三角形第II 卷(非选择题)二、填空题13.若一次函数y=)a+3)x+a)3不经过第二象限,则a 的取值范围是________) 14.观察勾股数:3、4、5;8、6、10;15、8、17……则顺次第6组勾股数是_____. 15.如图,在四边形ABCD 中,2AB =,2BC =,3CD =,1DA =,且90ABC ∠=︒,则BAD ∠=______度.16.如图,一次函数y kx b =+(0k <)的图象经过点A .当3y <时,x 的取值范围是________.17.如图,在四边形ABCD 中,//,6,16AD BC AD BC ==, E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从 点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形.则t 的值为_________.18.当x_________时,分式23x -有意义.三、解答题19.小亮和爸爸登山,两人距离地面的高度y (米)与小亮登山时间x (分)之间的函数图象分别如图中折线OA AC -和线段DE 所示,根据函数图象进行以下探究:试卷第4页,总6页(1)爸爸开始登山时距离地面___________米,登山的速度是每分钟___________米. (2)求爸爸登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式. (3)小亮和爸爸什么时候相遇?求出相遇的时间.(4)若小亮提速后,他登山的速度是爸爸速度的3倍,问小亮登山多长时间时开始提速?20.如图,P 为正方形ABCD 的对称中心,正方形ABCD的边长为10,tan 3ABO ∠=,直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以个单位每秒速度运动,运动时间为t,求:(1)直接写出A 、D 、P 的坐标; (2)求)HCR 面积S 与t 的函数关系式; (3)当t 为何值时,)ANO 与)DMR 相似?(4)求以A 、B 、C 、R 为顶点的四边形是梯形时t 的值. 21.已知,如图,AB ∥CD)(1)则图①中的∠1+∠2的度数是180°.(2)则图②中的∠1+∠2+∠3的度数是多少?解:如图⑤,过点E作EF∥AB(为了解题的需要,添加的线叫做辅助线,辅助线常常画成虚线).所以∠1+∠AEF=180°.因为AB∥CD,所以CD∥EF.所以∠FEC+∠3=180°.所以∠1+∠2+∠3=360°.认真阅读(2)的解题过程,求图③中∠1+∠2+∠3+∠4的度数是多少?探究图④中∠1+∠2+∠3+∠4+…+∠n的度数是多少?22.如图,已知直线L1经过点A(﹣1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式.(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)23.为迎接新年,某单位组织员工开展娱乐竞赛活动,工会计划购进A、B两种电器共21件作为奖品.已知A种电器每件90元,B种电器每件70.设购买B种电器x件,购买两种电器所需费用为y元.(1)y与x的函数关系式为:(2)若购买B种电器的数量少于A种电器的数量,请给出一种最省费用的方案,并求出该方案所需费用.24.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?25.计算或化简:(101)3+-(2)+⎝试卷第6页,总6页参考答案1.B【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x+1≥0且1+x≠0,解得x≥-1且x≠-1自变量x的取值范围是x>-1.故选B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.C【解析】【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【详解】A.3,所以A选项错误;B. 原式=B选项错误;C. 原式D. 原式故选C.【点睛】本题考查二次根式的加、减、乘、除运算,熟练掌握二次根式的加减乘除运算是解决此题的关键.3.A【分析】答案第2页,总17页一次函数y =kx +b (k≠0,且k ,b 为常数)的图象是一条直线.令y=0,即可得到图象与x 轴的交点. 【详解】解:直线2y x =-+中,令0y =.则02x =-+. 解得2x =. ∴(2,0)A . 故选:A . 【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y =kx +b (k≠0,且k ,b 为常数)与x 轴的交点坐标是(−bk,0),与y 轴的交点坐标是(0,b ). 4.C 【分析】根据二次根式有意义的条件和分式有意义的条件得到2k <,则20k -<,20k -+>,然后根据一次函数与系数的关系可判断一次函数的位置,从而可对各选项进行判断. 【详解】在实数范围内有意义, ∴20k ->, ∴2k <,∴20k -<,20k -+>,∴一次函数(2)2y k x k =--+的图象经过第一、二、四象限, 故选:C . 【点睛】本题考查了一次函数的图形和性质,解题的关键是熟练掌握一次函数图形与系数之间的关系. 5.D 【分析】根据整式的加减、完全平方公式、积的乘方、同底数幂的除法逐项判断即可. 【详解】A 、4xy 与2y 不是同类项,不可合并,此项错误B 、()22369x x x -=-+,此项错误 C 、()3232362(2)()8a a a -=-⋅=-,此项错误D 、64642a a a a -÷==,此项正确 故选:D . 【点睛】本题考查了整式的加减、完全平方公式、积的乘方、同底数幂的除法,熟记各运算法则是解题关键. 6.B 【分析】 方程组2y x by x =-+⎧⎨=⎩的解即为直线y x b =-+与直线2y x =的交点坐标.根据图象交点坐标直接判断即可. 【详解】解:∵直线y x b =-+与直线2y x =都经过点A (-1,-2),∴方程组2y x b y x =-+⎧⎨=⎩的解为12x y =-⎧⎨=-⎩,故选:B 【点睛】本题考查了一次函数与二元一次方程组的关系,主要考查学生的观察图形的能力和理解能力,题目比较典型,是一道比较容易出错的题目. 7.B 【解析】 【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数. 【详解】解:要求一组数据的中位数,答案第4页,总17页把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50, 所以中位数是50,在这组数据中出现次数最多的是50, 即众数是50, 故选:B. 【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求. 8.B 【解析】 【分析】根据勾股定理求出两点间的距离,进而得22m a)(n b)36-+-=(,然后代入CD=CD. 【详解】解:∵(,)A m n ,(,)B a b ,且6AB =, ∴6=, 则22m a)(n b)36-+-=(, 又∵33(,)22C m n ,33(,)22D a b ,=9, 故选:B. 【点睛】本题考查的是用勾股定理求两点间的距离,求出22m a)(n b)36-+-=(是解题的关键. 9.C【分析】根据勾股定理逆定理逐项计算判断即可.【详解】详解: A. )22+32=13≠42)) 2,3,4不能构成直角三角形;B. )32+42=25≠72)) 3,4,7不能构成直角三角形;C. )52+122=169=132)) 5,12,13能构成直角三角形;D. )12+22=5≠32)) 1,2,3不能构成直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a )b )c 表示三角形的三条边,如果a 2+b 2=c 2,那么这个三角形是直角三角形.10.B【解析】如图,∵A(0,0),B (10,0),C (12,6),D (2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C 、D 的纵坐标相同,∴AB∥CD 且AB=CD ,∴四边形ABCD 是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P 的坐标是(6,3),∵直线y=mx ﹣3m+6将四边形ABCD 分成面积相等的两部分,∴直线y=mx ﹣3m+6经过点P ,∴6m﹣3m+6=3,解得m=﹣1.故选B .【点睛】本题考查了平行四边形的判定以及平行四边形中心对称的性质,也就是过对角线交点的直线把平行四边形分成的两个部分的面积相等.11.A【解析】)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))A)12.C【详解】A 、等角的余角相等,正确;B 、在同一平面内垂直于同一条直线的两直线平行,正确;C 、相等的两个角不一定是对顶角,因此C 选项是假命题,D 、有一个角是60°的等腰三角形是等边三角形,正确,故选C.13.a≤-3【解析】∵一次函数y=(a+3)x+a ﹣3的图象不经过第二象限,)a+3<0,a -3≤0解得a<-3, a≤3)所以a<-3.故答案是:a≤-3)14.48,14,50.【详解】试题分析:观察所给数据的特点可知,每个数都可以用第n 组的组数n 表示,第一个数是()211n +-,第2个数是()21n +,第3个数是()211n ++,按照此规律即可写出第6组勾股数是48,14,50.故答案为48,14,50.考点:数字的规律变化类问题.15.135【解析】【分析】根据勾股定理可得AC 的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD 的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴=,∠BAC=45°,∵12+(2=32,∴∠DAC=90°,∴∠BAD=90°+45°=135°,故答案是:135.【点睛】考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.16.x >2【详解】解:由图象可得,当3y =时,2x =,且y 随x 的增大而减小,则当3y <时,2x >故答案为:2x >.17.1秒或3.5秒【分析】分别从当Q 运动到E 和B 之间、当Q 运动到E 和C 之间去分析求解即可求得答案.【详解】∵E 是BC 的中点,∴BE=CE=12BC=8,①当Q运动到E和B之间,设运动时间为t,则得:3t−8=6−t,解得:t=3.5;②当Q运动到E和C之间,设运动时间为t,则得:8−3t=6−t,解得:t=1,∴当运动时间t为1秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点睛】此题考查平行四边形的判定,解题关键在于掌握判定定理.18.≠3【分析】根据分式有意义,分母不为0解答.【详解】解:∵分式23x-有意义,∴x-3≠0,解得:x≠3,故答案为:≠3.【点睛】本题考查了分式有意义的条件,熟知分式有意义分母不为0是解题关键.19.(1)100,10;(2)y=10x+100;(3)小亮登山6.5分钟时与爸爸相遇;(4)小亮登山1.5分钟时开始提速.【分析】(1)由图象可知爸爸开始登山时距地面100米,用爸爸登山的路程除以登山的时间即可求速度;(2)根据函数图象上两点D (0,100),E (20,300),用待定系数法可求解析式; (3)把B 点纵坐标代入(2)中解析式,求出m 即可;(4)根据提速后的速度是爸爸的3倍,求出速度,再求出开始提速到相遇的时间即可.【详解】解:(1)由图象可知,爸爸开始登山时距离地面100米, 爸爸登山的速度为:3001001020-=(米/分); 故答案为100,10;(2)设DE 的解析式为y=kx+b,把D (0,100),E (20,300)代入得, 10030020b k b=⎧⎨=+⎩, 解得,10010b k =⎧⎨=⎩∴爸爸登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式为:y=10x+100; (3)把y=165代入y=10x+100得,165=10m+100,解得,m=6.5,∴小亮登山6.5分钟时与爸爸相遇;(4)∵小亮提速后,他登山的速度是爸爸速度的3倍,∴小亮提速后的速度为30米/分,16515530-=(分), 6.5-5=1.5(分),∴小亮登山1.5分钟时开始提速.【点睛】本题考查一次函数的应用,解题的关键是读懂图象,利用数形结合的数学思想,找出所求问题需要的条件.20.(1)C (4,1),D (3,4),P (2,2);(2)2212(04)212(4)2t t t S t t t ⎧-+<≤⎪⎪=⎨⎪-->⎪⎩;(3)2t =或3;(4) 4.5t =或134或13 【分析】(1)过点D 作DF ⊥y 轴于点F ,作CE ⊥x 轴于点E ,连接AC ,由tan ∠ABO =3可知3OA OB =,设OA =3x ,则OB =x ,再根据正方形ABCD,利用勾股定理可求出OA 及OB 的长,由全等三角形的判定定理可得出△AOB ≌△BEC ≌△DF A ,故可得出CD 的坐标,利用中点坐标公式即可得出P 点坐标;(2)由RH 速度为1,且∠ROH =45°,可知tan ∠ROH =1,故RH 始终垂直于x 轴,RH =OH =t ,设△HCR 的边RH 的高为h ,4h t =-,再由三角形的面积公式即可得出结论;(3)过点N 作NE ⊥AO 于点E ,过点M 作MS ⊥x 轴于点S ,过点A 作AF ⊥MS 于点F ,求出M 、N 两点坐标,再分∠DRM =45°和∠MDR =45°两种情况进行讨论;(4)分情况进行讨论,顶边和底边分别为BC 、AR ,此时BC ∥AR ,结合已知和已证求出R 点的坐标,求出t 即可;顶边、底边分别为CR 、AB ,此时CR ∥AB ,结合已知和已证求出R 点的坐标,求出t 即可.【详解】解:(1)如图,过点D 作DF ⊥y 轴于点F ,作CE ⊥x 轴于点E ,连接AC ,∵tan ∠ABO =3, ∴3OA OB=, ∴设OB =x ,则OA =3x ,∵正方形ABCD,∴△AOB 中222OA OB AB +=,即2229x x +=,解得:1x =,∴OA =3,OB =1,∴A (0,3),∵∠OAB +∠ABO =90°,∠ABO +∠CBE =90°,∠CBE +∠BCE =90°,∴∠OAB =∠CBE ,∠ABO =∠BCE ,在△AOB 与△BEC 中,OAB CBE AB BCABO BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOB ≌△BEC ,同理可得,△AOB ≌△BEC ≌△DF A ,∴BE =DE =3,CE =AF =1,∴C (4,1),D (3,4),∵P 为正方形ABCD 的对称中心,∴P 是AC 的中点,∴点P (0+42,312+),即P (2,2), 故C (4,1),D (3,4),P (2,2);(2)∵RH 速度为1,且∠ROH =45°,∴tan ∠ROH =1,∴RH 始终垂直于x 轴,∴RH =OH =t ,设△HCR 的边RH 的高为h , 则4h t =-, ∴211422HCR S h t t t =⋅⋅=-+⋅,∴2212(04)212(4)2t t t S t t t ⎧-+<≤⎪⎪=⎨⎪-->⎪⎩; (3)如图,过点N 作NE ⊥AO 于点E ,过点M 作MS ⊥x 轴于点S ,过点A 作AF ⊥MS 于点F ,由(1)可得:B (1,0),∴直线AB 的解析式为:33y x =-+;直线OP 的解析式为:y x =,联立33y x y x =-+⎧⎨=⎩, 解得:3434x y ⎧=⎪⎪⎨⎪=⎪⎩, 直线CD 的解析式为:313y x =-+,联立313y x y x=-+⎧⎨=⎩, 解得:134134x y ⎧=⎪⎪⎨⎪=⎪⎩∴M (134,134),∴44ON OM ==∵4DM =,4AN ==, 当∠MDR =45°时,∵∠AON =45°,∴∠MDR =∠AON ,∵AN ∥DM ,∴∠ANO =∠DMP ,∴△ANO ∽△RMD , ∴MR AN DM NO ==,解得:MR =,则OR OM MR =-=,则2t =,同理可得:当∠DRM =45°时,t =3,△ANO 与△DMR 相似,综上可知:t =2或3时当△ANO 与△DMR 相似;(4)以A 、B 、C 、R 为顶点的梯形,有三种可能:①顶边和底边分别为BC 、AR ,此时BC ∥AR .如图3,延长AD ,交OM 于点R ,则AD 的斜率为1tan 3BAO ∠=, ∴则直线AD 为:33x y =+, ∴则R 坐标为(4.5,4.5),∴则此时四边形ABCR 为直角梯形,则t =4.5;②顶边、底边分别为CR 、AB ,此时CR ∥AB ,且R 与M 重合,四边形ABCR 为梯形. 则CD 的斜率=-3,且直线CD 过点C ,∴直线CD 为:y -1=-3•(x -4),即y =-3x +13,∵OM 与CD 交于点M (即R ),∴点M (134,134),∴OM =, ∴134t =, ③当AC ∥BR 时,可求得AC 解析式为:132x y =-+,BR 解析式为:2122x y =-+, 联立:2122x y y x⎧=-+⎪⎨⎪=⎩,可求得R 坐标为(13,13), 此时13t =, 综上所述: 4.5t =或134或13. 【点睛】本题考查相似三角形的判定和性质,涉及到全等三角形的判定和性质、二次不等式,正方形的性质及梯形的判定定理,解答此题时要注意分类讨论,不要漏解.21.540°;(n -1)•180°.【分析】分别过C ,D 作CE)AB ,DF)AB ,则CE)DF)CD ,根据平行线的性质即可得到结论;根据角的个数n 与角的和之间的关系是(n -1)•180°,于是得到)1+)2+)3+)4+…+)n 的度数=(n -1)•180°.【详解】如图),分别过E ,F 作GE)AB ,HF)AB ,则AB)EG)FH)CD ,))A +)AEG =)GEF +)HFE =)C +)CFH =180°,))1+)2+)3+)4=)A +)AEG+)GEF +)HFE+)C +)CFH =540°=3×180°;由(1)(2)可得角的个数n 与角的和之间的关系是(n -1)•180°,))1+)2+)3+)4+…+)n 的度数为(n -1)•180°.【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键. 22.(1)y =x +1;(2)m 的值为1或﹣3.【分析】(1)根据待定系数法即可求解.(2)根据三角形的面积公式分点P 在点A 的右侧时与点P 在点A 的左侧分别求解即可.【详解】解:(1)设直线L 1的解析式为y =kx +b ,∵直线L 1经过点A (﹣1,0)与点B (2,3),∴023k b k b -+=⎧⎨+=⎩, 解得11k b =⎧⎨=⎩. 所以直线L 1的解析式为y =x +1.(2)当点P 在点A 的右侧时,AP =m ﹣(﹣1)=m +1,有S △APB =12×(m +1)×3=3, 解得:m =1.此时点P 的坐标为(1,0).当点P 在点A 的左侧时,AP =﹣1﹣m ,有S △APB =12×|﹣m ﹣1|×3=3,解得:m =﹣3, 此时,点P 的坐标为(﹣3,0).综上所述,m 的值为1或﹣3.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的应用.23.(1)y=-20x+1890(x 为整数且0≤x ≤21);(2)费用最省的方案为购买A 种电器11件,B种电器10件,此时所需费用为1690元.【分析】(1)设购买B种电器x件,则购买A种电器(21-x)件,根据“总费用=A种电器的单价×购买A种电器数量+B种电器的单价×购买B种电器数量”即可得出y关于x的函数关系式;(2)根据购买B种电器的数量少于A种电器的数量可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再结合一次函数的性质即可得出结论.【详解】解:(1)设购买B种电器x件,则购买A种电器(21-x)件,由已知得:y=70x+90(21-x)化简得,y=-20x+1890(x为整数且0≤x≤21).(2)由已知得:x<21-x,解得:x<10.5.∵y=-20x+1890中-20<0,∴当x=10时,y取最小值,最小值为1690.答:费用最省的方案为购买A种电器11件,B种电器10件,此时所需费用为1690元.【点睛】本题考查了一次函数的应用、解一元一次不等式以及一次函数的性质,解题的关键是:(1)根据数量关系列出y关于x的函数关系式;(2)根据数量关系列出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(不等式或函数关系式)是关键.24.选择乙.【解析】【分析】由形体、口才、专业水平、创新能力按照4:6:5:5的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,【详解】形体、口才、专业水平、创新能力按照4:6:5:5的比确定,则甲的平均成绩为8649069659254655⨯+⨯+⨯+⨯+++=91.2.乙的平均成绩为9248869559354655⨯+⨯+⨯+⨯+++4+6+5+5=91.8.答案第16页,总17页乙的成绩比甲的高,所以应该录取乙.【点睛】本题考查加权平均数,熟练掌握计算方法是解题的关键.25.(1)4;(2)4.5【分析】(1)根据二次根式的乘法运算法则,零指数幂运算法则,绝对值的性质对各项进行化简,最后相加减即可;(2)先化为最简二次根式,最后根据平方差公式进行简便运算.【详解】解:(1)原式1321343=-+=-+=;(2)原式(333 4.52222⎛+=⨯⨯=⎝⎭==.【点睛】本题考查二次根式的混合运算,熟练掌握其运算法则是解题的关键,第(2)可利用平方差公式进行简便计算.。
辽宁省大连市金普新区2020-2021学年八年级上学期期末学业质量监测数学试题(含答案)
辽宁省大连市金普新区2020-2021学年八年级上学期期末学业质量监测数学试题注意事项:本试卷共五大题,26小题,满分150分,考试时间 110分钟,请考生准备好答题工具。
一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确) 1.下面有4个汽车标志图案,其中是轴对称图形的是① ② ③ ④A. ②③④B. ①②③C. ①②④D. ①③④ 2. 下列运算正确的是A.(a²)³=a ⁵B. a²+a ⁴=a ⁶C. a³÷a³=1D.(a³-a)÷a=a² 3.下列多项式乘法,能用平方差 公式进行计算的是A. (x+y)(-x-y)B. (2x+3y)(2x-3z)C. (x-y)(y-x)D. (-a-b)(a-b) 4.下列各式从左到右的变形中是因式分解的是A. x(a-b)=ax-bxB. y²-1=(y+1)(y-1)C. x²-1-2y²=(x+1)(x -1)-2y²D. ax+bx+c=x(a+b+c) 5.下列二次根式中是最简二次根式的是A.√16 B. √7 C.√8D. √9 6.如图,下列条件能判定△ABC≌△DEF的一组是A. ∠A=∠D, ∠C=∠F, AC=DFB. AB=DE, BC=EF, ∠A=∠DC. ∠A=∠D, ∠B=∠E, ∠C=∠FD. AB=DE,△ABC的周长等于△DEF 的周长7.如图,在△ABC中,AB=AC,D 为BC 中点, ∠BAD=35°,则∠C 的度数为A. 35°B. 45°C. 55°D. 60°(第6 题) (第 7 题)8.如图,△ABC中,DE是AC的垂直平分线,AD=5, AE=4,则△ADC的周长是A. 9B. 13C. 14D. 189.如图, 在△ABC中,AB=AC, D,E, F分别是边 BC, AB, AC上的点, 且BE=CD,CF=BD,若∠EDF=44°,则∠A 的度数为A. 44°B. 88°C. 92°D. 136°10. 已知a+b=5, ab=3, 则ba +ab的值是A.193B.199C.253D.259二、填空题(本题共6小题,每小题3分,共18分)11.点A的坐标为(-6,7),点A关于y轴的对称点为点B,则点B的坐标是 .12. 使式子√16−3x有意义的实数x的取值是 .13. 可燃冰是一种新型能源,1cm³可燃冰的质量为 0.00092kg.数字0.00092用科学计数法表示是 .14. (6a³+8a²-4a)÷(-2a)= .15.分解因式: a²c+2abc+b²c= .16.如图,△ACB在平面直角坐标系中, AC=BC,∠ACB=90°,O是BC的中点, 点A 的坐标是(0, a),点B的坐标是(4, -2), 则a的值为 .三、解答题(本题共4小题, 其中17、18、19题各9分, 20题12分,共39分)17. 计算: (3−√2)2+√32+4√12−(√6)0.18. 计算:a 2+6a+9a 2−16÷a+32a−8−2aa+4.19. 如图, AB=CD, AE⊥BC, DF⊥BC, 垂足分别为E, F, CE=BF. 求证: AE=DF.20. 如图,在△ABC中, ∠C=90°,D是AB 上一点(D 与A 不重合).(1)尺规作图: 过点D 作BC 的垂线DE 垂足为E.作∠BAC的平分线 AF 交DE 于点F ,交 BC 于点H(不写作法,保留作图痕迹) ; (2)求证: DF=AD.四、解答题 (本题共3小题, 其中21题9分, 22、23题各 10分,共29分) 21.列方程解应用题甲、乙二人做某种机械零件. 甲每小时比乙多做4个,甲做85个所用的时间与乙做75个所用的时间相等. 求甲每小时做零件多少个.Ⅰ22.观察下列各式:1+112+122=(1+11−12)2①1+122+132=(1+12−13)2②1+132+142=(1+13−14)2③1+142+152=(1+14−15)2④……(1)类比上述式子,写出第5个式子,并验证;(2)用含字母 n的式子表示你发现的规律,并证明.23.如图,△ABC中, AB=AC, ∠A<90°, BD⊥AC 垂足为D, 点 E 在AD上, BE 平分∠ABD,点 F在 BD上, BF=CE, 延长EF交BC 于点 H.(1)求证: ∠CBE=45°;(2)写出线段 BH和 EH 的位置关系和数量关系,并证明.五、解答题(本题共 3小题, 其中24、25题各 11分, 26题12分,共34分)24.甲、乙两船在静水中的最大航速均为x千米/时.甲船以最大航速沿江逆流航行 n千米的时间与以最大航速沿江顺流航行n千米的时间之和记为t₁;乙在静水中以最大航速航行2n千米的时间记为 t₂.设水流速度为 y千米/时.(1)列式表示出t₁、t₂:(2)计算 t₁-t₂、t₁÷t₂.25. 如图, △ABC中,AC=BC, ∠ACB=90°,D是线段 AC上一点, 连接 BD.(1)当BD平分∠ABC时,如图1,作AE⊥BD垂足为 E.写出线段BD与AE 的数量关系,并证明;(2)当D是AC中点时,如图2,作CE⊥BD垂足为F, 交AB于点E,连接 DE.用等式表示线段 CE,DE,BD的数量关系,并证明.26.如图,△ABC中,AC=BC,∠C≤60°,点D、E分别是AC、BC上的点, F是BD延长线上一点, AF=AE, ∠FAE+∠C=180°.(1)当∠C=60°时,如图1,写出线段 CE与AD的数量关系,并证明;(2)当∠C<60°时,如图2,写出线段 FD与BD的数量关系,并证明.八年级数学参考答案一.选择题(本题共8小题,每小题3分,共30分)1. B;2. C;3. C;4. B;5. A;6. A;7. C:8. D:9. C: 10. A.二.填空题(本题共6小题,每小题3分,共18分)11.(6,7); 12. x<3; 13.9.2×10⁻⁴; 14.-3a²-4a+2; 15. c(a+b)²; 16.10.三、解答题(本题共4小题, 其中17、18、19题各9分,20题12分,共39分)17. 解: 原式 =9−6√2+2+4√2+2√2−1 …………………………………………7分=10. ………………………………………………9分18.解: 原式 =(a+3)2(a−4)(a+4)⋅2(a−4)a+3−2aa+4 …………………………………………………………4分=2(a+3)a+4−2aa+4 …………………………………………6分=2a+6a+4−2aa+4=6a+4. …………………………………………………9分19. 证明: ∵AE⊥BC, DF⊥BC, 垂足分别为E, F,∴∠AEB=∠DFC=90°. …………………………………2分 ∵BF=CE, ∴BF -EF=CE-EF.∴BE=CF.………………………………………………………………………4分 在Rt△ABE和Rt△DCF中, {AB =CD,BE =CF,∴Rt△ABE≌△DCF.……………………………………………………………………7分 ∴AE=DF.……………………………………………………9分20.(1)如图,垂线作图形正确,并写结论DE 即为所求,……………………………3分角平分线作图形正确,并写结论AF 即为所求,……………………6分(2)证明: ∵DE⊥BC,∴∠EDB=90°. …………7分∵∠C=90°,∴∠C=∠EDB=90°. …………………8分 ∴AC∥DE.∴∠AFE=∠CAF. …………………9分 ∵AF为∠BAC的平分线,∴∠BAF=∠CAF. ……………10分∴∠AFE=∠BAF. ……………11分∴EF =AE. …………………………12分四、解答题(本题共3小题, 其中21题9分, 22、23题各10分,共29分) 21.解:设甲每小时做零件 x 个. …………………………………1分根据题意,得 85x =75x−4 . …………………………………………………………4分 方程两边同乘x(x-4), 得 85(x-4) =75x.解得x=34……………………………………………………………………………………………………7分检验: 当x=34时,x(x-4)≠0.所以,原分式方程的解为 x=34. ……………………………8分 答:甲每小时做零件34个. …………………….9分22. (1)1+152+162=(1+15−16)2. ……… 1分验证:左式 =1+152+162=1+125+136=961900 ………2分右式 =(3130)2=961900. ……………………… .3分 左式=右式,等式成立. ………………………….4分 (2)1+1n2+1(n+1)2=[1+1n−1n+1]2. ………….5分证明:左式 =n 2(n+1)2n 2(n+1)2+(n+1)2n 2(n+1)2+n 2n 2(n+1)2=n 2(n+1)2+(n+1)2+n 2n 2(n+1)2 =n 2(n+1)2+n 2+2n+1+n 2n 2(n+1)2 =n 2(n+1)2+2(n 2+n )+1n 2(n+1)2 =n 2(n+1)2+2n (n+1)+1n 2(n+1)2 =[n (n+1)+1]2n 2(n+1)2=[n (n+1)+1n (n+1)]2. ………………………………………………………………8分右式 =[n (n+1)n (n+1)+n+1n (n+1)−nn (n+1)]2=[n (n+1)+1n (n+1)]2. ……………………………………………………9分左式=右式,等式成立.…………………………………10分23. (1) ∵BE平分∠ABD, ∴∠ABE=∠DBE.设∠DBE=α, ∠CBD=β, 则∠ABE=α,∴∠ABC=∠ABE+∠DBE+∠CBD=α+α+β=2α+β.∵AB=AC,∴∠C=∠ABC=2α+β.∵BD⊥AC垂足为D,∴∠ADB=90°.∵∠C+∠CBD=∠ADB=90°,即2α+β+β=90°,∴α+β=45°.∴∠CBE=∠DBE+∠CBD=α+β=45°.……………………………………………………………4分(2) BH=EH, BH⊥EH.……………………………………………………………5分过点E作EM∥BC交AB于点M.∴∠AEM=∠C, ∠AME=∠ABC, ∠MEB=∠CBE=45°.∵AB=AC,∴∠C=∠ABC.∴∠AME=∠AME.∴AM=AE.∴AB -AM=AC -AE.即BM=CE.∵BF=CE,∴BM=BF.在△BEM和△BEF中,{BM=BF,∠ABE=∠DBE BE=BE,∴△BEM≌△BEF.∴∠HEB=∠MEB=45°.∵∠CBE=45°,∴∠HEB=∠CBE.∴BH=EH.∵∠EHC=∠HEB+∠CBE=45°+45°=90°.∴BH⊥EH. ……………………………………………………10分五.解答题(本题共3小题, 其中24、25题各11分, 26题12分,共34分)24.解: (1)甲船时间t1=nx+y +nx−y=n(x−y)(x+y)(x−y)+n(x+y)(x−y)(x+y)=2nxx2−y2.………………………………4分乙船时间t2=2nx.…………………………………………………6分(2)t1−t2=2nxx2−y2−2nx=2nx⋅x(x2−y2)x−2n(x2−y2)x(x2−y2)=2ny2(x2−y2)x.……………………………9分t1÷t2=2nxx2−y2÷2nx=x2x2−y2.………………………………………………………11分25. (1)延长AB交BC的延长线于点F.∵BD平分∠ABC,∴∠ABD=∠CBD.∴AF=2AE.在Rt△ADE和Rt△BDC中, ∵∠ADE∠BDC,∴90°-∠ADE=90°-∠BDC. 即∠DAE=∠DBC. ∵∠ACB=90°,∴∠ACF=180°-∠ACB=180°-90°=90°=∠ACB. 在△BCD和△ACF中, {∠DBC =∠DAE,BC =AC,∠ACB =∠ACF, ∴△BCD≌△ACF. ∴BD=AF.∴BD=2AE. ……………………………………5分(2)过点A 作AH⊥AC交CE 于点H.∵AH⊥AC,∴△BCD≌△ACH. ∴BD=CH, AH=CD. ∵D是AC 中点, ∴AD=CD. ∴AH= AD. ∵AC=BC, ∴∠BAC=∠ABC. ∵∠BAC+∠ABC=90°, ∴∠BAC=45°.∴∠HAB=∠CAH -∠BAC=90°-45°=45°=∠BAC.∵AE⊥BE垂足为E, ∴∠AEB=∠FEB=90°. 在△ABE和△FBE中, {∠ABD =∠CBD,BE =BE,∠AEB =∠FEB, ∴△ABE≌△FBE. ∴EF=AE. ∵AE +EF=AF,∴∠CAH=90°. ∵CE⊥BD垂足为F, ∴∠CFD=90°.∵∠CBD+∠BCE=∠CFD=90°, ∠ACE+∠BCE =90°, ∴∠CBD=∠ACE. 在△BCD和△ACH中, {∠CBD =∠ACE,BC =AC,∠ACB =∠CAH,在△AED和△AEH中,{AD =AH,∠BAC =∠BAH,AE =AE,∴△AED≌△AEH.∴EH=DE.∴BD=CH=CE+EH=CE+DE……………………………………………11分26. (1) 过点F 作FH∥AB交AC 于点H.∵FH∥AB,∴∠FHA=∠CAB.∵AC=BC, ∠C=60°,∴△ABC是等边三角形.∴∠CAB =∠C=60°, AC=AB.∴∠FHA=∠C.∵∠FAE+∠C=180°, ∠CAE+∠AEC+∠C=180°,∴∠FAE=∠CAE+∠AEC.即∠FAC+∠CAE=∠CAE+∠AEC.∴∠FAC=∠AEC.在△FAH和△AEC中,{∠FAH =∠C,∠FAC =∠AEC,AF =AE,∴DH=AD.∵AH=DH+AD,∴AH =2AD.∴CE=2AH.………………………………………………………………………………………6分(2)过点F 作FH∥AB交AC 于点H, 以A 为圆心AB 为半径画弧交AB 于点M.∵FH∥AB,∴∠FHA=∠CAB.∵AC=BC,∴∠CAB=∠CBA.∴△FAH≌△AEC.∴FH=AC, AH=CE.∴FH=AB.在△FHD和△BAD中,{∠FDH =∠BDA,∠FHA =∠CAB,FH =AB,∴△FAD≌△BAD.∵AM=AB,∴△FAH≌△AEM.∴FH=AM.∴FH=AB.在△FHD和△BAD中,{∠FDH =∠BDA,∠FHA =∠CAB,FH =AB,∴△FAD≌△BAD.∴DF=DB. ⋯⋯⋯⋯⋯⋯ 12分 ∴∠AMB=∠CBA.∴∠FHA=∠AMB.∵∠FAE+∠C=180°, ∠CAE+∠AEC+∠C=180°, ∴∠FAE=∠CAE+∠AEC.即∠FAC+∠CAE=∠CAE+∠AEC.∴∠FAC=∠AEC.在△FAH和△AEM中,{∠FHA =∠AMB,∠FAC =∠AEC,AF =AE,。
2020-2021学年高二上学期期末考试数学试卷(含解析)
2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。
浙教版2020-2021学年八年级上册数学期末复习试题3(含答案)
2020-2021学年浙教新版八年级上册数学期末复习试题一.选择题1.在平面直角坐标系中,将点(﹣2,﹣4)向下平移3个单位长度后得到的点的坐标是()A.(﹣2,﹣1)B.(﹣5,﹣4)C.(1,﹣4)D.(﹣2,﹣7)2.直线y=﹣2x+6与两坐标轴围成的三角形的面积是()A.8B.6C.9D.23.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.4.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A.90×3+2x≥480B.90×3+2x≤480C.90×3+2x<480D.90×3+2x>4805.在等腰△ABC中,∠A=70°,则∠C的度数不可能是()A.40°B.55°C.65°D.70°6.点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b+1的值等于()A.5B.3C.﹣3D.﹣17.若不等式组的解集为x<﹣a,则下列各式中正确的是()A.a+b≤0B.a+b≥0C.a﹣b<0D.a﹣b>08.如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换,你认为在滑动对称变换过程中,对应点不在变换直线上的两个对应三角形的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行9.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图中s和t分别表示路程和时间,根据图象判定跑260米时,快者比慢者少用多少秒()A.6秒B.6.5秒C.7秒D.7.5秒10.下列命题中是真命题的有()①面积相等的两个三角形全等;②平方根是它本身的数有1和0;③10的平方根是;④在数轴上可以找到表示的点;⑤已知直角三角形中两边长为3和4,则第三边长为5;⑥若(x﹣y)2+A=(x+y)2成立,则A=4xy.A.1个B.2个C.3个D.4个二.填空题11.请写出适合不等式x<﹣1的一个整数解.12.将点A(2,1)变换到点B(2,﹣1),写出一种轴对称或平移方法:.13.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠C=40°,则∠CDO+∠CFO的度数为.14.已知一次函数y=kx﹣3的图象与x轴的交点坐标为(x0,0),且2≤x0≤3,则k的取值范围是.15.如图,在△ABC中,AB=AC,∠A=50°,EF垂直平分AB,则∠FBC的度数为.16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.三.解答题17.已知不等式组的解集为﹣1<x<1,求(a+1)(b﹣1)的值.18.已知∠O及其两边上点A和B(如图),用直尺和圆规作一点P,使点P到∠O的两边距离相等,且到点A,B的距离也相等,并保证其距离最短.(不写作法,保留作图痕迹)19.如图,每个小正方形的边长为1,△ABC经过平移得到△A′B′C′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出中线CD;(3)画出BC边上的高线AE;(4)△ABC的面积为.20.若直线y1=k1x+b1(k1≠0),y2=k2x+b2(k2≠0),则称直线y=(k1+k2)x+b1b2为这两条直线的友好直线.(1)直线y=3x+2与y=﹣4x+3的友好直线为.(2)已知直线l是直线y=﹣2x+m与y=3mx﹣6(m≠0)的友好直线,且直线l经过第一、三、四象限.①求m的取值范围;②若直线l经过点(3,12),求m的值.21.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”(2)若Rt△ABC是“方倍三角形”,且斜边AB=,则该三角形的面积为;(3)如图,△ABC中,∠ABC=120°,∠ACB=45°,P为AC边上一点,将△ABP沿直线BP进行折叠,点A落在点D处,连结CD,AD.若△ABD为“方倍三角形”,且AP=,求△PDC的面积.22.已知一次函数y1=2x+m(m为常数)和y2=﹣x+1.(1)当m=2时,若y1>y2,求x的取值范围;(2)当x1>1时,y1>y2;当x1<1时,y1<y2,则m的值是.(3)判断函数y=y1•y2的图象与x轴的交点个数情况,并说明理由.23.在△ABC和△DBE中,CA=CB,EB=ED,点D在AC上.(1)如图1,若∠ABC=∠DBE=60°,求证:∠ECB=∠A;(2)如图2,设BC与DE交于点F.当∠ABC=∠DBE=45°时,求证:CE∥AB;(3)在(2)的条件下,若tan∠DEC=时,求的值.参考答案与试题解析一.选择题1.解:将点(﹣2,﹣4)向下平移3个单位长度,所得到的点的坐标是(﹣2,﹣7),故选:D.2.解:在直线y=﹣2x+6中,当x=0时,y=6;当y=0时,x=3;∴直线y=﹣2x+6与坐标轴交于(0,6),(3,0)两点,∴直线y=﹣2x+6与两坐标轴围成的三角形面积=×6×3=9.故选:C.3.解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.4.解:设张飞后2天平均听课时长为x分钟,根据题意,得:3×90+2x≥480,故选:A.5.解:当∠A=∠C时,∠C=70°;当∠A=∠B=70°时,∠C=180°﹣∠A﹣∠B=40°;当∠B=∠C时,∠C=∠B=(180°﹣∠A)=55°;即∠C的度数可以是70°或40°或55°,故选:C.6.解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,则3a﹣b=﹣2.∴6a﹣2b+1=2(3a﹣b)+1=﹣4+1=﹣3故选:C.7.解:∵不等式组的解集为x<﹣a,∴﹣a≤b,∴a+b≥0.故选:B.8.解:两个对应三角形的对应点所具有的性质是对应点连线被对称轴平分.故选:B.9.解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),快者跑260米所用的时间为(m/s),慢者跑260米所用的时间为(m/s),∴快者比慢者少用的时间为(秒).故选:D.10.解:①面积相等的两个三角形全等,是假命题;②平方根是它本身的数有1和0,是假命题;③10的平方根是,是真命题;④在数轴上可以找到表示的点,是真命题;⑤已知直角三角形中两边长为3和4,则第三边长为5,是假命题;⑥若(x﹣y)2+A=(x+y)2成立,则A=4xy,是真命题.真命题共3个,故选:C.二.填空题11.解:适合不等式x<﹣1的一个整数解为﹣2(答案不唯一),故答案为:﹣2.12.解:将点A(2,1)向下平移2个单位得到点B(2,﹣1),点A关于x轴的对称点为B(2,﹣1),故答案为向下平移2个单位或关于x轴对称13.解:∵将△ABC沿DE,EF翻折,顶点A,B均落在点O处,∴∠A=∠DOE,∠B=∠EOF,∴∠DOF=∠A+∠B,∵∠A+∠B+∠C=180°,∴∠A+B=180°﹣∠C,∵∠DOF=∠C+∠CDO+∠CFO=180°﹣∠C,∴∠CDO+∠CFO+40°=180°﹣40°,∴∠CDO+∠CFO=100°,故答案为:100°.14.解:将(2,0)代入y=kx﹣3得:0=2k﹣3,∴k=.将(3,0)代入y=kx﹣3得:0=3k﹣3∴k=1.∵一次函数y=kx﹣3过定点(0,﹣3),函数图象与x轴的交点坐标为(x0,0),且2≤x0≤3,∴1≤k≤.故答案为:1≤k≤.15.解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°.∵EF垂直平分AB,∴AF=BF,∴∠ABF=∠A=50°.∴∠FBC=∠ABC﹣∠ABF=65°﹣50°=15°.故答案为:15°.16.解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).三.解答题17.解:由2x﹣a<1得:x<由x﹣2b>3得:x>3+2b∴不等式组的解集为:3+2b<x<又∵﹣1<x<1∴∴,∴(a+1)(b﹣1)=(1+1)(﹣2﹣1)=﹣6.18.解:如图,点P即为所求.19.解:(1)如图,△A′B′C′即为所求.(2)如图线段CD即为所求.(3)如图,线段AE即为所求.=×4×4=8.(4)S△ABC故答案为8.20.解:(1)直线y=3x+2与y=﹣4x+3的友好直线为:y=(3﹣4)x+2×3=﹣x+6,故答案为:y=﹣x+6;(2)①∵直线l是直线y=﹣2x+m与y=3mx﹣6(m≠0)的友好直线,∴直线l的解析式为:y=(﹣2+3m)x﹣6m,∵直线l经过第一、三、四象限,∴,解得;②∵直线l经过点(3,12),∴3(﹣2+3m)﹣6m=12,∴m=6.21.解:(1)对于①等边三角形,三边相等,设边长为a,则a2+a2=2a2,根据“方倍三角形”定义可知:等边三角形一定是“方倍三角形”;对于②直角三角形,三边满足关系式:a2+b2=c2,根据“方倍三角形”定义可知:直角三角形不一定是“方倍三角形”;故选A.故答案为:A;(2)设Rt△ABC其余两条边为a,b,则满足a2+b2=3,根据“方倍三角形”定义,还满足:a2+3=2b2,联立解得,则Rt△ABC的面积为:;故答案为:;(3)由题意可知:△ABP≌△DBP,∴BA=BD,∠ABP=∠DBP,根据“方倍三角形”定义可知:BA2+BD2=2AD2=2BA2,∴AD=AB=BD,∴△ABD为等边三角形,∠BAD=60°,∴∠ABP=∠DBP=30°,∴∠PBC=90°,∵∠CPB=45°,∴∠APB=180°﹣45°=135°,∴∠DPC=90°,∵∠ABC=120°,∠ACB=45°,∴∠BAC=15°,∴∠CAD=45°,∴△APD为等腰直角三角形,∴AP=DP=,∴AD=2,延长BP交AD于点E,如图,∵∠ABP=∠PBD,∴BE⊥AD,PE=AD=AE=1,∴BE===,∴PB=BE﹣PE=﹣1,∵∠CPB=∠PCB=45°,∴△PBC为等腰直角三角形,∴PC=PB=﹣,=PC•PD=(﹣)×=﹣1.∴S△PDC22.解:(1)当m=2时,y1=2x+2,∵y1>y2,y2=﹣x+1,∴2x+2>﹣x+1,解得x>﹣;(2)如果y1>y2,那么2x+m>﹣x+1,解得x>,如果y1<y2,那么2x+m<﹣x+1,解得x<,∵当x1>1时,y1>y2;当x1<1时,y1<y2,∴=1,解得m=﹣2.故答案为:﹣2;(3)y=y1•y2=(2x+m)(﹣x+1),令y=0,则(2x+m)(﹣x+1)=0,解得x1=﹣,x2=1,当﹣=1,即m=﹣2时,该方程有两个相等的实数根,则函数图象与x轴只有一个交点;当﹣≠1,即m≠﹣2时,该方程有两个不相等的实数根,则函数图象与x轴有两个交点.23.(1)证明:∵CA=CB,EB=ED,∠ABC=∠DBE=60°,∴△ABC和△DBE都是等边三角形,∴AB=BC,DB=BE,∠A=60°.∵∠ABC=∠DBE=60°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS).∴∠A=∠ECB;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴,∴,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=DC=2a,∵tan∠DEC=,∴ME=2DM,∴CE=a,∴,∵CE∥DN,∴△CEF∽△NDF,∴.。
2020_2021学年四川成都锦江区嘉祥外国语学校初二上学期期末数学试卷(详解)
2020~2021学年四川成都锦江区嘉祥外国语学校初二上学期期末数学试卷(详解)一、选择题(本大题共10小题,每小题3分,共30分)1.A.B.C.D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】新冠疫情发生以来,各地根据教育部“停课不停教,停课不停学”的相关通知精神,积极开展线上教学.下列在线学习平台的图标中,是轴对称图形的是( ).A图标是轴对称图形,所以本选项符合题意,故正确;图标不是轴对称图形,所以本选项不符合题意,故错误;图标不是轴对称图形,所以本选项不符合题意,故错误;图标不是轴对称图形,所以本选项不符合题意,故错误;故选 A .2.A.B.C.D.【答案】【解析】下列计算中,正确的是( )C 解:A 、与不是同类二次根式,不能合并,此选项计算错误;B 、与不是同类二次根式,不能合并,此选项计算错误;C 、,此选项计算正确;D 、与不是同类二次根式,不能合并,此选项错误;故选:C .3.在平面直角坐标系的第四象限内有一点,到轴的距离为,到轴的距离为,则点的坐标为().【答案】【解析】D 由点到轴的距离为,到轴的距离为,得,,由点位于第四象限,得,,点的坐标为.故选.4.A.人,人B.人,人C.人,人D.人,人【答案】【解析】月的嘉样校园里充满了节日的气氛,为了庆祝周年校庆,现从八年级各班抽出部分同学参加节目表演,其中班的人数分别为:,,,,(单位:人),这组数据的众数和中位数分别是().A众数是指一组数据中出现次数最多的数值,中位数是指一组数据按顺序排列后处于中间位置的数,将数据从小到大排列为:,,,,,出现次数最多的数为,处于中间位置的数为,所以这组数据的众数为,中位数为.故选.5.A.个B.个C.个D.个【答案】【解析】在代数式,,,中,分式有( ).C 在代数式,,,中,分式有,,这个.故选.6.若,则( ).【答案】【解析】B利用平方差公式可得,,可求为.故选.7.A.B.C.D.【答案】【解析】在平面直角坐标系中,将直线向左平移个单位得到的直线是( ).C由“左加右减”的原则可知,将直线向左平移个单位所得直线的解析式为:,即.故选.8.A.,B.,C.,D.,【答案】【解析】若,则,的值为( ).B ∵,∴,,解得:,.故选.9.A.B.在平面直角坐标系中,已知函数()的图象经过点,则该函数的图象是().可.能.C. D.【答案】【解析】A ∵,经过,∴代入,∴,∴,∴,∴图象过且与轴交于正半轴.故选.10.A.B. C. D.【答案】【解析】如图,在矩形中,点在上,将矩形沿折叠,使点落在边上的点处,若,,则的值为( ).D ∵四边形为矩形,∴,,∵矩形沿直线折叠,顶点恰好落在边上的处,∴,,在中,,∴,设,则,在中,∵,∴,解得,∴,∴.故选.二、填空题(本大题共4小题,每小题4分,共16分)11.【答案】【解析】【踩分点】若代数式有意义,则的取值范围是 .且由题意,得且,解得且,故答案为:且.12.【答案】【解析】【踩分点】分解因式: ..故答案为:.13.【答案】如图,在中,,,将绕点按顺时针方向旋转至的位置,点恰好落在边的中点处,则的长为 .【解析】【踩分点】在中,,将该三角形绕点按顺时针方向旋转到的位置,点恰好落在边的中点处,∴,,.∴.∴是等边三角形.∴.∴.∵将绕点按顺时针方向旋转至的位置,∴.∴是等边三角形.∴.∵,∴.在中,∴.∴.故答案为:.14.【答案】【解析】以绳测井,若将绳四折测之,绳多五尺;若将绳五折测之,绳多一尺、绳长、井深各几何?题目大意是,用绳子测量水井的深度.如果将绳子折成四等份,一份绳长比井深多尺,如果将绳子折成五等份,一份绳长比井深多尺.绳长、井深各是多少尺?设绳长尺,井深尺,则可列方程组为 .本题不变的是井深,用代数式表示井深即可得方程,此题中的等量关系有:①将绳四折测之,绳多五尺;②绳五折测之,绳多一尺.根据将绳四折测之,绳多五尺,【踩分点】则;根据绳五折测之,绳多一尺,则,可列方程组为.三、解答题(本大题共6小题,共54分)15.(1)(2)(1)(2)【答案】(1)(2)【解析】解答下列各题.计算:.解不等式组:....,解①得:.解②得:①②①②【踩分点】.∴不等式组的解集为:.16.【答案】【解析】【踩分点】先化简,再求值:,其中:..原式当时,原式.17.(1)(2)(1)【答案】如图,在的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.在图①中,画一个直角三角形,使它的三边长都是整数.图在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数.图画图见解析.(2)(1)(2)【解析】【踩分点】画图见解析.构造边长,,的直角三角形即可.如图①中,即为所求.图构造直角边为斜边为的直角三角形即可(答案不唯一).如图②中,即为所求.图18.(1)(2)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:参与本次问卷调查的市民共有 人,其中选择类的人数有 人.在扇形统计图中,求类对应扇形圆心角的度数,并补全条形统计图.(3)(1)(2)(3)【答案】(1)(2)(3)【解析】【踩分点】该市约有万人出行,若将,,这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数. ;见解析见解析解:本次调查的市民有(人),选择类的人数为(人),故答案为:,;类人数所占百分比为,类对应扇形圆心角的度数为,类的人数为(人),补全条形图如下:(万人),答:估计该市“绿色出行”方式的人数约为万人.19.(1)(2)如图所示,在平面直角坐标系中,过点,的直线与直线交于点.yx求点的坐标.若,直接写出的取值范围.(3)(1)(2)(3)【答案】(1)(2)(3)【解析】若点在轴上,且为等腰三角形,求点的坐标...,,,.直线经过点,.设,∴,解得,∴.又与交于点,∴,解得,∴点坐标为.若,∴,解,得:,解,得:,∴,故取值范围为..若点在轴上,设点坐标为,为等腰三角形,∴或或.①当时,即,∴,则,.②时,,∴,∴或.【踩分点】当时,与重合,舍去;当时,.③时,,∴,∴,则.故当为等腰三角形时,点坐标为,,,.20.(1)(2)(3)(1)(2)(3)【答案】(1)【解析】如图,和都是等边三角形.图探究发现:与是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用:若、、三点不在一条直线上,,,,求的长.若、、三点在一条直线上(如图),且和的边长分别为和,求的面积及的长.图全等,证明见解析..,.∵和都是等边三角形,∴,,,(2)(3)∴,即,在和中,,∴≌.如图,由()得:≌,图∴,∵都是等边三角形,∴,,∵,∴,在中,,,∴,∴.如图,过作于,图∵、、三点在一条直线上,∴,∵和都是等边三角形,∴,∴,在中,,【踩分点】∴,∴,∴,,在中,,∴.四、填空题(本大题共5小题,每小题4分,共20分)21.【答案】【解析】【踩分点】比较大小: (请在横线上填“”、“”、“”).∵的倒数是:,的倒数是:,又∵,∴.故答案为:.22.【答案】【解析】若关于的不等式组有三个整数解,且关于的分式方程有整数解,则整数.,,,解不等式①得:,解不等式②得:,所以不等式组的解为:,不等式组有三个整数解,①②【踩分点】则,∴,又为整数,∴,,,,关于的分式方程有整数解,所以,则,方程有整数解,则,所以,则整数的取值为:,,.23.【答案】【解析】在平面直角坐标系中,点,,是轴负半轴上的一点,且,则点的坐标为 .如图,在轴正半轴上取点,使,则.yO x易证,进而易得.设,则有.故点的坐标为.【踩分点】24.【答案】【解析】【踩分点】定义运算,则(该式子中含有个“”),则计算结果为 .设,∴,,,.式中有个“”.∴原式.故答案为:.25.【答案】【解析】在中,,,,点是线段上的动点,连接,以线段为直角边如图所示作等腰直角三角形,,则周长的最小值为 .取的中点,连接,∵,∴,∵,∴,∵,∴∴,在和中,,∴,∴,.即当取得最小值时,的周长取得最小值,过点作的对称点,连接交于,连接交于点,此时,取得最小值为线段的长度,过点作于点,∵,关于对称,∴垂直平分,,在中,,,,∴,∴,∴,∴,,∴,∴,∴,【踩分点】∴,∴,∴,∴的最小值为,∴的周长最小值为.故答案为:.五、解答题(本大题共3小题,共30分)26.(1)(2)(1)(2)【答案】(1)【解析】月日,成都市区降下了大家期待已久的雪花,气温降到了,某商场购买了甲、乙两种款式的手套贩卖(手套按双购买),已知每双甲款式手套进价比乙款式手套贵元,进购元甲款式手套的数量与进购元乙款式手套的数量相同.求每双甲、乙两种款式的手套的进价.若商场计划进购甲、乙款式的手套共双,要求购进乙款式手套的数量不超过甲款式手套倍,请为该商场设计出最省钱的方案.每双甲、乙款式手套的进价分别为元,元.购进双甲款式手套,购进双乙款式手套.设每双甲款式的手套进价为元,则每双乙款式的手套的进价为元,根据题意可得:,,,,,经检验,是分式方程的解,∴,(2)【踩分点】故每双甲、乙款式手套的进价分别为元,元.设购进手套的总价为元,购进双甲手套,则购进双乙手套,根据题意可得,整理,得,∴随的增大而增大,又∵乙款式手套的数量不超过甲款式手套的倍,∴,解得,∴当时,取得最小值,∴,故最省钱的方案为购进双甲款式手套,购进双乙款式手套.27.(1)(2)(3)(1)(2)(3)【答案】(1)【解析】在,,,是线段上一点(不与,重合).求的度数.如图,连接,若,,求的长.图如图,若,将沿翻折,使点落在点处,延长与的延长线交于点,若是直角三角形,求的长.图..或.∵,(2)(3)∴.又∵,,∴.故.如图,过点作于点.∵,∴为等腰直角三角形,则.设,则,∴,中,,∴,∴,∴,,∴,∴,则,故长为.∵,,∴.①当时,∵将沿翻折,使点落在点处,∴,∴,【踩分点】∴,∵点在以为圆心,为半径的圆上,连接,如图所示:∴,∴,∴;②当时,∵将沿翻折,使点落在点处,∴,,∴,∴,∴,和是等腰直角三角形,∴,∴,∴.综上所述,若是直角三角形,则的长为或.28.(1)如图所示.在平面直角坐标系中,已知直线:分别交轴、轴于点,,过点作线段交轴于点.图求点的坐标.(2)(3)(1)(2)(3)【答案】(1)【解析】如图所示,将绕点顺时针旋转()得到.当线段时,求所在直线的解析式.图如图所示,在轴上取点使得,直线与轴交于点,与轴、直线交于、两点.若的面积为,求的坐标.图...设点坐标为,,则,∵直线分别交轴,轴于,两点,∴时,,即,时,,即,∴,,∴,∵,∴,又,∴,又,∴(2),∴,则,,∴,,∴,,∴点的坐标为.如图所示,与轴交点为,图由旋转性质可知:,,,∵,∴,则,∴,∴,∵,∴,则,设,则,中,,∴,,∴,点坐标为,设直线解析式为,(3)∴,解得,∴直线解析式为,又点在直线:上,∴设坐标为,又,,∴,,∴,又点在第一象限,∴,,∴坐标为,∵,∴设直线解析式为,将代入中得:,解得:,∴直线解析式为.如图所示,过点作于点,图∵,∴平分,又,,∴,设点坐标为,则,∴,又,,,∴,∴,,∴或(舍),∴点坐标为,设直线的解析式为,∴,解得,∴直线解析式为,∵直线与轴交于点,与轴,直线交于,两点,∴点坐标为,点坐标为,联立,解得,即点坐标为,∴,又,∴,∴,∴,∴,∴,则,又,∴,∴,∴点坐标为,故点坐标为.【踩分点】。
2022-2023学年度贵州省贵阳市普通中学第一学期期末检测考试九年级数学试题(含答案解析)
2022-2023学年度贵州省贵阳市普通中学第一学期期末检测考试九年级数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.10︒B.40︒6.日晷是我国古代利用日影测定时刻的一种计时仪器,它由太阳光照在日晷上时,晷针的影子就会投向晷面.随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻.则晷针在晷面上形成的投影是(A.中心投影C.既是平行投影又是中心投影3A.11, 3⎛⎫ ⎪⎝⎭8.如图,小主持人舞台的长约为()A.3.82米9.小星利用表格中的数据,估算一元二次方程x 0222x x=-…-2由此可以确定,方程2A.0 1.1x<<10.如图,在ABC中,剪下的阴影三角形与原三角形不相似的是(A..C...若反比例函数1yx=图象上有两点()22,B x y,若12x x+=).1-B.01D.12.如图,某校为生物兴趣小组规划一块长15m ,宽12m 的矩形试验田.现需在试验田中修建同样宽的两条互相垂直的小路(两条小路各与矩形的一条边平行),根据学校规划,小路分成的四块小试验田的总面积为2154m .求小路的宽为多少米?若设小路的宽为m x ,根据题意所列的方程是()A .(15)(12)154x x --=B .2(15)(12)154x x x ---=C .(15)(12)77x x --=D .1512(15)(12)154x x ⨯---=二、填空题13.若关于x 的方程230x mx +=+的一个根是1x =,则m 的值为_________.14.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积3(m )V 的反比例函数,其图象如图所示,则反比例函数的表达式为______.15.在边长为1的小正方形网格中,ABC A B C '''∽△△.则ABC 与A B C ''' 的周长比为______.16.在矩形ABCD 中,3AB =,4BC =,点M 是平面内一动点,且满足2BM =,N 为MD 的中点,点M 运动过程中线段CN 长度的取值范围是______.三、解答题17.解下列方程:(1)230-=x x(2)2210+-=x x18.画出如图所示几何体的三种视图.19.如图,在矩形ABCD中,E,F,G,H分别是各边的中点,连接EF,FG,GH,EH.试判断四边形EFGH的形状,并说明理由.20.第24届北京冬奥会开幕式二十四节气倒计时惊艳亮相,从“雨水”开始,倒数最终行至“立春”,将中国人独有的浪漫传达给了全世界.李老师将每个节气的名称写在完全相同且不透明的小卡片上,洗匀后邀请同学随机抽取一张卡片,并向大家介绍卡片上对应节气的含义.(1)若随机抽取一张卡片,则上面写有“立夏”的概率为______;(2)老师选出写有“立春、立夏、立秋、立冬”的四张卡片洗匀后背面朝上放在桌面上,请小星从中抽取一张卡片记下节气名称不放回,再洗匀后从中随机抽取一张卡片记下节气名称.请利用列表或画树状图的方法,求两次抽到的卡片上分别写有立春、立冬节气名称的概率.21.小星测量如图所示大楼的高度MN.在距离大楼39m的点B处竖立一根长为3m的标杆AB.他调整自己的位置.站在D处时.使得他直立时眼睛C、标杆顶点A和高楼顶点M三点共线.已知BD=1m.小星的眼睛距离地面高度CD为1.7m.求大楼的高度.22.如图,在平面直角坐标系中,点垂足为点B ,若3AOB S =△,一次函数(1)求k ,m 的值;(2)有一点(1,2)P ,过点P 作x 轴的平行线,分别交M ,N .判断线段PM 与PN 的数量关系,并说明理由;23.小星和小红在学习了正方形的相关知识后,究.(1)问题解决如图①,在正方形ABCD 中,E ,F 分别是,BC CD 边上的点,连接AE BF ,求证:ABE BCF △△≌;(2)类比探究如图②,在正方形ABCD 中,E ,F ,G ,H 分别是BC AD AB CD ,,,边上的点,连接EF GH ,,且EF GH ⊥,求证:EF GH =;(3)迁移应用如图③,在Rt ABC △中,90ABC ∠=︒,AB BC =,D 是BC 的中点,E 是AC 边上的点,连接AD BE ,,且BE AD ⊥,求AECE ∶的值.参考答案:∵N为MD的中点,∴ON为DMB的中位线,∴112ON BM==,∴点N在以O为圆心,以1为半径的圆上运动,在矩形ABCD中,12 OC AC=∴CN的取值范围为512CN -≤即37 22CN≤≤,故答案为:37 22CN≤≤.【点睛】本题考查了矩形的性质,勾股定理,中位线定理,点和圆的位置关系等知识点,灵【详解】解:【点睛】本题考查作图-三视图,解题的关键是理解三视图的定义,属于中考常考题型.∵共有12种等可能的结果,其中抽中立春、立冬的结果有两种:∴P (抽中立春,立冬)21126==.【点睛】本题考查了概率的计算,熟练提取数据是解题关键.21.53.7m90AHC MGC ∠=∠=︒ ,ACH ∠=∠,CAH CMG ∴ ,AH CH MG CG ∴=即3 1.71,139MG -=+52,MG ∴=52 1.753.7MN MG GN ∴=+=+=(m)∴大楼的高度为53.7m【点睛】本题主要考查了相似三角形的应用.三角形解决问题。
2022年贵阳市中考数学试题(含答案解析)
贵阳市2022年初中学业水平考试试题卷数学同学你好!答题前请认真阅读以下内容:1.本试卷共6页,三个大题,共25小题,满分150分,答题时间120分钟,考试形式为闭卷。
2.一律在答题卡相应位置作答,在试卷上答题视为无效。
3.选择题均为单项选择,多选不得分。
一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共36分.1.下列各数为负数的是A.﹣2B.0C.3D.√52.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是A B C D3.中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步,1200这个数用科学记数法可表示为A.0.12×104B.1.2×104C.1.2×103D.12×1024.如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是A.40°B.60°C.80°D.100°5.代数式√x−3在实数范围内有意义,则x的取值范围是A.x≥3B.x>3C.x≤3D.x<36.如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是A. 1:√2B. 1:2C. 1:3D. 1:47.某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是A. 小星抽到数字1的可能性最小B. 小星抽到数字2的可能性最大C. 小星抽到数字3的可能性最大D. 星抽到每个数的可能性相同8.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是A. 4B. 8C. 12D. 169.如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是A. 5B. 5√2C. 5√3D. 5√510.如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有(k>0)的图象上.根据图中四点的位三点在反比例函数y=kx置,判断这四个点中不在函数y=k的图象上的点是xA. 点PB. 点QC. 点MD. 点N11.小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众 数保持不变,则去掉的两个数可能是 A. 5,10B. 5,9C .. 6,8D. 7,812.在同一平面直角坐标系中,一次函数y =ax +b 与y =mx +n (a <m <0)的图象如图所示.小星根据图象得到如下结论:在一次函数y =mx +n 的图象中,y 的值随着x 值 的增大而增大;①方程组{y −ax =by −mx =n 的解为{x =−3y =2;②方程mx +n =0的解为x =2; ③当x =0时,ax +b =﹣1. ④其中结论正确的个数是 A .1B .2C .3D .4二、填空题:每小题4分,共16分. 13.因式分解:a 2+2a = .14.端午节到了,小红煮好了10个粽子,其中有6个红枣粽子,4个绿豆粽子.小红想从煮好的粽子中随机捞一个,若每个粽子形状完全相同,被捞到的机会相等,则她捞到红枣 粽子的概率是 .15. “方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如:从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程x +4y =23,则表示的方程是 .16.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,AC =BC =6cm ,∠ACB =∠ADB =90°.若BE =2AD ,则△ABE 的面积是 cm 2,∠AEB = 度.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.18x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.18.(本题满分10分)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择统计图更好(填“条形”或“折线”);(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是万亿元;(3)写出一条关于我国货物进出口总额变化趋势的信息.19.(本题满分12分)的图象相交一次函数y=﹣x﹣3的图象与反比例函数y=kx于A(﹣4,m),B(n,﹣4)两点.(1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?21.(本题满分10分)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.22.(10分)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:√3≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)如图,AB为⊙O的直径,CD是⊙O的切线,C为切点,连̂于点F,交BC于点接BC.ED垂直平分OB,垂足为E,且交BCP,连接BF,CF.(1)求证:∠DCP=∠DPC;(2)当BC平分∠ABF时,求证:CF∥AB;(3)在(2)的条件下,OB=2,求阴影部分的面积.24.(本题满分12分)已知二次函数y=ax2+4ax+b.(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.25.(本题满分12分)小红根据学轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD=m,点M在AD边上,且BA=BM,点E是线段AM上任意一中,AN为BC边上的高,ADAN点,连接BE,将△ABE沿BE翻折得△FBE.(1)问题解决:如图①,当∠BAD=60°,将△ABE沿BE翻折后,使点F与点M重合,=;则AMAN(2)问题探究:如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;(3)拓展延伸:当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.贵阳市2022年初中学业水平考试试题卷数学学科参考答案一、选择题:每小题3分,共36分.二、填空题:每小题4分,共16分.三、解答题:本大题9小题,共98分.17.(本题满分12分)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a<b,ab<0;(2)①利用公式法:x2+2x﹣1=0,Δ=22﹣4×1×(﹣1)=4+4=8,∴x=−2±√b2−4ac2=−2±√82=−2±2√22=﹣1±√2.∴x1=﹣1+√2,x2=﹣1−√2;②利用因式分解法:x2﹣3x=0,∴x(x﹣3)=0.∴x1=0,x2=3;③利用配方法:x2﹣4x=4,两边都加上4,得x2﹣4x+4=8,∴(x﹣2)2=8.∴x﹣2=±2√2.∴x1=2+2√2,x2=2﹣2√2;④利用因式分解法:x2﹣4=0,∴(x+2)(x﹣2)=0.∴x1=﹣2,x2=2.18.(本题满分10分)解:(1)折线;(2)21.73﹣17.37=4.36(万亿元),即2021年我国货物进出口顺差是4.36万亿元;(3)我国货物进出口总额逐年增加.(答案不唯一).19.(本题满分10分)解:(1)∵一次函数y=﹣x﹣3过点A(﹣4,m),∴m=﹣(﹣4)﹣3=1.∴点A的坐标为(﹣4,1).∵反比例函数y=kx的图象过点A,∴k=xy=﹣4×1=﹣4.∴反比例函数的表达式为y=−4x.(2)∵反比例函数y=−4x过点B(n,﹣4).∴﹣4=−4n,解得n=1.∵一次函数值小于反比例函数值,∴一次函数图象在反比例函数图象的下方.∴在y轴左侧,一次函数值小于反比例函数值x的取值范围为:﹣4<x<0;在第四象限内,一次函数值小于反比例函数值x的取值范围为:x>1.∴一次函数值小于反比例函数值的x取值范围为:﹣4<x<0或x>1.20.(本题满分10分)解:设每辆小货车的货运量是x吨,则每辆大货车的货运量是(x+4)吨,依题意得:80x+4=60x,解得:x=12,经检验,x =12是原方程的解,且符合题意, ∴x +4=12+4=16.答:每辆大货车的货运量是16吨,每辆小货车的货运量是12吨.21.(本题满分10分)解:(1)∵四边形ABCD 为正方形,∴AB =AD ,AB ∥CD ,∠A =∠D =90°, 又∵MF ∥AD ,∴四边形AMFD 为矩形, ∴∠MFD =∠MFN =90°, ∴AD =MF , ∴AB =MF ,∵BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O , ∴∠MFN =∠BAE =90°,∠FMN +∠BMO =∠BMO +∠MBO =90°, ∴∠FMN =∠MBO , 在△ABE 和△FMN 中,{∠A =∠MFNAB =MF∠ABO =∠FMN ∴△ABE ≌△FMN (ASA );(2)∵∠MOB =∠A =90°,∠ABE 是公共角,∴△BOM ∽△BAE , ∴OM :AE =BO :BA , ∵AB =8,AE =6, ∴BE =√AB 2+AE 2=10, ∴OM :6=5:8, ∴OM =154,∵△ABE ≌△FMN , ∴NM =BE =10, ∴ON =MN ﹣MO =254.22.(本题满分10分)解:(1)由题意得:∠CAD=25°,∠EBF=60°,CE=DF=750米,在Rt△ACD中,CD=7米,∴AD=CDtan25°≈70.5=14(米),在Rt△BEF中,EF=7米,∴BF=EFtan60°=√3≈4.1(米),∴AB=AD+DF﹣BF=14+750﹣4.1≈760(米),∴A,B两点之间的距离约为760米;(2)小汽车从点A行驶到点B没有超速,理由:由题意得:760÷38=20米/秒,∵20米/秒<22米/秒,∴小汽车从点A行驶到点B没有超速.23.(本题满分12分)(1)证明:连接OC,如图:∵CD是⊙O的切线,C为切点,∴∠DCO=90°,即∠OCB+∠DCP=90°,∵DE⊥OB,∴∠DEB=90°,∴∠OBC+∠BPE=90°,∵OB=OC,∴∠OCB=∠OBC,∴∠DCP=∠BPE,∵∠BPE=∠DPC,∴∠DCP=∠DPC;(2)证明:连接OF,如图:∵ED垂直平分OB,∴OF=BF,∵OF=OB,∴BF=OF=OB,∴△BOF是等边三角形,∴∠FOB=∠ABF=60°,∠FOB=30°,∴∠FCB=12∵BC平分∠ABF,∠ABF=30°,∴∠ABC=12∴∠FCB=∠ABC,∴CF∥AB;(3)解:连接OF、OC,如图:由(2)知,∠ABC=∠CBF=30°,∴∠COF =2∠CBF =60°,∵OB =2,即⊙O 半径为2,∴S 扇形COF =60×π×22360=2π3,∵OC =OF ,∠COF =60°,∴△COF 是等边三角形,∴CF =OF =OB =2,∵ED 垂直平分OB ,∴OE =BE =12OB =1,∠FEB =90°,在Rt △FEB 中,EF =√BF 2−BE 2=√22−12=√3,∴S △COF =12CF •EF =12×2×√3=√3,∴S 阴影=S 扇形COF ﹣S △COF =2π3−√3, 答:阴影部分的面积为2π3−√3.24.(本题满分12分)解:(1)∵y =ax 2+4ax +b =a (x +2)2﹣4a +b ,∴二次函数图象的顶点坐标为(﹣2,﹣4a +b ).(2)由(1)得抛物线对称轴为直线x =﹣2,当a >0时,抛物线开口向上,∵3﹣(﹣2)>1﹣(﹣2)>(﹣1)﹣(﹣2)=(﹣2)﹣(﹣3), ∴d >c >e =f .当a <0时,抛物线开口向下,∵3﹣(﹣2)>1﹣(﹣2)>(﹣1)﹣(﹣2)=(﹣2)﹣(﹣3), ∴d <c <e =f .(3)当a >0时,抛物线开口向上,x >﹣2时,y 随x 增大而增大, ∴m =﹣2时,n =﹣1,m =1时,n =1,∴{−1=4a −8a +b 1=a +4a +b,解得{a =29b =−19, ∴y =29x 2+89x −19. 当a <0时,抛物线开口向下,x >﹣2时,y 随x 增大而减小, ∴m =﹣2时,n =1,m =1时,n =﹣1,∴{b −4a =1a +4a +b =−1, 解得{a =−29b =19. ∴y =−29x 2−89x +19. 综上所述,y =29x 2+89x −19或y =−29x 2−89x +19. 25.(本题满分12分)解:(1)∵BA =BM ,∠BAD =60°∴△ABM 是等边三角形, ∴AB =AM =BM ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ABN =∠BAM =60°,∵AN 为BC 边上的高,∴AM AN =AB AN =1cos∠BAN =√32=2√33, 故答案为:2√33;(2)∵∠BAD =45°,BA =BM ,∴△AMB 是等腰直角三角形,∴∠MBC =∠AMB =45°,∵EF ∥BM ,∴∠FEM =∠AMB =45°,∴∠AEB =∠FEB =12(180°+45°)=112.5°,∵AD ∥NC ,∴∠BAE =∠ABN =45°,∴∠ABE =180°﹣∠AEB ﹣∠BAE =22.5°,∵ADAN =m,△AMB是等腰直角三角形,AN为底边上的高,则AN=12AM,∵点M在AD边上,∴当AD=AM时,m取得最小值,最小值为AMAN=2,(3)如图,连接FM,延长EF交NC于点G,∵∠BAD=30°,则∠ABN=30°,设AN=a,则AB=2a,NB=√3a,∵EF⊥AD,∴∠AEB=∠FEB=12(180°+90°)=135°,∵∠EAB=∠BAD=30°,∴∠ABE=15°,∴∠ABF=30°,∵AB=BM,∠BAD=30°,∴∠ABM=120°,∵∠MBC=∠AMB=30°,∴∠FBM=90°,在Rt△FBM中,FB=AB=BM,∴FM=√2FB=2√2a,∴EG⊥GB,∵∠EBG=∠ABE+∠ABN=45°,∴GB=EG=a,∵NB=√3a,∴AE=EF=MD=(√3−1)a,在Rt△EFM中,EM=√FM2−EF2=(√3+1)a,∴AD=AE+EM+MD=2AE+EM=(3√3−1)a,同理,当点F落在BC下方时,AD=(3√3+1)a=3√3±1.∴m=ADAN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年贵阳市八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 下列实数中,属于无理数的是( ) A. 227 B. √2 C. 3.14 D. √−832. 下列几组数中,不能作为直角三角形三边的是( )A. 1,√2,√3B. 7,24,25C. 1.2,1.3,0.5D. 4,5,6 3. 点A(−3,−4)到原点的距离为A. 3B. 4C. 5D. 7 4. 如图,AB//CD ,直线EF 交直线AB 、CD 于点E 、F ,FH 平分∠CFE.若∠EFD =70°,则∠EHF 的度数为( )A. 70°B. 65°C. 55°D. 35°5. 若{x =2y =−1是关于x ,y 的二元一次方程ax +by −5=0的一组解,则2a −b −3的值为( ) A. 2B. −2C. 8D. −8 6. 下列说法正确的是( )A. 为了解三名学生的视力情况,采用抽样调查B. 任意画一个三角形,其内角和是360°是必然事件C. 甲、乙两名射击运动员10次射击成绩(单位:环)的平均数相同,方差分别为s 甲2、s 乙2,若s 甲2=0.4,s 乙2=2,则甲的成绩比乙的稳定 D. 一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖7. 下列事件是必然事件的是( ) A. 直线y =3x +b 经过第一象限B. 当a 是一切实数时,√a 2=aC. 两个无理数相加一定是无理数D. 方程2x−2+x 2−x =0的解是x =28. 下列语句中,不是命题的是( ) A. 若两角之和为90°,则这两个角互补B. 同角的余角相等C. 作线段的垂直平分线D. 相等的角是对顶角9. 我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?其意思为:九百九十九文钱买了甜果和苦果共一千个.已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?若设买甜果x 个,买苦果y 个,则下列关于x 、y 的二元一次方程组中符合题意的是( )A. {x +y =999911x +74y =1000B. {x +y =999119x +47y =1000C. {x +y =1000911x +74y =999D. {x +y =1000119x +47y =999 10. 若实数a 、b 、c 满足a +b +c =0,且a <b <c ,则函数y =ax +c 的图象可能是( )A. B. C. D.二、填空题(本大题共4小题,共16.0分)11. √7的相反数是______;−√53的绝对值是______;比较大小:3−√3______13.12. 13的平方根是______.13. 某人只带了2元和5元两种货币,他要买一件27元的商品,而商店不给找钱,则此人的付款方式有______种.14. 在△ABC 中,∠ABC =30°,AB =8,AC =2√7,边AB 的垂直平分线与直线BC 相交于点F ,则线段CF 的长为______ .三、解答题(本大题共7小题,共54.0分)15. 化简:√xy √xy−1√y−2√x 4x−4√xy+y16.如图,方格纸中每个小方格都是边长为1的正方形,我们把顶点均在格点上的三角形称为“格点三角形”,如图1,△ABC就是一个格点三角形.(提示:作图时,先用2B铅笔作图,确定不再修改后用中性笔描黑)(1)作出△ABC关于直线m成轴对称的图形;(2)求△ABC的面积;(3)在图2的直线m上求作点D,使得以A、C、D为顶点的格点三角形是等腰三角形.17.某公司工会组织全体员工参加跳绳比赛,工会主席统计了公司50名员工一分钟跳绳成绩,列出的频数分布直方图如图所示.(每个小组包括左端点,不包括右端点)(1)求该公司员工一分钟跳绳的平均个数至少是多少;(2)该公司一名员工说:“我的跳绳成绩是我公司的中位数”,请你给出该员工跳绳成绩的所在范围.18.某瓜果基地生产一种特色水果,若在市场上直接销售,每吨利润为1200元;经粗加工后销售,每吨利润增为4200元;经精加工后销售,每吨利润可达7500元.一食品公司收购到这种水果200吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批水果全部销售或加工完毕,为此公司研制了三种可行的方案:方案一:将这批水果全部进行粗加工;方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售;方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?19.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)试判断△CHB是否为直角三角形并说明理由;(2)求新路CH比原路CA少多少千米?20.在平面直角坐标系xOy中,直线y=x+1与抛物线y=ax2+bx+5a交于点A和点B,点A在x轴上.(1)点A的坐标为______ .(2)用等式表示a与b之间的数量关系,并求抛物线的对称轴.(3)当AB=5√2时,结合函数图象,求a的值.21.如图,已知在△ABC中,AD平分∠BAC,BE//AD,交CA延长线交于点E,F是BE的中点,求证:AF⊥BE.参考答案及解析1.答案:B是分数,属于有理数,故本选项不合题意;解析:解:A.227B.√2是无理数,故本选项符合题意;C.3.14是有限小数,属于有理数,故本选项不合题意;3=−2,是整数,属于有理数,故本选项不合题意.D.√−8故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.2.答案:D解析:解:A、∵12+(√2)2=3=(√3)2,∴能构成直角三角形,故本选项错误;B、∵72+242=625=252,∴能构成直角三角形,故本选项错误;C、∵1.22+0.52=1.69=1.32,∴能构成直角三角形,故本选项错误;D、∵42+52=41≠62,∴不能构成直角三角形,故本选项正确.故选:D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.答案:C解析:解:根据题意知:坐标系内的点到原点的距离实际上是横纵坐标的长构成的直角三角形的斜边长,利用勾股定理可以求出距离为=5.故选C.4.答案:C解析:解:如图所示:∵∠CFE +∠EFD =180°,∠EFD =70°,∴∠CFE =110°,∵FH 平分∠CFE ,∴∠1=∠2=12∠CFE =55°,又∵AB//CD ,∴∠2=∠3,∴∠EHF =∠3=55°,故选:C .由平角的定义求得,∠CFE =110°,角平分线的定义求得∠2=55°,根据直线AB//CD 得∠2=∠EHF ,等量代换求得∠EHF 的度数为55°.本题综合考查了平行线的性质,角平分线的定义.平角的定义等相关知识点,重点掌握平行线的性质,难点是一题多解,三角形的内角和,三角形外角性质,角平分线的性质,平行线性质也可以求解. 5.答案:A解析:解:把{x =2y =−1代入方程得:2a −b −5=0,即2a −b =5, 则2a −b −3=5−3=2,故选:A .把x 与y 的值代入方程计算求出2a −b 的值,代入原式计算即可求出值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 6.答案:C解析:解:A 、为了解三名学生的视力情况,应采取全面调查,故该选项不符合题意; B 、三角形的内角和是180°,“任意画一个三角形,其内角和是360°”是不可能事件,故该选项不符合题意;C 、因为s 甲2=0.4<s 乙2=2,所以甲的成绩比乙的稳定,故该选项符合题意.D 、一个抽奖活动中,中奖概率为120,表示中奖的可能性为120,不代表抽奖20次就有1次中奖,因此选项不符合题意;故选:C .根据普查、抽查,三角形的内角和,方差和概率的意义逐项判断即可得出答案.本题考查了全面调查与抽样调查,三角形的内角和,方差和概率的意义,理解各个概念的内涵是正确判断的前提. 7.答案:A解析:解:A 、直线的一次项系数3>0,因而一定经过第一象限,故正确;B 、当a 是负数时,√a 2=−a ,故错误;C 、√2与−√2的和是0,是无理数,故错误;D 、当x =2时,方程的分母等于0,方程无意义,故错误.故选A .8.答案:C解析:试题分析:根据命题的定义作答.根据命题的定义,可知A 、B 、D 都是命题,而C 属于作图语言,不是命题.故选C .9.答案:D解析:解:设买甜果x 个,买苦果y 个,由题意可得,{x +y =1000119x +47y =999, 故选:D .设买甜果x 个,买苦果y 个,根据题意可以列出相应的方程组,从而可以解答本题.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 10.答案:A解析:解:∵a +b +c =0,且a <b <c ,∴a <0,c >0,(b 的正负情况不能确定),a <0,则函数y =ax +c 图象经过第二四象限,c >0,则函数y =ax +c 的图象与y 轴正半轴相交,纵观各选项,只有A 选项符合.故选:A .先判断出a 是负数,c 是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y 轴的交点的位置即可得解.本题主要考查了一次函数图象与系数的关系,先确定出a 、c 的正负情况是解题的关键,也是本题的难点.11.答案:−√7 √53 >解析:解:√7的相反数是−√7;−√53的绝对值是√53;3−√3>13. 故答案为:−√7;√53;>.根据相反数的定义求出√7的相反数即可;根据负数的绝对值等于它的相反数求出即可;根据实数大小比较的方法进行比较即可求解.本题考查了对相反数,绝对值,实数大小比较等知识点的理解和运用,考查学生能否根据相反数、绝对值的意义求出任何数的相反数和绝对值. 12.答案:±√13解析:解:∵(±√13)2=13,∴13的平方根是±√13.故答案为:±√13.根据平方根的定义进行解答.本题主要考查了平方根的定义,找出平方是13的数是解题的关键,初学平方根的同学可能会不习惯,需要多做练习,养成习惯.13.答案:3解析:解:设需要支付x 张2元的货币,y 张5元的货币,依题意,得:2x +5y =27,∴x =27−5y 2.又∵x ,y 均为非负整数,∴{x =11y =1,{x =6y =3,{x =1y =5, ∴此人共有3种付款方式.故答案为:3.设需要支付x张2元的货币,y张5元的货币,根据商品的总价为27元,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可得出结论.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.14.答案:23√3或103√3解析:解:如图,作AD⊥BC于D,∵AC=AC′=2√7,AD⊥BC于D,∴C′D=CD,∵EF为AB垂直平分线,∴AE=BE=12AB=4,EF⊥AB,∵∠ABC=30°,∴EF=BE×tan30°=43√3,BF=2EF=83√3,在Rt△ABD中,∵∠ADB=90°,∠ABD=30°,∴AD=12AB=4,由勾股定理得:CD=√(2√7)2−42=2√3,BD=√82−42=4√3,即F在C和D之间,∵BC=BD−CD=4√3−2√3=2√3,∴CF=BF−BC=83√3−2√3=23√3,C′F=BC′−BF=4√3+2√3−83√3=103√3,故答案为:23√3或103√3.在△ABC中,已知两边和其中一边的对角,符合题意的三角形有两个,画出△ABC与△ABC′.作AD⊥BC于D,根据等腰三角形三线合一的性质得出C′D=CD.由EF为AB的垂直平分线求出AE和BE长,根据勾股定理和解直角三角形求出AD、CD、BD、BF,即可求出答案.本题考查了含30度角的直角三角形,线段垂直平分线的性质,等腰三角形三线合一的性质,勾股定理的应用,根据题意画出图形进行分类讨论是解题的关键.15.答案:解:原式=√xy(√xy−1)√xy−1√x−√y)2−(2√x−√y)=−√xy(2√x−√y) =−2x√y+y√x.解析:利用因式分解得方法得到原式=√xy(√xy−1)√xy−1⋅(2√x−√y)2−(2√x−√y),然后约分后进行二次根式的乘法运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.答案:解:(1)如图,△A′B′C′即为所求.(2)S△ABC=4×3−12×3×2−12×1×4−12×1×3=5.5.(3)如图,点D1,D2即为所求.解析:(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)利用分割法求解即可.(3)根据等腰三角形的定义求解即可.本题考查作图−轴对称变换,三角形的面积,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.答案:解:(1)由题意得:(60×4+80×13+100×19+120×7+140×5+160×2)÷50= 100.8(个).故该公司员工一分钟跳绳的平均个数至少是100.8个;(2)把50个数据从小到大排列后,处在中间位置的两个数都在100~120这个范围.故该员工跳绳成绩的所在范围是100~120个.解析:(1)要求平均次数至少是多少,可每组都取最小值计算平均数即可;(2)找出中位数所在的成绩范围.本题考查频数分布直方图的意义、平均数及中位数的概念,读懂频数分布直方图是解决此题的关键.18.答案:解:选择方案一获得的利润为4200×200=840000(元);选择方案二获得的利润为7500×6×15+1200×(200−6×15)=807000(元);设方案三精加工水果x 吨,粗加工水果y 吨,依题意,得:{x +y =200x 6+y 16=15, 解得:{x =24y =176, ∴选择方案三获得的利润为7500×24+4200×176=919200(元).∵807000<840000<919200,∴选择方案三获利最多.解析:利用总利润=每吨的利润×销售数量,可分别求出选择方案一、二获得的利润,设方案三精加工水果x 吨,粗加工水果y 吨,根据15天粗、精加工水果共200吨,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,利用总利润=每吨的利润×销售数量,可求出选择方案三获得的利润,再比较后即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 19.答案:解:(1)是,理由是:在△CHB 中,∵CH 2+BH 2=(1.2)2+(0.9)2=2.25,BC 2=2.25,∴CH 2+BH 2=BC 2,∴△CHB 是直角三角形;(2)设AC =x 千米,在Rt △ACH 中,由已知得AC =x ,AH =x −0.9,CH =1.2,由勾股定理得:AC 2=AH 2+CH 2∴x 2=(x −0.9)2+(1.2)2,解这个方程,得x =1.25,1.25−1.2=0.05(千米)答:新路CH 比原路CA 少0.05千米.解析:(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.此题考查勾股定理的应用,关键是根据勾股定理的逆定理和定理解答.20.答案:(−1,0)解析:解:(1)令y=0,x+1=0,则A点坐标为(−1,0);故答案为(−1,0);(2)将(−1,0)代入y=ax2+bx+5a,∴a−b+5a=6a−b=0,∴b=6a,=−3;∵x=−b2a(3)设B(m,m+1),则AB=√2(m+1)2=√2|m+1|,∵AB=5√2,∴|m+1|=5,∴m+1=±5,∴m=4或−6,∴B(4,5)或(−6,−5),∵抛物线的对称轴为直线x=−3,交x轴于A(−1,0),∴B(−6,−5),把B(−6,−5)代入y=ax2+6ax+5a得,−5=36a−36a+5a,∵a=−1.(1)令y=0,x+1=0,则A点坐标为(−1,0);=−3;(2)将(−1,0)代入y=ax2+bx+5a,可得b=6a,由对称轴x=−b2a(3)设B(m,m+1),根据题意得出|m+1|=5,进而得出B的坐标,代入y=am2+6am+5a,即可求解.本题考查二次函数的图象上点的坐标特征,一次函数的图象上点的坐标特征,二次函数的性质;求得交点坐标是解题的关键.21.答案:证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵BE//AD,∴∠E=∠DAC,∠ABE=∠BAD,∴∠E=∠ABE,∴AE=AB,∵F是BE的中点,∴AF⊥BE.解析:由AD平分∠BAC,得到∠BAD=∠CAD,根据平行线的性质得到∠E=∠DAC,∠ABE=∠BAD,等量代换得到∠E=∠ABE,于是得到AE=AB,根据等腰三角形的性质即可得到结论.本题考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定和性质是解题的关键.。