最新2灰色关联分析汇总
灰色关联度分析2篇
灰色关联度分析2篇一、灰色关联度分析的基本概念灰色关联度分析是一种结合数理统计和灰色系统理论的方法,旨在通过分析不同现象之间的关联程度,来确定它们之间可能存在的内在联系。
该方法主要运用于数据分析领域,在经济、环境、管理等各个领域都得到了广泛的应用。
灰色关联度分析的核心思想是通过建立数学模型,来量化不同现象之间的关系。
所谓灰色关联,就是指两个或多个现象之间存在一定程度的相互影响和依赖。
这种关系并不像黑白分明的纯粹因果关系那样明确,而是模糊的、带有灰色性质的关系,往往需要通过多方面的分析才能得到准确的结果。
因此,灰色关联度分析的主要方法是基于灰色系统理论和灰度理论,用科学、有效的手段去揭示这种灰色性质的关联度大小。
灰色关联度分析的基本步骤包括样本选取、数据处理、模型建立和评价指标的设定等。
其中,样本选取要尽量遵循随机性和代表性原则,以确保所得数据集的科学性和统计学的意义。
数据处理可以采用一些常规的方法,如标准化处理、平均数剔除、空缺值处理等,用于使原始数据更加准确、完整和可比。
模型建立则是灰色关联度分析中最关键的环节,要考虑到多种因素的影响,如关联系数的选取、数据的平滑和趋势模拟等。
评价指标的设定则是用来衡量结果的合理性和可靠程度,常见的指标包括相关系数、灰色关联系数等。
总体来说,灰色关联度分析是一种优秀的数据分析工具,它不仅可以提高数据分析的准确度和可靠度,还可以为实际问题的解决提供重要的参考和建议。
在现代化管理和决策制定中,灰色关联度分析已成为一种不可或缺的工具。
二、灰色关联度分析的应用灰色关联度分析的应用领域非常广泛,涉及到经济、环境、能源、教育、医疗等各个方面。
在这里,我们以环境保护领域为例,简单介绍一下灰色关联度分析的应用。
环境保护是社会经济发展不可或缺的组成部分之一,但受多种因素的影响,环境保护工作往往需要面对来自政府、市场、社会等多方面的压力和考验。
在这种情况下,运用灰色关联度分析可以更好地掌握环保领域的变化趋势和关联程度,为环保工作提供更加科学、准确、可靠的技术支持。
(整理)灰色关联度分析法
灰色关联度分析法为了适应瞬息万变的市场需求, 企业不断调整自己的核心能力, 在产品的开发设计中更重视供应商的作用。
作为供应链合作关系运行的基础, 供应商的评价选择是一个至关重要的问题, 供应商的业绩对企业的影响越来越大,影响着企业的生存与发展。
因此, 进行科学全面的供应商评价就显得十分必要。
(1)确定比较对象产品质量、技术水平、供应能力、经济效益、市场影响度指标属于效益型指标;产品价格、地理位置、售后服务指标属于成本型指标。
i 指五个待选供应商编号,,5,,1 =i j 指八个指标8,,1j =,ij a 是第i 个供应商第j 个指标变量为了使每个属性变换后的最优值为1 且最差值为0,对数据进行标准0-1变换利润型指标标准化公式)/()(min maxmin j j j ij ij a a a a b --=成本型指标标准化公式)/()(min max max j j ij j ij a a a a b --=数据结果见下表。
(2)计算灰色关联系数)()(max max )()()()(max max )()(min min )(0000t x t x k x k x t x t x t x t x k s tsi s ts s ts -+--+-=ρρξ为比较数列对参考数列在第个指标上的关联系数,其中为]1,0[∈ρ分辨系数。
称式中)()(min min 0t x t x s ts-、)()(max max 0t x t x s ts-分别为两级最小差及两级最大差。
一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。
在这里ρ取0.5。
(3)计算灰色加权关联度 灰色加权关联度的计算公式为∑==nk i i k w r 1)(ξ这里i r 为第i 个评价对象对理想对象的灰色加权关联度。
关联系数和关联度值(4)评价分析根据灰色加权关联度的大小,对各评价对象进行排序,可建立评价对象的关联序,关联度越大其评价结果越好。
灰色关联度分析
1.灰色关联理论
1982年,华中理工大学邓聚龙教 授首先提出灰色系统的概念,并建立了 灰色系统理论。 灰色系统理论认为,人们对客观 事物的认识具有广泛的灰色性,就是信 息的不完全性和不确定性,因而有客观 事物所形成的是一种灰色系统,即部分 信息已知、部分信息未知的系统。例如: 社会系统、经济系统、生态系统等都可 以看作是灰色系统。
\\
(min) (max) 0i (k ) 0i (k ) (max)
最后分别对各产业与GDP的关联系数求 平均可得: r01= (0.4191+0.3796+0.5808+0.7055+0.3696 +0.2881)/6 =0.4571 同样求出: r02=0.5760, r03=0.7209 r0i称为序列x0和xi(i=1,2,3)的灰 色关联。由于r03˃r02˃ r01,因而第三 产业产值与GDP的关联度最大,其次是 第二产业,第一次去农业。
5.用GRA进行综合评价
灰色关联分析的目的是揭示因素间 关系的强弱,其操作对象是因素的时间 序列,最终的结果表现为通过关联度对 各比较序列做出排列。综合评价的对象 也可以看作是时间序列(每个被评价事 物对应的各项指标值),并且往往需要 对这些时间序列做出排序,因而也可以 借助灰色关联分心来进行。
01 (1) 02 (1) ... 0 n (1) (2) (2) ... (2) 01 02 0n ... ... ... 01 ( N ) 02 ( N ) ... 0 n ( N ) N n 其中 0i (k ) x0 (k ) xi (k ) (05式) i 1,2,...n; k 1,2,..., N 绝对差矩阵中最大数和 最小数就是最大差和最 小差: max 0i (k ) (max)( 式) 06
灰色关联分析详解+结果解读
灰色关联分析1、作用对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
2、输入输出描述输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。
输出:反应考核指标与母序列的关联程度。
3、案例示例案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。
其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。
4、案例数据灰色关联分析案例数据5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;step4:选择【灰色关联分析】;step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。
step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。
当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )step7:点击【开始分析】,完成全部操作。
6、输出结果分析输出结果 1:灰色关联系数图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。
输出结果 2:关联系数图分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。
图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。
灰色关联分析
灰色关联分析灰色关联分析是一种常用于研究和预测多个影响因素之间关联程度的方法。
该分析方法可以通过对各个因素的数值进行比较,得出它们之间的关联强度,从而为决策提供依据。
下面将详细介绍灰色关联分析的原理、应用以及优势。
灰色关联分析的原理基于灰色系统理论,该理论是中国科学家陈纳德于1982年提出的一种对部分已知和部分未知信息进行分析的数学方法。
灰色关联分析将各个影响因素的数据进行标准化处理,然后计算各个因素之间的关联度。
通过对关联度进行排序,即可得出影响因素之间的关联程度大小。
灰色关联分析在各个领域都有广泛的应用,比如经济学、管理学、环境科学等。
在经济学领域,可以使用灰色关联分析来研究不同经济指标之间的关联程度,从而预测未来的经济趋势。
在管理学中,可以利用灰色关联分析来研究不同管理指标之间的关联程度,进而指导管理决策。
在环境科学领域,可以运用灰色关联分析来分析各个环境因素对生态系统的影响程度,以及控制污染等。
灰色关联分析相对于其他分析方法有一些独特的优势。
首先,它不要求数据分布满足正态分布等数学假设,可以对数据进行较好的处理。
其次,灰色关联分析可以处理样本量较小的情况,对于样本量不足的数据分析也有较好的适用性。
此外,由于灰色关联分析能够捕捉到数据之间的内在联系,因此对于某些非线性关系的分析,其结果可能更加准确。
然而,灰色关联分析也存在一些限制和不足之处。
首先,该分析方法依赖于数据的稳定性,对于非稳态的数据可能会导致分析结果不准确。
其次,灰色关联分析无法处理存在时间滞后效应的数据。
此外,该方法对数据的标准化要求较高,如果数据质量较差或者存在异常值,也会影响分析结果。
综上所述,灰色关联分析是一种研究和预测多个影响因素之间关联程度的有效方法。
它的原理基于灰色系统理论,可以在各个领域中广泛应用。
灰色关联分析相对于其他分析方法有一些独特的优势,但也存在一定限制。
在实际应用中,我们应该结合具体情况,合理选择分析方法,并充分考虑其适用性和局限性,以提高分析和决策的准确性。
灰色关联分析
灰色关联分析灰色关联分析(Grey Relational Analysis, GRA)什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k = 1,2,Λ,n};比较数列(又称子序列)X i={X i(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。
灰色关联分析(算法步骤)
灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。
灰色关联分析
灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。
它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。
原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。
在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。
最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。
灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。
灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。
2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。
3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。
4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。
5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。
适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。
它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。
优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。
灰色关联分析法原理及解题步骤
灰色关联分析法原理及解题步骤---------------研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度——曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。
灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1> 曲线越接近,相应序列之间的关联度就越大,反之就越小 2> 灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。
灰色系统关联分析的具体计算步骤如下 1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列——影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1) 初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2) 均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3) 区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi) 参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ?(0,1),常取0.5.实数第二级最小差,记为Δmin。
两级最大差,记为Δmax。
为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。
记为Δoi(k)。
所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。
因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。
灰色关联度分析GreyRelationalAnalysis是其中的一种
( X0 ) 考試成績 考 詴 成 績 出席率 ( X1 ) 出 席 ( X2 ) 率
評分項
實例參考 ( 一 ) 六、綀習題
Hale Waihona Puke 周世傑 周阿舍 100 100 90 100% 90
100%
說明 劉阿華 蕭阿薔 蕭阿薔 劉阿華
95 95 80 90% 80
90%
60 以周阿 60 50 舍為基 80% 50
80% 準點
1、標準化
姓名 評分項目
周阿舍 1 1 1
劉阿華 0.95 0.89 0.90
蕭阿薔 0.60 0.50 0.80
總成績(X0) 考詴成績(X1) 出席率(X2)
2、對應差數列表
差值 姓名 差式
周阿舍 0 0
劉阿華 0.06 0.05
蕭阿薔 0.1 0.2
min
k
max
k
| X 0 k X 1 k |
灰色關聯度可分成「局部性灰色關 聯度」與「整體性灰色關聯度」兩 類。主要的差別在於「局部性灰色 關聯度」有一參考序列,而「整體 性灰色關聯度」是任一序列均可為 參考序列。
二.直觀分析
依據因素數列繪製曲線圖,由曲 線圖直接觀察因素列間的接近程 度及數值關係,表一某老師給學 生的評分表數據資料為例,繪製 曲線圖如圖一所示,由曲線圖大 約可直接觀察出該老師給分總成 績主要與考詴成績關聯度較高。
第五章 灰色關聯度分析
目錄
壹、何謂灰色關聯度分析 5-2 貳、灰色聯度分析實例詳說與練習 5-8
負責組員 工教行政碩士班二年級 周世傑591701017 陶虹沅591701020 林炎瑩591701025
壹、何謂灰色關聯度分析
灰色关联分析方法
灰色关联分析方法灰色关联分析方法(Grey Relational Analysis,GRA)是一种多指标决策方法,它用于研究因素之间的关联程度。
与传统的关联分析方法相比,灰色关联分析方法具有较强的适用性和灵活性。
它可以用于分析多个指标之间的关联程度,对于复杂决策问题具有较强的应用能力。
灰色关联分析方法的基本思想是将系统的各个指标转化为灰色数列,再利用灰色关联度来评估指标之间的关联程度。
该方法可以对多个指标进行综合评价,找出各个指标之间的关联程度,并根据关联程度来进行排序和决策。
灰色关联分析方法的具体步骤如下:1. 数据预处理:将原始数据进行标准化处理,以确保各指标在同一数量级上进行比较。
2. 构建灰色数列:将标准化后的数据转化为灰色数列,通过建立灰色微分方程来描述数据序列的发展趋势。
3. 确定关联度测度:根据灰色数列的特点,选择适当的关联度测度方法来计算指标之间的关联程度。
4. 计算关联度:根据所选择的关联度测度方法,计算每个指标与其他指标之间的关联度。
5. 排序和决策:根据计算得到的关联度值进行排序,并作出相应的决策。
灰色关联分析方法的优点有以下几个方面:1. 适用性广泛:灰色关联分析方法适用于各种类型的指标数据,包括定量指标和定性指标。
2. 考虑了指标之间的时序关系:灰色关联分析方法考虑了指标数据的时序性,能够更好地反映指标之间的演变趋势。
3. 简单易行:灰色关联分析方法不需要过多的统计方法和复杂的计算过程,容易被理解和操作。
4. 提供了多指标综合评价的能力:灰色关联分析方法可以将多个指标之间的关联程度综合考虑,对于决策问题的综合评价有着较好的效果。
然而,灰色关联分析方法也存在一些限制和局限性:1. 灵敏度不高:由于灰色关联分析方法只考虑了指标之间的线性关联程度,对于非线性关系的刻画较为困难,灵敏度较低。
2. 依赖于初始数据:灰色关联分析方法对初始数据的选取较为敏感,不同的初始数据可能导致不同的关联度结果。
(整理)灰色关联度分析
第五章灰色关联度分析目录壹、何谓灰色关联度分析 ------------------------- 5-2 贰、灰色联度分析实例详说与练习 ----------------- 5-8负责组员工教行政硕士班二年级周世杰591701017陶虹沅591701020林炎莹591701025第五章灰色关联度分析壹、何谓灰色关联度分析一.关联度分析灰色系统分析方法针对不同问题性质有几种不同做法,灰色关联度分析(Grey Relational Analysis)是其中的一种。
基本上灰色关联度分析是依据各因素数列曲线形状的接近程度做发展态势的分析。
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。
简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。
因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色关联度可分成「局部性灰色关联度」与「整体性灰色关联度」两类。
主要的差别在于「局部性灰色关联度」有一参考序列,而「整体性灰色关联度」是任一序列均可为参考序列。
二.直观分析依据因素数列绘制曲线图,由曲线图直接观察因素列间的接近程度及数值关系,表一某老师给学生的评分表数据数据为例,绘制曲线图如图一所示,由曲线图大约可直接观察出该老师给分总成绩主要与考试成绩关联度较高。
表一某一老师给学生的评分表单位:分/ %由曲线图直观分析,是可大略分析因素数列关联度,可看出考试成绩与总成绩曲线形状较接近,故较具关联度,但若能以量化分析予以左证,将使分析结果更具有说服力。
三. 量化分析量化分析四步曲:1. 标准化(无量纲化):以参照数列(取最大数的数列)为基准点,将各数据标准化成介于0至1之间的数据最佳。
2. 应公式需要值,产生对应差数列表,内容包括:与参考数列值差(绝对值)、最大差、最小差、ζ(Zeta )为分辨系数,0<ζ<1,可设ζ = 0.5(采取数字最终务必使关联系数计算:ξi (k )小于1为原则,至于分辨系数之设定值对关联度并没影响,请参考p14例) 3. 关联系数ξi (k )计算:应用公式 maxoi(k)maxmin )(∆+∆∆+∆=ζζξk i 计算比较数列X i 上各点k 与参考数列X 0 参照点的关联系数,最后求各系数的平均值即是X i 与X 0 的关联度r i 。
灰色关联分析法(灰色综合评价法)
灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。
设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。
(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。
因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。
(3) 确定各指标值对应的权重。
可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。
(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。
灰色关联分析模型
模型优化
01
改进灰色关联分析模型的计算方 法,提高模型的准确性和稳定性 。
02
引入人工智能和机器学习技术, 实现灰色关联分析模型的自适应 和智能化。
应用拓展
将灰色关联分析模型应用于更多领域 ,如金融、能源、环境等,挖掘各领 域数据之间的关联关系。
结合其他数据分析方法,形成更为综 合和全面的数据分析体系。
THANKS
感谢观看
通过灰色关联分析,可以挖掘出数据之间的内在联系,为决策提供依据,有助于提 高决策的科学性和准确性。
灰色关联分析模型的基本概念
灰色关联分析
灰色关联分析是一种基于因素之间发 展趋势相似或相异程度的分析方法, 用于衡量因素之间的关联程度。
灰色关联序
灰色关联序是根据灰色关联度的大小 对因素进行排序,从而找出主要影响 因素和次要影响因素。
灰色关联分析模型
• 引言 • 灰色关联分析模型的理论基础 • 灰色关联分析模型的实例应用 • 灰色关联分析模型的优缺点 • 灰色关联分析模型的发展趋势和展望
01
引言
灰色关联分析模型的背景和意义
灰色关联分析模型是一种用于处理不完全信息或不确定信息的数学方法,广泛应用 于经济、社会、工程等领域。
在实际应用中,由于数据的不完全性和不确定性,许多问题难以得到准确的分析和 预测。灰色关联分析模型的出现,为这类问题提供了有效的解决方案。
灰色关联度
灰色关联度是灰色关联分析中的核心 概念,表示因素之间的关联程度。通 过计算灰色关联度,可以判断各因素 之间的相似或相异程度。
灰色关联矩阵
灰色关联矩阵是表示因素之间关联程 度的矩阵,通过矩阵可以直观地看出 各因素之间的关联程度。
02
灰色关联分析模型的理论基础
灰色关联度分析法
灰色关联度分析法引言灰色关联度分析法是一种用于揭示变量之间关联程度的方法。
它可以在缺乏足够数据的情况下,通过对变量之间的相关性进行评估,帮助分析人员做出决策。
在本文中,我们将介绍灰色关联度分析法的原理和应用,并探讨其在实际问题中的价值和局限性。
一、灰色关联度分析法的原理灰色关联度分析法是在灰色系统理论基础上发展起来的一种关联性分析方法。
灰色关联度分析法的核心思想是通过模糊度量的方法,将样本数据的数量化描述量和次序特征结合起来,通过计算变量间的关联度,得出它们之间的相关性。
具体而言,灰色关联度分析法的步骤主要包括以下几个方面:1. 数据标准化:将原始数据进行归一化处理,以消除变量之间的量纲差异,使其具有可比性。
2. 确定参考序列:在给定的多个序列中,根据研究目标和实际需求,选择一个作为参考序列,其他序列将与之进行比较。
3. 计算关联度指数:通过计算每个序列与参考序列之间的关联度指数,来评估它们之间的关联程度。
关联度指数的计算通常有多种方法,如灰色关联度、相对系数法等。
4. 判别等级:根据关联度指数的大小,将序列划分为几个等级,以便更直观地评估变量之间的关联程度。
二、灰色关联度分析法的应用灰色关联度分析法在许多领域和问题中都有广泛的应用。
下面将介绍一些典型的应用情况:1. 经济领域:灰色关联度分析法可以用于评估经济指标之间的关联性,识别影响经济发展的主要因素,帮助政府和企业做出相应的调整和决策。
2. 工业制造业:在工业制造领域,灰色关联度分析法可以用于优化生产工艺,提高产品质量,降低成本。
通过分析不同因素对产品质量的影响程度,可以找出关键因素,并制定相应的改进措施。
3. 市场调研:在市场调研中,灰色关联度分析法可以用于分析消费者行为和市场趋势,预测产品的需求量和销售额。
通过对多个变量之间的关联性进行评估,可以为企业的市场营销决策提供有价值的参考和支持。
4. 环境管理:在环境管理领域,灰色关联度分析法可以用于评估各种环境因素对生态系统的影响程度,为环境保护和可持续发展提供科学依据。
灰色关联度分析 简介
4、计算 绝对值差
5、确定 极大差值与 极小差值
灰色关联综合评价
6、计算关 联系数
7、确计算 关联序
8、计算综 合评价值
i
()
min i
min x k
x0 (k)
0(k)
xi (k)
max max
i
k
x0 (k)
xi
xi (k)
max max
i
k
x0 (k)
xi (k )
灰色关联分析与回归分析区别
问题:对该地区总收入影响较直接的是养猪业还是养 兔业?
灰色关联综合评价
1、收集 分析数据
2、确定 参考数据列
3、无量纲化 处理
X1, X 2
,
X n
x1 1 x1 2
x1 m
x2 1 x2 2
x2 m
(k)
(12 5)
k 1, , m
r0i
1 m
m
i (k )
k 1
r0i
1 m
m
Wk
k 1
i (k)
(k=1,
式中Wk为各指标权重。
, m)
应用
例1:利用灰色关联分析对6位教师工作 状况进行综合分析
1.分析指标包括:专业素质、外语水平 、教学工作量、科研成果、论文、著作 与出勤.
应用
7.分别计算每个人各指标关联系数的均
值(关联序):
r01
0.778 1.000
0.778
0.636 7
灰色关联分析
在实际问题中,许多因素之间的关系是灰色的,人们很难分清哪些因素是主导因素,哪些因素是非主导因素;哪些因素之间关系密切,哪些不密切。
灰色关联分析,为我们解决这类问题提供了一种行之有效的方法。
一、灰色关联分析概述我们知道,统计相关分析是对因素之间的相互关系进行定量分析的一种有效方法。
但是,我们也注意到相关系数具这样的性质: xy yx r r =,即因素y 对因素x 的相关程度与因素x 对因素y 的相关程度相等。
暂且不去追究因素之间的相关程度究竟有多大。
单就相关系数的这种性质而言,也是与实际情况不太相符的。
譬如,在国民经济问题研究中,我们能将农业对工业的关联程度与工业对农业的关联程度等同看待吗?其次,由于地理现象与问题的复杂性,以及人们认识水平的限制,许多因素之间的关系是灰色的,很难用相关系数比较精确地度量其相关程度的客观大小。
为了克服统计相关分析的上述种种缺陷,灰色系统理论中的灰色关联分析给我们提供了一种分析因素之间相互关系的又一种方法。
灰色关联分析,从其思想方法上来看,属于几何处理的范畴,其实质是对反映各因素变化特性的数据序列所进行的几何比较。
用于度量因素之间关联程度的关联度,就是通过对因素之间的关联曲线的比较而得到的。
设x 1,x 2,…,x N 为N 个因素,反映各因素变化特性的数据列分别为{x 1(t)},{x 2(t)},…{x N (t)},t=1,2,…,M 。
因素j x 对i x 的关联系数定义为min maxmax ()1,2,3,,(1)()ij ij k t t M t k ξ∆+∆==∆+∆(5)式中,ξij (t)为因素j x 对i x 在t 时刻的关联系数;max min ()|()()|,max max (),min min ();ij i j ij ij j jj j t x t x t t t ∆=-∆=∆∆=∆k 为介于[0,1]区间上的灰数。
不难看出,△ij (t)的最小值是min ∆,当它取最小值时,关联系数()ij t ξ取最大值max ()1;()ij ij it t ξ=∆的最大值为max ∆,当它取最大值时,关联系数()ij t ξ取最小值min max 1min ()1ij i t k k ξ⎛⎫∆=+ ⎪+∆⎝⎭,即()ij t ξ是一个有界的离散函数。
灰色关联度分析法
灰色关联度分析法
灰色关联度分析法(Grey Relational Analysis,GRA)是一种多属性
决策分析的统计方法,是一个在变量未知情况下实现系统模型和控制
不确定性的有用工具。
灰色关联度分析法主要用于研究和分析影响多
维度多属性数据测量结果的各种因素之间的相关关系。
它对模糊数据
进行综合处理,可以把多维评价分解成基本的准则来实现。
灰色关联度分析法的原理是利用灰色关联度的基本定义来衡量某种系
统的相关程度,灰色关联度通过确定系统的相似度和差异度来计算相
关程度,以此作为最终判断结果。
首先,将所有系统样本的信息表示
成一维度序列,并计算各时间点的灰色关联度。
其次,将灰色关联度
转化成定量指标,以此确定每一种系统的相关程度。
最后,根据定量
指标的值,把每一种系统分成几个类,以便于进一步分析和研究。
灰色关联度分析法可以应用于多种领域,例如工程设计、产品设计、
资源调配等。
例如,当进行工程设计时,可以利用灰色关联度分析法,通过灰色关联度来考虑多种参数和因素,以便最大限度地满足工程项
目的要求。
总之,灰色关联度分析法是一种有效的多属性决策分析方法,在许多
领域得到了广泛的应用,对于多维度和多属性问题具有显著优势。
有
效地利用灰色关联度分析法,能够更好地实现系统模型和控制不确定性,有助于优化效率和提高决策水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2灰色关联分析
2 灰色关联分析方法
在实际问题中,许多因素之间的关系是灰色的,人们很难分清哪些因素是主导因素,哪些因素是非主导因素;哪些因素之间关系密切,哪些不密切。
灰色关联分析,为我们解决这类问题提供了一种行之有效的方法。
一、灰色关联分析概述
我们知道,统计相关分析是对因素之间的相互关系进行定量分析的一种有效方法。
但是,我们也注意到相关系数具这样的性质: xy yx r r =,即因素y 对因素x 的相关程度与因素x 对因素y 的相关程度相等。
暂且不去追究因素之间的相关程度究竟有多大。
单就相关系数的这种性质而言,也是与实际情况不太相符的。
譬如,在国民经济问题研究中,我们能将农业对工业的关联程度与工业对农业的关联程度等同看待吗?其次,由于地理现象与问题的复杂性,以及人们认识水平的限制,许多因素之间的关系是灰色的,很难用相关系数比较精确地度量其相关程度的客观大小。
为了克服统计相关分析的上述种种缺陷,灰色系统理论中的灰色关联分析给我们提供了一种分析因素之间相互关系的又一种方法。
灰色关联分析,从其思想方法上来看,属于几何处理的范畴,其实质是对反映各因素变化特性的数据序列所进行的几何比较。
用于度量因素之间关联程度的关联度,就是通过对因素之间的关联曲线的比较而得到的。
设x 1,x 2,…,x N 为N 个因素,反映各因素变化特性的数据列分别为{x 1(t)},{x 2(t)},…{x N (t)},t=1,2,…,M 。
因素j x 对i x 的关联系数定义为
min max max
()1,2,3,,(1)()ij ij k t t M
t k ξ∆+∆=
=∆+∆
(5)式中,ξij (t)为因素j x 对i x 在t 时刻的关联系数;
max min ()|()()|,max max (),min min ();ij i j ij ij j
j
j
j
t x t x t t t ∆=-∆=∆∆=∆k 为介于[0,1]区
间上的灰数。
不难看出,△ij (t)的最小值是min ∆,
当它取最小值时,关联系数()
ij
t
ξ取最大值max()1;()
ij ij
i
t t
ξ=∆的最大值为max
∆,当它取最大值时,关联系数()
ij
t
ξ取最小值min
max
1
min()
1
ij
i
t k
k
ξ
⎛⎫
∆
=+
⎪
+∆
⎝⎭
,
即()
ij
t
ξ是一个有界的离散函数。
若娶灰色k的白化值为1,则有
min
max
1
1()1(2)
2ij
t
ξ
⎛⎫
∆
+≤≤
⎪
∆
⎝⎭
在实际计算时,取
min
∆=,这时有
0.51(3)
ij
ξ
≤≤
作出函数()
ij ij
t
ξξ
=随时间变化的曲线,它就被称之为关联曲线。
图中的水
平线,说明任何时刻的关联系数为1,它代表
i
x与
i
x本身的关联曲线1
ij
ξ≡,因
为自己与自己总可以认为是密切关联的。
关联曲线()
ij
t
ξ与()
ij
t
ξ与坐标轴围成的面积分别记为
ij
s与
ii
s,则定义
j
x
对
i
x的关联度为
显然S ii=1×M=M,所以(4)式可以进一步写成
/(5)
ij ij
s M
γ=
在实际计算中,常用近似公式
代替式(5)或式(6)。
从以上关联度的定义可以看出,它主要取决于各时刻的关联系数ξij (t)的值,而ξij (t)又取决于各时刻x i 与x j 观测值之差△ij (t)。
显然,x i 与x j 的量纲不同,作图比例尺就会不同,因而关联曲线的空间相对位置也会不同,这就会影响关联度(γij )的计算结果。
为了消除量纲的影响,增强不同量纲的因素之间的可比性,就需要在进行关联度计算之前,首先对各要素的原始数据作初值变换或均值变换,然后利用变换后所得到的新数据作关联度计算。
初值变换的计算公式为
()()/(1)
1,2,,;1,2,,(7)i i i x t x t x i N t M '===
均值变换的计算公式为
()()/1,2,,;1,2,,(8)i i i
x t x t x i N t M '===
二、实例分析
表10-1给出了某地区1986—1990年期间农业总产值及与之相关的各产业产值数据。
我们用灰色关联分析方法对该地区各产业之间的相互联系作一些初步分析。
将表10-1中的数据作均值化变换后,在公式(1)中,取灰数k 的白化值为0.5,经过计算得如下的关联度矩阵:
表10-1 某地区1986—1990年农业产值数据
从上述关联度矩阵,可以得到如下几点结论:
(1)1411215130.6702max i i
γγγγγ==>>>,这表明,在该地区的农业
生产中,畜牧业占有最大的优势,它对农业总产值增长的贡献最大,其次是种植业,再次是副业,最后是林业。
(2)24γ =0.6177=2max i i
γ,这表明,在林、牧、副各业中,与种植业联系最
为紧密的是畜牧业。
(3) 24γ=0.6459=3max i i
γ,表明,在种植业、畜牧业和副业中,与林业联系
最紧密的是畜牧业。
(4) 24γ=0.7697=4max i i
γ,表明,在种植业、林业和副业中,与畜牧业联系
最紧密的是副业。