中考数学压轴题汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考压轴题精选及解析
1、(2006 广东省实验区)如图所示,在平面直角坐标系中,四边形OABC 是等腰梯形,
BC OA ∥,7460OA AB COA ===,,∠,点P 为x 轴上的一个动点,点P 不与点O 、
点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;
(2)当点P 运动什么位置时,OCP △为等腰三角形,求这时点P 的坐标; (3)当点P 运动什么位置时,使得CPD OAB =∠∠,且5
8
BD AB =,求这时点P 的坐标.
1、解:(1)过B 点作BE OA ⊥,垂足是点E , 四边形OABC 是等腰梯形,
60OC AB BAO COA ∴===,∠∠, 在Rt BAE △中,
sin 60cos604BE AE AB AB AB
===,,,
1
44222
BE AE =⨯
==⨯=. 725OE OA AE =-=-=
,B ∴点的坐标(5,, (2)60COA =∠ ,OCP △为等腰三角形, OCP ∴△为等边三角形.
4OC OP PC ∴===, P 点是在x 轴上,
P ∴点的坐标(40),或(40)-,。 (3)58BD AB =,且3
42
AD BD AB AB AD +==∴=,,.
60CPD OAB COA ===∠∠∠
,
x
12018060120OCP CPO CPO APD +=+=-=,∠∠∠∠, OCP DPA =∠∠. OCP APD ∴△∽△ OP OC AD AP ∴
=
,设7OP x AP x ==-,,即4
372
x x =-. 2
127601
6x x x x -+===,, 这时P 点的坐标(10)(60),,,.
2、(2006江苏省宿迁市)设边长为2a 的正方形的中心A 在直线l 上,它的一组对边垂
直于直线l ,半径为r 的⊙O 的圆心O 在直线l 上运动..
,点A 、O 间距离为d . (1)如图①,当r <a 时,根据d 与a 、r 之间关系,将⊙O 与正方形的公共点个数填
所以,当r <a 时,⊙O 与正方形的公共点的个数可能有
个;
(2)如图②,当r =a 时,根据d 与a 、r 之间关系,将⊙O 与正方形的公共点个数填入下
所以,当r =a 时,⊙O 与正方形的公共点个数可能有
个;
(3)如图③,当⊙O 与正方形有5个公共点时,试说明r =5
4
a ;
(4)就r >a 的情形,请你仿照“当……时,⊙O 与正方形的公共点个数可能有
个”的形式,至少给出一个关于“⊙O 与正方形的公共点个数”的正确结论.
l
(题图①)
l
(题图②)
(题图③)
解: (1)
所以,当r <a 时,⊙O 与正方形的公共点的个数可能有0、1、2个; (2)
所以,当r =a 时,⊙O 与正方形的公共点个数可能有0、1、2、4个; (3)如图所示,连结OC .
则OE =OC =r ,OF =EF -OE =2a -r .
在Rt △OCF 中,由勾股定理得:
OF 2+FC 2=OC 2
即(2a -r )2+a 2=r 2
4a 2-4ar +r 2+a 2=r 2
5a 2=4ar
5a =4r ∴r =
5
4
a .
3、(2006 长沙市)如图1,已知直线12y x =-
与抛物线21
64
y x =-+交于A B ,两点.
(1)求A
B ,两点的坐标; (2)求线段AB 的垂直平分线的解析式;
(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A
B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A
B ,构成无数个三角形,l
l l
图②
这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.
3、解:依题意得2164
12
y x y x
⎧=-+⎪⎪⎨⎪=-⎪⎩解之得12
126432x x y y ==-⎧⎧⎨⎨=-=⎩⎩ (63)(42)A B ∴--,,, ········································································· 3分 (2)作AB 的垂直平分线交x 轴,y 轴于C D ,两点,交AB 于M (如图1) 由(1
)可知:OA OB ==
AB ∴=
122
OM AB OB ∴=
-= 过B 作BE x ⊥轴,E 为垂足
由BEO OCM △∽△,得:5
4
OC OM OC OB OE =∴=,,
同理:5
55002
42OD C D ⎛⎫⎛⎫=∴- ⎪ ⎪⎝⎭⎝⎭
,
,,, 设CD 的解析式为(0)y kx b k =+≠
5204
5522
k k b b b ⎧==+⎧⎪⎪⎪∴∴⎨⎨=-⎪⎪-=⎩⎪⎩
AB ∴的垂直平分线的解析式为:5
22
y x =-
.
图2 图1
图1
第3题