材料力学第五版答案

合集下载

材料力学第五版课后习题答案

材料力学第五版课后习题答案

7-4[习题7-3] 一拉杆由两段沿n m -面胶合而成。

由于实用的原因,图中的α角限于060~0范围内。

作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与相应的许用应力比较。

现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3,且这一拉杆的强度由胶合缝强度控制。

为了使杆能承受最大的荷载F ,试问α角的值应取多大? 解:AFx =σ;0=y σ;0=x τ ατασσσσσα2s i n 2c o s 22x yx yx --++=][22cos 12cos 22σαασα≤+=+=A F A F A F ][22cos 1σα≤+A F ,][cos 2σα≤AFασ2cos ][A F ≤,ασ2max,cos ][AF N = ατασστα2c o s 2s i n 2x yx +-=][3][2sin στατα=≤=F ,σ][5.1A F ≤,σ][5.1max,AF T =由切应力强度条件控制最大荷载。

由图中可以看出,当060=α时,杆能承受最大荷载,该荷载为:A F ][732.1max σ=7-6[习题7-7] 试用应力圆的几何关系求图示悬臂梁距离自由端为m 72.0的截面上,在顶面以下mm 40的一点处的最大及最小主应力,并求最大主应力与x 轴之间的夹角。

解:(1)求计算点的正应力与切应力MPa mm mm mm N bh My I My z 55.1016080401072.01012124363=⨯⨯⋅⨯⨯⨯===σMPa mm mm mm N bI QS z z 88.0801608012160)4080(10104333*-=⨯⨯⨯⨯⨯⨯⨯-==τ (2)写出坐标面应力 X (10.55,-0.88)Y (0,0.88)(3) 作应力圆求最大与最小主应力,并求最大主应力与x 轴的夹角 作应力圆如图所示。

从图中按比例尺量得:MPa 66.101=σ MPa 06.03-=σ 0075.4=α7-7[习题7-8] 各单元体面上的应力如图所示。

材料力学第五版(I)孙训方版课后习题答案

材料力学第五版(I)孙训方版课后习题答案

材料力学第五版(I )孙训方版课后习题答案[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。

解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。

荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

MPa kPa mkNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。

2-7图解:取长度为dx 截离体(微元体)。

则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d lx A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆πlld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。

材料力学第五版课后题答案(孙训芳)

材料力学第五版课后题答案(孙训芳)

材料⼒学第五版课后题答案(孙训芳)材料⼒学(I)第五版(孙训芳编)⽢肃建筑职业技术学院长安⼤学⼟⽊⼯程材料⼒学复习材料材料⼒学第五版课后答案(孙训芳编)4-1试求图⽰各梁中指定截⾯上的剪⼒和弯矩 a (5)=h (4)001100110002222200022132241111223121140,222233RA RB S S q F F a q a q F q a a q aa M q a q a q aF M q a a q a a q a ----====-==-===-=b (5)=f (4)4-2试写出下列各梁的剪⼒⽅程和弯矩⽅程,并作剪⼒图和弯矩图 a (5)=a (4)b(5)=b(4)f(5)=f(4)4-3试利⽤载荷集度,剪⼒和弯矩间的微分关系做下列各梁的弯矩图和剪⼒e和f题)(e)(f)(h)4-4试做下列具有中间铰的梁的剪⼒图和弯矩图。

4-4 (b) 4-5 (b)4-5.根据弯矩、剪⼒与荷载集度之间的关系指出下列玩具和剪⼒图的错误之处,并改正。

4-6.已知简⽀梁的剪⼒图如图所⽰,试做梁的弯矩图和荷载图,梁上五集中⼒偶作⽤。

4-6(a) 4-7(a)4-7.根据图⽰梁的弯矩图做出剪⼒图和荷载图。

4-8⽤叠加法做梁的弯矩图。

4-8(b) 4-8(c)4-9.选择合适的⽅法,做弯矩图和剪⼒图。

4-9(b) 4-9(c)4-104-14.长度l=2m的均匀圆⽊,欲锯做Fa=0.6m的⼀段,为使锯⼝处两端⾯开裂最⼩,硬是锯⼝处弯矩为零,现将圆⽊放在两只锯⽊架上,⼀只锯⽊架放在圆⽊⼀段,试求另⼀只锯⽊架应放位置。

x=0.4615m4-184-19M=30KN 4-214-234-254-284-294-334-364-355-25-35-75-15。

材料力学第五版课后题答案孙训芳

材料力学第五版课后题答案孙训芳

材料力学第五版课后题答案孙训芳材料力学第五版课后答案(孙训芳编)[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。

解:由题意可得:[习题2-3]石砌桥墩的墩身高,其横截面面尺寸如图所示。

荷载,材料的密度,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:2-3图墩身底面积:因为墩为轴向压缩构,所以其底面上的正应力均匀分布。

[习题2-7]图示圆锥形杆受轴向拉力作用,试求杆的伸长。

2-7图解:取长度为截离体(微元体)。

则微元体的伸长量为:,,,,,因此,[习题2-10]受轴向拉力F作用的箱形薄壁杆如图所示。

已知该材料的弹性常数为,试求C与D两点间的距离改变量。

解:式中,,故:,,[习题2-11]图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量,已知,,,。

试求C点的水平位移和铅垂位移。

变形协调图受力图2-11图解:(1)求各杆的轴力以AB杆为研究对象,其受力图如图所示。

因为AB平衡,所以,,由对称性可知,,(2)求C点的水平位移与铅垂位移。

A点的铅垂位移:B点的铅垂位移:1、2、3杆的变形协(谐)调的情况如图所示。

由1、2、3杆的变形协(谐)调条,并且考虑到AB为刚性杆,可以得到C点的水平位移:C点的铅垂位移:[习题2-12]图示实心圆杆AB和AC在A点以铰相连接,在A点作用有铅垂向下的力。

已知杆AB和AC的直径分别为和,钢的弹性模量。

试求A点在铅垂方向的位移。

解:(1)求AB、AC杆的轴力以节点A为研究对象,其受力图如图所示。

由平衡条得出::………………………(a):………………(b)(a)(b)联立解得:;(2)由变形能原理求A点的铅垂方向的位移式中,;;故:[习题2-13]图示A和B两点之间原有水平方向的一根直径的钢丝,在钢丝的中点C加一竖向荷载F。

已知钢丝产生的线应变为,其材料的弹性模量,钢丝的自重不计。

试求:(1)钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2)钢丝在C点下降的距离;(3)荷载F的值。

材料力学第五版课后题答案

材料力学第五版课后题答案

[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。

解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。

荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。

2-7图解:取长度为dx 截离体(微元体)。

则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d lx A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆πlld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。

材料力学第五课后题答案(孙训芳)

材料力学第五课后题答案(孙训芳)

材料力学(I)第五版(孙训芳编)甘肃建筑职业技术学院长安大学土木工程材料力学温习材料材料力学第五版课后答案(孙训芳编)4-1试求图示各梁中指定截面上的剪力和弯矩 a (5)=h (4)001100110002222200022132241111223121140,222233RA RB S S q F F a q a q F q a a q aa M q a q a q aF M q a a q a a q a ----==⨯==-⨯==-⨯⨯⨯===⨯-⨯⨯⨯=b (5)=f (4)4-2试写出以下各梁的剪力方程和弯矩方程,并作剪力图和弯矩图 a (5)=a (4)b(5)=b(4)f(5)=f(4)4-3试利用载荷集度,剪力和弯矩间的微分关系做以下各梁的弯矩图和剪力e和f题)(e)(f)(h)4-4试做以下具有中间铰的梁的剪力图和弯矩图。

4-4 (b) 4-5 (b)4-5.依照弯矩、剪力与荷载集度之间的关系指出以下玩具和剪力图的错误的地方,并更正。

4-6.已知简支梁的剪力图如下图,试做梁的弯矩图和荷载图,梁上五集中力偶作用。

4-6(a) 4-7(a)4-7.依照图示梁的弯矩图做出剪力图和荷载图。

4-8用叠加法做梁的弯矩图。

4-8(b) 4-8(c)4-9.选择适合的方式,做弯矩图和剪力图。

4-9(b) 4-9(c)4-104-14.长度l=2m的均匀圆木,欲锯做Fa=的一段,为使锯口处两头面开裂最小,硬是锯口处弯矩为零,现将圆木放在两只锯木架上,一只锯木架放在圆木一段,试求另一只锯木架应放位置。

x=4-184-19M=30KN 4-214-234-254-284-294-334-364-355-25-35-75-155-225-23 选22a工字钢5-246-4 6/((233))A l Fl EA ∆=+6-127-3-55mpa 。

-55mpa7-4[习题7-3] 一拉杆由两段沿n m -面胶合而成。

材料力学第五版课后题答案(孙训芳)

材料力学第五版课后题答案(孙训芳)

材料力学(I)第五版(孙训芳编)甘肃建筑职业技术学院长安大学土木工程材料力学复习材料材料力学第五版课后答案(孙训芳编)4-1试求图示各梁中指定截面上的剪力和弯矩 a (5)=h (4)001100110002222200022132241111223121140,222233RA RB S S q F F a q a q F q a a q aa M q a q a q aF M q a a q a a q a ----==⨯==-⨯==-⨯⨯⨯===⨯-⨯⨯⨯=b (5)=f (4)4-2试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图 a (5)=a (4)b(5)=b(4)f(5)=f(4)4-3试利用载荷集度,剪力和弯矩间的微分关系做下列各梁的弯矩图和剪力e和f题)(e)(f)(h)4-4试做下列具有中间铰的梁的剪力图和弯矩图。

4-4 (b) 4-5 (b)4-5.根据弯矩、剪力与荷载集度之间的关系指出下列玩具和剪力图的错误之处,并改正。

4-6.已知简支梁的剪力图如图所示,试做梁的弯矩图和荷载图,梁上五集中力偶作用。

4-6(a) 4-7(a)4-7.根据图示梁的弯矩图做出剪力图和荷载图。

4-8用叠加法做梁的弯矩图。

4-8(b) 4-8(c)4-9.选择合适的方法,做弯矩图和剪力图。

4-9(b) 4-9(c)4-104-14.长度l=2m的均匀圆木,欲锯做Fa=0.6m的一段,为使锯口处两端面开裂最小,硬是锯口处弯矩为零,现将圆木放在两只锯木架上,一只锯木架放在圆木一段,试求另一只锯木架应放位置。

x=0.4615m4-184-19M=30KN 4-214-234-254-284-294-334-364-355-25-35-75-155-225-246-4 6/((233))A l Fl EA ∆=+6-127-3-55mpa 。

-55mpa7-4[习题7-3] 一拉杆由两段沿n m -面胶合而成。

材料力学第五版答案

材料力学第五版答案

材料力学第五版答案引言材料力学是研究材料在外力作用下力学性能变化规律的学科,通过对材料的形变、应力、应变等力学参数的研究,能够揭示材料的力学特性。

本文将对《材料力学第五版》中的习题答案进行整理和总结,以供学习和参考。

第一章弹性力学基本理论1.1 弹性力学的基本概念习题答案:弹性力学是一门研究材料在外力作用下发生弹性变形时,形变与应力之间的关系及各种外力引起材料体内产生的应变和应力分布规律的学科。

其基本概念包括:•弹性变形:材料在外力作用下发生的可恢复的形变。

•弹性体:能够经历弹性变形的材料。

•应变:材料的形变量,以单位长度的变化表示,分为正应变和剪应变。

•应力:材料的内外力分布情况,以单位面积的力表示,分为正应力和剪应力。

•弹性模量:衡量材料抵抗变形能力的指标,常用符号为E。

•泊松比:衡量材料横向膨胀与纵向收缩的比值,常用符号为ν。

1.2 弹性体的应力应变关系习题答案:弹性体的应力应变关系可以通过《材料力学第五版》中的应变能密度公式和胡克定律来描述。

具体公式如下:•应变能密度公式:$$\\sigma = \\dfrac{1}{2}E\\epsilon^2$$•胡克定律:$$\\sigma = E\\epsilon$$其中,$\\sigma$ 表示应力,E表示弹性模量,$\\epsilon$ 表示应变。

这两个公式可以互相推导,给出了应力和应变之间的关系。

1.3 杨氏模量和泊松比习题答案:杨氏模量和泊松比是描述材料力学性质的重要参数。

•杨氏模量(Young’s modulus):表示单位面积下材料沿着垂直方向的形变和应力之间的关系,常用符号为E。

•泊松比(Poisson’s ratio):表示材料横向膨胀和纵向收缩之间的比例关系,常用符号为E。

杨氏模量和泊松比的计算公式如下:•杨氏模量:$$E = \\dfrac{\\sigma}{\\epsilon}$$•泊松比:$$\ u = -\\dfrac{\\epsilon_\\perp}{\\epsilon_\\parallel}$$1.4 平面应力和平面应变习题答案:平面应力和平面应变是指材料中只发生在某一平面上的应力和应变。

材料力学第五版课后习题答案

材料力学第五版课后习题答案

材料力学第五版课后习题答案1. 弹性力学基本概念。

1.1 什么是应力?什么是应变?应力是单位面积上的内力,是描述物体内部受力情况的物理量;而应变则是物体单位长度的形变量,描述了物体在受力作用下的形变情况。

1.2 什么是胡克定律?胡克定律是描述弹性体在弹性变形范围内应力与应变成正比的关系,即应力与应变成线性关系。

1.3 什么是弹性模量?弹性模量是描述物体在受力作用下的变形程度的物理量,通常用E表示,单位是帕斯卡(Pa)。

2. 线弹性力学。

2.1 什么是轴向力?什么是轴向变形?轴向力是指作用在物体轴向的力,轴向变形是指物体在受到轴向力作用下的形变情况。

2.2 什么是泊松比?泊松比是描述物体在轴向受力作用下,横向变形与轴向变形之间的比值,通常用ν表示。

2.3 什么是弯曲应力?什么是弯曲变形?弯曲应力是指物体在受到弯矩作用下的内部应力情况,弯曲变形是指物体在受到弯矩作用下的形变情况。

3. 弹性力学的能量法。

3.1 什么是弹性势能?弹性势能是指物体在受力变形后,能够恢复原状时所具有的能量,通常用U表示。

3.2 什么是弹性线性势能?弹性线性势能是指物体在弹性变形范围内,弹性势能与形变量成线性关系的势能。

3.3 什么是弹性势能密度?弹性势能密度是指单位体积或单位质量物体所具有的弹性势能,通常用u表示。

4. 弹塑性力学。

4.1 什么是屈服点?屈服点是指物体在受力作用下,开始出现塑性变形的临界点。

4.2 什么是屈服应力?屈服应力是指物体在受力作用下开始发生塑性变形时所具有的应力大小。

4.3 什么是塑性势能?塑性势能是指物体在受到超过屈服应力的作用下,发生塑性变形所具有的能量。

5. 薄壁压力容器。

5.1 什么是薄壁压力容器?薄壁压力容器是指壁厚相对于容器直径而言很小的压力容器。

5.2 薄壁压力容器的内、外压力对容器的影响有哪些?内压力会使容器产生膨胀变形,而外压力会使容器产生收缩变形。

5.3 薄壁压力容器的应力分布情况是怎样的?薄壁压力容器内外表面的应力分布情况是不均匀的,通常集中在壁厚的两侧。

材料力学第五版课后习题答案

材料力学第五版课后习题答案

实用文档二、轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:; ; (b )解: ;;(c )解:; 。

(d) 解:。

2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:实用文档实用文档返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm实用文档×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求内力实用文档取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)实用文档(拉)实用文档返回2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:实用文档实用文档返回2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

实用文档解:(压)(压)实用文档返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。

试求杆横截面上的应力与材料的弹性模量E。

解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求C与D 两点间的距离改变量。

解:实用文档横截面上的线应变相同因此实用文档返回2-9(2-12) 图示结构中,AB 为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。

材料力学第五版(刘鸿文主编)课后习题答案课件

材料力学第五版(刘鸿文主编)课后习题答案课件

材料力学的基本单位
总结词
材料力学的基本单位包括长度单位、质量单 位、时间单位和力的单位。这些单位是国际 单位制中的基本单位,用于描述和度量材料 力学中的各种物理量。
详细描述
在材料力学中,需要用到各种物理量来描述 和度量材料的机械行为。因此,选择合适的 单位非常重要。长度单位通常采用米(m) ,质量单位采用千克(kg),时间单位采 用秒(s),力的单位采用牛顿(N)。这 些单位是国际单位制中的基本单位,具有通 用性和互换性,可以方便地用于描述和度量 材料力学中的各种物理量,如应变、应力、 弹性模量等。同时,这些单位的选择也符合 国际惯例,有利于学术交流和技术合作。
材料力学第五版(刘鸿文 主编)课后习题答案课件
• 材料力学基础概念 • 材料力学基本公式 • 课后习题答案解析 • 材料力学实际应用 • 材料力学的未来发展
01
材料力学基础概念
材料力学定义与性质
总结词
材料力学是研究材料在各种外力作用下 产生的应变、应力、强度、刚度和稳定 性等机械行为的科学。其性质包括材料 的弹性、塑性、脆性等,以及材料的强 度、刚度、稳定性等机械性能。
02
材料力学基本公式
拉伸与压缩
•·
应变公式: $epsilon = frac{Delta L}{L}$,其中 $epsilon$是应变,$Delta L$是长度变化量,$L$是
原始长度。
描述了材料在拉伸和压缩过程中的应力、应变 关系。
应力公式: $sigma = frac{F}{A}$,其中 $sigma$是应力,$F$是作用在物体上的力, $A$是受力面积。
习题二答案解析
问题2
说明应力分析和应变分析在材料力学中的重要性。
答案
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学第五版答案
《材料力学第五版》是一本经典的材料力学教材,该书共有许多章节和习题。

本文将提供材料力学第五版最后一章章节的答案,该章节主要涉及金属塑性力学和断裂力学。

第一题:
a) 塑性变形是材料在超过其弹性极限后发生的一种永久性变形。

弹性极限是材料允许的能够恢复到初始状态的最大应力。

b) 应力应变曲线通常包括线性弹性区域,屈服点,塑性变形
和断裂点。

线性弹性区域是材料在该区域内表现出线性应力应变关系的区域。

屈服点是材料开始发生塑性变形的应力点。

塑性变形是材料发生的永久性形变。

断裂点是材料发生断裂的应力点。

c) 应力集中是材料中的应力超过了平均应力的区域。

因为应
力集中可能导致材料的断裂,所以在设计中需要避免应力集中的情况。

d) 岩石的破裂通常是由于岩石中的裂纹被应力集中引起的。

这种类型的破裂通常是一种断裂型破裂。

e) 塑性断裂是材料发生塑性变形后发生的断裂。

塑性断裂通
常是由于材料中存在的缺陷或裂纹在受到应力时扩展所引起的。

f) 塑性应变通常指的是材料发生塑性变形后的永久性应变。

g) 断裂韧性是材料抵抗断裂的能力。

材料的断裂韧性通常与
其断裂过程中的塑性行为有关。

第二题:
a) 蹲踞曲线是一种用于描述材料的屈服行为的曲线。

蹲踞曲
线通常包括弹性区域,上升曲线和下降曲线。

在弹性区域内,
应力和应变成正比。

在上升曲线区域,应力继续增加,直到达到材料的屈服点。

在下降曲线区域,应力开始下降,材料开始发生塑性变形。

b) 应力松弛是材料在恒定应变下的应力降低。

这种材料的行
为通常被描述为应力松弛曲线。

在应力松弛曲线上,应力随时间而减小。

c) 蠕变是材料在恒定应力下的变形。

蠕变行为通常被描述为
蠕变曲线。

在蠕变曲线上,应变随时间而增加,而应力保持恒定。

d) 疲劳是由于材料在交替应力作用下发生的损坏。

疲劳损伤
通常发生在一些应力高度集中的部分,例如焊接缝或表面缺陷。

e) 断裂韧性是材料抵抗断裂的能力,通常与材料的断裂过程
中的塑性行为有关。

相关文档
最新文档