生物可降解高分子材料的发展现状与前景综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物可降解高分子材料的发展现状与前景综述Present Development and Prospects of Biodegradable
Polymer
张璐,浙江大学工科试验班1128班,jangru@
摘要:本文介绍了生物可降解高分子材料的定义和降解原理,并概述了生物可降解材料的种类,例如天然高分子材料,合成高分子材料和掺混型高分子材料,同时介绍了可降解高分子材料在环境保护、医疗保健、食品包装等领域的应用,并对其未来发展作了展望。
关键字:可降解高分子材料,分类,应用,发展前景
Abstract: This paper introduces the definition and degradation mechanism of biodegradable polymer, and summarizes the types of biodegradable materials, such as naturally occurring polymers, synthetic polymers and mixing type. Besides, the application of biodegradable polymer in environment protecting, medical science and other areas and the development prospect of this material are also include.
Keywords:degradable polymer, classification, application, development prospect
当前社会,在经济快速发展和科学技术突飞猛进的同时,谋求绿色发展已经越来越成为时代的重要趋势。这种发展理念不仅体现在经济活动上,也体现在生物、化学等基础学科领域。就高分子材料方面而言,我国目前的高分子材料生产和使用已位居世界前列,每年产生数百万吨的废弃物,既造成了环境破坏,又极大地制约了学科本身的发展。为了解决这种矛盾,生物可降解高分子材料应运而生。作为一种新型的环境材料,生物可降解高分子材料很好平衡了经济与环境之间的需求,同时也为医疗保健等领域作出了长足的贡献。它的研究和迅速发展,已经受到人们越来越多的关注。1 生物可降解高分子材料的定义及降解原理
可降解高分子材料,是一种环保高分子材料,它是在一定条件下,能在微生物分泌酶的作用下由大分子分解为小分子的材料[1]。
高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。高分子水合作用是因依靠范德华力和氢键维系的二次、三次结构的破裂引发的。水合作用,以及其后高分子主链可能因为化学或酶催化水解而破裂,高分子材料的强度降低。对交联高分子材料其强度的降低,可因高分子主链、交联剂、外悬基
因的开裂等造成。高分子链的进一步断裂会导致质量损失和分子量降低,最后分子量足够低的分子链小段被酶进一步代谢为水、二氧化碳等物质[2]。可降解材料的生物性不仅和它本身的结构有关,也受材料的温度、酶、PH值、微生物等外部环境因素的影响。总之,生物可降解并不是一个受单一机理控制的过程,而是一个复杂的各种因素协同作用,相互促进的过程。
2 生物可降解高分子材料的分类
若按材料的来源分,可降解高分子可主要分为天然高分子材料、微生物生产型高分子材料、合成高分子材料和掺混型高分子材料。根据制造方法的不同,则可分为微生物合成、化学合成、天然高分子及其共混物[3]。
2.1 天然高分子材料
天然可降解性高分子材料主要有胶原、明胶、甲壳糖、毛发、海藻酸、血管、血清纤维蛋白、聚氨基酸等,应用较多为胶原,血清纤维蛋白。这类材料最大的优点是降解产物易于被吸收而不产生炎症反应,单存在力学性能差,尤其是力学强度与降解性能间存在反对应关系,及高强度源于高分子量,导致降解速度慢,难于满足组织工程中组织构建的速度要求,也是构建多孔三维支架存在困难[4]。
尽管天然高分子材料的发展面临
诸多挑战,世界各国对它的支持力度依然很大。美国能源部(DOE)预计到2020年,来自植物可再生资源的基本化学结构材料要增加到10%,而到2050年要达到50%[5]。因此,天然高分子领域的研究及应用开发正在迅速发展,而且它们也必将带动其他高新技术领域的发展,为提高资源利用率,减少环境污染,实现绿色发展作出卓越的贡献。
2.2 微生物生产型高分子材料
这种材料是通过微生物合成的高
分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解
塑料。如英国ICI公司生产的“Biopol”产品。
微生物降解主要取决于聚合物分
子的大小和结构、微生物的种类以及微生物的生活环境条件。对聚合物而言,一般可微生物降解的化学结构顺序为:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键>亚甲基。另外,相对分子质量大、分子结构排列规整、疏水性大的聚合物,不利于微生物的生长和作用,也就不利于生物降解[6]。
微生物降解方法具有成本低、无二次污染、生态恢复好等优点,进入80年代以来,发达国家更是对有益环境的
微生物降解高分子材料的开发、应用研究领域投入了大量人力物力,取得了巨大的经济、环境、社会效益。
2.3 化学合成高分子材料
通过化学方法合成可降解高分子
材料,可以对合成的目标产物进行人为的分子设计,并在分子链上引入不同种类和数量的基团,从而得到的聚合物具有预测的物理化学性质,达到降解速率可控,以满足生产生活的需求。
比如,脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(PET)和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺)制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可塑性。
正因为化学合成高分子材料有这
些好处,在国内外研究通过化学合成的生物降解材料种类才会比较多。今后生物降解高分子材料更加会以化学合成
为主要研究方向,并集中向以下几个方面延伸:用新的方法合成新颖结构的降解高分子,如酶催化合成高分子;对现有的降解高分子进行改进,获取更好性能的高分子材料;提高材料生物降解性和降低材料的成本,并拓宽应用;降解速度的控制研究[7]。
2.4 掺混型高分子材料
掺混型生物降解材料是指将两种
或两种以上高分子物(其中至少有一种组分具有生物可降解性)共混复制得的生物降解高分子材料[8]。选在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得的产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料。这种方法用的生物降解组分大多采用淀粉、纤维素、木粉等天然高分子,其中又以淀粉居多。目前已工业化的产品为美国Waner Lambert 公司的“Novon”。“Novon”是以变性淀粉为主,且配有少量其他生物降解性添加剂的
高淀粉含量(含量大于90%)的天然聚合物材料,可完全生物降解,且分解速率在一年之内可控。另外,“Novon”可采用挤出、注塑、层压、吹塑等成型加工方法,产品广泛应用于垃圾袋、购物袋、一次性食品容器、医疗器材、缓冲发泡制品等[9]。
3 生物可降解高分子材料的应用
在工农业生产领域,生活领域,生物医学领域中都可以看到生物可降解
高分子的应用。下面就以可降解材料在环境保护和医疗保健这两方面的应用
为例,作具体展开。