随机过程知识点
(完整版)随机过程知识点汇总
第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。
若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。
随机过程知识点汇总
随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。
2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。
连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。
3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。
均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。
自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。
4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。
弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。
强平稳随机过程的概率分布在时间上是不变的。
5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。
高斯随机过程的均值函数和自相关函数可以唯一确定该过程。
6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。
马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。
7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。
泊松过程的重要性质是独立增量和平稳增量。
8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。
例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。
t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。
复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。
协方差函数和相关函数也可以类似地计算得到。
复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。
随机过程例题和知识点总结
随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学学科,在通信、金融、物理等众多领域都有广泛应用。
下面我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量都对应着某个特定的时刻。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,都有一个对应的随机变量 X(t)表示股票的价格。
二、常见的随机过程类型1、泊松过程泊松过程常用于描述在一定时间内随机事件发生的次数。
例如,某电话交换台在单位时间内接到的呼叫次数就可以用泊松过程来建模。
例题:假设某电话交换台在上午 9 点到 10 点之间接到的呼叫次数是一个泊松过程,平均每分钟接到 2 次呼叫。
求在 9 点 10 分到 9 点 20 分这 10 分钟内接到至少 5 次呼叫的概率。
解:设 X(t) 表示在时间段 0, t 内接到的呼叫次数,且 X(t) 是一个强度为λ = 2 的泊松过程。
10 分钟内接到的呼叫次数 X(10) 服从参数为λt = 2×10 = 20 的泊松分布。
P(X(10) ≥ 5) = 1 P(X(10) < 5) = 1 P(X(10) = 0) + P(X(10) = 1) + P(X(10) = 2) + P(X(10) = 3) + P(X(10) = 4)通过泊松分布的概率质量函数可以计算出每个概率值,进而求得最终结果。
2、马尔可夫过程马尔可夫过程具有“无记忆性”,即未来的状态只与当前状态有关,而与过去的状态无关。
例题:一个状态空间为{0, 1, 2} 的马尔可夫链,其一步转移概率矩阵为 P = 05 03 02; 02 06 02; 01 03 06 ,初始状态为 0,求经过 3 步转移后处于状态 2 的概率。
解:通过计算 P³得到 3 步转移概率矩阵,然后取出第 0 行第 2 列的元素即为所求概率。
随机过程知识点总结
∈
且
∑ = 1
∈
矩阵表示
= ()
3、 各状态平均返回时间
=
1
第五章 连续时间马尔可夫链
1、 转移概率 (, ) = {( + ) = |() = }
齐次转移概率 (, ) = ()
2、 转移速率
()
() = ∑ , ≥ 0
=1
[()] = [1 ];[()] =
[12]
第四章 马尔可夫链
4.1 马尔可夫链概念与状态转移概率
1、
2、
马尔可夫过程:未来状态只与当前状态有关,而与过去状态无关。
时间、状态都是离散的,称为马尔可夫链。
马尔可夫链的统计特性完全由条件概率{+1 = +1 | = }确定。
随机矩阵:各元素非负且各行元素之和为 1;
步转移矩阵是随机矩阵;
闭集 C 上所有状态构成的步转移矩阵仍是随机矩阵。
周期为的不可约马氏链,其状态空间可唯一地分解为个互不相交的子集之和,即
−1
= ⋃ , ∩ = ∅, ≠
=0
且使得自 中任一状态出发,经一步转移必进入+1 中( = 0 )。
[ ( + ) − ()] −[ (+)− ()]
!
+
( + ) − () = ∫
()
相较与齐次泊松过程 → ( + ) − ()
5、 复合泊松过程(独立增量过程)
是由对泊松过程的每一点赋予一独立同分布的随机变量而得的随机过程。
=1
′′ (0)(− 2 )
第一讲随机过程的概念
随机过程的基本知识
引例:热噪声电压
一、随机过程的定义
定义1 设E是一随机实验,样本空间S={e},T为参数集
若对每个eS ,X(e,t)都是实值函数, 则称{X(e,t),t T}
为随机过程,简记为X(t),t T 或X(t),也可记为X(t).
称族中每一个函数称为这个随机过程的样本函数。
样本函数: xi (t ) a cos( t i ) , i (0 , 2 )
状态空间:I=(-a,a)
例3: 掷骰子试验
伯努利过程 (伯努利随机序列)
以上都是随机过程,状态空间都是:I={1,2,3,4,5,6}
二、随机过程的分类
离散型随机过程
1. 依状态离散还是连续分为:
s, t 0, C X ( s, t ) DX [min{s, t }].
④ C X ( s, t ) Cov( X ( s), X (t ))
E[ X ( s) X ( s)][X (t ) X (t )]
为{X(t),tT}的协方差函数.
⑤ Rx(s,t)=E[X(s)X(t)]为{X(t),tT}的自相关函数, 简称相关函数
诸数字特征的关系:
X (t ) f ( x, t )
称 f ( x, t ) 为随机过程的一维密度函数 称{ f ( x, t ), t T } 为一维密度函数族.
X t 0 ,其中 X Y ( t ) te 例4 设随机过程
e( ) ,求
{Y (t ),t 0}的一维密度函数
y P( X ln ) , t 解: F ( y; t ) P[Y (t ) y ] P(te y ) 0 ,
2.5节随机过程相关知识
• 随机过程的数字特征 • 大多数情况下,我们常用随机过程的数字特
征来部分地描述随机过程的重要特性。因为对于 通信系统而言,这通常足以满足要求,又便于进 行运算和实际测量。随机过程的数字特征是由随 机变量的数字特征推广而得到的,其中最常用的 是均值、方差、相关函数。
5
»均值(数学期望):
E (t)
»对功率谱密度进行积分,可得平稳过程的总
功率:R(0)
P ( f )df
»各态历经过程的任一样本函数的功率谱密度
等于过程的功率谱密度。
12
(5)平稳随机过程通过线性系统
设输入过程是平稳的 ,均值为 a 。
通过线性系统,输出过程的均值
E[0 (t)] a
h( )d
a H (0)
式中,H(0)是线性系统在 f = 0处的频率响应,因此输出过
方差常记为 2( t )。
方差等于均方值与均值平方之差,它表示随机过程在时刻
t 对于均值a ( t )的偏离程度。
7
• 自相关函数 R(t1, t2 ) E[ (t1 ) (t2 )]
式中, (t1)和 (t2)分x1x别2 f是2 (在x1,tx12和;t1t,2t时2 )d刻x1观dx测2 得
而且均值为零,方差也相同。此外,在同一时刻上
得到的c和s是互不相关的或统计独立的。
22
• 5 正弦波加窄带高斯噪声 在许多调制系统中,传输的信号是用一个
正弦波作为载波的已调信号。为了减小噪声的影 响,通常在解调器前端设置一个带通滤波器。这 样带通滤波器的输出是已调信号与窄带高斯噪声 的混合波形,这是通信系统中常会遇到的一种情 况。因此了解正弦波加窄带高斯噪声的混合波形 的统计特性具有很大的实际意义。
随机过程的基本知识
• 解:X2 (t) =E(X(t)X(t))=E{AAcos(t)cos(t)}=cos^2(t)E(A^2) • =cos^2(t)(1x1+2x2+3x3)/3= 14 cos2 (t)
3
2 X
(t
)
E{[
X
(t
)
E(
X
(t))]2}
E{[
A
cos(t)
cos(t)E(
A)]2}
E{[ Acos(t) 2 cos(t)]2} E{cos2 (t)( A2 4A 4)}
• 特点2:随时间t的变化,X(t)在延续变化。
例3:股票的价格
• 记t时刻股票的价格为Y(t),则{Y(t),t>0}是一个随机 过程。
•图
• 特点1:给定时刻t,股票价格Y(t)不可预测,可以 认为是随机变量。
• 特点2:股票价格Y(t)随时间t的变化在不断变化。
例4 排队问题
• 记X(t)表示[0,t)小时内通过柜台的人数,则 {X(t),t>0}是一个随机过程。
所以
C 11tt11t22
1 t1t2
1
t
2 2
故( X (t1), X (t2 ))服从以(0,0) 为均值向量,C为协方差矩阵 的二维正态分布
例2:设随机过程X(t)=A cos(t), t实数,其中A是随
机变量,其分布律为:P{A=1}=P{A=2}=P{A=3}=1/3
求(1)X(t)的一维分布函数
是连续型,称该过程为连续型随机过程。 • 例:热噪声电压X(t)服从(a,b)上均匀分布 • 2、离散型 当X(t)是离散型,如排队问题
是离散型随机过程,t时刻通过的人数X(t)只 能取可数个值。据研究,X(t)服从泊松分布。
第二章 随机过程汇总
第 2 章 随机过程2.1 引言•确定性信号是时间的确定函数,随机信号是时间的不确定函数。
•通信中干扰是随机信号,通信中的有用信号也是随机信号。
•描述随机信号的数学工具是随机过程,基本的思想是把概率论中的随机变量的概念推广到时间函数。
2.2 随机过程的统计特性一.随机过程的数学定义:•设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t)是第i 次试验的样本函数或实现,每次试验得到一个样本函数,所有可能出现的结果的总体就构成一随机过程,记作)(t g 。
随机过程举例:二.随机过程基本特征其一,它是一个时间函数;其二,在固定的某一观察时刻1t ,)(1t g 是随机变量。
随机过程具有随机变量和时间函数的特点。
● 随机过程)(t g 在任一时刻都是随机变量; ● 随机过程)(t g 是大量样本函数的集合。
三.随机过程的统计描述设)(t g 表示随机过程,在任意给定的时刻T t ∈1, )(1t g 是一个一维随机变量。
1.一维分布函数:随机变量)(t g 小于或等于某一数值x 的概率,即})({);(1x t g P t x P ≤= 2.2.12.一维概率密度函数:一维概率分布函数对x 的导数.xt x P t x p ∂∂=);(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的二维分布})(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.34.二维分布密度定义为212121221212),;,(),;,(x x t t x x P t t x x p ∂∂∂=2.2.4四.随机过程的一维数字特征设随机过程)(t g 的一维概率密度函数为),(1t x p .1.数学期望(Expectation)dx t x xp t g E t g );()]([)(1⎰∞∞-==μ 2.2.52.方差(Variance)dx t x p t x t t g E t g Var t g g g ),()]([]))()([()]([)(1222μμσ-=-==⎰∞∞- 2.2.6五.随机过程的二维数字特征1.自协方差函数(Covariance)•21212122211221121),;,())())((())]()())(()([(),(dx dx t t x x p t x t x t t g t t g E t t C g g g g g μμμμ--=--=⎰⎰∞∞-∞∞- 2.2.72. 自相关函数(Autocorrelation)•2121212212121),;,()]()([),(dx dx t t x x p x x t g t g E t t R g ⎰⎰∞∞-∞∞-== 2.2.83.自相关函数和自协方差函数的关系)]([)]([),(),(212121t g E t g E t t R t t C g g •-= 2.2.9 4.设两个随机过程分别为)(),(t h t g ,在时刻1t 和2t ,对)(),(t h t g 抽样,两个随机过程的互相关函数(Cross-correlation)定义为)]()([),(2121t h t g E t t R gh = 2.2.105.两个随机过程的互协方差函数(Cross-covariance)定义为)]()())(()([(),(221121t t h t t g E t t C h g gh μμ--= 2.2.112.3 平稳随机过程一.狭义平稳的随机过程(严平稳的随机过程)对于任意的正整数n 和实数τ,若随机过程)(t g 的n 维概率密度函数满足),,;,,(),,;,,,(21212121n n n n n n t t t x x x p t t t x x x p ⋅⋅⋅⋅⋅⋅=+⋅⋅⋅++⋅⋅⋅τττ 2.3.1则称)(t g 为狭义平稳的随机过程.统计特性不随时间的推移而变化的随机过程称为平稳随机过程。
随机过程知识点总结
知识点总结第1章 概率论基础1.1概论空间随机试验,它是指其结果不能事先确定且在相同条件下可以重复进行的试验。
其中,一个试验所有可能出现的结果的全体称为随机试验的样本空间,记为Ω,试验的一个结果称为样本点,记为ω,即}{ω=Ω. 样本空间的某个子集称为随机事件,简称事件.定义1.1.1 设Ω样本空间,是Ω的某些子集构成的集合,如果:(1)∈Ω (2)若∈A ,则∈A(3)若∈n A ,,, ,21n =则∈∞= 1n nA那么称为一事件域,也称为σ域.显然,如果是一事件域,那么(1)∈φ(2)若∈B A ,,则∈-B A(3)若∈n A , ∞==1n n 2,1n A ,则,,定义 1.1.2 设Ω是样本空间,是一事件域,定义在上的实值函数)(⋅P 如果满足:(1)∈∀A 0)(,≥A P ,(2)1)(=ΩP , (3)若∈n A ,,2,1, =n 且,,2,1,,, =≠=j i j i A A j i φ则∞=∞=∑=11)()(n n n n A P A P那么称P 是二元组(,Ω)上的概率,称P (A )为事件A 的概率,称三元组,(Ω),P 为概率空间。
关于事件的概率具有如下性质:(1);0)(=φP(2)若∈nA ,,,2,1,,,,,,2,1,n j i j i A A n i j i =≠==φ 则ni ni i i A P A P 11)()(==∑=(3)若∈B A ,,,B A ⊂则)A P B P A B P ()()(-=-(4)若∈B A ,)()(,,B P A P B A ≤⊂则; (5)若∈A ;1)(,≤A P 则(6)若∈A );(1)(,A P A P -=则(7)若∈n A ,,2,1, =n 则∞=∞=∑≤11)()(n n n i A P A P(8)若∈i A ,,,2,1,n i =则-===∑ ni ni i i A P A P 11)()(∑∑≤<≤≤<<≤--+-+nj i nk j i n n kj ij i A A A P A A A P A A P 11211)()1()()(一列事件∈n A ,2,1,=n 称为单调递增的事件列,如果;,2,1,1 =⊂+n A A n n 一列事件∈n A ,2,1,=n 称为单调递减的事件列,如果,2,1,1=⊃+n A A n n .定理1.1.1 设 ∈n A ,2,1,=n(1)若 ,2,1,=n A n 是单调递增的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P (2)若 ,2,1,=n A n 是单调递减的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P 定义1.1.3.设,(Ω),P 为一概率空间,∈B A ,.且,0)(>A P 则称)()()(A P AB P A B P =为在事件A 发生的条件下事件B 发生的条件概率.不难验证,条件概率)|(A P ⋅符合定义1.1.2中的三个条件,即 (1)∈∀B , 0)|(≥A B P ;(2);1)|(=ΩA P (3)设∈n B ,,2,1,,,,2,1, =≠==j j i B B n j i φ则∞=∞=∑=11)|()|(n n n n A B P A B P定理 1.1.2. 设,Ω( ),P 是一概率空间,有: (1)(乘法公式)若∈i A ,,,,2,1n i =且0)(121>-n A A A P ,则)|()()(12121A A P A P A A A P n =(2)(全概率公式)设∈A ,∈iB ,,2,1,0)(, =>i B P i 且∞=⊃=≠=1,,,2,1,,,,i i j i A B j i j i B B φ则∑∞==1)|()()(i i i B A P B P A P(3)(贝叶斯(Bayes)公式)且∈A ∈>i B A P ,0)(,,,,2,1,0)( =>i B P i且 ∞=⊃==1,,,2,1,,i i j i A B j i B B φ则,2,1,)|()()|()()|(1==∑∞=i B A P B P B A P B P A B P j jji i i定义 1.1.4设,(Ω ),P 为一概率空间,,,,2,1,n i F A i =∈如果对于任意的)1(n k k ≤<及任意的,12n i i i k i ≤<<<≤ 有)()()()(2121k k i i i i i i A P A P A P A A A P =则称n 21,,,A A A 相互独立。
什么是随机过程(一)
什么是随机过程(一)引言概述:随机过程是概率论和数学统计学中的重要概念,用于描述随机事件在时间和空间上的演化规律。
它在实际问题建模和分析中具有广泛的应用,涵盖了大量的领域,如通信系统、金融市场、生物学等。
本文将介绍随机过程的基本概念和特征,并探讨其在实际中的应用。
正文:1. 随机过程的定义1.1 随机过程的基本概念1.2 随机变量与随机过程的关系1.3 不同类型的随机过程(如离散随机过程、连续随机过程等)2. 随机过程的特征2.1 随机过程的时间域特征2.2 随机过程的统计特征2.3 随机过程的独立性和相关性2.4 随机过程的平稳性2.5 随机过程的马尔可夫性质3. 随机过程的应用3.1 通信系统中的随机过程3.2 金融市场中的随机过程3.3 生物学中的随机过程3.4 物理学中的随机过程3.5 工程控制中的随机过程4. 随机过程的建模和分析方法4.1 马尔可夫链模型4.2 随机演化方程模型4.3 随机微分方程模型4.4 随机过程的仿真方法4.5 随机过程的参数估计方法5. 随机过程的未来发展5.1 随机过程在人工智能中的应用5.2 随机过程在时空数据分析中的应用5.3 随机过程在大数据分析中的应用5.4 新兴领域中的随机过程研究5.5 随机过程理论与实际应用的结合总结:本文介绍了随机过程的定义、特征和应用,并讨论了随机过程的建模和分析方法。
随机过程作为概率论和数学统计学的重要分支,具有广泛的应用前景。
随着人工智能和大数据分析的发展,随机过程在各个领域中的应用将进一步扩展。
值得期待的是,未来随机过程理论和实际应用的结合将推动该领域的进一步发展。
概率统计与随机过程 知识点总结--最终版
《概率统计与随机过程》知识总结第1章 随机事件及其概率一、随机事件与样本空间 1、随机试验我们将具有以下三个特征的试验称为随机试验,简称试验, (1)重复性:试验可以在相同的条件下重复进行;(2)多样性:试验的可能结果不止一个,并且一切可能的结果都已知; (3)随机性:在每次试验前,不能确定哪一个结果会出现。
随机试验一般用大写字母E 表示,随机试验中出现的各种可能结果称为试验的基本结果。
2、样本空间随机试验E 的所有可能结果组成的集合称为试验的样本空间,记为S ,样本空间中的元素,即E 的每个基本结果,称为样本点。
3、随机事件称随机试验E 的样本空间S 的子集为E 的随机事件,简称事件。
随机事件通常利用大写字母A 、B 、C 等来表示。
在一次试验中,当且仅当这一子集(事件)中的某个样本点出现时,称这一事件发生。
特别地,将只含有一个样本点的事件称为基本事件;样本空间S 包含所有的样本点,它在每次试验中都发生,称S 为必然事件;事件∅(S ∅⊂)不包含任何样本点,它在每次试验中都不发生,称∅为不可能事件。
4、随机事件间的关系及运算(1)包含关系:若B A ⊂,则称事件A 包含事件B ,也称事件B 含在事件A 中,它表示:若事件B 发生必导致事件A 发生。
(2)相等关系:若B A ⊂且A B ⊂,则称事件A 与事件B 相等,记为A B =。
(3)事件的和:称事件{|A B x x A ⋃=∈或}x B ∈为事件A 与事件B 的和事件。
事件A B ⋃发生意味着事件A 发生或事件B 发生,即事件A 与事件B 至少有一件发生。
类似地,称1n i i A =⋃为n 个事件12n A A A ⋯、、、的和事件,称1i i A ∞=⋃为可列个事件12 A A ⋯、、的和事件。
(4)事件的积:称事件{|A B x x A ⋂=∈且}x B ∈为事件A 与事件B 的积事件。
事件A B ⋂发生意味着事件A 发生且事件B 发生,即事件A 与事件B 都发生。
概率统计与随机过程 知识点总结--最终版
《概率统计与随机过程》知识总结第1章 随机事件及其概率一、随机事件与样本空间 1、随机试验我们将具有以下三个特征的试验称为随机试验,简称试验, (1)重复性:试验可以在相同的条件下重复进行;(2)多样性:试验的可能结果不止一个,并且一切可能的结果都已知; (3)随机性:在每次试验前,不能确定哪一个结果会出现。
随机试验一般用大写字母E 表示,随机试验中出现的各种可能结果称为试验的基本结果。
2、样本空间随机试验E 的所有可能结果组成的集合称为试验的样本空间,记为S ,样本空间中的元素,即E 的每个基本结果,称为样本点。
3、随机事件称随机试验E 的样本空间S 的子集为E 的随机事件,简称事件。
随机事件通常利用大写字母A 、B 、C 等来表示。
在一次试验中,当且仅当这一子集(事件)中的某个样本点出现时,称这一事件发生。
特别地,将只含有一个样本点的事件称为基本事件;样本空间S 包含所有的样本点,它在每次试验中都发生,称S 为必然事件;事件∅(S ∅⊂)不包含任何样本点,它在每次试验中都不发生,称∅为不可能事件。
4、随机事件间的关系及运算(1)包含关系:若B A ⊂,则称事件A 包含事件B ,也称事件B 含在事件A 中,它表示:若事件B 发生必导致事件A 发生。
(2)相等关系:若B A ⊂且A B ⊂,则称事件A 与事件B 相等,记为A B =。
(3)事件的和:称事件{|A B x x A ⋃=∈或}x B ∈为事件A 与事件B 的和事件。
事件A B ⋃发生意味着事件A 发生或事件B 发生,即事件A 与事件B 至少有一件发生。
类似地,称1n i i A =⋃为n 个事件12n A A A ⋯、、、的和事件,称1i i A ∞=⋃为可列个事件12 A A ⋯、、的和事件。
(4)事件的积:称事件{|A B x x A ⋂=∈且}x B ∈为事件A 与事件B 的积事件。
事件A B ⋂发生意味着事件A 发生且事件B 发生,即事件A 与事件B 都发生。
随机过程知识点
随机过程知识点随机过程是现代概率论的重要分支之一,它描述的是一个或多个随机变量随时间的变化规律。
在实际应用中,随机过程经常被用来建立模型,进行仿真以及预测未来的变化趋势等。
随机过程知识点众多,本文将从概念、分类、建模等方面进行探讨。
一、概念随机过程指的是一个定义在时间集合T上的随机变量的集合{Xt:t∈T}。
其中,T表示时间的取值范围,Xt是一个随机变量。
每个时刻t对应一个随机变量Xt,称为随机过程在时刻t的取值。
二、分类根据随机变量的值域,随机过程可以分为离散随机过程和连续随机过程两类。
1. 离散随机过程离散随机过程的取值集合为有限或可数集合。
在离散随机过程中,随时间变化的变量通常被称为时间序列。
离散随机过程可以进一步分为如下几类:(1)马尔可夫链马尔可夫链是最简单的离散随机过程模型,假设当前时刻状态只与前一时刻状态有关。
马尔可夫链的基本性质是:状态转移概率只与当前状态有关,而与历史状态无关。
(2)泊松过程泊松过程是一种间断性随机过程,它描述了单位时间或者单位面积内,某事件发生次数的概率分布。
泊松过程的关键特征是时间和事件之间的指数分布关系,即事件之间的时间间隔是独立且指数分布的。
2. 连续随机过程连续随机过程是取值集合为实数(或实数集合的子集)的随机过程。
在连续随机过程中,随时间变化的变量通常被称为随机过程信号。
连续随机过程可以进一步分为如下几类:(1)布朗运动布朗运动是最基本的连续随机过程,描述了物体在连续介质中的随机运动。
其轨迹连续但不光滑,呈现出瞬时变化的特点。
(2)随机游走随机游走是一种简单的随机过程模型,它描述了物体在一组不断变化的环境下进行的随机运动。
其主要特征是不规则的移动和不可预测性。
三、建模在实际应用中,随机过程的建模是非常重要的。
通过从数学模型中提取重要的特征和参数,可以更好地理解随机过程的行为,从而更好地预测未来的变化。
1. 马尔可夫模型马尔可夫模型是一种广泛使用的随机过程模型,其基本假设是状态的未来只与当前状态有关。
随机过程知识点汇总52047
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k kp xEX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p e t g k )( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0(5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX =二项分布 kn k k n q p C k X P -==)( np EX = npq DX =泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21ex p{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
随机过程例题和知识点总结
随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学理论,在通信、金融、物理等众多领域都有广泛的应用。
接下来,我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量对应于一个特定的时间点。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,股票价格就是一个随机变量。
知识点 1:随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程的时间参数是离散的,比如每天的股票收盘价;连续时间随机过程的时间参数是连续的,比如股票价格在任意时刻的取值。
知识点 2:随机过程的概率分布描述随机过程在不同时刻的概率分布是研究随机过程的重要内容。
对于离散随机过程,常用概率质量函数;对于连续随机过程,常用概率密度函数。
例题 1假设一个离散时间随机过程{Xn},n = 0, 1, 2, ,其中 Xn 取值为 0 或 1,且 P(Xn = 0) = 06,P(Xn = 1) = 04,求 X0 和 X1 的联合概率分布。
解:X0 和 X1 的可能取值组合有(0, 0)、(0, 1)、(1, 0)、(1, 1)。
P(X0 = 0, X1 = 0) = P(X0 = 0) × P(X1 = 0) = 06 × 06 = 036P(X0 = 0, X1 = 1) = P(X0 = 0) × P(X1 = 1) = 06 × 04 = 024P(X0 = 1, X1 = 0) = P(X0 = 1) × P(X1 = 0) = 04 × 06 = 024P(X0 = 1, X1 = 1) = P(X0 = 1) × P(X1 = 1) = 04 × 04 = 016二、随机过程的数字特征数字特征可以帮助我们更简洁地描述随机过程的某些重要性质。
随机过程知识点汇总
第一章随机过程的基本概念与基本类型一.随机变量及其分布1.随机变量,分布函数离散型随机变量的概率分布用分布列分布函数连续型随机变量的概率分布用概率密度分布函数2.n 维随机变量其联合分布函数离散型联合分布列连续型联合概率密度3 .随机变量的数字特征数学期望:离散型随机变量连续型随机变量方差:反映随机变量取值的离散程度协方差(两个随机变量):相关系数(两个随机变量):若,则称不相关。
独立不相关4•特征函数离散连续重要性质:,,,5 •常见随机变量的分布列或概率密度、期望、方差0 — 1分布二项分布泊松分布均匀分布略正态分布指数分布6.N维正态随机变量的联合概率密度,,正定协方差阵二.随机过程的基本概念1.随机过程的一般定义设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。
简记为。
含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。
另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。
当固定时,是随机变量。
当固定时,时普通函数,称为随机过程的一个样本函数或轨道。
分类:根据参数集和状态空间是否可列,分四类。
也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。
2 .随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性。
随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。
随机过程的有限维分布函数族是随机过程概率特征的完整描述。
在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。
(1)均值函数表示随机过程在时刻的平均值。
(2)方差函数表示随机过程在时刻对均值的偏离程度。
(3)协方差函数且有(4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。
(5)互相关函数:,是两个二阶距过程,则下式称为它们的互协方差函数。
,那么,称为互相关函数。
随机过程知识点总结
第一章:考试范围1.3,1.41、计算指数分布的矩母函数.2、计算标准正态分布)1,0(~N X 的矩母函数.3、计算标准正态分布)1,0(~N X 的特征函数.第二章:1. 随机过程的均值函数、协方差函数与自相关函数2. 宽平稳过程、均值遍历性的定义及定理3. 独立增量过程、平稳增量过程,独立增量是平稳增量的充要条件1、设随机过程()Z t X Yt =+,t -∞<<∞.若已知二维随机变量(,)X Y 的协方差矩阵为2122σρρσ⎡⎤⎢⎥⎣⎦,求()Z t 的协方差函数. 2、设有随机过程{(),}X t t T ∈和常数a ,()()()Y t X t a X t =+-,t T ∈,计算()Y t 的自相关函数(用(,)X R s t 表示).3、设12()cos sin X t Z t Z t λλ=+,其中212,~(0,)Z Z N σ是独立同分布的随机变量,λ为实数,证明()X t 是宽平稳过程.4、设有随机过程()sin cos Z t X t Y t =+,其中X 和Y 是相互独立的随机变量,它们都分别以0.5和0.5的概率取值-1和1,证明()Z t 是宽平稳过程.第三章:1. 泊松过程的定义(定义3.1.2)及相关概率计算2. 与泊松过程相联系的若干分布及其概率计算3. 复合泊松过程和条件泊松过程的定义1、设{(),0}N t t ≥是参数3λ=的Poisson 过程,计算:(1). {(1)3}P N ≤; (2). {(1)1,(3)3}P N N ==; (3). {(1)2(1)1}P N N ≥≥.2、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数. 假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟3人的泊松过程.(1).试求到某时刻t 时到达商场的总人数的分布;(2). 在已知t 时刻有50人到达的条件下,试求其中恰有30位女性的概率,平均有多少个女性顾客?3、某商店顾客的到来服从强度为4人/小时的Poisson 过程,已知商店9:00开门,试求:(1). 在开门半小时中,无顾客到来的概率;(2). 若已知开门半小时中无顾客到来,那么在未来半小时中,仍无顾客到来的概率。
通信原理(第七版)-樊昌信-第三章-随机过程-重要知识点
通信原理(第七版)-樊昌信-第三章-随机过程-重要知识点⼀.⼀些必须知道的:1.均值(数学期望)(详情:):2.⽅差:3.协⽅差函数和相关函数:3.1协⽅差函数:3.2相关函数:3.3关系:4.性质:⼆、正题:1.严平稳与⼴义平稳:1.1 严平稳:1.2 ⼴义平稳:1.3 关系:严平稳⼀定是⼴义平稳,反之不⼀定成⽴。
2.各态历经性:平稳⼀定具有各态历经性反之不⼀定成⽴;3.⾃相关函数的性质(重点)4.维纳⾟钦定理(重点):平稳随机过程的⾃相关函数和功率谱密度是⼀对傅⾥叶变换。
(注意:是 R(时域)<---->P(频域))5.⾼斯随机过程:5.1性质:5.2⼀维概率密度函数:5.2.1图像性质5.3误差函数和互补误差函数:5.3.1误差函数:5.3.2互补误差函数:6.平稳随机过程通过线性系统:7.窄带随机过程:7.1 定义:△f << fc7.2 表达式(包络-相位形式):(同向-正交形式):8.两个重要结论:9.⽩噪声:9.1 定义:噪声功率谱密度在所有频率为⼀常数(实际中为噪声功率谱密度范围远⼤于⼯作频带时候)9.2 噪声功率谱密度:单边:Pn(f) = n0; 双边:Pn(f) = n0/2;9.3 带限⽩噪声:9.3.1 低通:9.3.2 带通:9.4 功率: N = n0 * B (BPF的带宽)(或者N = n0/2 * 2*B (BPF的带宽))三、⼀些题⽬和不容易理解以及总结:1.不易理解的:2.离散的怎么算:3.总结:3.1 算平均功率:1) R(0);2)3)3.2 算⽅差:1)E(X²) - E²(X)2)R(0) - R(∞)3)E[ [X-E(X)]² ]。
3.随机过程基本知识
= [x1 a(t1)][ x2 a(t2 )]f2(x1,x2; t1,t2)dx1dx2
式中,t1与t2是任取的两个时刻;a(t1)与a(t2)为在t1及t2时刻 得到的数学期望;f2(x1,x2; t1,t2)为二维概率密度函数。
随机变量的统计特性: 概率分布函数F(x) 概率密度函数f(x)
随机变量的数字特征: 数学期望a、方差σ2 协方差和相关系数
3.1.2 随机过程的统计特性
随机过程的两重性使我们可以用与描述随机变量相似的方 法, 来描述它的统计特性。
设ξ(t)表示一个随机过程,在任意给定的时刻t1∈T, 其取 值ξ(t1)是一个一维随机变量。而随机变量的统计特性可以用分布 函数或概率密度函数来描述。 1) 随机过程ξ(t)的一维分布函数(取一个时刻):
程在不同时刻取值之间的内在联系,为此需要进一步引入二维
分布函数。
3).随机过程ξ(t)的二维分布函数
任给两个时刻t1, t2∈T,则随机变量ξ(t1)和ξ(t2)构成一个二
元随机变量{ξ(t1), ξ(t2)},称
F2(x1,x2; t1,t2)=P{ξ(t1)≤x1, ξ(t2)≤x2}
(3.1 - 3)
nFn (x1, x2...;t1,t2...,tn ) x1 x2...xn
f (x1, x2...,xn;t1,t2...,tn )
则称fn(x1,x2,…,xn; t1,t2,…,tn)为ξ(t)的n维概率密度函数。显
然,n越大,对随机过程统计特性的描述就越充分,但问题
的复杂性也随之增加。在一般实际问题中,掌握二维分布函
随机过程的数学期望a(t)是时间t的函数,它表示随机过程 的n个样本函数曲线的摆动中心。在随机化信号或噪声中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:预备知识§1、1 概率空间随机试验,样本空间记为Ω。
定义1、1 设Ω就是一个集合,F 就是Ω的某些子集组成的集合族。
如果 (1)∈ΩF;(2)∈A 若F ,∈Ω=A A \则F; (3)若∈n A F , ,,21=n ,则∞=∈1n nAF;则称F 为-σ代数(Borel 域)。
(Ω,F )称为可测空间,F 中的元素称为事件。
由定义易知: .216\,,)5)4(111F A A A i F A F B A F B A F i i n i i n i i i ∈=∈∈∈∈∅∞=== ,,则,,,)若(;则若(;定义1、2 设(Ω,F )就是可测空间,P(·)就是定义在F 上的实值函数。
如果()()()()∑∞=∞==⎪⎪⎭⎫ ⎝⎛∅=⋂≠=Ω≤≤∈1121,,,31210,)1(i i i i j i A P A P A A j i A A P A P F A 有时,当)对两两互不相容事件(;)(;任意则称P 就是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。
定义1、3 设(P F ,,Ω)就是概率空间,F G ⊂,如果对任意G A A A n ∈,,,21 , ,2,1=n 有: (),11∏===⎪⎪⎭⎫⎝⎛ni i n i i A P A P则称G 为独立事件族。
§1、2 随机变量及其分布随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函数,{}T t X t ∈,就是独立的。
§1、3随机变量的数字特征定义1、7 设随机变量X 的分布函数为)(x F ,若⎰∞∞-∞<)(||x dF x ,则称)(X E =⎰∞∞-)(x xdF为X 的数学期望或均值。
上式右边的积分称为Lebesgue-Stieltjes 积分。
方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 DYDX B XYXY =ρ为X 、Y 的相关系数。
若,0=XYρ则称X 、Y 不相关。
(Schwarz 不等式)若,,22∞<∞<EY EX则().222EY EX EXY ≤§ 1、4 特征函数、母函数与拉氏变换定义1、 10 设随机变量的分布函数为F(x),称 ()()(),jtX jtx g t E e e dF x t ∞-∞=-∞<<∞⎰为X 的特征函数随机变量的特征函数具有下列性质: (1)(0)1,()1,()()g g t g t g t =≤-= 1 ( 2 ) g (t )在()∞∞-, 上一致连续。
(3)()(0)()k k k g i E X =(4)若12,,,n X X X 就是相互独立的随机变量,则12n X X X X =+++的特征函数12()()()()n g t g t g t g t =,其中()i g t 就是随机变量X i 的特征函数,1,2,,i n =、定义1 、 11 设 12(,,,)n X X X X =就是n 维随机变量,t = (12,,,n t t t ) ,R ∈ 则称121()(,,,)()[exp()]nitX n k k k g t g t t t E eE i t X '====∑,为X 的特征函数。
定义1、12 设X 就是非负整数值随机变量,分布列 () ,2,1,===k x X P p k k则称)()(Xdef s E s P ==k k k s P ∑∞=0为X 的母函数。
§ 1、5 n 维正态分布定义1、13 若n 维随机变量),,,(21n X X X X =的联合概率密度为})()(21exp{)2(1),,,()(12/2/21Tn n n a x B a x Bx x x f x f ---==-π 式中,),,,(21n a a a a =就是常向量,n n ij b B ⨯=)(就是正定矩阵,则称X 为n 维正态随机变量或服从n 维正态分布,记作),(~B a N X 。
可以证明,若),(~B a N X ,则X 的特征函数为}21exp{),,,()(21t iB t ia t t t g t g n '-'==为了应用的方便,下面,我们不加证明地给出常用的几个结论。
性质1 若),(~B a N X 则n l b B a X E kl X X k k l k ,,2,1,,)( ===。
性质2 设),(~B a N X ,XA Y =,若BA A '正定,则),(~BA A aA N Y '。
即正态随机变量的线性变换仍为正态随机变量。
性质3 设),,,(4321X X X X X =就是四维正态随机变量,4,3,2,1,0)(==k X E k ,则)()()()()()()(3241423143214321X X E X X E X X E X X E X X E X X E X X X X E ++=§ 1、6 条件期望给定Y=y 时,X 的条件期望定义为⎰⎰===dx y x xf y x xdF y Y X E )|()|()|(由此可见除了概率就是关于事件{Y=y }的条件概率以外,现在的定义与无条件的情况完全一样。
E(X|Y=y)就是y 的函数,y 就是Y 的一个可能值。
若在已知Y 的条件下,全面地考虑X 的均值,需要以Y 代替y,E(X|Y)就是随机变量Y 的函数,也就是随机变量,称为 X 在 Y 下的条件期望。
条件期望在概率论、数理统计与随机过程中就是一个十分重要的概念,下面我们介绍一个极其有用的性质。
性质 若随机变量X 与Y 的期望存在,则⎰===)()|()]|([)(y dF y Y X E Y X E E X E Y --------(1)如果Y 就是离散型随机变量,则上式为∑===yy Y P y Y X E X E }{)|()(如果Y 就是连续型,具有概率密度f(x),则(1)式为⎰+∞∞-==dy y f y Y X E X E )()|()(第二章 随机过程的概念与基本类型§2、1 随机过程的基本概念定义2、1 设(P F ,,Ω)就是概率空间,T 就是给定的参数集,若对每个t ∈T ,有一个随机变量X (t ,e )与之对应,则称随机变量族}),,({T t e t X ∈就是(P F ,,Ω)的随机过程,简记为随机过程}),({T t t X ∈。
T 称为参数集,通常表示时间。
通常将随机过程}),,({T t e t X ∈解释为一个物理系统。
X(t)表示在时刻t 所处的状态。
X(t)的所有可能状态所构成的集合称为状态空间或相空间,记为I 。
从数学的观点来说,随机过程}),,({T t e t X ∈就是定义在T ×Ω上的二元函数。
对固定的t,X (t ,e )就是定义在T 上的普通函数,称为随机过程}),,({T t e t X ∈的一个样本函数或轨道,样本函数的全体称为样本函数的空间。
§ 2、2 随机过程的函数特征t X ={X (t ),t ∈T }的有限维分布函数族。
有限维特征函数族:}1,,,,:),,,({2121,,1≥∈=Φn T t t t g n n t t n θθθ其中:)})((ex p{),,,(121,,1k nk k n t t t x i E g n ∑==θθθθ定义2、3 设t X ={X (t ),t ∈T }的均值函数def t m X )()]([t X E ,T t ∈。
二阶矩过程,协方差函数:T ,)]()([),()(2∈-=t t m t X E def t t B t D X X X相关函数: =),(t s R X )]()([t X s X E定义2、4 设{X (t ),t ∈T },{Y (t ),t ∈T }就是两个二阶矩过程,互协方差函数,互相关函数。
§ 2、3 复随机过程定义 2、5 设},{T t X t ∈,},{T t Y t ∈就是取实数值的两个随机过程,若对任意T t ∈ t t t iY X Z +=,其中 1-=i ,则称},{T t Z t ∈为复随机过程.定理 2、2 复随机过程},{T t X t ∈的协方差函数 ),(t s B 具有性质 (1)对称性:),(),(s t B t s B =;(2)非负定性§2、4 几种重要的随机过程一、正交增量过程定义2、6 设(){}T ∈X t t ,就是零均值的二阶矩过程,若对任意的,4321T ∈<≤<t t t t 有公式()()[]()()[]03412=X -X X -X E t t t t ,则称()t X 正交增量过程。
()()()()t s t s R t s ,min ,,2X X X ==B σ二、独立增量过程定义2、7 设(){}T ∈X t t ,就是随机过程,若对任意的正整数n 与,21T ∈<<<n t t t 随机变量()()()()()()12312,,,-X -X X -X X -X n n t t t t t t 就是互相独立的,则称(){}T ∈X t t ,就是独立增量过程,又称可加过程。
定义 2、8 设(){}T ∈X t t ,就是平稳独立增量过程,若对任意,t s <随机变量()()s t X -X 的分布仅依赖于s t -,则称(){}T ∈X t t ,就是平稳独立增量过程。
三、马尔可夫过程定义2、9设(){}T t t X ∈,为随机过程,若对任意正整数n 及n t t t << ,21,()()0,,)(1111>==--n n x t X x t X P ,且其条件分布()(){}1111,,|)(--===n n n n x t X x t X x t X P =(){}11|)(--==n n n n x t X x t X P ,(2、6) 则称(){}T t t X ∈,为马尔可夫过程。
四、正态过程与维纳过程定义 2、10 设(){}T t t X ∈,就是随机过程,若对任意正整数n 与T t t t ∈∈ ,,21,(()() ,,21t X t X ,()n t X )就是n 维正态随机变量,则称(){}T t t X ∈,就是正态过程或高斯过程。
定义 2、11 设{}∞<<-∞t t W ),(为随机过程,如果 (1)0)0(=W ;(2)它就是独立、平稳增量过程;(3)对t s ,∀,增量()0,||,0~)()(22>--σσs t N s W t W ,则称{}∞<<-∞t t W ),(为维纳过程,也称布朗运动过程。