智能人脸识别系统技术设计方案
人脸识别建设方案
人脸识别建设方案一、引言人脸识别技术近年来得到广泛应用,不仅在安全领域起到了重要作用,还在商业、教育、医疗等领域展现巨大潜力。
本文将针对人脸识别建设提出一套方案,旨在实现高效、准确、安全的人脸识别系统。
二、系统需求分析1. 系统功能要求(1)准确性:人脸识别系统应具备较高的准确性,能够准确地识别出目标人物。
(2)实时性:系统应能实时响应,实现快速的人脸检测和识别。
(3)可靠性:系统应具备良好的稳定性、可靠性,确保系统长期稳定运行。
(4)安全性:系统应加密人脸数据,确保个人隐私不被泄露。
2. 系统性能要求(1)响应速度:系统应能快速响应,提供实时的人脸识别服务。
(2)检测精度:系统应能够准确地检测人脸特征点,避免误判。
(3)识别准确率:系统应具备高准确率的人脸识别算法,确保识别的精度。
3. 系统硬件需求(1)摄像头:采用高清晰度、高帧率的摄像头,以获取清晰、稳定的人脸图像。
(2)服务器:配置高性能的服务器,满足实时处理大量人脸数据的需求。
4. 数据存储与管理要求(1)数据存储:建设一个安全、高效的数据库,用于存储人脸特征值和个人信息。
(2)数据管理:建立完善的数据管理系统,实现对人脸数据的管理和查询。
三、系统建设方案1. 系统架构设计(1)硬件架构:采用分布式架构,将摄像头部署在各个需要进行人脸识别的场所,通过网络连接到中央服务器。
(2)软件架构:搭建服务器端的人脸识别算法,通过与摄像头的实时数据交互,实现快速、准确的人脸识别。
2. 人脸数据采集与预处理(1)数据采集:配置高清摄像头,采集人脸图像并提取人脸特征点。
(2)数据预处理:对采集的人脸图像进行预处理,包括降噪、对齐、归一化等处理,提高后续处理的准确性和速度。
3. 人脸特征提取与比对(1)特征提取:使用先进的人脸特征提取算法,将人脸图像转化为人脸特征向量。
(2)人脸比对:通过计算两个人脸特征向量之间的相似度,实现人脸的比对和识别。
4. 数据存储与管理(1)数据库设计:设计人脸特征值和个人信息的数据库结构,采用加密算法保护数据安全。
基于机器视觉技术的人脸识别系统设计
基于机器视觉技术的人脸识别系统设计人脸识别技术是一种通过计算机和相应算法对人的脸部特征进行识别和验证的技术。
在现今的社会,这种技术应用场景很广泛,例如门禁系统、刷脸支付等。
在此,我们将探讨如何基于机器视觉技术设计一个高效、智能的人脸识别系统。
一、数据采集人脸识别技术集成了图像处理、机器学习和人工智能等多个领域。
因此,实现高效的人脸识别,首先需要建立一个高质量的人脸数据库。
在这个过程中,实时采集人脸数据十分重要。
采集人脸数据时,需要注意以下几点:1.光线要充足在采集人脸图像时,要注意使光线充足,避免光线强烈或者光线暗淡情况下的采集,确保采集到的图像清晰度和色彩还原度。
2.尽可能减少噪声在采集人脸数据的过程中,往往会遇到一些干扰,例如头发、帽子、眼镜、遮挡物等等。
因此要尽可能减少这些噪声的影响,以提高识别的准确度。
3.扩大样本为了提高系统鲁棒性及泛化能力,我们需要尽可能地扩大样本空间,包括不同的姿态、表情、场景等,以充分训练算法和提高识别准确度。
二、算法选型对于人脸识别系统,最核心的就是选用什么样的算法。
常见的算法有PCA(Principal Component Analysis)、LDA(Linear Discriminant Analysis)、Embedding-based等等。
下面简单介绍下几种算法:1.PCA(主成分分析)算法PCA通过将高维数据映射到低维空间,实现对数据降维的目的,以提高对数据的理解和处理能力。
在人脸识别领域,PCA就是通过将特征向量投影到最具分离性的维度上,使得人脸识别建模更加准确。
2.LDA(线性判别分析)算法LDA同样是在降维的基础上,提高数据分离度和识别准确率的算法。
与PCA 不同,LDA并不仅仅是将数据映射到低维空间,而是强调对类别的判别能力,使得不同类别的数据之间差异最大。
3.Embedding-based算法Embedding-based算法是近年来人脸识别领域比较新的算法。
《2024年基于OpenCV的人脸识别系统设计》范文
《基于OpenCV的人脸识别系统设计》篇一一、引言随着科技的发展,人脸识别技术已成为现代社会中不可或缺的一部分。
该技术被广泛应用于安全监控、身份验证、智能门禁等领域。
OpenCV(开源计算机视觉库)作为一种强大的计算机视觉库,为开发者提供了进行人脸识别系统的设计和实现的可能。
本文将详细介绍基于OpenCV的人脸识别系统设计,包括其设计思路、实现方法和应用前景。
二、系统设计目标本系统设计的主要目标是实现高效、准确的人脸识别功能。
通过使用OpenCV的强大功能,系统将能够实现对人脸的检测、跟踪、识别和比对。
此外,系统还应具有良好的实时性和稳定性,以满足实际应用的需求。
三、系统设计原理本系统设计主要基于OpenCV的人脸识别技术,包括人脸检测、特征提取和人脸比对三个主要步骤。
1. 人脸检测:通过OpenCV中的人脸检测算法,系统能够在图像或视频中检测出人脸。
这些算法通常基于肤色模型、形状模型或深度学习模型等。
2. 特征提取:检测到人脸后,系统将提取出人脸的特征。
这些特征通常包括面部关键点的位置、纹理特征、深度学习特征等。
OpenCV提供了多种特征提取方法,如HOG、SIFT、SURF等。
3. 人脸比对:提取出特征后,系统将进行人脸比对。
这通常通过将提取的特征与数据库中已知的特征进行比对来实现。
比对的算法可以是基于距离度量、相似度度量等。
四、系统设计实现1. 硬件环境:本系统设计的硬件环境包括计算机、摄像头等。
计算机应具备足够的计算能力以支持实时的人脸识别处理,摄像头应具备高清、稳定的图像采集能力。
2. 软件环境:本系统设计的软件环境主要基于OpenCV和Python。
OpenCV用于实现人脸识别的核心算法,Python则用于编写系统的主程序和用户界面。
3. 系统实现流程:首先,通过摄像头实时采集图像或视频;然后,使用OpenCV中的人脸检测算法检测出图像中的人脸;接着,提取出人脸的特征;最后,将提取的特征与数据库中已知的特征进行比对,实现人脸识别。
《智慧园区人脸识别系统的设计与实现》
《智慧园区人脸识别系统的设计与实现》一、引言随着科技的飞速发展,智慧园区已经成为现代城市发展的重要方向。
人脸识别技术作为智慧园区的重要组成部分,在提升园区安全、便捷、高效管理方面发挥着越来越重要的作用。
本文将详细阐述智慧园区人脸识别系统的设计与实现过程,以期为相关研究与应用提供参考。
二、系统设计(一)设计目标本系统设计旨在实现以下目标:1. 提升园区安全:通过人脸识别技术,实现对园区人员的有效监控与身份验证。
2. 便捷管理:为园区管理人员提供高效、便捷的管理手段,提高工作效率。
3. 保护隐私:确保系统在保障安全的前提下,遵循用户隐私保护原则。
(二)设计原则系统设计遵循以下原则:1. 安全性:确保系统数据安全,防止数据泄露与非法访问。
2. 可靠性:确保系统稳定运行,降低故障率。
3. 用户友好性:界面简洁明了,操作便捷。
(三)系统架构设计本系统采用C/S(客户端/服务器)架构,主要分为前端、后端和数据库三部分。
前端负责与用户进行交互,后端负责数据处理与存储,数据库用于存储用户信息与识别结果。
(四)功能模块设计1. 人脸信息采集模块:用于采集园区人员的人脸信息,并进行预处理与存储。
2. 人脸识别模块:利用人脸识别算法对采集到的人脸信息进行比对与验证。
3. 用户管理模块:用于管理用户信息,包括添加、删除、修改等操作。
4. 数据存储模块:将人脸信息与识别结果存储在数据库中,以便后续查询与比对。
5. 监控与报警模块:对异常情况进行实时监控与报警,保障园区安全。
三、系统实现(一)硬件设备选型与配置选用高清摄像头作为人脸信息采集设备,配置高性能计算机作为服务器,保障系统的稳定运行。
(二)软件开发环境搭建采用Python作为开发语言,使用TensorFlow等深度学习框架进行人脸识别算法的实现。
同时,搭建数据库管理系统,用于存储用户信息与识别结果。
(三)算法实现与优化采用深度学习算法进行人脸识别模型的训练与优化,提高识别的准确性与效率。
小区人脸识别系统解决方案设计
小区人脸识别系统解决方案设计人脸识别技术是一种通过分析和识别人脸特征进行身份验证或身份识别的技术。
在小区管理中,人脸识别系统可以应用于门禁管理、车辆出入管理、物品寄存管理等多个方面,提高小区的安全性和管理效率。
下面是一个针对小区人脸识别系统的解决方案设计。
一、系统需求分析:1.门禁管理:通过人脸识别系统替代传统钥匙和卡片,提高小区的门禁管理安全性和便捷度。
2.车辆出入管理:通过识别车辆司机的人脸信息,快速准确地识别车辆的合法性和归属。
3.物品寄存管理:通过人脸识别系统,可以识别物品寄存人的身份信息,提高物品寄存管理的可追溯性和安全性。
二、系统设计与功能拆分:1.人脸采集与注册功能人脸采集设备:采用高清摄像头,支持多角度、多光线条件下的人脸采集。
人脸特征提取:通过算法提取人脸图像中的特征点和特征信息,生成人脸特征模板。
人脸注册:将人脸特征模板与个人信息绑定,存储在数据库中。
2.人脸识别功能人脸识别设备:摄像头、人脸识别算法等技术,通过采集人脸图像与已注册的人脸特征模板进行比对识别。
门禁控制:对通过认证的用户进行门禁控制,可实现刷脸开门、禁止陌生人进入等功能。
车辆出入管理:通过车载摄像头对车辆驾驶人进行识别,判断是否为小区的合法车辆。
物品寄存管理:当小区住户寄存物品时,识别物品寄存人的身份信息,确保物品管理的安全性和责任追溯。
3.平台管理功能人员管理:包括小区住户信息管理、访客记录管理等。
设备管理:对人脸采集设备、识别设备进行管理和维护。
数据管理:对人脸特征模板、人脸识别数据进行管理和存储。
权限管理:对系统用户的权限进行管理,明确各个角色的操作权限。
三、系统部署与测试:1.环境部署:确定人脸采集和识别设备的摆放位置,保证最佳采集效果。
2.人脸采集和识别算法调试:通过实际数据进行算法的模型训练和调试,提高识别的准确率。
3.功能测试:对各个功能进行验证测试,保证系统的稳定性和可用性。
四、系统运维与优化:1.系统运维:对系统进行定期的维护和升级,确保系统的稳定性和安全性。
毕业设计-人脸识别系统设计【范本模板】
第一章前言第一节课题背景一课题的来源随着安全入口控制和金融贸易方面应用需要的快速增长,生物统计识别技术得到了新的重视。
目前,微电子和视觉系统方面取得的新进展,使该领域中高性能自动识别技术的实现代价降低到了可以接受的程度。
而人脸识别是所有的生物识别方法中应用最广泛的技术之一,人脸识别技术是一项近年来兴起的,但不大为人所知的新技术。
人们更多的是在电影中看到这种技术的神奇应用:警察将偷拍到的嫌疑犯的脸部照片,输入到电脑中,与警方数据库中的资料进行比对,并找出该嫌犯的详细资料和犯罪记录。
这并非虚构的情节。
在国外,人脸识别技术早已被大量使用在国家重要部门以及军警等安防部门。
在国内,对于人脸识别技术的研究始于上世纪90年代,目前主要应用在公安、金融、网络安全、物业管理以及考勤等领域.二人脸识别技术的研究意义1、富有挑战性的课题人脸识别是机器视觉和模式识别领域最富有挑战性的课题之一,同时也具有较为广泛的应用意义。
人脸识别技术是一个非常活跃的研究领域,它覆盖了数字图像处理、模式识别、计算机视觉、神经网络、心理学、生理学、数学等诸多学科的内容.如今,虽然在这方面的研究已取得了一些可喜的成果,但是FRT在实用应用中仍面临着很严峻的问题,因为人脸五官的分布是非常相似的,而且人脸本身又是一个柔性物体,表情、姿态或发型、化妆的千变万化都给正确识别带来了相当大的麻烦。
如何能正确识别大量的人并满足实时性要求是迫切需要解决的问题。
2、面部关键特征定位及人脸2D形状检测技术在人脸检测的基础上,面部关键特征检测试图检测人脸上的主要的面部特征点的位置和眼睛和嘴巴等主要器官的形状信息。
灰度积分投影曲线分析、模板匹配、可变形模板、Hough变换、Snake算子、基于Gabor小波变换的弹性图匹配技术、主动性状模型和主动外观模型是常用的方法。
可变形模板的主要思想是根据待检测人脸特征的先验的形状信息,定义一个参数描述的形状模型,该模型的参数反映了对应特征形状的可变部分,如位置、大小、角度等,它们最终通过模型与图像的边缘、峰、谷和灰度分布特性的动态地交互适应来得以修正。
智慧楼宇人脸识别智能化系统建设方案
2023智慧楼宇人脸识别智能化系统建设方案CATALOGUE目录•引言•系统架构设计•人脸识别智能化系统功能模块•系统建设方案的优势及可行性分析•系统建设方案实施计划与预期成果展示01引言1背景和目的23随着社会的不断发展,楼宇智能化管理已成为一种趋势。
传统楼宇管理方式存在人力投入大、效率低下、信息不透明等问题。
人脸识别技术在智慧楼宇中的应用可以提高楼宇的安全性和智能化水平。
03提高管理效率通过人脸识别技术,可以实现快速的人员进出管理和考勤管理,减少人力投入,提高管理效率。
系统建设的意义01提高楼宇的安全性通过对进出楼宇的人员进行人脸识别,可以有效地监控和记录人员进出,防范非法人员进入楼宇,提高楼宇的安全性。
02提高楼宇的智能化水平人脸识别技术可以与楼宇智能化系统进行集成,实现智能化的管理,提高楼宇的智能化水平和管理效率。
03随着技术的不断发展和应用场景的不断扩大,人脸识别技术在智慧楼宇中的应用前景也将不断拓展。
系统的应用前景01人脸识别技术在智慧楼宇中的应用前景广阔,未来可以广泛应用于各种楼宇智能化管理场景。
02例如:写字楼、住宅楼、商场、医院等楼宇中都可以应用该技术,实现智能化管理和安全监控。
02系统架构设计人脸识别技术主要基于图像处理、计算机视觉和人工智能等领域的技术实现,通过对人脸图像进行特征提取和比对,实现人脸的识别和认证。
人脸识别技术的原理人脸识别技术可广泛应用于安全监控、门禁系统、智能家居、金融等领域,为人们提供更为便捷、高效、安全的智能化服务。
人脸识别技术应用范围人脸识别技术概述系统总体架构智慧楼宇人脸识别智能化系统主要包括前端设备、传输网络、中心服务器和客户端等部分,其中前端设备主要负责采集人脸图像,传输网络负责将图像数据传输至中心服务器,中心服务器负责人脸比对和数据存储,客户端负责系统管理和展示。
系统架构设计前端设备设计前端设备主要包括摄像头、图像采集器和补光灯等设备,其中摄像头可采用高清网络摄像头或红外感应摄像头等,图像采集器负责采集人脸图像,补光灯则可起到补光作用,提高图像质量。
人脸识别系统毕业设计
人脸识别系统毕业设计人脸识别系统毕业设计随着科技的不断进步和人们对安全性的日益重视,人脸识别系统逐渐成为一种被广泛应用的技术。
作为一种生物识别技术,人脸识别系统能够通过摄像头捕捉到的人脸图像,进行特征提取和比对,从而实现对个体身份的识别。
在毕业设计中,我选择了开发一个人脸识别系统,旨在探索和应用这一前沿技术。
首先,我将介绍人脸识别系统的原理和应用。
人脸识别系统主要包括图像采集、图像预处理、特征提取和比对等环节。
图像采集使用摄像头捕捉到人脸图像,图像预处理则对采集到的图像进行去噪、对齐等操作,以提高后续处理的准确性。
特征提取是人脸识别系统的核心环节,通过对图像进行分析和计算,提取出人脸的特征信息,如眼睛、鼻子、嘴巴等位置和形状。
最后,比对阶段将提取到的特征与数据库中已有的特征进行对比,从而确定个体的身份。
人脸识别系统在安防领域有着广泛的应用。
例如,它可以用于门禁系统,通过识别人脸来控制门的开关,实现自动化的出入管理。
此外,人脸识别系统还可以用于监控系统,通过对摄像头捕捉到的人脸图像进行实时识别,及时发现和报警异常行为。
在社交娱乐领域,人脸识别系统也有着很多的应用,如人脸美化、人脸动画等。
可以说,人脸识别系统在各个领域都有着广泛的应用前景。
接下来,我将介绍我设计的人脸识别系统的具体实现。
首先,我选择了OpenCV作为主要的开发工具,因为它是一个功能强大且开源的计算机视觉库,可以方便地进行图像处理和特征提取。
其次,我使用了深度学习的方法来提高人脸识别的准确性。
深度学习是一种模仿人脑神经网络的计算模型,通过多层次的神经元网络结构,可以自动学习和提取图像中的特征。
我使用了卷积神经网络(CNN)作为主要的模型,通过大量的训练数据和反向传播算法,让网络自动学习人脸的特征。
在实际的应用中,我设计了一个简单的人脸识别系统原型。
该系统包括一个摄像头和一个显示屏,用户可以站在摄像头前,系统会自动捕捉到用户的人脸图像,并进行特征提取和比对,最后在显示屏上显示出用户的身份信息。
(完整版)人脸识别技术方案-最全面
(完整版)⼈脸识别技术⽅案-最全⾯第⼀章.⽅案概述1.1项⽬概况随着经济的发展,城镇建设速度加快,以及互联⽹的突飞猛进,导致城市中⼈⼝密集,流动⼈⼝增加,引发了城市建设中的交通、社会治安、重点区域防范、⽹络犯罪⽇益突出等城市管理问题,今后现代化城市的建设、⽹络信息必然将安全作为重中之重,与城市的经济建设处于同等重要的地位。
近年来,社会犯罪率呈逐年升⾼的趋势,特别是⽹络犯罪更加的严重,⽹络逃犯频频发⽣,罪犯的犯罪⼿法也更加隐蔽和先进,给⼴⼤公安⼈员侦破案件增加了难度。
同时,恶性事件时有发⽣,使⼈们对公共⽣活场所的安全感普遍降低。
同时公安⼈员在对通缉犯进⾏⼈⼯排查时如⼤海捞针,成功率极低,效果也不明显。
主要有如下实际问题:1.⾸先,由于罪犯群体不断扩⼤,要在数以百万计的⼈员照⽚库中找出犯罪嫌疑⼈,不仅费时费⼒,还有可能造成遗漏等情况,破案的效率⼤打折扣。
2.其次,⽬前公安机关侦察案件⼤多数仍然依靠事后追查和通缉,对已经发⽣的案件造成的损失很难有效弥补。
3.最后,如果在案发的同时即能防患于未然,就能第⼀时间将损失控制在最⼩范围内。
平安城市建设从最初的视频监控、卡⼝电警建设,系统已⼤量掌握了视频图像资源和卡⼝车辆数据和价值图⽚,但是针对⼈员侦查,⾝份确认还是需要通过技侦或⽹侦⼿段,⽆法充分利⽤视频图像资源快速定位⼈员⾝份。
即使出动⼤量警⼒,采⽤“⼈海战术”但受制于⾁眼识别劳动强度的极限,再加上⼈⼯排查效率不⾜,视频图像拍摄受光线、⾓度倾斜等不确定因素影响,⽆法保证查找的准确性和时效性,尤其出现突发紧急案件时,往往会贻误最佳破案时机。
如何提供更加丰富以及实⽤的“⼈像防控”应⽤,从“事后被动侦查”到“事前主动预警”将是平安城市下⼀建设阶段⾯临的主要需求。
1.2需求分析⼈像⼤数据系统采⽤⾼效的⼈脸检测定位及识别⽐对系统,可以第⼀时间帮助公安侦查⼈员快速识别辨别特定⼈员真实⾝份,把过去⼈⼯排查海量的视频图像资源⽐对需求变成现实,从⽽有效的为公安视频侦查、治安管理、刑侦⽴案等⼯作提供实战上的有效帮助和解决⽅法。
智能人脸识别系统技术设计方案
智能人脸识别系统技术设计方案一、方案概述:智能人脸识别系统是一种基于计算机视觉技术的人脸识别系统,通过对人脸图像进行特征提取和比对,实现对人的身份的识别。
本方案旨在设计一个高效、准确、安全可靠的智能人脸识别系统,能够广泛应用于人脸识别门禁系统、人脸支付、人脸考勤等领域。
二、系统组成:1.人脸采集模块:通过摄像头获取用户输入的人脸图像;2.人脸检测模块:对输入的图像进行检测,提取其中的人脸;3.人脸特征提取模块:使用深度学习算法提取人脸的特征信息;4.人脸识别模块:将提取的特征与已有的人脸库进行比对;5.结果输出模块:输出人脸识别结果;6.数据库模块:存储用户的人脸特征信息和相关用户信息;7.用户界面模块:提供用户交互接口,方便用户进行注册、信息查询和配置等操作。
三、技术实现:1.人脸检测:采用基于深度学习的卷积神经网络(CNN)算法,通过训练数据集进行模型训练,实现对人脸的准确检测和定位。
2. 人脸特征提取:使用深度学习算法中的Siamese网络结构进行训练,将输入的人脸图像映射到一个低维度的特征空间,得到鲁棒性较高的人脸特征信息。
3.人脸识别:采用余弦相似度算法对提取的人脸特征与数据库中存储的人脸特征进行比对,并匹配出最相似的人脸特征,从而实现人脸识别。
4.数据库管理:采用关系数据库管理系统(RDBMS)来存储用户的人脸特征信息和相关用户信息,使用索引技术加速数据的检索和更新操作,提高系统的查询效率和数据一致性。
5.用户界面设计:采用图形用户界面(GUI)设计,实现用户注册、信息查询和管理员配置等功能,提供友好的操作界面,方便用户使用。
四、性能评估:1.准确性评估:采用标准数据集和测试数据进行模型训练和测试,计算系统的准确率、召回率和F1得分等指标,评估系统的人脸识别准确性。
2.效率评估:基于实际使用场景,进行多用户并发测试,评估系统的处理速度、响应时间和吞吐量等性能指标,保证系统能够在高负载下正常工作。
人脸识别智慧管理系统设计方案
人脸识别智慧管理系统设计方案一、方案背景随着科技的不断发展,人脸识别技术在智慧管理领域得到广泛应用。
人脸识别智慧管理系统结合人脸识别技术和信息化管理的理念,利用计算机视觉和图像处理技术,实现对人脸特征的自动提取和识别,进而实现智慧化的人员管理。
本文将从系统架构、功能模块、技术应用和可行性分析等方面,对人脸识别智慧管理系统进行设计。
二、系统架构人脸识别智慧管理系统主要由硬件设备、人脸识别软件、数据库、服务器和终端设备组成。
其中,硬件设备包括摄像机、人脸识别设备和接入设备;人脸识别软件用于实现人脸识别功能;数据库用于存储人脸特征、人员信息和记录数据;服务器用于处理数据和提供服务;终端设备用于人员识别和信息交互。
三、功能模块1. 人员信息管理:包括人员基本信息的录入、修改和删除,包括姓名、性别、年龄、身份证号等信息,同时还需录入人员的人脸图像信息,用于后续的人脸识别比对。
2. 人脸特征提取与比对:通过人脸识别算法,实现对人脸图像的特征提取和比对。
在人脸图像采集时,通过摄像机采集到人脸图像后,系统对图像进行分析和处理,提取出人脸特征,然后与数据库中的人脸特征进行比对。
3. 出入管理:通过人脸识别技术,实现人员的自动识别和记录。
当人员进入或离开某个区域时,系统将通过摄像机采集到人脸图像,对人脸进行识别,然后记录下来。
同时,还可以设置出入门禁,通过人脸识别来控制人员的进出。
4. 考勤管理:系统可以根据人脸识别技术实时监测人员的出勤情况,准确记录人员的上班时间和下班时间,实现智能考勤管理。
5. 报警与告警:当系统检测到异常情况时,比如陌生人进入某个区域或者人脸识别失败时,系统可以自动触发报警或告警,提醒管理人员及时处理。
四、技术应用1. 人脸识别算法:采用基于深度学习的卷积神经网络算法进行人脸识别,提取人脸特征并进行比对。
2. 图像处理技术:对人脸图像进行预处理,包括对光照、姿态、表情等因素的处理,提高人脸识别的准确性和鲁棒性。
智慧交通人脸识别系统设计方案
智慧交通人脸识别系统设计方案智慧交通人脸识别系统是一种利用人脸识别技术和智能交通技术相结合的系统,主要用于路口交通监控、道路出入口管理、交通违法行为识别等方面。
以下是一个基于智慧交通人脸识别系统的设计方案,共1200字。
一、系统概述:智慧交通人脸识别系统是一个基于大数据、物联网和人工智能技术的系统,主要通过摄像头采集道路上的行人和驾驶员的照片,利用人脸识别技术对其进行身份识别和行为分析,并将识别的结果存储在数据库中,供交通管理部门进行查询和分析。
系统主要包括图像采集子系统、人脸识别子系统和数据存储子系统。
二、系统设计:1.图像采集子系统:该子系统主要由安装在交通信号灯上的摄像头组成,摄像头可以实时采集道路上的行人和驾驶员的照片,并将采集的图像传输给人脸识别子系统进行处理。
为了保证图像采集的质量和效果,摄像头应具备以下特点:(1)高清晰度,能够清晰地拍摄到行人和驾驶员的脸部;(2)宽动态范围,能够适应光线强烈变化的情况;(3)大视场角,能够覆盖更大的道路范围;(4)良好的防护性能,能够适应各种恶劣天气和环境。
2.人脸识别子系统:该子系统主要负责对采集的图像进行处理和分析,实现对行人和驾驶员的身份识别和行为分析。
子系统主要包括图像预处理模块、人脸检测和定位模块、特征提取和匹配模块以及身份识别和行为分析模块。
(1)图像预处理模块:对采集的图像进行去噪、增强和归一化处理,以提高后续处理的效果。
(2)人脸检测和定位模块:利用人脸检测算法对预处理后的图像进行特征提取,然后利用定位算法将人脸的位置进行定位,以便后续的人脸识别。
(3)特征提取和匹配模块:对定位后的人脸图像进行特征提取,将提取到的特征与已知的人脸特征库进行匹配,以实现身份识别。
(4)身份识别和行为分析模块:根据匹配结果,对识别出的人脸进行身份标识,并进行行为分析,例如判断驾驶员是否佩戴安全带、是否使用手机等。
3.数据存储子系统:该子系统主要用于存储图像数据和识别结果,以便交通管理部门进行查询和分析。
智慧社区人脸识别建设方案
智慧社区人脸识别建设方案随着信息技术的不断发展,智慧社区已成为社会生活中的重要组成部分。
其中,人脸识别技术的应用尤为重要,可以极大地提高社区管理的效率和安全性,为居民提供更便利的服务。
本文将就智慧社区人脸识别建设方案进行阐述。
一、人脸识别技术的优势人脸识别技术是目前应用广泛的身份识别技术之一。
相较于其他身份识别技术,它具有以下优势:1.高精度:人脸识别技术可通过精准的算法进行图像识别,比起其他身份识别技术更加准确。
2.不侵犯隐私:与指纹识别、虹膜识别等技术不同,人脸识别技术不需要直接接触身体,不会侵犯到个人隐私。
3.易操作:对于一般使用者来说,人脸识别技术是一种非常简单易懂的技术,可以极大地提高使用者的使用体验。
二、智慧社区人脸识别建设需求分析智慧社区人脸识别建设的主要需求如下:1.进出管理:社区入口需要设置人脸识别设备,对于出入的居民进行身份识别,以提升社区出入口的安全性。
2.关键区域安全:将男厕女厕的入口设置人脸识别设备,防止非法进入,使居民能够更舒适的使用公共卫生间。
3.停车场管理:在停车场入口处设置人脸识别设备,对于车辆和驾驶员进行身份识别,提升停车场的管理效率,减轻管理人员的工作量。
4.智慧家居:智能家居可以采用人脸识别技术,开启门锁、照明或者空调。
三、智慧社区人脸识别建设方案基于以上需求分析,我们可以提出智慧社区人脸识别建设方案如下:1.人脸识别设备的安装社区内的入口处,厕所,停车场等区域均需要安装人脸识别设备,确保安全和管理效率。
我们可以采用高档的人脸识别设备,支持远距离之间高精度的识别,提高社区的管理效率和居民安全。
2.系统集成将设备集成到一个普及的系统中,系统可以将所有设备进行连接,一次性安装,最终实现整套系统的无缝衔接。
同时,系统要支持智能判断和分析,根据识别结果做出相应的决策,使社区管理效率得到显著的提升。
3.数据存储人脸识别系统会不断地采集和识别居民的面部信息,要有一个完善的数据存储系统,能够对这些数据进行处理和保存。
人脸识别建设方案
-采用成熟的人脸识别算法,确保识别的准确性和实时性。
-开发用户友好的操作界面,提高系统的易用性。
-设计开放式的接口,便于与其他系统对接。
3.数据中心建设
-构建可扩展的数据存储架构,应对不断增长的数据量。
-实施严格的数据分类和标签化管理,方便数据检索和合规使用。
-建立数据共享机制,促进跨部门协作。
3.系统开发与实施:按照设计方案,进行系统开发、部署和调试。
4.运营与维护:确保系统稳定运行,开展数据共享、安全与隐私保护等工作。
5.持续优化与升级:根据实际运行情况,不断优化系统性能,提升用户体验。
六、预期效果
1.提高公共安全水平,预防和打击犯罪行为。
2.优化市民生活体验,提供便捷的无感通行、快捷支付等服务。
人脸识别建设方案
第1篇
人脸识别建设方案
一、项目背景
随着科技的发展和智能化需求的不断提升,人脸识别技术作为一种新兴的生物识别技术,已广泛应用于安全防范、身份认证、便捷支付等领域。为进一步提高我国城市安全水平、优化公共资源配置、提升民众生活品质,本项目拟在全市范围内开展人脸识别系统建设。
二、建设目标
1.提高公共安全:通过人脸识别技术,实现对重点区域、场所的安全监控,预防和打击犯罪行为。
2.便捷民众生活:利用人脸识别技术,为市民提供无感通行、快捷支付等便捷服务。
3.数据共享与协同:建立全市人脸识别数据共享平台,实现各部门间的数据共享与业务协同。
4.合法合规:确保项目在法律、法规和伦理道德框架内进行,保护市民隐私权益。
三、建设内容
1.人脸识别基础设施建设:包括人脸识别摄像头、服务器、存储设备等硬件设施。
3.数据管理:建立统一的人脸识别数据管理体系,确保数据的高效利用与安全。
基于人脸识别的智能人脸门禁系统设计与实现
基于人脸识别的智能人脸门禁系统设计与实现人脸识别技术是基于生物特征识别的一种先进技术,近年来得到了广泛应用。
智能人脸门禁系统是一种基于人脸识别技术的安全门禁系统,该系统通过识别人脸进行身份验证,从而实现自动开关门等功能。
本文将介绍智能人脸门禁系统的设计与实现。
一、系统设计1. 系统组成智能人脸门禁系统由以下几个主要组成部分构成:- 人脸图像采集模块:负责采集人脸图像- 人脸特征提取模块:通过图像处理算法提取人脸特征- 人脸识别模块:将提取的人脸特征与已有数据库进行比对- 门禁控制模块:根据识别结果控制门的开关- 人机交互界面:提供用户与系统的交互界面2. 系统工作流程智能人脸门禁系统的工作流程如下:- 系统初始化:开启系统,初始化各个模块- 人脸采集:通过摄像头采集人脸图像- 人脸特征提取:对采集到的人脸图像进行图像处理,提取人脸特征- 人脸识别比对:将提取到的人脸特征与已有数据库进行比对,判断是否为合法用户- 门禁控制:根据识别结果控制门的开关- 系统属性更新:将未知用户的人脸特征加入数据库,更新数据库信息二、系统实现1. 人脸图像采集模块人脸图像采集模块是智能人脸门禁系统的入口,主要负责采集人脸图像。
该模块通常使用摄像头进行图像采集,并通过相机接口获取摄像头采集到的图像数据。
2. 人脸特征提取模块人脸特征提取模块通过图像处理算法对采集到的人脸图像进行处理,提取出与个体身份相关的特征信息。
常见的人脸特征提取算法包括主成分分析(PCA)、线性判别分析(LDA)等。
3. 人脸识别模块人脸识别模块将提取出的人脸特征与已有数据库进行比对,判断是否为合法用户。
常用的人脸识别算法包括支持向量机(SVM)、卷积神经网络(CNN)等。
该模块通常需要预先录入合法用户的人脸信息,并进行数据库管理。
4. 门禁控制模块门禁控制模块根据识别结果控制门的开关。
当识别结果为合法用户时,该模块发送开门信号,门禁系统开启;否则,拒绝开门。
智能人脸识别系统服务方案
智能人脸识别系统服务方案智能人脸识别系统是一种最新的、高效的身份验证技术,通过对人脸图像进行分析和比对,实现对人员身份的快速识别和验证。
它在安全监控、考勤打卡、门禁管理等方面具有广泛的应用价值。
下面是一份智能人脸识别系统服务方案,以辅助实施和管理该系统。
1. 系统设计与部署:a) 需求分析:与客户沟通需求,确定系统功能和要求。
b) 系统设计:包括数据库设计、算法设计和界面设计。
c) 系统开发和测试:根据设计方案进行系统开发和测试。
d) 系统部署与调试:将系统部署到指定的硬件设备上,并确保运行正常。
2. 人脸数据采集与预处理:a) 采集设备选择:根据客户需求选择合适的人脸采集设备。
b) 人脸图像采集:使用人脸采集设备对人员进行人脸图像采集。
c) 图像预处理:对采集到的人脸图像进行预处理,包括去噪、对齐和归一化等操作。
3. 人脸特征提取与比对:a) 特征提取算法选择:根据客户需求选择最适合的人脸特征提取算法。
b) 特征提取:对预处理后的人脸图像进行特征提取,并将特征存储到数据库中。
c) 比对算法选择:根据客户需求选择最适合的人脸比对算法。
d) 比对与验证:对预处理后的人脸图像进行比对和验证,判断是否匹配。
4. 系统集成与接口开发:a) 数据库集成:将人脸特征存储到数据库中,并建立索引以提高查询效率。
b) 硬件设备接口开发:根据客户现有硬件设备的接口要求进行开发,实现系统与硬件设备的协同工作。
5. 系统管理与维护:a) 用户管理:包括用户注册、权限管理和用户信息维护等。
b) 设备管理:对采集设备和识别设备进行管理和维护。
c) 日志管理:记录并管理系统的操作日志和异常日志。
d) 故障排除与维修:及时处理系统故障,并提供远程维修服务。
6. 数据安全与隐私保护:a) 加密与认证:对人脸特征数据进行加密和认证,保护数据的安全性。
b) 隐私保护:遵守相关法律法规,对用户的隐私信息进行保护。
c) 数据备份:定期对数据库中的人脸特征数据进行备份,防止数据丢失。
基于Android平台的人脸识别系统设计
基于Android平台的人脸识别系统设计一、引言在当今科技快速发展的时代,人脸识别技术逐渐得到广泛的应用。
它不仅可以在安防、社交、金融、医疗等领域提高服务质量和安全性,还能在照片分类、表情识别、视频智能分析等方面广泛应用。
针对当下人脸识别在多个领域的广泛应用需求,基于Android平台的人脸识别系统正逐渐成为一个备受关注的领域。
本文将会从技术原理、应用场景、系统设计等角度,对基于Android平台的人脸识别系统进行介绍和分析,并最终给出整个系统的实现方案。
二、技术原理1.人脸识别的三个步骤人脸识别技术的实现,大致分为以下三个步骤:首先,需要对人脸进行检测。
在检测过程中,需要找出图像中所有可能存在的人脸并判断其位置和大小,以便在后续识别步骤中完成对人脸的正确识别。
其次,进行人脸的特征提取。
在该步骤中,会将图像中人脸的特征转换为数字形式,在该过程中使用影响因子对不同的特征进行权重评估,以提高最终的识别率。
最后,完成人脸的匹配与识别。
在此阶段中,重新计算不同人脸特征间的相似度,并进行比较,以找出最匹配的结果。
2.采用 OpenCV 库实现人脸识别实现基于 Android 平台的人脸识别系统,相当程度地依赖于开源的 OpenCV 库。
OpenCV 作为计算机视觉领域重要的开源库之一,在人脸识别中具有着广泛的应用。
OpenCV库提供了人脸检测、特征提取以及人脸匹配等多种功能的支持,能够协助我们很快速的实现基于Android平台的人脸识别应用。
三、应用场景1. 门禁系统基于Android平台的人脸识别系统可用于门禁系统,通过人脸识别技术,员工或是访客无需刷卡或输入密码,直接以脸部识别的方式进入公司或楼宇,提高了门禁系统的安全性和工作效率。
2. 智能支付基于Android平台的人脸识别系统可支持智能支付,消费者将面部对准扫描仪,即可完成支付,无需使用卡或手机,这种支付方式更加快捷方便。
3. 虚拟试衣镜基于Android平台的人脸识别系统还可用于虚拟试衣镜,在人脸检测、身体姿态估计、衣物虚拟渲染等方面进行应用,可为消费者提供更加真实、贴合的选衣体验。
智能人脸识别系统设计方案模板
智能人脸识别系统设计方案一、系统概述监狱车间是指在监狱内进行劳动的场所,为了确保车间的安全和秩序,监狱管理部门需要进行点名管理,记录车间人员的出勤情况。
传统的点名方式往往效率低下、容易出错,因此引入现代信息技术来改进点名管理成为必要。
监狱车间点名系统的存在以下几个方面问题:点名效率低下:传统的点名方式需要耗费大量的时间和人力资源,容易出现漏点、误点等问题,严重影响了车间管理的效率和准确性。
数据准确性要求高:车间点名管理需要保证数据的准确性,以便监狱管理部门进行统计和分析,对车间人员的出勤情况进行监控和评估。
信息化管理需求:随着信息技术的不断发展,监狱管理部门对车间管理的要求也越来越高,需要引入信息化手段提高管理效率和质量。
二、系统架构三、系统功能车间点名系统是为监狱应用场景设计的多样化人脸点名及区域管控业务解决方案,在监管场所的重要通道、监舍、生产车间等场所进行部署,采用先进的人工智能和人像识别技术,依托高性能的前端高清智能摄像头、后端智能分析设备和完善的平台人员库管理,实现被监管人员进出通道点名,监舍点名,工间点名等功能。
1、信息录入服刑人员人脸/指纹/指静脉信息录入及存储。
2、用户管理1)服刑人员管理:支持新增、删除、修改和查询服刑人员账户,服刑人员账户可绑定车间和工位。
2)民警管理:支持新增、删除、修改和查询民警账户,服刑人员账户可绑定值班室和车间。
3、人员列表支持展示和查询服刑人员信息列表,以服刑人员维度展示服刑人员的基本信息。
4、设备管理支持对上线设备进行管理配置,包括设置设备名称,所属车间,工位、IP信息等,支持对设备进行分组管理,升级管理和在线状态统计等。
5、设备分组支持根据不同车间不同流水线对点名设备进行分区分组,可按分组设置点名计划等。
6、设备监测支持查看系统车间点名设备在线情况和离线情况,支持按关键字查找设备并查看设备详细信息。
包括设备所属车间,设备名称,版本号,IP地址、MAC地址等属性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能人脸识别系统技术方案目录1智能人像比对平台1.1系统结构建立标准统一的共享人像库,并在此基础上,部署完整的人像比对判定平台。
该系统由人像标准化采集系统,人像数据库子系统、基础比对服务平台、人脸识别应用平台4大部分组成,支持前端人像采集、静态人脸查询、移动警务通人脸识别一体化服务。
该平台支持统一人像数据交换接口,兼容大多数人像数据交换标准。
统一的安全标准接口,兼容PKI密钥,网络加密狗等常见的安全标准接口。
系统总体结构如下:系统采用B/S架构,以浏览器方式进行人像预处理、人像比对、结果查询、用户管理、系统运行状态查询等管理操作,减少了系统后台管理、人口治安及其他警种成百上千终端安装和维护难度,方便未来多警种共享应用。
系统可提供标准的WebService接口,将业务系统获取的人像照片与相关人像库进行比对。
1.2设计原则本着统一标准、分级管理、资源共享、无缝对接的设计原则,以人像比对算法为核心,整合多区域现有资源,实现准确识别、快速反映,覆盖全面的智能人像识别应用平台。
1.2.1先进性该平台算法由中国科学院自动化研究所研究员、国际知名人脸识别专家、IEEE院士李子青教授领衔研发,是基于中国自主知识产权,针对公安各警种业务特点专门研发的综合智能人像识别应用系统平台。
1.2.2开放性人像采集与比对平台具有统一的服务接口,兼容公安部拟指定的统一人像数据交换标准草案。
统一的安全验证,兼容PKI密钥,身份认证等常见的安全验证机制。
1.2.3扩展性整个平台系统接口分为系统级别之间的接口与单个系统开放出来的服务接口组成。
系统可“随需而变,以不变应万变”提供多种可靠服务功能。
1、系统级接口系统级接口指的是不同地区部署的人像辅助识别平台之间的接口,主要有两种访问方式第一种采用页面查询的方式,以只查询方式进行访问,通过系统提供的Guest权限进行页面访问。
适用于不同平台之间快速的调阅查询。
第二种通过请求服务与直接调阅的形式进行数据库的查询,系统预留标准数据库查询接口,以市,县二层结构进行数据库间的查询调用,采用本系统建立的数据中心,纵向上进行直接的调用,高层中心保留下级中心的数据库信息索引。
即市级中心直接查询市级与县级中心,市级中心直接查询县级中心。
横向上以请求服务形式进行调用,横向系统间不保留对方的数据库信息索引,而是通过请求服务方式进行。
2、服务接口服务接口适用于该系统与其他业务应用系统做二次开发或者集成用接口,包括所有系统级接口与平台应用接口。
人像基础比对服务平台通过WebService进行与其他系统的交换机制,通过标准的XML或者Jason格式文件进行数据交换,兼容《GA/T 922.2-2011标准第二部分人像数据采集标准》中的数据格式交换。
服务接口主要以WebService与ActiveX等方式提供。
满足各业务系统二次开发,集成使用。
服务接口说明1.2.4安全性人像采集比对平台采用统一的安全验证标准,所有的子系统采用统一安全验证机制,支持PKI加密狗,身份验证等常见的身份验证机制。
1.2.5抗灾性在设计硬件架构时,充分考虑了系统的可用性和抗灾性,使用了“计算节点冗余拓扑”的架构方案。
例如运行有2个比对服务实例,每一个服务实例都可以完成全部的比对服务功能。
在每一个服务实例中,每一个运算节点内存中只加载部分模板数据,这样能够显著提高比对效率。
但是每一个计算节点的磁盘中都保留有全部的模板数据,任意一个计算节点损坏都不会影响到数据完备性。
当有计算结点损坏时,集群控制器会收到通知并且发出服务请求让剩余的计算节点加载受损节点的模板数据。
1.3人像对比算法1.3.1技术选型标准根据公安部《关于加快推进人口信息人像比对技术应用的通知》(公治明发【2012】331号),原则上优先选用国内算法,如需选用国外算法,应在确保人口信息安全的情况下使用。
人口信息人像比对系统的承建单位不得具有外资背景,且须签订保密协议书。
禁止境外人员参与系统建设。
1.3.2算法性能系统主要性能指标1.3.3基本比对功能(1)1:1一对一比对,对输入系统的两张照片比对确认是否同一人;(2)1:N一对多比对,输入一张照片与选定的照片分库比对以返回最相似的照片和信息;(3)M:N多人对多人比对,提交多张照片与选定的照片分库比对以返回各自最相似的照片和信息;(4)自库查重:系统支持照片分库自我查询,例如出入境照片库进行库内滚动比对,查找“一人多证”的记录;(5)异库查找:系统支持不同照片分库之间进行滚动比对,查找人员在各库中的关联信息;1.4人像资源库1.4.1数据量要求资源库建设采用“统一规划、分类建库、各库关联、全面共享、冗余增长”的思路,设计容量约1000万张以上。
1.4.2建设基础人像库对全国在逃人员、国保重点人员、禁毒重点人员等八类照片数据入库建模,向客户全面开放人像核对查询功能,开放人像比对服务接口嵌入到各业务系统。
各部门及公安机关可结合业务需要,在人像资源库的基础上有针对性地开发适合本部门的人像比对应用系统平台。
1.4.3建设少数民族人像库建立少数民族人像库,按照民族种类建设少数民族人像基础库,加强流动的少数民族人员安全管理。
1.4.4建设宗教人像库因信教群众众多,宗教活动场所若干所,同时近年来在新疆、西藏发生多起教徒暴动事件,为较好控制公共安全,对各教众采集其标准人像信息,以宗教信仰为建库标准,分别建立各类人像库,加强对重点教众的监控,有效防止其借宗教势力组织、实施危害社会公共安全的宗教活动。
1.4.5建设重点关注人员库公安在多年执法办案过程中,遇到各类有前科的违法犯罪人员,这些人有的通过教育指导能改过自新,而有些却顽固不化,继续伺机作案,针对该类人员公安建设人像数据;系统自动检测各类业务照片数据库,如有更新,则根据用户设置的更新时间,自动提取照片,先与已有人像特征库进行比对,确保唯一性后再入库。
1.4.6数据更新与业务数据源的更新相配套,系统支持动态增量模板的加载和更新,以便动态更新的入库照片数据能够及时参与比对;系统自动检测各类业务照片数据库,如有更新,则根据用户设置的更新时间,自动提取照片,先与已有人像特征库进行比对,确保唯一性后再入库。
1.5软件系统介绍该系统平台利用公安各类业务系统采集的海量人像数据,建立标准的人脸特征数据库,利用先进的人脸识别技术和计算平台强大的数据处理能力,快速准确地确认人员的真实身份。
该系统主要面向持假身份证、多重身份、冒用身份、身份不明等公安业务。
1.5.1子系统功能(1)人像数据库建设该子系统针对常住人口的二代身份证库,建设人像特征数据库,系统入库率达到99.99%以上;支持建设亿级以上人脸数据库;支持数据库批量建模与文件夹建模;每个人像特征模板不大于2K,系统建库速度达到单机240个/秒以上;支持联网建库,通过提供的数据库接口,利用公安专网访问人像数据库。
(2)并行比对基础服务平台该子系统主要实现并行化比对运算处理,加快比对响应速度,包括比对应用服务(负责比对服务分发与结果汇总,以及比对服务资源检测控制管理),比对处理,服务接口三个部分。
系统支持比对负载均衡,合理分配比对任务,即从比对应用服务接收到比对请求后根据比对节点的繁忙程度,分发给相关比对节点,比对处理快速与指定范围内的模板进行比对,产生比对结果;支持比对计算节点的任意扩展;支持比对服务热备份,不因为计算节点的宕机而造成比对服务终止;支持多个人脸综合模板比对;支持1:N和1:1比对方式,能做多机并发比对方式;单机比对速度至少1120万次/秒;100万二代证人像库比对前50位命中率达到82%以上;支持WebServices形式的人像比对服务;支持HTTP,Socket等常见网络协议;支持RestFul API和WCF两种接口形式提供比对服务。
(3)人员身份查重系统可指定人脸数据库进行全库或指定范围的库内人脸比对,对于同人不同身份,同身份不同人进行甄别判定,将可疑的判定结果放入比对信息数据库中;支持常口库与常口库进行比对,缉控库与常口库进行比对,常口库照片与缉控库照片进行正比,缉控库与常口库照片进行反比;库与库比对通过调用并行比对服务平台中WebServices接口进行比对;支持可疑信息通过专门的B/S页面进行查询浏览,提供历史可疑数据与每日新增可疑数据;对动态新增的人脸数据,支持自动执行动态执行身份比对功能;3台机器并行100万人像库自库查重在5小时以内完成,单机在13小时以内完成;(4)Web人像搜索系统该子系统对高清照片能进行初步的人脸图像裁剪,提供带条件的人像查询,如性别,年龄,地区,面部特征,设置阈值。
支持人脸图像裁剪,针对用户提交照片先进行自动的人脸筛选,未达到要求的照片再进行手工裁;支持带条件比对识别,用户提交比对识别请求,可以同时附加约束条件,设置阈值等,接受比对识别结果,显示比对识别结果;提供快速查询(前台)与模糊比对(后台)查询两种查询方式,快速查询主要查询符合比对要求的照片,满足批量导入功能,对不符合要求照片,提供专业图片工具进行专业修正。
支持动态信息查询,显示入库图像数、拒绝入库数、非人脸图像数、图像质量不达标数等。
提供除入库图像数外的其余结果的数据查询连接,以便进行人工分析和干预;参数配置采用数据库方式,以提高安全等级;支持通过Web 服务对系统配置参数进行管理,包括数据源、数据分类、比对服务器IP列表、比对结果返回值大小、各类参数的阈值等;支持数据源设置,设置图像数据库、模板数据库、结果数据库等。
提供统一界面对系统所有服务器、系统服务进行启动和停止,当系统停止时,能对所有访问和请求马上返回错误信息。
(5)数据库管理系统使用Oracle 11g数据库,存储各类人像特征库,包括常住人口库、流动人口库、缉控库等各类重点关注人像库;保存人像图片和对应的基本信息、模板数据,以及异步比对模式下的比对结果等数据;支持自动数据库更新;支持多种与业务相关的查询统计功能;支持对不同业务用途的人脸图片及模板数据分库组、分库别保存;支持多个子库别,通过专用的C/S管理软件支持日志查询,能够获取每天更新的情况与历史日志。
1.5.2人机交互系统功能1、系统支持用户自定义功能(如可通过警号自定义用户),支持账户及权限管理,不同账户可以授予不同级别权限;系统整体风格支持自定义。
2、系统支持对登录系统账户的操作用户名、登录IP、操作记录、操作类型、操作时间的记录;支持系统日志历史数据详细搜索、支持系统日志Excel格式导出。
系统支持用户信息的自定义,支持当前用户密码的修改。
3、系统包含工作桌面、人像检索、人像比对、图像工具、讨论区以及系统工具等功能模块。
4、人像检索支持检类型和文本信息的组合条件检索。