新课标高考数学考纲.doc

合集下载

2024广东新高考数学大纲

2024广东新高考数学大纲

2024广东新高考数学大纲
2024年广东新高考数学大纲涵盖了更丰富的数学知识体系,旨在更好地满足新时代人才培养的需求。

具体来说,新考纲包括以下几个部分:
1.集合与逻辑用语:考生需要掌握集合的基本概念,如元素与集合、子集、交
集、并集、补集等。

此外,还需了解逻辑运算符及其性质,如与、或、非、蕴含等,并能运用这些知识解决实际问题。

2.代数部分:包括函数、数列、不等式等方面的知识。

考生需要掌握函数的定
义、性质和应用,以及等差数列、等比数列的通项公式和求和公式。

还需理解不等式的性质和解题方法。

3.几何部分:涵盖了几何学中的基本概念和性质,如点、线、面的性质和关系,
以及三角形、四边形、圆等基本图形的性质和定理。

考生需要掌握这些知识,并能够灵活运用解决实际问题。

4.概率与统计部分:这部分知识涉及随机事件、概率、统计等方面的内容。


生需要理解随机事件的概念和概率的计算方法,掌握统计的基本概念和数据处理方法。

2024年广东新高考数学大纲注重考查考生的数学基础知识和应用能力,要求考生能够灵活运用所学知识解决实际问题。

新考纲还强调了数学在日常生活和工作中的重要性,引导考生关注数学的应用价值。

1/ 1。

2024 高考 数学考试大纲

2024 高考 数学考试大纲

2024 高考数学考试大纲2024年高考数学考试大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。

一、数与式1. 实数:实数的概念、实数的四则运算、有理数与无理数的关系、开方运算。

2. 立方根:立方根的概念、立方根的计算、立方根的性质。

3. 代数式与多项式:代数式的概念、等价代数式的判定、多项式的概念与多项式的次数、整除与同余等概念。

二、函数1. 函数的定义:函数的定义域、函数的值域、函数的单调性、函数的奇偶性等概念。

2. 一次函数:一次函数的定义、一次函数的图象与性质。

3. 二次函数:二次函数的定义、二次函数的图象与性质。

4. 分式函数:分式函数的定义、分式函数的图象与性质。

5. 三角函数:正弦函数、余弦函数、正切函数等三角函数的定义与性质。

6. 指数函数与对数函数:指数函数与对数函数的定义、指数函数与对数函数的图象与性质。

三、几何与变换1. 平面几何:平行线与相交线、三角形、四边形、圆等平面图形的性质与判定。

2. 立体几何:空间几何体的表面积和体积,空间点线面的位置关系等概念。

3. 解析几何:直线的方程,圆的方程,圆锥曲线的方程等解析几何的基本概念。

4. 坐标变换:平移变换、旋转变换等坐标变换的概念与性质。

四、统计与概率1. 概率初步知识:概率的基本概念,随机事件的概率等概念。

2. 统计初步知识:总体与样本的概念,数据的整理与表示方法等概念。

3. 离散型随机变量及其分布:离散型随机变量的概念,几种常见的离散型随机变量的分布等概念。

4. 二项分布及其应用:二项分布的概念,二项分布的性质等概念。

新考纲高考系列数学:三角函数

新考纲高考系列数学:三角函数

新考纲高考系列数学三角函数1.在平面直角坐标系xOy 中,已知ABC △的顶点(40)A -,和(40)C ,,顶点B 在椭圆221259x y +=上,则sin sin sin A C B +=_____. 542.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数3.在AB C ∆中,已知sinC=2sin(B+C)cosB,那么AB C ∆一定是 ( B ) A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等边三角形4.已知⎪⎭⎫ ⎝⎛3∈=⎪⎭⎫⎝⎛-4,2,1024cos πππx x . (Ⅰ)求x sin 的值; (Ⅱ)求⎪⎭⎫⎝⎛+32sin πx 的值. 本小题主要考查同角三角函数的基本关系式、特殊角三角函数值、两角和的正弦、两角差的余弦、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分. 【解】(Ⅰ)解法一:因为⎪⎭⎫⎝⎛∈43,2ππx ,所以⎪⎭⎫ ⎝⎛∈-2,44πππx ,于是10274cos 14sin 2=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-ππx x .sin sin sin cos cos sin 444444x x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭41021025=+=.解法二:x x +=,即1cos sin 5x x +=. 又22sin cos 1x x +=,225sin 5sin 120x x --=,解得4sin 5x =或3sin 5x =-. 因为,24x ππ3⎛⎫∈⎪⎝⎭,所以4sin 5x =. (Ⅱ)因为⎪⎭⎫ ⎝⎛∈43,2ππx ,故53541sin 1cos 22-=⎪⎭⎫ ⎝⎛--=--=x x .2571cos 22cos ,2524cos sin 22sin 2-=-=-==x x x x x . 所以5037243sin 2cos 3cos 2sin 32sin +-=+=⎪⎭⎫⎝⎛+πππx x x .5.已知函数)(,2cos 4sin 5cos 6)(24x f xx x x f 求-+=的定义域,判断它的奇偶性,并求其值域.解:由Z k k x k x x∈+≠+≠≠,42,2202cos ππππ解得得. 所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且 因为)(x f 的定义域关于原点对称,且)2cos(4)(sin 5)(cos 6)(24x x x x f ---+-=-)(),(2cos 4sin 5cos 624x f x f xx x 所以=-+=是偶函数.当x x x x f Z k k x 2cos 4sin 5cos 6)(,,4224-+=∈+≠时ππ 1cos 32cos )1cos 3)(1cos 2(222-=--=x xx x , 所以)(x f 的值域为}221211|{≤<<≤-y y y 或6.在ABC △中,已知内角A π=3,边BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 由正弦定理知sin sin 4sin sin sin BC AC B x xA ===π3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭, (2)14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭, 所以,当x ππ+=62,即x π=3时,y取得最大值7.向量x f x x xx ⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos 2(令πππ. 是否存在实数?))()((0)()(],,0[的导函数是其中使x f x f x f x f x '='+∈π若存在,则求出x 的值;若不存在,则证明之. 解:)42tan()42tan()42sin(2cos 22)(πππ-+++=⋅=x x x x x f12cos 22cos 2sin 22tan112tan 2tan 12tan1)2cos 222sin 22(2cos 222-+=+-⋅-+++=x x x x xx x x x x.cos sin x x +=()()0,:()()sin cos cos sin f x f x f x f x x x x x ''+=+=++-令即.0cos 2==x.0)()(],,0[2,2='+∈==x f x f x x 使所以存在实数可得πππ。

浙江新高考学考考纲考试标准数学学考选考标准

浙江新高考学考考纲考试标准数学学考选考标准

数学一、考试性质与对象浙江省普通高中数学学业水平考试是在教育部指导下,由省教育行政部门组织实施的全面衡量普通高中学生数学学业水平的考试。

考试成绩是普通高中学生毕业的基本依据之一,也是高校招生录取和用人单位招聘的重要参考依据。

浙江省普通高中数学学业水平考试实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年开考2次。

考试的对象是2014年秋季入学的高中在校学生,以及相关的往届生、社会人员和外省在我省异地高考学生。

二、考核目标、要求与等级(一)考核目标普通高中数学学业水平考试是全面考察和评估我省普通高中学生的数学学业水平是否达到《课程标准》所规定的基本要求和所必须具备的数学素养的检测考试。

(二)考核要求根据浙江省普通高中学生文化素质的要求,数学学业水平考试面向全体学生,有利于促进学生全面、和谐、有个性的发展,有利于中学实施素质教育,有利于体现数学学科新课程理念,充分发挥学业水平考试对普通高中数学学科教学的正确导向作用。

突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力。

关注数学学科的主干知识和核心内容,关注数学学科与社会的联系,贴近学生的生活实际。

充分发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平.全面检测学生的数学素养。

1.知识要求知识是指《教学指导意见》所规定的必修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。

对知识的要求从低到高分为四个层次,依次为:了解、理解、掌握、综合应用,其含义如下:(1)了解:要求对所列知识的含义有初步的、感性的认识,能记住和识别数学符号、图形、定义、定理、公式、法则等有关内容,并能按照一定的程序和步骤模仿,进行直接应用。

这一层次所涉及的主要行为动词有:了解、知道、识别、模仿、会求、会解等。

(2)理解:要求对所列知识内容有较深刻的理性认识.知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,有利用所学知识解决简单问题的能力。

2024高中数学高考考纲

2024高中数学高考考纲

2024高中数学高考考纲一、考试性质本考试旨在评估高中生对数学基础知识和基本技能的掌握程度,以及运用数学思维解决问题的能力。

二、考试目标1、掌握高中数学的核心概念、原理、方法和技能。

2、培养数学思维和解决问题的能力。

3、检测学生对数学知识的理解和应用能力。

三、考试内容与要求1、代数•集合与逻辑•函数及其性质•指数函数与对数函数•三角函数及其性质•数列与数列的极限•排列组合与概率初步2、几何•平面几何:三角形、四边形、圆的性质和定理•立体几何:空间几何体的性质、三视图与直观图•解析几何:直线、圆、圆锥曲线的方程及其性质3、概率与统计•概率论初步:随机事件、概率及其性质•统计初步:数据的收集、整理与描述,以及简单的统计分析4、微积分初步•极限的概念与性质•导数的概念与应用•定积分及其应用四、考试形式与试卷结构1、考试形式:闭卷,笔试。

考试时间为120分钟。

2、题型结构:选择题、填空题、解答题。

其中选择题和填空题占60%,解答题占40%。

3、分值分布:总分为150分。

代数部分占40%,几何部分占40%,概率与统计占15%,微积分初步占5%。

五、考试评价标准1、基础知识的掌握:要求考生对高中数学的基本概念、定理和公式有清晰的理解和掌握。

2、计算能力:能够准确、快速地进行基本的数学运算。

3、逻辑思维与分析能力:能够运用数学思维,分析问题,找到解决方案。

4、问题解决能力:能够运用所学知识解决实际问题或数学问题。

5、创新与应用能力:能够将数学知识应用于日常生活或其他学科中,具有一定的创新意识和能力。

以上是一个简略的2024年高中数学高考考纲草案。

在撰写完整考纲时,您需要进一步细化每个部分的内容,明确每个知识点的要求和标准,并给出具体的题型示例和分值分布。

同时,为了确保考纲的科学性和有效性,建议您在制定过程中充分征求教师、学生和课程专家的意见,并进行试测和反馈修订。

2023年高考数学考试大纲

2023年高考数学考试大纲

2023年高考数学考试大纲
1、增加了数学文化的要求。

2、在能力要求内涵方面,增加了基础性、综合性、应用性、创新性的要求,同时对能力要求进行了加细说明,使能力要求更加明确具体。

3、在现行考试大纲三个选考模块中删去《几何证明选讲》,其余2个选考模块的内容和范围都不变,考生从《坐标系与参数方程》、《不等式选讲》2个模块中任选1个作答。

总体上,这些变化对2023年高考数学考试影响不大。

基于两个原因:
一是在这次高考考纲修订基本原则“坚持整体稳定,推进改革创新;优化考试内容,着力提高质量;提前谋篇布局,体现素养导向”中,将“整体稳定”放在了首位。

2015年、2016年全国数学2卷就突出了稳中求变,约有80%的试题是稳定的,只有约20%的试题是创新的,2020年高考仍然还会沿用这种思路命制试卷。

二是近两年高考试卷已先于2023年高考考纲在命题中渗透了一些变化与创新,全国数学2卷最大的变化点是,突出了社会主义核心价值观,强调了中国传统数学文化精髓。

在数学文化方面,2016年高考全国2卷理科数学第8题、文科数学第9题涉及到了我国南宋著名数学家秦九韶提出的多项式求值的算法,2015
年高考全国2卷文、理科数学的第8题涉及到了我国古代数学名著《九章算术》中的“更相减损术”。

这就是说,今年考纲中所提到的新要求、新变化,在两年前的高考中就已经有所体现了,所以2023年高考对我们而言变化不会很大。

而第三项变化是选考题由“三选一”变为“二选一”,这将减轻学生的课业负担。

高考数学考纲

高考数学考纲

高考数学考纲
高考数学考纲包含以下内容:
1. 函数与方程
- 函数与函数的表示:定义域、值域、图像、性质等。

- 一次函数、二次函数、指数函数、对数函数和幂函数的性质与应用。

- 方程:一元二次方程、一次方程组、二元二次方程组等的解法与应用。

2. 数学关系与变量
- 函数的运算与复合函数。

- 等差数列与等比数列的性质与应用。

- 概率与统计:事件的概率、频率、期望、样本调查等。

3. 三角函数与解三角形
- 角度的度量与弧度制。

- 三角函数的概念、性质与应用。

- 解三角形的基本方法与题型:余弦定理、正弦定理、海伦公式等。

4. 导数与微分
- 导数的概念与计算。

- 函数的单调性、极值、凹凸性与应用。

- 微分的概念与计算:函数值的改变与函数增量的比较。

5. 空间几何与图形变换
- 空间几何中的直线、平面与曲面的性质。

- 二维图形与三维图形的变换:平移、旋转、缩放等。

6. 排列与组合
- 排列、组合的概念与计算。

- 集合的运算与集合的性质。

7. 线性代数与矩阵
- 矩阵的概念、运算与性质。

- 线性方程组的解法与应用。

- 向量与向量的运算、平面向量与空间向量的性质。

8. 数列与数学归纳法
- 数列的概念、性质与应用。

- 数学归纳法的原理与应用。

需要注意的是,以上内容仅为一般高考数学考纲的概述,具体考纲内容可能会有所调整和变化。

建议参加高考的同学们以当年所规定的考纲为准进行备考。

高考数学考纲

高考数学考纲

高考数学考纲
(一)统计
1.随机抽样
(1)理解随机抽样的必要性和重要性.
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
2.用样本估计总体
(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.
(2)理解样本数据标准差的意义和作用,会计算数据标准差.
(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.
(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.
(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
3.变量的相关性
(1)会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).
(二)概率
1.事件与概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.
(2)了解两个互斥事件的概率加法公式.
2.古典概型
(1)理解古典概型及其概率计算公式.
(2)会计算一些随机事件所含的基本事件数及事件发生的概率.
3.随机数与几何概型
(1)了解随机数的意义,能运用模拟方法估计概率.
(2)了解几何概型的意义.
(三)统计案例
(1)通过典型案例了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.
(2)通过典型案例了解独立性检验的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.。

2023年新高考数学考试大纲

2023年新高考数学考试大纲

2023年新高考数学考试大纲一、2023年各省市所使用的教材及试卷1、以下地区使用新教材(1)新高考全国一卷:浙江、山东、河北、江苏、湖北、湖南、福建、广东。

(2)新高考全国二卷:辽宁、重庆、海南。

(3)使用新教材且未实施选科走班改革地区的全国卷(数学文理同卷):黑龙江、吉林、山西、安徽、云南。

注:目前不清楚使用新教材且未实施选科走班改革地区的全国卷到底考几卷,只能说文理同卷,并且会按照新教材的范围进行考察。

2、以下地区使用旧教材(1)全国甲卷(文理分卷):广西、贵州、四川、西藏。

(2)全国乙卷(文理分卷):新疆、青海、宁夏、甘肃、内蒙古、河南、陕西、江西。

二、知识点调整(一)新增的知识点适用地区:山东、湖北、河北、江苏、湖南、福建、广东、辽宁、重庆、海南、黑龙江、吉林、山西、安徽、云南1、必学知识点:(1)(必修第二册)平面向量投影的概念以及投影向量的意义(实际上旧教材里面也有)(2)(必修第二册)有限样本空间的含义(3)(必修第二册)分层随机抽样的样本均值和样本方差(4)(必修第二册)用样本估计百分位数及百分位数的统计含义(5)(选择性必修第一册)空间向量投影的概念以及投影向量的意义(6)(选择性必修第一册)用向量法解决空间中的距离问题(实际上旧教材里面也有)(7)(人教A版选择性必修第三册/人教B版选择性必修第二册)利用概率公式计算概率2、选学知识点(1)(人教A版必修第二册/人教B版必修第四册)复数的三角形式(2)(人教A版选择性必修第三册/人教B版选择性必修第二册)贝叶斯公式图片(二)删除的知识点(1)(必修1)删除映射(2)(必修2)删除三视图、中心投影和平行投影(3)(必修3)删除算法(4)(必修3)删除系统抽样(5)(必修3)删除几何概型(6)(必修5)删除二元一次不等式与简单的线性规划问题(7)(选修2-1)删除基本逻辑连接词中的“且”与“或”、命题的四种形式(8)(选修2-2)删除推理与证明(数学归纳法保留,但高考不作要求)(9)(选修2-2)删除定积分与微积分基本定理(10)(选修4-4)删除“极坐标与参数方程”整本书(11)(选修4-5)删除“不等式选讲”整本书使用旧教材的考试内容参考2019版考试大纲!。

高考数学考纲

高考数学考纲

高考数学考纲
高考数学考纲一般涵盖以下内容:
1.函数与方程:函数的概念,基本初等函数,函数的图像与性质,函数的运算,方程与不等式的解法。

2.数与代数:整式与有理式,多项式运算,整式的因式分解,
分式方程,根式与无理式,二次根式与分母有理化。

3.平面坐标系与参数方程:平面坐标系的性质与应用,直线与
圆的方程,参数方程与直线的位置关系。

4.平面向量:向量的概念与运算,向量的线性运算,向量的数
量积与方向余弦,向量的坐标表示与应用。

5.三角函数:常用角与弧度制,三角函数的概念与性质,基本
公式与恒等变换,三角函数图像与解析式,三角方程与三角不等式。

6.解析几何:平面与空间直角坐标系,直线与平面的方程,二
次曲线的方程与性质,球面与圆的方程与性质。

7.导数与微分:导数概念与性质,常见函数的导数,导数的计
算与应用,微分与微分近似。

8.积分与应用:不定积分与定积分的概念与性质,常用函数的
积分,定积分的计算与应用。

9.概率与统计:概率的概念与性质,随机事件与概率计算,统
计与统计分布的描述与应用。

需要注意的是,具体考纲的内容可能会因地区、年份和考试制
度的不同而有所变化,学生在备考前需要确保掌握最新的考纲要求。

高考数学考纲

高考数学考纲

高考数学考纲1. 考试概述高考数学是中国高考(全国统一高考)中的一门必考科目,被广大学生普遍认为是其中的一道难题。

高考数学考纲旨在测试学生的数学基础知识、解决问题的能力和数学思维能力。

2. 考试内容2.1. 知识范围高考数学考纲涵盖了以下知识范围: - 初中阶段的数学知识和技能 - 高中阶段的数学知识和技能2.2. 能力要求高考数学考纲要求学生具备以下能力: - 理解和运用数学概念、原理、定理和公式 - 运用数学方法和技巧解决实际问题- 进行数学推理和证明 - 进行数学模型的建立和分析 - 进行数学思维和创造性思维的运用3. 考试形式3.1. 试题类型高考数学试题主要包括选择题和解答题两种形式。

3.1.1. 选择题选择题要求考生从给定的选项中选择一个正确答案。

选择题通常包括单选题和多选题两种类型。

3.1.2. 解答题解答题要求考生用适当的方法和步骤给出完整的解答过程,包括构造解、证明过程以及解决问题的思路。

3.2. 考试要求高考数学考试要求考生: - 快速准确地解答选择题,注意时间分配; - 理解题意,合理解答解答题,注意解题方法及步骤的严谨性; - 注重解题思路的合理性及创新性; - 注意书写工整、清晰。

4. 考试评分4.1. 分值分布高考数学试卷总分为150分,试题的分值分布如下:•选择题:共80分,每题2分。

其中,单选题40分,每题1分;多选题40分,每题2分。

•解答题:共70分。

其中,一、二、三题(各题5分)和四题(25分),甲卷占50分,乙卷占20分。

4.2. 阅卷方式高考数学试卷的阅卷方式分为人工阅卷和计算机阅卷两种形式。

选择题由计算机自动批阅,解答题由专门的老师进行人工阅卷。

4.3. 题目评分标准高考数学考试的解答题评分标准主要包括解题思路、使用的方法、计算过程的正确性、答案的准确性、答案的简洁性与严谨性。

5. 考试备考建议5.1. 重点复习内容•高中数学相关知识点和公式;•历年高考数学试题,特别是题型和难度相似的题目;•解题的方法和技巧。

辽宁高考数学考纲

辽宁高考数学考纲

辽宁高考数学考纲
辽宁省高考数学考纲内容如下:
一、数与代数
1. 整式的加减与乘法运算、整式的因式分解与乘法公式;
2. 多项式及其运算、多项式的因式分解;
3. 一元二次方程及其根与系数之间关系、一元二次方程的解法;
4. 一元二次方程与一元二次不等式的应用;
5. 一元三次及以上的整式方程与不等式。

二、函数与计算
1. 二次函数的图像、性质与应用;
2. 指数函数、对数函数的性质与应用;
3. 幂函数、反比例函数的性质与应用;
4. 求函数的零点、单调性与最值;
5. 函数的运算与复合;
6. 函数的应用问题。

三、平面向量与几何证明
1. 平面向量及其运算、向量的数量积;
2. 向量的应用问题;
3. 平面几何基本概念与性质;
4. 相似与全等的判定;
5. 三角形几何关系的证明;
6. 三角形与圆的性质及应用。

四、立体几何与解析几何
1. 空间向量的表示与运算;
2. 立体几何基本概念与计算;
3. 空间几何关系的证明;
4. 空间中的位置关系;
5. 平面方程与直线方程;
6. 圆锥与圆柱的性质与计算。

五、概率与统计
1. 事件与概率的计算;
2. 随机变量的概率分布与期望值;
3. 抽样与统计;
4. 正态分布的性质与应用;
5. 误差分析的基本方法。

以上内容为辽宁省高考数学考纲的大致内容,具体考点和难度以当年的高考真题为准。

浙江省高中数学高考考纲

浙江省高中数学高考考纲

2019年浙江省高中数学高考考纲一、三角函数、解三角形1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2.理解正弦函数、余弦函数、正切函数的定义及其图象与性质,了解三角函数的周期性.3.理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式.4. 了解函数y= Asin@x+妨的实际意义,掌握y= Asin@x+妨的图象,了解参数A, 3, 0对函数图象变化的影响.5.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.6.掌握简单的三角函数式的化简、求值及恒等式证明.7.掌握正弦定理、余弦定理及其应用.二、立体几何1.了解多面体和旋转体的概念,理解柱、锥、台、球的结构特征.2.了解简单组合体,了解中心投影、平行投影的含义.3.了解三视图和直观图间的关系,掌握三视图所表示的空间几何体.会用斜二测画法画出它们的直观图.4.会计算柱、锥、台、球的表面积和体积.5.了解平面的含义,理解空间点、直线、平面位置关系的定义.掌握如下可以作为推理依据的公理和定理.公理 1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理 2 过不在一条直线上的三点,有且只有一个平面.公理 3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理 4 平行于同一条直线的两条直线互相平行.定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.6.理解空间线面平行、线面垂直、面面平行、面面垂直的判定定理和性质定理.(1)判定定理:①平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;②一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;③一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;④一个平面过另一个平面的垂线,则这两个平面垂直.(2)性质定理:①一条直线与一个平面平行,则过这条直线的任一个平面与此平面的交线与该直线平行;②如果两个平行平面同时和第三个平面相交,那么它们的交线平行;③垂直于同一个平面的两条直线平行;④两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.7.理解直线与平面所成角的概念,了解二面角及其平面角的概念.8.了解空间直角坐标系,会用空间直角坐标表示点的位置.9.了解空间向量的概念,了解空间向量的基本定理及其意义,了解空间向量的正交分解及其坐标表示.10.了解空间向量的加、减、数乘、数量积的定义、坐标表示的运算.11.了解空间两点间的距离公式、向量的长度公式及两向量的夹角公式.12.了解直线的方向向量与平面的法向量.13.了解求两直线夹角、直线与平面所成角、二面角的向量方法.三、集合与常用逻辑用语1.了解集合、元素的含义及其关系.2.理解集合的表示法.3.了解集合之间的包含、相等关系.4.理解全集、空集、子集的含义.5.会求简单集合间的并集、交集6.理解补集的含义并会求补集.7.了解原命题和原命题的逆命题、否命题、逆否命题的含义,及其相互之间的关系.8.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.四、函数与基本初等函数11.了解函数、映射的概念.2.了解函数的定义域、值域及三种表示法(解析法、图象法和列表法).3.了解简单的分段函数,会用分段函数解决简单的问题.4.理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性.5•理解函数的最大(小)值的含义,会求简单函数的最大(小)值.6•了解指数幕的含义,掌握有理指数幕的运算.7•理解指数函数的概念,掌握指数函数的图象、性质及应用.8 •理解对数的概念,掌握对数的运算,会用换底公式.9•理解对数函数的概念,掌握对数函数的图象、性质及应用.10. 了解幕函数的概念.111. 掌握幕函数y=x,y=x2,y=x3,y= -,y=x2的图象和性质.X12. 了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法.13. 了解指数函数、对数函数以及幕函数的变化特征.14. 能将一些简单的实际问题转化为相应的函数问题,并给予解决.五、导数及其应用1.了解导数的概念与实际背景,理解导数的几何意义.2.会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于形如f(ax+ b)的导数).3.了解函数单调性和导数的关系,能用导数求函数的单调区间.4. 理解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大(小)值,会求闭区间上函数的最大(小)值.六、平面向量、复数1. 理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念.2. 掌握平面向量加法、减法、数乘的概念,并理解其几何意义.3. 理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题.4.掌握平面向量的正交分解及其坐标表示.5.掌握平面向量的加法、减法与数乘的坐标运算.6.理解平面向量数量积的概念及其几何意义.7.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系.8.会用坐标表示平面向量的平行与垂直.9.会用向量方法解决某些简单的平面几何问题.10.了解复数的定义、复数的模和复数相等的概念.11.了解复数的加、减运算的几何意义.12.理解复数代数形式的四则运算.七、不等式1.了解不等关系,掌握不等式的基本性质.2•了解一元二次函数、一元二次方程、一元二次不等式之间的联系•会解一元二次不等式.3•了解二元一次不等式的几何意义,掌握平面区域与二元一次不等式(组)之间的关系,并会求解简单的二元线性规划问题._ a+ b4. 掌握基本不等式.abw—厂(a, b> 0)及其应用.5. 会解|x+ b|< c, |x+ b|>c, |x—a|+ |x—b|>c, |x—a| + |x—b|<c型不等式.6. 了解不等式||a|—|b||< |a+ b|w |a|+ |b|.八、数列1. 了解数列的概念和表示方法(列表、图象、公式).2. 理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前n项和公式及其应用.3. 了解等差数列与一次函数、等比数列与指数函数的关系.4.会用数列的等差关系或等比关系解决实际问题.5.会用数学归纳法证明一些简单数学问题.九、平面解析几何1.理解平面直角坐标系,理解直线的倾斜角与斜率的概念,掌握直线方程的点斜式、两点式及一般式,了解直线方程与一次函数的关系.2.能根据两条直线的斜率判定这两条直线平行或垂直.3.会求过两点的直线斜率、两直线的交点坐标、两点间的距离、点到直线的距离、两条平行直线间的距离.4.掌握圆的标准方程与一般方程.5.掌握椭圆、抛物线的定义、标准方程、几何图形及简单几何性质.6.会解决直线与圆、椭圆、抛物线的位置关系的问题,会判断圆与圆的位置关系.7.了解双曲线的定义、标准方程、几何图形及简单几何性质,了解直线与双曲线的位置关系.8.了解方程与曲线的对应关系,会求简单的曲线的方程.十、计数原理与古典概型1.理解分类加法计数原理和分步乘法计数原理.2.了解排列、组合的概念,会用排列数公式、组合数公式解决简单的实际问题.3.了解二项式定理,理解二项式系数的性质.4.了解事件、互斥事件、对立事件及独立事件的概念.5.了解概率与频率的概念.6.了解古典概型,会计算古典概型中事件的概率.7.了解取有限个值的离散型随机变量及其分布列的概念,了解两点分布,了解独立重复试验的模型及二项分布.8.了解离散型随机变量均值、方差的概念.。

新考纲高考系列数学 数列

新考纲高考系列数学 数列

新考纲高考系列数学数列考试内容: 数列.等差数列及其通项公式.等差数列前n 项和公式. 等比数列及其通项公式.等比数列前n 项和公式. 考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,井能解决简单的实际问题.§03. 数 列 知识要点1. ⑴等差、等比数列:其中⑵看数列是不是等差数列有以下三种方法:①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).⑶看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n n a a a (2≥n ,011≠-+n n n a a a )①注①:i. ac b =,是a 、b 、c 成等比的双非条件,即ac b=、b 、c 等比数列.ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要. iii. ac b ±=→为a 、b 、c 等比数列的必要不充分. iv. ac b ±=且0 ac →为a 、b 、c 等比数列的充要.注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列.⑷数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件). ②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛=+=22122 →2d 可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件.③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ②若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇 得到所求项数到代入12-⇒n n . 3. 常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nn a . 4. 等比数列的前n 项和公式的常见应用题:⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:.)1(1])1([)1(...)1()1(12r r a a r a r a r a a n n +-+-=+++++++-⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+.⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率. ()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m mm mm m mr r ar x r r x r a x r x r x r x r a 5. 数列常见的几种形式:⑴n n n qa pa a +=++12(p 、q 为二阶常数)→用特证根方法求解.具体步骤:①写出特征方程q Px x +=2(2x 对应2+n a ,x 对应1+n a ),并设二根21,x x ②若21x x ≠可设n n n x c x c a 2211.+=,若21x x =可设n n x n c c a 121)(+=;③由初始值21,a a 确定21,c c .⑵r Pa a n n +=-1(P 、r 为常数)→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为n n n qa Pa a +=++12的形式,再用特征根方法求n a ;④121-+=n n P c c a (公式法),21,c c 由21,a a 确定.①转化等差,等比:1)(11-=⇒-+=⇒+=+++P rx x Px Pa a x a P x a n n n n . ②选代法:=++=+=--r r Pa P r Pa a n n n )(21x P x a P r P P r a a n n n -+=---+=⇒--1111)(1)1( r r P a P n n +++⋅+=--Pr 211 .③用特征方程求解:⇒⎭⎬⎫+=+=-+相减,r Pa a r Pa a n n n n 111+n a 1111-+--+=⇒-=-n n n n n n Pa a P a Pa Pa a )(. ④由选代法推导结果:Pr P P r a c P c a P r a c P r c n n n -+-+=+=-+=-=--111111112121)(,,. 6. 几种常见的数列的思想方法:⑴等差数列的前n 项和为n S ,在0 d 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法:一是求使0,01 +≥n n a a ,成立的n 值;二是由n da n d S n )2(212-+=利用二次函数的性质求n 的值.⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和. 例如:, (2)1)12,...(413,211n n -⋅⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证)(11---n nn n a a a a 为同一常数。

2011-2014年新课标高考数学考纲解读必看

2011-2014年新课标高考数学考纲解读必看

2011-2014年高考数学考试大纲权威解读2011年高考数学考试大纲与10年考纲内容基本不变,保持稳定。

提出了知识、能力和个性品质的考试要求,更加注重学生基本数学素质的考查。

考纲中对知识、能力和个性品质分别给出了严格的界定,知识是指数学概念、性质、法则、公式、公理、定理以及其中蕴含的数学思想和方法。

并对知识作出了三个不同层次的要求,即:了解、理解和掌握、灵活和综合运用。

能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。

2011年考纲中文理科题型示例与10年完全相同,没有变化,各有35个题,选择题14个,文理科有9个不同,填空题6个,文理科有5个不同,解答题15个,文理科有11个不同,还有1道姊妹题(第32题),全部选自近几年的高考数学试题,理科题目难度总体上高于文科。

2012年全国新课标数学学科《考试大纲》文理科和2011年对比,在内容、能力要求、时间、分值(含选修比例)、题型题量、难度等几个方面都没有发生变化。

2012年全国新课标数学学科《考试说明》文理科和2011年对比在公式记忆要求方面有点变化:文理都要求记住:(1)球、棱柱、棱锥、台体的表面积和体积的计算公式;(2)样本数据标准差公式。

2011年不要求记忆这些公式。

(3)其余的变化就是一些文字的表述的变化。

①删减,原意不改变。

比如立体几何初步部分要求理解判定定理“如果平面为一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

”去掉了“如果”,将那么变成“则”。

②变更,意思基本不变。

比如统计部分“能从样本的数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释。

”其中的“给出”变更为“作出”。

③表述的形式的变化,变化加大,应该思考。

比如推理与证明部分,“了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。

”变更为“了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用。

新高考数学考试大纲

新高考数学考试大纲

新高考数学考试大纲新高考数学考试大纲是针对中国高考改革后数学科目的考试要求和内容的详细说明。

它旨在指导学生和教师明确学习目标,把握考试重点,以及合理规划教学和复习计划。

以下是新高考数学考试大纲的主要内容概述。

# 一、考试目标新高考数学考试旨在考查学生的数学基础知识、基本技能、数学思维和解决问题的能力。

考试不仅注重学生对数学概念、原理的理解和掌握,还强调学生运用数学知识解决实际问题的能力。

# 二、考试内容新高考数学考试内容分为必考内容和选考内容。

必考内容1. 数与代数:包括数的基本概念、代数表达式、方程与不等式、函数及其性质等。

2. 几何:包括平面几何、立体几何、解析几何等,重点考查空间想象能力和几何直观。

3. 统计与概率:涉及数据的收集、处理、描述和分析,以及概率的基本概念和计算。

4. 数学建模:考查学生运用数学知识解决实际问题的能力。

选考内容1. 解析几何:深入学习平面和空间中的几何图形及其性质。

2. 微积分初步:包括极限、导数、积分等基本概念和计算方法。

3. 线性代数基础:涉及矩阵、向量空间、线性变换等基本概念。

4. 数学逻辑:包括命题逻辑、谓词逻辑等逻辑推理方法。

# 三、考试形式新高考数学考试通常包括选择题、填空题、解答题和综合题等多种题型,以全面考查学生的数学能力。

1. 选择题:考查学生对数学概念和原理的理解和应用。

2. 填空题:测试学生对数学公式、定理的掌握和运用。

3. 解答题:要求学生展示解题过程,考查逻辑推理和证明能力。

4. 综合题:结合多个数学领域,考查学生的综合运用能力和创新思维。

# 四、考试要求1. 基础知识:学生需要掌握数学的基本概念、原理和公式。

2. 基本技能:包括计算能力、空间想象能力、逻辑推理能力等。

3. 数学思维:强调抽象思维、逻辑推理和创新思维的培养。

4. 问题解决:考查学生运用数学知识解决实际问题的能力。

# 五、教学建议1. 注重基础:确保学生对数学基础知识有扎实的掌握。

2024年高考数学考试大纲

2024年高考数学考试大纲

2024年高考数学考试大纲本部分包括必考内容和选考内容两部分,必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题。

(一) 必考内容与要求1.集合(1) 集合的含义与表示①了解集合的含义、元素与集合的属于关系。

②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(2) 集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3) 集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用韦恩(Venn)图表达集合的关系及运算。

2.函数概念与基本初等函数I (指数函数、对数函数、幂函数)(1) 函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用。

④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图像理解和研究函数的性质。

(2) 指数函数①了解指数函数模型的实际背景。

②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。

④知道指数函数是一类重要的函数模型。

(3) 对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。

③知道对数函数是一类重要的函数模型。

④了解指数函数与对数函数互为反函数(a&gt;0,且a≠1 )。

(4) 幂函数①了解幂函数的概念。

2024新高考数学考纲

2024新高考数学考纲

2024年新高考数学考纲一、数学基础知识数学基础知识是高考数学考试的重要内容,涵盖了代数、几何、概率与统计等多个方面。

考生需要掌握以下内容:1. 代数部分:(1)函数:包括函数的定义、函数的性质(单调性、奇偶性、周期性等)、函数的应用等。

(2)数列:包括等差数列、等比数列的通项公式、求和公式等。

(3)不等式:包括不等式的性质、不等式的解法、不等式的证明等。

(4)解析几何:包括直线、圆、椭圆、双曲线的方程和性质等。

2. 几何部分:(1)平面几何:包括三角形、四边形、圆等图形的性质和判定等。

(2)立体几何:包括空间点、线、面的关系,空间几何体的性质和判定等。

3. 概率与统计部分:(1)概率:包括事件的概率、独立事件的概率、条件概率等。

(2)统计:包括数据的收集、整理、分析、描述等。

二、几何与空间几何与空间部分主要考察考生的空间想象能力和逻辑推理能力,考生需要掌握以下内容:1. 平面几何:包括三角形的重心坐标、四边形的对角线长度相等、圆的半径相等等基本性质。

2. 立体几何:包括空间点、线、面的关系,空间几何体的性质和判定等。

在解题过程中,考生需要能够将几何问题转化为代数问题,运用方程的思想解决几何问题。

3. 解析几何:包括直线与圆的位置关系,椭圆、双曲线和抛物线的方程和性质等。

在解题过程中,考生需要能够将几何问题转化为代数问题,运用方程的思想解决几何问题。

4. 空间向量:包括空间向量的加减运算、数乘运算、数量积运算等基本运算规则。

在解题过程中,考生需要能够运用空间向量的运算规则解决空间位置关系问题。

5. 图形变换:包括平移变换、旋转变换等基本变换规则。

在解题过程中,考生需要能够运用图形变换的规则解决几何作图和判断问题。

6. 圆的性质:包括圆的标准方程、一般方程和参数方程的求法,直线与圆的位置关系等。

在解题过程中,考生需要能够运用圆的性质解决直线与圆的位置关系问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标高考数学考纲
一)命题指导思想
1.命题应依据教育部《普通高中数学课程标准(实验)》和《2007年普通高等学校招生全国统一考试新课程标准数学科考试大纲》(待发),并结合我省普通高中数学教学实际,体现数学学科的性质和特点。

2.命题注重考查考生的数学基础知识、基本技能和数学思想、数学方法、数学能力,体现知识与能力、过程与方法、情感态度与价值观等目标要求。

3.命题既要实现平稳过渡,又要体现新课程理念。

4.注重试题的创新性、多样性和选择性,具有一定的探究性和开放性。

5.命题要坚持公正、公平原则。

试题要切合我省中学数学教学实际,数学问题的难度、问题的情景等要符合考生的实际水平。

应用题要“贴近生活,背景公平,控制难度”。

6.命题要注意必修内容和选修内容的有机联系与适当差异,注重数学学科知识的内在联系。

7.试卷要有较高的信度、效度和必要的区分度以及适当的难度,难度系数控制在0.55—0.65之内。

(二)知识和能力要求
1.知识要求
对知识的要求由低到高分为三个层次,依次是感知和了解、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求。

(1)感知和了解:要求对所学知识的含义有初步的了解和感性的认识,知道这一知识内容是什么,并能在有关的问题中识别、模仿、描述它。

(2)理解和掌握:要求对所学知识内容有较为深刻的理论认识,能够准确地刻画或解释、举例说明、简单变形、推导或证明、抽象归纳,并能利用相关知识解决有关问题。

(3)灵活和综合运用:要求系统地掌握知识的内在联系,能灵活运用所学知识分析和解决较为复杂的或综合性的数学现象与数学问题。

2.能力要求
能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力以及实践能力和创新意识。

(1)运算求解能力:会根据法则、公式进行正确运算、变形;能根据问题的条件,寻找与设计合理、简捷的运算途径。

(2)数据处理能力:会收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确的判断;能根据要求对数据进行估计和近似计算。

(3)空间想象能力:会画简单的几何图形;能准确地分析图形中有关量的相互关系;会运用图形与图表等手段形象地揭示问题的本质。

(4)抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。

(5)推理论证能力:会根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性。

(6)实践能力:能够对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题,并能用数学语言正确地表述、说明。

(7)创新意识:能够独立思考,灵活和综合地运用所学数学的知识、思想和方法,提出问题、分析问题和解决问题。

(三)考试范围及要求
1.考试范围
(1)文科
《普通高中数学课程标准(实验)》中的必修课程内容和选修系列1内容。

数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。

数学2:立体几何初步、平面解析几何初步。

数学3:算法初步、统计、概率。

数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。

数学5:解三角形、数列、不等式。

选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1-2:统计案例、推理与证明、数系的扩充及复数的引入、框图。

(2)理科
《普通高中数学课程标准(实验)》中的必修课程内容和选修系列2内容。

数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。

数学2:立体几何初步、平面解析几何初步。

数学3:算法初步、统计、概率。

数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。

数学5:解三角形、数列、不等式。

选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。

选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。

选修2-3:计数原理、统计案例、概率。

2.具体考试内容及其要求(略)
(四)考试形式与试卷结构
1.考试形式
考试采用闭卷、笔试形式。

试卷满分为150分,考试时间为120分钟。

考试不允许使用计算器。

2.试卷结构
试卷包括第Ⅰ卷和第Ⅱ卷。

试题分选择题、填空题和解答题三种题型。

第Ⅰ卷以单项选择题题型呈现,主要考查必修内容中的基本知识和基本技能,共12题,分值为60分。

第Ⅱ卷以填空题和解答题题型出现,主要考查数学的思想、方法和能力,必修内容和选修内容都在考查之列。

填空题只要求直接填写结果,不必写出计算过程或推证过程,填空题共4题,分值为16分。

解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程,解答题共6题,分值为74分。

试卷包括容易题、中等难度题和难题,以中等难度题为主。

相关文档
最新文档