理论制冷循环资料重点

合集下载

蒸气压缩式制冷的理论循环

蒸气压缩式制冷的理论循环

蒸气压缩式制冷的理论循环1. 单级蒸气压缩式制冷的理论循环的形式单级蒸气压缩式制冷的理论循环是在逆卡诺循环的基础上,作了如下变化:(1)节流阀代替膨胀机;(2)干压缩代替湿压缩。

循环的特点是制冷剂在压缩机的吸入状态和冷凝器的出口状态都是饱和状态,又将理论循环称为饱和循环。

当然,理论循环还保留逆卡诺循环的其它假定。

循环原理图和循环状态点在T-S图上的表示如图1-2、图1-3所示。

单级蒸气压缩式制冷循环由压缩机、冷凝器、节流阀和蒸发器四大部件组成。

制冷剂在循环过程中各点的状态分别是:压缩机吸入口状态1为低温低压的饱和蒸气;压缩机压缩后状态2为高温高压的过热蒸气状态;冷凝器出口状态3为常温高压的饱和液体状态;节流阀图1-2 理论循环原理图图1-3理论循环在T-S图上的表示出口状态4为低温低压的湿蒸气状态(由大部分低温饱和液体和小部分低温饱和蒸气组成)。

将这四个状态点的特性列成表来表示,见表1-1。

单级蒸气压缩式制冷理论循环各状态点特性表1-1循环过程中,各设备的作用是:压缩机起到了压缩和输送制冷剂,并造成蒸发器的低压作用;冷凝器起到了将低温物体的热量和压缩功转变的热量传给环境的作用;蒸发器则起到了吸收被冷却物体的热量的作用;节流阀起到节流降压、调节流量的作用。

制冷压缩机和节流阀将制冷系统分成高低压两个部分,高压部分从压缩机出口到节流阀进口;低压部分从节流阀出口到压缩机进口。

通过制冷循环,制冷剂不断吸收被冷却物体的热量,使被冷却物体温度维持在所需较低温度的水平,达到制冷的目的。

2. 单级蒸气压缩式制冷的理论循环在压焓图上的表示制冷循环中各过程的功量与热量的变化在压焓图中均可用过程初、终态制冷剂的焓值变化来计算,制冷工程广泛应用压焓图分析计算制冷循环。

(1)压焓图压焓图的示意图见1-4。

压焓图是以绝对压力为纵坐标(为了缩小图面,用对数坐标,其上的压力数值不需换算),以比焓为横坐标来表示制冷剂的状态。

二线、三区域、五种状态、六条等参数线。

制冷理论循环

制冷理论循环

3.节流阀:
对制冷剂起节流降压作用,并调节进入蒸 发器的制冷剂流量。
4.蒸发器:
输出冷量的设备,制冷剂在蒸发器中吸收 被冷却对象的热量,从而达到制冷的目的。
液体蒸发制冷构成循环的四个基本过程是:
①制冷剂液体在低压(低温)下蒸发,成为低压 蒸气
②将该低压蒸气提高压力为高压蒸气 ③将高压蒸气冷凝,使之成为高压液体 ④高压液体降低压力重新变为低压液体,返回到 ①从而完成循环。
3.1 单级蒸汽压缩式制冷理论循环 三、制冷循环在热力性质图上的表示
3 4
B C
5
D
p
2 1A
单级蒸气压缩式制 冷系统图
A—压缩机; B—冷凝器; C—节流阀; D—蒸发器。
4
pk 3 2
5
p0 1
q0
w
h
理论循环在p-h图上的表示
总结
书本上33页的3题和4 题
3.1 单级蒸汽压缩式制冷理论循环 一、工作原理
3.1 单级蒸汽压缩式制冷理论循环
二、制冷剂热力状态图
T
P
h
C
X
S V
一点 两条线 三个区域
五种状态
六类等参线
P
h
3.1 单级蒸汽压缩式制冷理论循环 二、制冷剂热力状态图
T
S
C
X
H
P V
T H
s
一点 两条线 三个区域 五种状态 压缩式制冷循环
蒸汽压缩式制 冷的原理?
蒸汽压缩式制冷是利用液体制冷 剂汽化时吸热,蒸汽凝固时放热 的原理进行制冷的。
3.1 单级蒸汽压缩式制冷理论循环 一、工作原理
4
3
1
2
1.压缩机:
压缩和输送制冷蒸汽,并造成蒸发器中低 压、冷凝器中高压,是整个系统的心脏。

制冷原理及压焓图基本知识

制冷原理及压焓图基本知识

同的区域变化形状不同,在过冷区等温线几乎与横坐 标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线 ;在过热蒸气区为向右下方急剧弯曲的倾斜线。
等熵线:图上自左向右上方弯曲的细实线为等熵线。
制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的 等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作 为起点。 等容线:图上自左向右稍向上弯曲的虚线为等比容线 。与等熵线比较,等比容线要平坦些。制冷机中常用 等比容线查取制冷压缩机吸气点的比容值。 等干度线:从临界点K出发,把湿蒸气区各相同的干 度点连接而成的线为等干度线。它只存在与湿蒸气区
流程图
高温高压气体
冷凝器
低温高压气液 混合
压缩机
节流
低温低压气体
蒸发器
低温低压气液 混合
压缩机: 压缩和输送制冷蒸汽,并造成蒸发器
中低压、冷凝器中高压,是整个系统 的心脏。
冷凝器: 输出热量的设备,将制冷剂在蒸发器
中吸收的热量和压缩机消耗功所转化 的热量排放给冷却介质。
节流阀: 对制冷剂起节流降压作用,并调节进
p0
1
h
理论循环在p-h图上的表示
END
谢 谢!
上述六个状态参数(p、t、v、x、h、s)中,只要知
道其中任意两个状态参数值,就可确定制冷剂的热力 状态。在lgp-h图上确定其状态点,可查取该点的其 余四个状态参数
3、制冷循环过程在压焓图上的表示
3 4 B 2
p
C
5 D
1 A
4
pk
3
2
5 制冷系统图
A—压缩机; B—冷凝器; C—节流阀; D—蒸发器。
制冷原理及压焓图基本知识
杜波波 2011.8.16

单级压缩式制冷理论循环

单级压缩式制冷理论循环
压缩制冷剂蒸气,提高压力和温度
得到低温低压制冷剂
制冷剂液体吸热、蒸发、制冷
21
1.1 单级蒸气压缩式制冷循环 的基本工作原理
制冷剂的变化过程(flash)
22
制冷剂的变化过程
制冷剂在制冷压缩机中的变化
制冷剂蒸气由蒸发器的末端进入 压缩机吸气口时,压力越高温度 越高,压力越低温度越低。
制冷剂蒸气在压缩机中被压缩成
5
T0
1
TL
44
3) 制冷剂液体在节流前无过冷,为饱 和液体。
4) 制冷剂在管路中流动时无任何状态 变化,即无流阻压降,无传热。
5) 节流为绝热过程,节流前后焓值相 等。
45
qK
P
4
2
w0
5
1
q0
单级蒸汽压缩制冷循环
ht 液相区
C 气相区 s
两相区
v
x=0 x
x
p
x=1 t
h
46
3、理论循环的热力状态图 p-h 图
吸热蒸发,变成低温低压制冷剂气
26
作业:
简单描述单级蒸汽压缩式制冷循环。 蒸气压缩制冷循环系统主要由哪些部件
组成,各有何作用?
27
二、理论的单级蒸气压缩式制冷循环及 热力计算
28
单级蒸汽压缩式制冷理论循环组成:
制冷压缩机 冷凝器 节流器 蒸发器
单级蒸气压缩式制冷循环,是指制冷剂在一 次循环中只经过一次压缩,最低蒸发温度可 达-40~-30℃。单级蒸气压缩式制冷广泛用 于制冷、冷藏、工业生产过程的冷却,以及 空气调节等各种低温要求不太高的制冷工程。
饱和蒸气在等温条件下,继续放出热 量而冷凝产生了饱和液体。
制冷剂在节流元件中的变化

制冷原理及空调基础

制冷原理及空调基础

制冷原理与空调基础一、理论制冷循环单级蒸气压缩制冷系统的理论制冷循环在压焓图上如图1-1所示,循环路线是由两条等压线、一条等熵线和一条等焓线组成。

这说明制冷剂在蒸发器和冷凝器内流动没有阻力;制冷剂在压缩机中的压缩过程为可逆等熵过程;制冷剂离开蒸发器的状态和压缩机的吸气状态均为饱和蒸气,制冷剂离开冷凝器和节流前的状态均为饱和液体。

图1-1上1点表示压缩机的吸气状态,它位于蒸发温度te对应的蒸发压力Pe的等压线和饱和蒸发的交点上。

过程线1-2表示制冷剂在压缩机中的等熵压缩过程,点2可由通过点1的等熵线和冷凝温度T C对应的冷凝压力P C的等压线的交点来确定。

点2处于过蒸气状态。

点3表示制冷剂出冷凝器时的状态,也是进节流阀时的状态。

它是冷凝压力Pe对应的饱和液体,位于等压线P C与饱和液体线的交点。

过程线2-2’-3表示制冷剂在冷凝器内冷却(2-2’)和冷凝(2’-3)过程。

点4表示制冷剂出节流阀的状态。

过程线3-4表示制冷剂通过节流阀的节流过程。

由于节流前后制冷剂的比焓不变。

点4是过点3的等焓线和等压线Pe的交点。

由于节流过程为不可逆过程,所以过程3-4往往用虚线表示。

过程线4-1表示制冷剂在蒸发器中的气化过程,制冷剂吸取被冷却物体的热量而不断气化,制冷剂的状态沿等压线Pe向干度增大的方向进行,直到全部变成饱和蒸气为止。

这样,制冷剂的状态又重新回到进入压缩机前的状态,从而完成了一个理论制冷循环。

图1-1图1-2二、实际制冷循环事实上,家用中央空调的实际制冷循环不可避免与理论制冷循环之间存在许多差别,如流动阻力、换热温差、压缩机偏离等熵压缩、冷凝器中有制冷剂过冷、蒸发器中有制冷剂过热、制热剂液体管和气体管间有回热等情况。

这些差别将对制冷循环性能产生不同的影响。

1、液体过冷对循环性能的影响在实际循环中,饱和液体在冷凝器和节流阀之间的管路流动时,会因流动阻力引起的压力降低使制冷剂部分气化,这种现象将影响节流阀工作的稳定性,因此需要液态制冷剂进入节流阀前有一定的过冷。

单级蒸气压缩式制冷的理论循环

单级蒸气压缩式制冷的理论循环

3.1 单级蒸气压缩式制冷的理论循环3.1.1 制冷系统与循环过程单级蒸气压缩式制冷系统主要由压缩机、冷凝器、膨胀阀和蒸发器四大部件组成,如图3-1所示。

对制冷剂蒸气只进行一次压缩,称为蒸气单级压缩。

整个循环过程主要由压缩过程、冷凝过程、节流过程以及蒸发过程四个过程组成,每个过程在不同的部件中完成,制冷剂在每个过程中的状态又各不相同,具体情况如下。

图3-1 单级蒸气压缩式制冷系统1 压缩机2 冷凝器3 膨胀阀4 蒸发器压缩过程:整个循环过程中,压缩机起着压缩和输送制冷剂蒸气并造成蒸发器中低压和冷凝器中高压的作用,是整个系统的心脏。

制冷循环的压缩过程是在压缩机中完成的:压缩机不断抽吸从蒸发器中产生的压力为p o、温度为t o的制冷剂蒸气,将它压缩成压力为p k、温度为t k的过热蒸气,并输送到冷凝器中。

在这个过程中,压缩机需要做功。

冷凝过程:冷凝器是制冷系统中输出热量的设备,冷凝过程是在该部件中完成的.在压力p k下,来自于压缩机的制冷剂过热蒸气在冷凝器中首先被冷却成饱和蒸气,然后再逐渐被冷凝成液体,制冷剂冷却和冷凝时放出的热量传给冷却介质(通常是水或空气)。

在冷凝过程中,与冷凝压力p k相对应的冷凝温度t k一定要高于冷却介质的温度,冷凝后的液体通过膨胀阀或其它节流元件进入蒸发器。

节流过程:节流过程是在膨胀阀中完成的。

当制冷剂液体经过膨胀阀时,压力由p k降至p o,温度由t k降至t o,部分液体气化。

所以离开膨胀阀的制冷剂为温度为t o的两相混合物,该两相混合物进入蒸发器。

蒸发过程:蒸发器是制冷系统中冷量输出设备,蒸发过程是在蒸发器中完成的。

在蒸发器中,来自膨胀阀的两相混合物在压力p0和温度t0下蒸发,从被冷却介质中吸取它所需要的气化潜热,从而达到制取冷量的目的。

在蒸发过程中,与蒸发压力p0相对应的蒸发温度t0一定要低于被冷却介质的温度。

3.1.2 压焓图和温熵图在制冷循环的分析和计算中,通常要用到两种工具,即压焓图和温熵图.1.压焓图压焓图以绝对压力(MPa)为纵坐标,以焓值(KJ/Kg)为横坐标,如图3-2所示。

制冷原理知识点整理

制冷原理知识点整理

·制冷原理思考题1、什么是制冷从物体或流体中取出热量,并将热量排放到环境介质中去,以产生低于环境温度的过程; 自然冷却:自发的传热降温制冷机/制冷系统:机械制冷中所需机器和设备的总和制冷剂:制冷机中使用的工作介质制冷循环:制冷剂一系列状态变化过程的综合2、常用的四种制冷方法是什么①液体气化制冷蒸气压缩式、蒸气吸收式、蒸气喷射式、吸附制冷②液体绝热节流③气体膨胀制冷①当液体处在密闭容器内,液体汽化形成蒸气;若容器内除了液体及液体本身的蒸气外不存在任何其他气体,也提出在某一压力下将达到平衡,处于饱和状态;②将一部分饱和蒸气从容器中抽出时,必然要再汽化一部分来维持平衡;③液体汽化时,需要吸收热量,这一部分热量称为汽化热;汽化热来自被冷却对象,因而被冷却对象变冷或者使它维持在环境温度以下的某个低温;4、液体汽化制冷的四个基本过程是什么①制冷剂低压下汽化②蒸气升压③高压气液化④高压液体降压5、什么是热泵及其性能系数制冷机:使用目的是从低温热源吸收热量热泵:使用目的是向高温热汇释放能量6、性能系数:W Q W W Q COP H /)(/0+==7、劳伦兹循环在热源温度变化的情况下,由两个与热源做无温差传热的多变过程及两个等熵过程组成的逆向可逆循环,称为洛伦兹循环,这是变温条件下制冷系数最大的循环;为了表达变温条件下可逆循环的制冷系数,可采用平均当量温度这一概念,T0m表示工质平均吸热温度,Tm表示工质平均放热温度,ε表示制冷系数;洛伦兹循环的制冷系数相当于在恒温热源T0m和Tm间工作的逆卡诺循环的制冷系数;8、什么是制冷循环的热力学完善度,制冷剂的性能系数COP热力学完善度:实际制冷循环性能系数与逆卡诺循环性能系数之比制冷剂的性能系数:制冷量与压缩耗功之比;9、单级蒸气压缩制冷循环的四个基本部件压缩机:压缩和输送制冷剂,保持蒸发器中的低压力,冷凝器里的高压力膨胀阀:对制冷剂节流降压并调节进入蒸发器的制冷剂的流量蒸发器:输出冷量,制冷剂吸收被冷却对象的热量,达到制冷的目的冷凝器:输出热量,从蒸发器中吸收的热量和压缩机消耗功所转化的热量在冷凝器中被冷却介质带走10、蒸汽压缩式制冷循环,当制冷剂确定后,冷凝温度、蒸发温度有什么因素决定环境介质温度决定冷凝温度决定冷凝压力;制冷装置用途决定蒸发温度决定蒸发压力11、过冷对循环性能有什么影响在一定冷凝温度和蒸发温度下,节流前制冷剂液体过冷可以减少节流后的干度;节流后的干度越小,他在蒸发器中气化的吸收热量越大,循环的性能系数越高;12、有效过热无效过热对循环性能有哪些影响有效过热:吸入蒸气的过热发生在蒸发器本身的后部或者发生在安装与被冷却室内的吸气管道上,过热吸收的热量来自被冷却对象;有害过热:由蒸发器出来的低温制冷剂蒸气在通过吸入管道进入压缩机之前,从周围环境吸取热量而过热,但没有对被冷却对象产生制冷效应;13、不凝性气体对循环性能的影响不凝性气体:在制冷机的工作温度、压力范围内不会冷凝、不会被溴化锂溶液吸收的气体;原因:蒸发器、吸收器的绝对压力极低,易漏入气体影响:①不凝性气体的存在增加了溶液表面分压力,使冷剂蒸气通过液膜被吸收时的阻力增加,吸收效果降低;②不凝性气体停留在传热管表面,会形成热阻,影响传热效果,导致制冷量下降;③不凝性气体占据换热空间,是换热设备的传热效果变差④压缩机的排气压力、温度升高,压缩机耗功增加措施:在冷凝器与吸收器上部设置抽气装置①水气分离器:中间溶液喷淋,吸收水气,不凝性气体由分离器顶部排出,经阻油器进入真空泵排出;阻油器用于防止真空泵停机时,大气压力将油压入制冷系统中;②自动抽气:由引射器引射不凝性气体入气液分离器,打开放气阀排气;14、单级蒸气压缩循环中,蒸发温度和冷凝温度对制冷循环性能的影响;单位容积制冷量理论功率性能系数蒸发温度下降下降上升下降冷凝温度上升15、制冷剂有哪些种类①无机化合物②有机化合物③混合物16、常见的制冷剂见笔记水氨 CO2 碳氢化合物氟利昂17、简述禁用CFC的原因CFC:率氟化碳,不含氢,公害物,严重破坏臭氧层,禁用HCFC:氢氯氟化碳,含氢,低公害物,属于过度性物质HFC:氢氟化碳,不含氯,无公害,可做替代物,待开发H——可燃性C——毒性F——化学稳定性18、简述共沸、非共沸及近共沸混合制冷剂的区别和联系共沸:定压下蒸发和冷凝时,相变温度固定不变并比单一组分低,气液组分相同,单位容积制冷量高于单一制冷剂的单位容积制冷量;化学稳定性更高;电机绕组温升减少非共沸:定压下蒸发和冷凝时,相变温度固定改变,气液组分不同19、R12、R22的替代工质有哪些电冰箱常用制冷剂R12已被R134、R600替代;空调常用的制冷剂R22被新型制冷剂R410A替代;工作原理:双效溴化锂吸收式制冷机在机组中同时装有高压发生器和低压发生器,在高压发生器中采用压力较高的蒸气或燃气、燃油、等高温热源加热,所产生的高温冷剂水蒸气用于加热低压发生器,使抵押发生器中的溴化锂产生温度更低的冷剂水蒸气;优点:有效利用了冷剂水蒸气的潜热,减少冷凝器的热负荷,提高机组的经济性;(1)比例中项法(2) 经验公式法(3) 试凑作图法25、为什么利用复叠式制冷循环可获取较低的蒸发温度低温制冷剂在常温下无法冷凝成液体,而复叠式制冷循环系统采用另一台制冷装置与之联合运行,为低温制冷循环的冷凝过程提供冷源,降低冷凝温度和压力;26、在复叠式制冷系统中蒸发器的作用为低温部分的冷凝器和高温部分的蒸发器服务27、氨吸收制冷机、溴化锂吸收式制冷机的制冷剂和吸收剂是什么采用哪种热补偿原理:通过溶液热交换器,浓溶液和稀溶液进行热量交换,是稀溶液温度升高,浓溶液温度降低;作用:1提高进入发生器稀溶液的温度,减少发生器加热量2降低进入吸收器浓溶液的温度,减少吸收器中冷却水的消耗量,增强溶液吸收效果安装位置:在稀溶液进入发生器浓溶液进入吸收器之前;30、溴化锂吸收式制冷机有哪些安全保护措施①防止溴化锂结晶②预防蒸发器中冷媒水或冷剂水结冻的措施③屏蔽泵的保护④预防冷剂水污染31、自动融晶管安装:在发生器处溢流箱的上部连接一条J型管,J型管的另一端通入吸收器,机器正常运行时,浓溶液从底部流出,经溶液热交换器后流入吸收器;当浓溶液在溶液热交换器出口处因温度过低而结晶,将管道堵塞,溢流箱液面升高;作用:①液位高于J型管上端位置时,高温浓溶液通过J型管流入吸收器②吸收器的稀溶液温度升高,提高溶液热交换器中溶液的温度,结晶的溴化锂自动溶解,结晶消除后,发生器中的浓溶液重新从正常的回流管流入吸收器;热电效应:温差和电压之间的直接转换;当热电装置两侧的温度不同时,产生电压;反之产生温差;帕尔贴效应:电流流过两种不同导体的界面时,从外界吸收热量,或向外界放出热量;特点:结构简单体积小启动快,控制灵活操作具有可逆性效率低,耗电多,价格贵应用:需要微型制冷的场合,ex电子器件、仪表的冷却器、低温测量器械、制作小型恒温器34、什么是热电堆由于每个制冷原件产生的冷量很小,需要将许多热电制冷元件联成热电堆才可以使用;35、热电制冷器的制冷原理由N型半导体电子型和P型半导体空穴型组成小型热电制冷器;用同伴和铜导线将N,P半导体连成一个回路,铜板和导线只起导电作用,回路由低压直流电源供电;回路接通电源时,一个结点变冷,一个结点变热;改变电流方向时,冷热结点位置互易,原来的冷结点变热,热结点变冷;36、蒸发器是怎么分类的各种蒸发器的结构特点笔记①干式蒸发器②再循环式蒸发器③满液式蒸发器④水平降膜蒸发器37、冷凝器是怎么分类的各种冷凝器的结构特点①空气冷却式冷凝器②水冷式冷凝器38、膨胀节流元件的作用如何分类。

工程热力学制冷循环资料

工程热力学制冷循环资料

1)逆向卡诺循环的制冷系数只与热源和冷源的 温度有关,而与工质的性质无关。 2)当环境温度一定,制冷系数只与被冷却物体 的温度有关。 3)制冷系数可以大于1,也可以小于1。
5.热泵供暖循Βιβλιοθήκη 的计算 吸热量 供暖量q2 T0 sab q1 q2 w0 T1sab
T T1
供暖量w0+q2
Q
Valve
Heating
Pump
Evaporator
Absorber
Q2 Q1’
氨 吸 收 式 制 冷 原 理 图
—制冷剂(氨)
—吸收剂(水)
供暖系统示意图
House
Condenser
Expansion valve
Evaporator
Q1
Compressor
Win
Q2
制冷系统示意图
House
Evaporator
3.制冷循环与热泵循环的比较
T T
T1
3 耗净功w0 2
3'
耗净功w0
2'
T0
4'
供热量q1 吸热量q2
1'
T2
4
制冷量q2
1
制冷循环
s
热泵循环
s
4.制冷循环的计算内容
制冷量—1kg制冷剂从低温物体吸收的热量
q2 T2 sab
循环放热量 q1 T0 sab 循环耗净功
w0 q1 q2 T0 T2 sab
P0 355kW
Q2 0.8 106 0.626 W0 3600 355
思 考
1.空气压缩制冷装置循环的制冷系数越大,其制冷
量越大。
2.蒸汽压缩制冷装置中采用节流阀可简化设备,同

第1章 制冷基本知识

第1章 制冷基本知识

3、低温制冷(低温):-200℃ (73K)至-268.95℃(4.2K)。 4.2K是液氦的沸点。
4、极低温制冷(极低温):低于 4.2K。
1.1.2 无温差传热的逆卡诺循环
根据热力学第二定律,热量不会自发地从 低温环境传向高温环境。要实现这种逆向传热 过程,必须要伴随一个补偿过程使整个孤立系 统的熵增等于或大于零。蒸气压缩式制冷就是 以消耗机械能作为补偿条件,借助制冷工质的 状态变化将热量从温度较低的环境(通常是空 调房间、冷库等)不断地传给温度较高的环境 (通常是自然界的水或空气)中去。逆卡诺循 环由两个可逆等温过程和两个可逆绝热过程组 成,循环沿逆时针方向进行,该循环过程的示 意图和T-s图如图1-4所示。
目前全国生产制冷设备的厂家有近 100家,生产空调设备的厂家有近200家。 自1989年来工业产值平均年增长20%左 右。
目前我国制冷空调行业产值约占全球 总量的12%以上,成为继美国、日本之后 的第三大制冷空调生产国。
我国电冰箱、家用空调器产量已居世 界第一位,分别占到世界总产量的30%和 16%。
q0 q0 T0 c w0 qk q0 Tk T0 (1-1)
此外,逆卡诺循环也可用来获得供热效 果,例如冬季将大气环境作为低温热源,将 供热房间作为高温热源进行供热。这样工作 的装置称为热泵,也就是向泵那样把低位热 源的热能转移至高位热源。热泵的经济性用 供热系数 c表示,其值为单位耗功量所获取 的热量
到1874年林德(Linde)设计成功氨 制冷机,被公认为制冷机的始祖,这些都 对制冷技术的发展起了重大作用; 1913年美国工程师拉森(Lnvsen) 制造出世界上第一台手操纵家用电冰箱; 1918年美国开尔文纳特(Kelvinator )公司首次在市场上推出自动电冰箱;

制冷的基本理论知识:理想制冷循环

制冷的基本理论知识:理想制冷循环

c
T0 Tk T0
空调用制冷技术
空调用制冷技术
小结
4、制冷系数的定义 5、热力完善度的定义
c
Q0 N
c
1 理想制冷循环
空调用制冷技术
1 理想制冷循环
问题:
A 1、逆卡诺循环包括两个等温和 (
) 四个过程。
A 两个等熵
B 两个等容 C 两个等压 D 两个等焓
空调用制冷技术
1 理想制冷循环
C 2、制冷系数是指循环的制冷量与循环所 (
) 之比。
A 吸收的热量
B 放出的热量
C 消耗的功
空调用制冷技术
1 理达式是 c = (
)。
A T0 Tk T0
T0 B Tk
t0 C tk t0
T0 D Tk T0
空调用制冷技术
制冷的基本理论知识
空调用制冷技术
主要内容
制冷的基本理论知识
1、理想制冷循环 2、单级蒸气压缩式制冷的理论循环 3、单级蒸气压缩式制冷的实际循环
空调用制冷技术
1 理想制冷循环
制冷的基本理论知识
理想制冷循环:无不可逆损失的制冷循环 工作在两个恒温热源间的理想制冷循环---逆卡诺循环
逆卡诺循环的形式 逆卡诺循环在T-S图上的表示 逆卡诺循环的制冷系数
1 理想制冷循环
(3)逆卡诺循环的制冷系数 1)制冷系数: 指制冷循环的制冷量与循环所消耗的功之比
Q ——制冷量 0
N ——耗功
空调用制冷技术
1 理想制冷循环
2)逆卡诺循环的制冷系数
c
Q0 N
Tk
N
T0
T0 (S1 S4 ) T0 (Tk T0 )(S1 S4 ) Tk T0

制冷原理—蒸汽压缩式制冷的理论循环和实际循环

制冷原理—蒸汽压缩式制冷的理论循环和实际循环
制冷剂压焓图
一、制冷剂压焓图(P-V图)
制冷系统中循环流动的工作介质叫制冷剂(又称制
冷工质),它在系统的各个部件间循环流动以实现能
量的转换和传递,达到制冷机向高温热源放热;从
低温热源吸热,实现制冷的目的。
一、制冷剂压焓图(P-V图)
以特定制冷剂的焓值为横坐标,以压
力为纵坐标绘制成的线图成为该制冷剂的
具有蒸汽过热的循环称为蒸汽过热循环。
有效过热:过热吸收热量来自被冷却介质,
产生有用的制冷效果。
有害过热:过热吸收热量来自被冷却介质以外,无制冷效果。
1、有害过热分析:
(1)单位制冷量不变,单位压缩功增加
(2)单位冷凝负荷增大
(3)进入压缩机的制冷剂比容增大
(4)压缩机的排气温度升高
(1)蒸发器面积大于设计所需面积(有效过热)
压焓图。为了缩小图的尺寸,并使低压区
内的线条交点清楚,所以纵坐标使用压力
的对数值LgP绘制,因此压--焓图又称
LgP-E图。
一、制冷剂压焓图(P-V图)
一点(临界点)
两线(饱和液体线;干饱和蒸气线)
三区(过冷区;湿蒸气区;过热气区)
五状态(未饱和液体;饱和液体;湿饱
和蒸气;干饱和蒸气; 过热蒸气)
在循环制冷计算中,将制冷剂饱和液
体的温度降低就变为过冷液体。
气液两相区:介于饱和液体线与饱和
气体线之间的区域为。
过热蒸气区:干饱和蒸气线右边区域。
饱和液体线
干饱和蒸气线
饱和液体线
(压力)
未饱和液体
过热蒸气

六参数:
➢等压线p — 水平线
➢等焓线 h— 垂直线
➢等干度线 x
2、蒸气压缩制冷循环的P-h图,试指出进行各热力过程相应设备的名

第7章制冷循环

第7章制冷循环
混合制冷剂:有多种方案,海尔、雪花、伯乐 等采用。
尚未根本解决,进一步的研究工作仍在进行中。
HCFC22的替代
研究目标: 具有良好的环境性)CO2(蒸气压缩式,冷却过程在超临界区) (2)空气(气体压缩式) 其他
7-5 其他制冷方式简介
一、流程及图示
忽略工质流动过程
的耗散,将循环简化 为由以下过程组成的 内可逆循环:
1-2:定熵压缩;
2-3:定压放热;
3-4:定熵膨胀;
4-1:定压吸热。
1 2 定熵压缩 2 3 定压放热 3 4 定熵膨胀 4 1 定压吸热
二、制冷系数
比冷量
q h h c (T T )
2
1
4
p1
4
比放热量 q1 h2 h3 cp (T2 T3 )
二、制冷剂发展的历史
1830—1930,NH3, Air, CO2, HC, SO2
1930—1990,CFCs&HCFCs (如:冰 箱CFC-12, 空调HCFC-22)
1990—,不破坏臭氧层的环保制冷剂 HFCs? HCs?
天然(自然)工质
大气臭氧层
臭氧空洞
1985年第一次在南 极上空发现臭氧空 洞,面积近1000万 平方公里。近年观 测发现面积已达到 原来的3倍,南半球 的很多城市已笼罩 其中。


Q0 V qv
二、理论循环的特点
1、节流阀代替膨胀机, 造成节流损失
w1=h3-h4’ 为什么?
液体膨胀机制作困难, 回收的功很少,不合算; 节流(膨胀)阀制作容 易,系统控制方便。
二、理论循环的特点
2、干压缩代替式压缩,造 成过热损失。 为什么不采用1’-2’ 的定 熵压缩过程?

空气调节用制冷技术考试重点

空气调节用制冷技术考试重点
A.增大B.减小C.不变D.不能确定
9?活塞式压缩机活塞在气缸中由上止点至下止点之间移动的距离称为(c)
A.气缸直径B.活塞位移C.活塞行程D.余隙容积
10?制冷系统中,油分离器安装在(b)之间。
A.蒸发器和压缩机B.压缩机和冷凝器
C.冷凝器和膨胀阀D.膨胀阀和蒸发器
三.判断题每小题1分,共10分
1?制冷是一个逆向传热过程,不可能自发进行。()
20.常用节流装置:手动膨胀阀、浮球式膨胀阀、热力膨胀阀、电子膨胀阀、毛细管和节流短管
21.充液式热力膨胀阀特点:优点阀门工作不受膨胀阀和平衡毛细管所处环境温度的影响;缺点随蒸发温度的降低,过热度有明显上升的趋势(过热度变化不均衡)
22.充气式热力膨胀阀特点:
23.其他充注式热力膨胀阀特点:
24.毛细管工作原理:液体比气体更容易通过
5?(b)一定能够提高制冷循环的制冷系数。
A.蒸气有害过热B.液体过冷C.回热循环D.蒸气有效过热
6?国际上规定用字母(c)和后面跟着的数字作为表示制冷剂的代号。
A. A B. L C. R D. Z
7?制冷剂压焓图中,等温线在液体区是(a)。
A.竖直线B.水平线C.向右下曲线D.其它曲线
8?冷凝温度一定,随蒸发温度下降,制冷机的制冷量(b )
答案:√;
解析:制冷就是从被冷却对象中取出热量放到环境中,使被冷却对象的温度低于周围环境的温度,并维持在这一低温的过程。制冷是逆向循环,不能自动进行,必须要消耗一定的能量才能实现
2?制冷循环中应用液体过冷对改善制冷循环的性能总是有利的。()
答案:√;
解析:液体过冷会使得单位质量制冷量变大,单位理论压缩功不变,制冷系数提高。
6.温度滑移:露点和泡点之差。蒸发或冷凝过程温度在此二点之间变化

制冷原理复习题纲

制冷原理复习题纲

一、选择题1、完成蒸气压缩式制冷循环的基本元件是____。

A.压缩器、冷却器、干燥器、蒸发器B.压缩机、冷却器、节流元件、回热器C.冷凝器、节流元件、蒸发器、压缩机D.冷凝器、蒸发器、回热器、压缩机2、在lgp-h图中,等焓线在过热区与____垂直。

A.等压线B.等温线C.等比容线D.等熵线3、在lgp-h图中,制冷循环的蒸发过程是____液体的气化过程。

A.高温低压B.高温高压C.低温高压D.低温低压4、蒸气压缩式制冷装置主要元件①压缩机;②膨胀阀;③冷凝器;④蒸发器的正确流程是____。

A.①②③④B.④③②①C.①③②④D.④②③①5、蒸气压缩式制冷是利用____吸热。

A.气体膨胀B.液体膨胀C.液体汽化D.化学变化6、压缩制冷装置中冷剂由高压变为低压是以___元件为分界点。

A.电磁阀B.回热器C.膨胀阀D.背压阀7、制冷剂流经膨胀阀的节流过程前后____相等。

A.温度B.比容C.比焓D.比熵8、制冷剂在压缩机进口和出口通常是____和____。

A.湿蒸气,饱和蒸气B.饱和蒸气,过热蒸气C.湿蒸气,过热蒸气D.过热蒸气,过热蒸气9、制冷剂流过膨胀阀工作正常时是由____变成____。

A.饱和液体,饱和蒸气B.过冷液体,湿蒸气C.过冷液体,饱和蒸气D.过冷液体,过热蒸气10、制冷剂在蒸发器中流动,在完全汽化前实际上是____过程。

A.等压等温B.降压降温C.等压升温D.降压升温11、制冷剂在蒸发器中流动,在完全汽化前____增加。

A.温度B.过热度C.干度D.压力12、理论上,制冷剂在蒸发器中流动,在完全汽化前____不增加。

A.焓值B.比容C.干度D.温度13、当压缩机状况和其它温度条件不变时,随着蒸发温度降低,制冷系数____。

A.增大B.不变C.降低D.在压力比为3左右出现最大值14、当压缩机状况和其它温度条件不变时,随着蒸发温度提高,制冷压缩机的制冷量____A.增大 B.不变C.降低D.在压力比为3左右出现最大值15、当压缩机状况和其它温度条件不变时,随着蒸发温度提高,制冷压缩机的制冷系数____。

制冷原理期末复习大纲重点知识

制冷原理期末复习大纲重点知识

制冷原理期末复习大纲重点知识1.氨沸点-33.3℃,凝固点-77.9℃单位容积制冷量大粘性小,传热性好,流动阻力小;毒性较大,有一定的可燃性,安全分类为 2 ;氨蒸气无色,具有强烈的刺激性臭味; 氨液飞溅到皮肤上会引起肿胀甚至冻伤氨系统中有水分会加剧对金属腐蚀同时减小制冷量;以任意比与水互溶但在矿物润滑油中的溶解度很小 ;系统中氨分离的游离氢积累至一定程度遇空气爆炸 ; 氨液比重比矿物润滑油小,油沉积下部需定期放出在氨制冷机中不用铜和铜合金材料(磷青铜除外)2.氟利昂(1) R12(二氟二氯甲烷 CF2Cl2)沸点-29.8℃,凝固点-158℃。

无色,有较弱芳香味,毒性小,不燃不爆,安全。

系统里应严格限制含水量,一般规定不得超过0.001%常用温度范围内能与矿物性润滑油以任意比互溶不腐蚀一般金属但能腐蚀镁及含镁量超过2%铝镁合金。

对天然橡胶和塑料有膨润作用。

容易泄漏,对铸件要求质量高,对机器要求密封性好(2) R134a(四氟乙烷 CH2FCF3)毒性非常低,不可燃,安全。

与矿物润滑油不相溶,但能完全溶解于多元醇酯类。

化学稳定性很好,溶水性比R12强得多,对系统干燥和清洁性要求更高,用与R12不同的干燥剂。

(不能用传统电子检漏仪)(3) R11(一氟三氯甲烷 CFCl3)沸点23.8℃,凝固点-111℃。

用于离心式制冷压缩机;毒性比R12更小,安全。

水在R11中的溶解能力与R12相接近。

对金属及矿物润滑油的作用关系也与R12大致相似。

对金属及矿物润滑油的作用关系也与R12大致相似与明火接触时,较R12更易分解出光气。

(4) R22(二氟一氯甲烷 CHF2Cl)沸点-40.8℃,凝固点-160℃。

毒性比R12略大,无色无味,不燃不爆,安全。

溶水性稍大于R12,系统内应装设干燥器。

部分与矿物润滑油互溶。

化学性质不如R12稳定,对有机物的膨润作用更强。

对金属与非金属的作用以及泄漏特性都与R12相似。

制冷ppt-第4章4.1单级蒸气压缩式制冷理论循环

制冷ppt-第4章4.1单级蒸气压缩式制冷理论循环

制冷技术与装置第四章蒸气压缩式制冷掌握重点:单级压缩各类循环的热力学计算、性能影响及特性分析;两级压缩与复叠式制冷的概念、流程、能量平衡、参数设计、应用场合。

§4.1 单级蒸气压缩式制冷理论循环(将复杂问题简单化,忽略次要因素)单级蒸气压缩式制冷理论循环的假设基础:(1)在冷凝器和蒸发器中,制冷剂的冷凝温度等于冷却介质的温度,蒸发温度等于被冷却介质的温度,且冷凝温度和蒸发温度都是定值;(2)离开蒸发器、进入压缩机的制冷剂蒸气为蒸发压力下的饱和蒸气,离开冷凝器、进入膨胀阀的液体为冷凝压力下的饱和液体(4)制冷剂在管道内没有流动阻力损失,除了蒸发器和冷凝器内的管子外,制冷剂与管外介质之间没有热交换(5)制冷剂在流过节流装置时,流速变化忽略不计,且与外界环境没有热交换(3)压缩过程为等熵过程,即在压缩过程中不存在任何不可逆损失;如何在T-S图上和p-h图上描述单级蒸气压缩式制冷理论循环?7理论循环在T-S图(a)和lg p-h图(b)上的表示=dd-q dhw蒸发过程:吸收外界热量,在T-s图上用面积1-5-b-a-1代表,而在lg p-h图上则用线段5-1表示。

1345762.制冷量减少h 5-h 746743’二者是相等的!面积57cbc b ad 带来的好处:1.省掉膨胀机,设备简化2.改变膨胀阀开度,易调节蒸发温度膨胀阀代替膨胀机的原因:1.饱和液体或两相混合物膨胀系数小,做功有限2.膨胀功回收设备(膨胀机)结构复杂,加工困难3.湿过程缺点:COP 下降膨胀阀不仅不能回收膨胀功,反而将膨胀功部分转化为热能,损失了部分制冷量(3)理论比功w 0120h h w -=单级压缩蒸气制冷机的理论比功也是随制冷剂种类和制冷机循环的工作温度而变的。

(4)单位冷凝热q k包括显热和潜热两部分()()q h h h h h h k =-+-=-233424(5)理论循环制冷系数ε0ε0001421==--q w h h h h 制冷系数愈大经济性愈好冷凝温度越高制冷系数越小蒸发温度越低q q w k =+00循环能量守恒(6)热力完善度单级压缩蒸气制冷机理论循环的热力完善度按定义可表示为412410T T T h h h h c ---==εεηεc :在低温热源温度(T 0)和高温热源温度温度(T 4)之间工作的逆卡诺循环的制冷系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
饱和蒸汽:一定压力下,温度等于对应饱和温度的蒸汽。 或者说:一定温度下,压力等于饱和蒸汽压的蒸汽。
湿蒸汽:饱和蒸汽与饱和液体的机械混合物。
饱和液体:一定压力下,温度等于对应饱和温度的液体。 或者说:一定温度下,压力等于饱和蒸汽压的液体。
未饱和液体:一定压力下,温度低于对应饱和温度的液体。 或者说:一定温度下,压力高于饱和蒸汽压的液体。
p
压缩机吸气状态为干饱和蒸气
pk
3
• 节流阀代替了膨胀机:
p0
简化了设备,但会造成节流损失
4
2 1
• 热交换过程为等压过程,而
非等温过程
实现三个相区都能完成热交换
0
h3=h4
h1 h2 h
蒸气压缩制冷理论循环p h图
液体过冷
• 什么是液体过冷?
制冷剂在冷凝器中液化后、进入节流机构之前,将液态 制冷剂再降温成为过冷液体的做法。
过冷循环热力计算
冷藏库需制冷量55kW,用氟利昂22,蒸发温度to=-10℃, 冷凝温度tk=40℃。设计时采用两种方案:一单级蒸气压 缩式制冷理论循环;一种过冷循环,过冷度5℃。比较两 个制冷循环的性能。
Po 1 to
h
• 1-2 (压缩机): 等熵压缩
• 2-3 (冷凝器) : 等压冷凝放热
• 3-3’ (过冷*) :等压过冷放热
• 3’-4 (节流阀) : 等焓节流
• 4-1 (蒸发器) : 等压吸热制冷
实现方法
• 冷凝器后装过冷器; • 设计,选型时,适当增大冷凝器面积; • 制冷系统中设置回热器,采用回热循环。
理论制冷循环的压焓图
压焓图的作用:p
• 确定状态参数 pk
3
• 表示热力过程 p0
4
2 1
• 分析能量变化
0
h3=h4
h1 h2 h
蒸气压缩制冷理论循环p h图
状态点的确定
选用制冷剂的压焓图 制冷工作条件:Po和Pk • 1点:Po等压线与x=1蒸气干饱和线交点 • 3点: Pk等压线与x=0液态饱和线交点 • 2点: Pk等压线与s1等熵线交点 • 4点: Po等压线与h3等焓线交点
三区• : 过冷液体区:饱和液体线左侧区域
湿饱和蒸汽区:饱和液与饱和蒸气之间 区域 过热蒸汽区:饱和蒸汽线右侧区域 五态: 未饱和液体状态:过冷区内任一点 饱和液体状态:饱和液体线上任一点
湿饱和蒸汽状态:湿饱和蒸汽区内任一 点 干饱和蒸汽状态:饱和蒸汽线上任一点 过热蒸汽状态:过热蒸汽区内任一点 六组等参数线群为: 等压线:与横坐标平行的水平线 等焓线:与纵坐标平行的垂直线 等温线(T):在过冷区内近于垂直h轴; 在湿蒸汽区为水平线;在过热蒸汽区则 弯曲下。 等熵线:向右上方倾斜的实线。 等比容线:右上方倾斜虚线。 等干度线;湿蒸汽区内近似平行于饱和 液体线或饱和蒸气线的线。
一点 两线 三区 五态
一点 物质的临界点 两线 饱和蒸汽状态连线(上界限线)
饱和液体状态连线(下界限线) 三区 汽态区:上界限线与临界等温线上段右侧区域
液态区:下界限线与临界等温线上段左侧区域 湿蒸汽区:上、下界限线之间的锺罩形区域
五态 过热蒸汽:一定压力下,温度高于对应饱和温度的蒸汽。
或者说:一定温度下,压力低于饱和蒸汽压的蒸汽。
(kW)
单位理论功 wo h2 h1 170
(kJ/kg)
压缩机理论耗功率 No MR wo 3 (kW)
理论制冷系数 热力完善度 c
o
Qo ToN o
Tk - To
6.67
273
273 5
40 273 5
7.94
o 84%
c
理论制冷循环的特点(对比理想制冷循环)
• 干压缩代替了湿压缩:
• 单位冷凝负荷qk :1kg制冷剂在冷却和冷凝过程中放出
的热量 。
qk=h2-h3
• 单位理论压缩功w0 :压缩机每压缩输送1kg制冷剂所
消耗的压缩功 。
w0=h2-h1
• 制冷系数ε0:
0
q0 w0
h1 h4 h2 h1
• 热力完善度η : 0 h1 h4 Tk T0 c h2 h1 T0
例题:某空气调节系统需制冷量20kW,假定循环为单级蒸气压缩式
制冷理论基本循环,且选用氨作为制冷剂,工作条件为:蒸发温 度
to=5℃,冷凝温度tk=40℃。试对该理论制冷循环进行热力计算。
解: h1=1460(kJ/kg) h2=1630(kJ/kg) h3=h4=380(kJ/kg) v1=0.245(m3/kg)
理论制冷循环的热力计算
• 单位质量制冷量q0:1kg制冷剂在蒸发器内从被冷却物
体吸收的热量 。
q0=h1-h4 • 单位体积制冷量qv :压缩机每吸入1m3制冷剂蒸气(按
吸气状态计),在蒸发器中所产生的制冷量 。 qv=q0 / v1=(h1-h4)/v1
• 制冷剂质量流量MR: MR=Qo / q0 • 制冷剂体积流量VR: VR=MR*v1
单位质量制冷量 qo h1 h4 1080 单质体位量积容流流积量量制MVR冷R MQq量oOR q10.v0108.5q001o45 4446 .9 单位冷凝热负荷 qk h2 h3 1250
(kJ/kg) (kJ/m3) (kg/s) (m3/s) (kJ/kg)
冷凝器热负荷 Qk MR qk 23
• 液体过冷有什么优势?
带有液体过冷的制冷系统的制冷量会增加。
1、几个基 本概念
• 过冷温度: 节流前被降温到低于饱和温度的过冷液体温度。 • 过冷度:过冷温度和其压力所对应的饱和液体温度之差。 • 过冷循环: 带有液体过冷的循环称为液体过冷循环。
P
过冷循环
PK
3'蒸气压缩式制冷理论循环 •

液相区
气相区

两相区 •
一点:
– 临界点C 三区:
– 液相区、 – 两相区、 – 气相区。 五态:
– 过冷液状态、 – 饱和液状态、 – 湿蒸气状态、 – 饱和蒸气状态、 – 过热蒸气状态。 八线:
– 等压线p(水平线) – 等焓线h(垂直线) – 饱和液线x=0, – 饱和蒸气线x=1, – 无数条等干度线x – 等熵线s – 等比体积线v – 等温线t
理论制冷循环
• 压缩机:制冷系统的心脏,压缩
和输送制冷剂蒸气;等熵干压缩; T
Tk
Tk
3
2
• 冷凝器:输出热量;等压放热; Tk'
3'
2'
T0
• 节流阀:节流降压,并调节进入 T0'
4'
1'
蒸发器的制冷剂流量;等焓节流; T0
4
1
• 蒸发器:吸收热量(输出冷量)
从而制冷;等压吸热。
0
b
as
图1-2 有传热温差的制冷循环
相关文档
最新文档