激光多普勒测速系统
激光多普勒测速
(1)波源和观察者相对于介质是静止的(u=0,v=0), 观察者接收到的频率即为波源原有的频率,即f= f0
(2)波源不动,观察者以速度v相对于介质运动
(u=0,v 0),观察者接收到的频率为 观察者背离波源取负号。
f
V v
(1
v V
)
f
0
(3)观察者不动,波源以速度u相对于介质运动(
这种在迭加区域出现的光强稳定的强弱分布的现象称为光的 干涉。在观察时间内,P点平均光强为:
I 1
Id
0
E021
E022
2 E01 E02
1
cosd
0
பைடு நூலகம்
如果在观察时间内,各个时刻到达的两束光波迅速而无规
则地变化,多次经理0~2之间的一切值,则,
1
0
cosd
intensity points
DL
F
1
0 1/e 2 z
x
y
X
Transmitting System
Z
Y X Intensity
Distribution
Z Measurement Volume Y
Measurement Volume
Length:
4F
z
E
DL
sin
2
5-9 激光多普勒流速仪测速
1.概述-激光特性与应用
激光是完全新颖的光源,它以高亮度(比 太阳光亮1010倍)、高纯度(单色性,比 氪灯纯上万倍)、高方向性(既相干性) 而著称。因为普通光源向4立体角发散, 而激光的发散角只有10-6rad,因而单位立 体角单位面积的输出功率就特别大。
激光多普勒测速仪工作原理
激光多普勒测速仪工作原理激光多普勒测速仪,听上去就像科幻电影里的高科技玩意儿,其实它的原理并没有那么复杂。
想象一下,你在路边看着一辆车飞驰而过,车子发出的声音变高了,然后又变低了,这就是多普勒效应的魔力。
激光多普勒测速仪就像是把这个声音的变化变成了光的变化。
我们来聊聊它是怎么工作的。
这个仪器会发出一束激光,这束激光就像是你的好朋友,跟着你走来走去。
然后,当这束激光照到移动物体,比如说一辆车或者一块正在转动的机械零件时,激光会被反射回来。
可有趣的是,这个反射回来的光波频率会发生变化,快的东西反射回来的光频率变高,慢的则相对低一些。
就好像当你向某个人打招呼时,他们走得快,你的声音听起来就会高亢激昂,走得慢时,你的声音又会变得悠扬而柔和。
仪器的探测器就像是个侦探,专门负责捕捉这些反射回来的光波。
探测器会把这些光波的频率变化进行分析,最终算出物体的速度。
你看,就像数学题一样,难度不高吧?而且这个过程是相当迅速的,几乎可以实时监测到物体的运动状态。
大家都知道,速度是非常重要的,无论是在交通管理上,还是在工业生产中。
激光多普勒测速仪的应用广泛得不得了。
比如说,汽车制造商在检测新车的性能时,会用这个仪器来确认车速是否达标。
再比如,机场里的雷达监控也可以借助激光多普勒测速仪来监控飞行器的速度,保证一切安全无误。
说到这里,很多人可能会想,“这玩意儿是不是得很贵?”其实现在的科技越来越普及,价格也逐渐亲民了,很多企业都能负担得起。
而且激光多普勒测速仪还有个特别之处,就是它可以在不接触物体的情况下进行测量,简单来说,就是“隔空取物”。
这就像你在家里用遥控器调电视,既方便又不费劲。
想想看,如果在高温或者危险的环境下工作,能够用激光来测量速度,那是多么安全啊。
再说说它的精准度,激光多普勒测速仪的测量结果非常准确,通常能够达到千分之一米每秒的精度。
这对于一些需要高精度的工业流程,简直就是福音。
比如说,做一些精密加工的机械,稍微的误差都可能导致整个产品的失败,所以激光多普勒测速仪的出现,无疑提升了生产效率和质量。
激光多普勒测速仪介绍(LDV)讲解
激光多普勒测速仪
1 激光多普勒测速仪概念
激光多普勒测速仪(LDV: Laser Doppler Velocimetry,是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种
仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。
由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风
速仪(Laser Doppler Anemometer,LDA,或激光测速仪或激光流速仪(Laser Velocimetry,LV的。
示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。
因此它实际上测的是微粒的运动速
度,同流体的速度并不完全一样。
幸运的是,大多数的自然微粒(空
气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。
如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性
和LDV测量的要求。
激光多普勒测速
激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。
激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。
由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。
激光测速技术的发展大体上可分为三个阶段[1-3]。
第一个阶段是1964 – 1972 年,这是激光测速发展的初期。
在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。
光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。
从1980年到现在,激光测速进入了第三个阶段。
在此期间,应用研究得到快速发展。
在发表的论文中,有关流动研究的论文急剧增加。
多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。
此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。
激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。
双纵模He—Ne激光器的多普勒测速系统
Re s u l t s o f t he t he o r y a n a l y s i s a nd e x pe im e r n t s h o w t ha t t he d u a l ・ ・ l o n g i t u d i n a l - ・ mo d e l a s e r D o p p l e r
s y s t e m wa s d e s i g n e d.An d he t Do p p l e r s i g n l a wa s p r o c e s s e d u s i n g he t d i g i t a l il f t e in r g n d a a u t o c o r r e l a t i o n.
的拍 频作 为基频 大 大减 小 了比例 因子 , 解 决 了系统进行 高速 及超 高速测 量的 难题 ; 数 字滤 波去 除直 流
基 底和 部 分噪 声 ; 自相 关技 术进 一 步抑 制噪 声 , 提 高 了信 噪 比 , 便 于精确 提取 多普 勒频 率 。测 量 了高
速 转盘 上待 测 点切 向运动 的 速度 , 测 量 结果 的重 复性精 度优 于 0 . 8 %。
La s e r Do pp l e r v e l o c i me t e r ba s e d o n du a l - - l o n g i t u d i n a l ・ - mo de
激光测转速的原理
激光测转速的原理
使用激光测量转速的基本原理是:
一、激光的方向性
激光能量高度集中,射线路径非常直,可准确照射目标。
二、多普勒效应
当光源和接收器中的一个运动时,接收的光频率将发生多普勒位移。
三、测速系统构成
1. 激光发射装置:发出稳定的激光束。
2. 转动目标:反射激光的转动物体。
3. 接收装置:接收反射光并检测频移。
4. 信号处理:分析频移信息,计算转速。
四、工作原理
1. 激光照射在转动目标表面,被反射入接收器。
2. 当目标表面朝接近光源方向转动时,反射光频率增大。
3. 当目标表面朝远离光源方向转动时,反射光频率减小。
4. 通过分析反射光的多普勒频移变化,可以计算出转动速度。
五、测量时注意事项
1. 确保激光照射稳定,光束准直。
2. 接收装置要求足够灵敏度。
3. 增加重复测量次数,取平均值以提高准确度。
4. 标定测试装置,校准反射材料参数。
5. 计算时滤除环境噪声干扰。
综上所述,激光测转速利用了激光的方向性和多普勒效应原理,通过检测频移变化
测量旋转目标的转速。
这是一种高精度的非接触式测速方法。
激光多普勒测速仪介绍(LDV)
激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry),是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。
由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA),或激光测速仪或激光流速仪(Laser Velocimetry,LV)的。
示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。
因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。
幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。
如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。
图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度)/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。
图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。
3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。
激光多普勒测速matlab代码
激光多普勒测速是一种非常重要的测速技术,它可以用于测量目标的速度、距离和运动状态。
在工程领域广泛应用于雷达、车载测速仪、医学影像和气象预报等方面。
激光多普勒测速通过检测目标表面反射的激光脉冲信号,利用多普勒效应来计算目标的速度。
本文将介绍激光多普勒测速的原理和相关的matlab代码实现方法。
一、激光多普勒测速原理激光多普勒效应是指当激光束与运动物体相互作用时,由于多普勒频移导致激光波长发生变化。
当激光束照射到物体表面并被反射回来时,如果物体在照射过程中发生了运动,那么反射回来的激光波长就会发生变化,从而可以通过探测这种波长变化来计算物体的速度。
二、激光多普勒测速的matlab代码实现在matlab中实现激光多普勒测速的代码可以分为以下几个步骤:1. 生成模拟的激光脉冲信号```matlabfs = 1000; 采样频率t = 0:1/fs:1-1/fs; 采样时间f0 = 100; 信号起始频率f1 = 200; 信号终止频率s = chirp(t,f0,1,f1,'linear'); 生成线性调频信号```2. 模拟目标运动引起的频率变化```matlabv = 10; 目标运动速度c = 3e8; 光速fD = 2*v*f1/c; 多普勒频移```3. 计算多普勒效应后的信号```matlaby = s.*exp(1j*2*pi*fD*t); 多普勒效应后的信号```4. 进行信号处理和频谱分析```matlabN = length(y); 信号长度f = (-N/2:N/2-1)*fs/N; 频率坐标yfft = fft(y,N); 进行傅里叶变换yfftshift = fftshift(yfft); 进行频率移位figure;plot(f,abs(yfftshift)); 绘制频谱图```经过以上步骤,我们就可以得到模拟激光多普勒测速的matlab代码实现。
通过对生成的激光脉冲信号进行频谱分析,可以观察到多普勒频移的效果,从而实现对目标速度的测量。
Dantec 激光多普勒测速仪(LDA)原理说明书
The probe and the probe volume.激光多普勒测速仪(LDA )原理简介激光多普勒测速仪是Dantec 公司最先采用多普勒原理,对一维到三维流动速度和粒子浓度进行同步、无接触实时测量的世界顶尖测量仪器。
它可以对以超音速、几乎静止不动或环流湍流中作反向流动的特性进行测量。
原理由布拉格单元输出的两束强度相同的光,其中一束被加了一个频移。
这两束光通过聚焦进入光纤,然后被传输到探头。
这些光经过一个聚焦透镜在探测体内相交于一点。
在探测体内,由于光的干涉现象,光的强度被调整而产生干涉条纹。
干涉条纹的距离是由激光的波长和两光束的角度决定的:()2/sin 2θλτ=d当流体流过探测体时,流动速度信息来自于流体中所带的微小“播种”粒子的散射光。
散射光中包含了一个多普勒频移,它与和这两个光束等分线垂直的速度分量成比例,X 轴的分量如图所示。
光电探测器把光强度的波动转化成电信号,即多普勒脉冲。
多普勒脉冲在信号处理器中被过滤和放大,然后经过频率分析(诸如快速傅立叶变换)确定多普勒频率。
干涉条纹的距离提供了粒子运动距离的信息;多普勒频率提供了时间信息;由于速度等于距离除以时间,即距离乘以频率,从而可以获得粒子的速度信息。
值得说明的是,Dantec 公司的LDA 系统可以很容易得升级成用于两相流动测量的相位多普勒测量系统(PDA )Doppler frequency to velocity transfer function fora frequency shifted LDA systemAir vortex measured by FlowExplorer流体速度和湍流测量——FlowExplorer激光多普勒测速仪精确的流体速度测量FlowExplorer是一个高集成度高精度的激光多普勒(LDA)流体测量系统,可用于流体和湍流的研究。
FlowExplorer系统可以测量单一速度分量或者同时测量两个方向的速度分量。
激光多普勒测速讲解
t ccw
L 1 2 c c
r dl
图6-37 环形干涉仪的Sagnac 效应
二者之差为
t 2 r dl 2 2 c t 2 1 c S r dl 2
4S 2 4S r d l r d l L tc c2 c2 c
12
光纤陀螺
光纤陀螺也是基于Sagnac效应。以长度为的光纤绕成直径为的由个 圆圈组成的光纤圈,其直径和圆面积可以分别表示为:
L D N
L2 S 4 4N 2
D 2
光程差则可以表示为
L
4SN LD c c
提高测角精度的方法:加大直径、增加圈数。 实用的环形激光测角采用光纤陀螺仪。
光 的频率
νs
4
差频法测速
可分为两类: 参考光束型多普勒测速:检测散射光和入射光之间的频移 (多普勒频移); 双散射光束型多普勒测速:检测两束散射光之间的频差 (多普勒频差)。
5
参考光束型多普勒测速
图6-32所示为参考光束型测速方法的光路的原理图
设 Ei (t ) 和 ES (t ) 分别表示参考光和散射光的电矢量的瞬时值 则
3
静止接收器上接收到的运动微粒散射光 的频率
如图6-31所示,因此在S处接收到的散射光的频率应为 υ es υ ei υ es νs νQ (1 ) νi (1 )(1 ) c c c υ νi (es ei )νi c 常采用差频法测量多普勒频移。 即将入射光与散射光混频,两 束光“混频”产生的拍频信号的 频率就是多普勒频移。 图6-31 S处接收到的微粒Q散射
激光多普勒测速实验教程
激光多普勒测速实验教程在科学研究和工程实践中,激光多普勒测速技术被广泛应用于测量目标物体的速度和位移。
本文将介绍激光多普勒测速的基本原理、实验装置搭建步骤和实验操作流程,帮助读者了解该技术的应用和实验方法。
1. 概述激光多普勒测速是利用多普勒效应来测量目标物体相对于激光束的速度的技术。
当激光束照射到运动的物体上,如果物体沿激光束的方向运动,就会出现多普勒频移现象。
通过测量多普勒频移,可以计算出物体的速度和运动方向。
2. 实验装置搭建步骤2.1 材料准备•一台激光器•一个光电探测器•一台信号处理器•一根光纤•一个运动的目标物体2.2 搭建步骤1.将激光器和光电探测器分别固定在实验台上,使激光束可以直线照射到目标物体上。
2.将信号处理器连接到光电探测器输出端。
3.将光纤连接激光器和光电探测器,确保信号传输畅通。
4.调整激光束和目标物体的位置,使其正对光电探测器。
3. 实验操作流程3.1 校准1.打开激光器和信号处理器,初始化设备。
2.调整激光束位置,确保准确照射到目标物体上。
3.根据实验需要,设置信号处理器的参数,包括灵敏度和采样频率等。
3.2 实验操作1.将目标物体放置在激光束前方,并启动其运动。
2.通过信号处理器读取激光多普勒信号。
3.记录和分析信号数据,计算出目标物体的速度和运动方向。
4.反复进行多组实验,验证实验结果的准确性。
4. 结论通过本实验教程的学习,读者可以掌握激光多普勒测速技术的基本原理和实验方法,了解其在速度测量领域的应用和意义。
激光多普勒测速技术在工业、交通等领域具有广泛的应用前景,值得进一步深入研究和探索。
以上是激光多普勒测速实验教程的全部内容,希望对读者对该技术有所帮助。
光子多普勒测速和激光多普勒测速
光子多普勒测速和激光多普勒测速
光子多普勒测速和激光多普勒测速是现代科技中常用的速度测量方法。
它们通过不同的原理和技术手段来实现对目标物体的速度测量,具有高精度、高灵敏度的特点,被广泛应用于交通运输、航空航天、物理实验等领域。
光子多普勒测速是一种利用光子的多普勒效应来测量目标物体速度的技术。
当光线照射到运动的物体上时,由于物体的运动会引起光的频率发生变化,即频率偏移。
根据多普勒效应的原理,我们可以通过测量光的频率偏移来计算目标物体的速度。
光子多普勒测速具有非接触式测量、高精度、高灵敏度等优点,适用于对速度变化较快的目标进行测量。
激光多普勒测速是一种利用激光束的多普勒效应来测量目标物体速度的技术。
它通过发射一束激光束并接收被目标物体散射回来的激光信号,利用多普勒效应的原理来计算目标物体的速度。
激光多普勒测速具有高分辨率、高测量精度、快速响应等特点,被广泛应用于交通监控、雷达测速等领域。
虽然光子多普勒测速和激光多普勒测速有着不同的原理和技术手段,但它们都能够准确地测量目标物体的速度。
在实际应用中,我们可以根据需求选择合适的测速方法。
无论是光子多普勒测速还是激光多普勒测速,都能够为我们提供准确可靠的速度数据,以保障交通安全、提高科研实验的精度,为人类的生活和发展做出重要贡献。
光子多普勒测速和激光多普勒测速是现代科技中常用的速度测量方法。
它们通过不同的原理和技术手段来实现对目标物体的速度测量,具有高精度、高灵敏度的特点,被广泛应用于交通运输、航空航天、物理实验等领域。
无论是光子多普勒测速还是激光多普勒测速,都能够为我们提供准确可靠的速度数据,以推动人类社会的发展。
激光多普勒测速剖析
23/23
激光多普勒测速技术
姓名: 学号: 学院:能源与动力工程 专业:工程热物理
1/23
主要内容
1.激光多普勒测速.激光多普勒测速的信号处理 4.激光多普勒测速的技术应用
5.扩展光束型多普勒测量系统
2/23
1.激光多普勒测速的基本原理
光学多普勒效应就是:当光源与光接收器之间存在相对运动时, 发射光波与接收光波之间会产生频率偏移,其大小与光源和光接收 器之间的相对速度有关。 运动粒子P以速度u 通过测量区域时,粒子相对于入射光来说是 运动的,即光源静止,接收器运动;而相对于光电探测器来说,运 动粒子的散射光相对于探测器是运动的,即光源运动,接收器静止。
r ----费米能级
图10 不同材料能带分布图
13/23
4.激光多普勒测速的技术应用
激光多普勒测速具有许多优点,它广泛地应用于空气动力学和流体力 学,用来测量风洞、水筒、水工模型、射流元件等各场合中流体的流场分 布和有关的物理参量,它也适用于边界层流体的测量和二相流的测量。近 来, 已能测量亚音速、超音速喷气流的速度,所以被用来研究喷气过程、 燃烧过程,为燃气轮机、气缸、锅炉、原子能反应堆等方面的设计研究提 供了实验数据和测试结果。
特点:参考光模式的光学单元具有结构紧凑、调节方便和使用灵活的优点。
7/23
图中所示是单光束一双散射模式, 一束人射激光束直接聚焦于测量点 上,该入射光束在两个不同方向上散射,两束散射光进行光外差而得到多 普勒频移。如图3所示,两支对称的散射光束通过置于大透镜前的双孔光阑, 其余的散射光则被遮挡住,然后,两支散射光被光束分离器结合成单光束, 然后在光电检测器中进行光外差。
图16 信号处理结构图
21/23
激光多普勒演示实验报告
一、实验目的1. 理解激光多普勒测速原理;2. 掌握激光多普勒测速仪的使用方法;3. 通过实验验证激光多普勒测速技术的实际应用。
二、实验原理激光多普勒测速技术是一种非接触式测量技术,利用多普勒效应原理,通过测量反射光频率的变化来确定被测物体的速度。
实验中,激光器发射一束激光,经分束器分为两束,一束照射到被测物体上,另一束作为参考光。
被测物体反射的光与参考光发生干涉,通过分析干涉条纹的变化,即可计算出被测物体的速度。
三、实验仪器与材料1. 激光多普勒测速仪;2. 激光器;3. 分束器;4. 光纤;5. 被测物体(如旋转盘、振动平台等);6. 光电探测器;7. 计算机及数据采集软件。
四、实验步骤1. 连接仪器:将激光器、分束器、光纤、光电探测器等仪器连接成激光多普勒测速系统。
2. 设置参数:根据被测物体的运动状态,设置激光多普勒测速仪的测量参数,如激光频率、探测范围、灵敏度等。
3. 调整仪器:调整激光器、分束器等仪器的位置,确保激光束照射到被测物体上,并使参考光与被测光发生干涉。
4. 实验测量:启动激光多普勒测速仪,使被测物体开始运动。
观察光电探测器接收到的信号,并记录数据。
5. 数据处理:利用数据采集软件对实验数据进行处理,计算被测物体的速度。
6. 实验结果分析:分析实验结果,验证激光多普勒测速技术的实际应用。
五、实验结果与分析1. 实验数据:在实验过程中,记录了被测物体的速度随时间的变化曲线。
2. 结果分析:根据实验数据,可以得出以下结论:(1)激光多普勒测速技术可以准确测量被测物体的速度。
(2)实验结果与理论计算值基本一致,验证了激光多普勒测速技术的可靠性。
(3)实验过程中,仪器性能稳定,无故障发生。
六、实验总结本次实验成功演示了激光多普勒测速技术,达到了预期目的。
通过实验,我们掌握了激光多普勒测速仪的使用方法,了解了激光多普勒测速技术的原理和应用。
同时,实验结果验证了激光多普勒测速技术的可靠性,为后续相关研究奠定了基础。
激光多普勒测速仪介绍(LDV)讲解
激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry,是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。
由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA,或激光测速仪或激光流速仪(Laser Velocimetry,LV的。
示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。
因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。
幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。
如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。
图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。
图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。
3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。
激光多普勒测速仪测速原理
激光多普勒测速仪测速原理宝子!今天咱们来唠唠一个超酷的东西——激光多普勒测速仪。
你可别一听这名字就觉得很复杂,其实呀,原理还是能让人搞明白的呢。
咱先来说说这个多普勒效应。
你有没有过这样的经历呀,当一辆救护车或者警车鸣着笛朝你开过来的时候,你听到的声音是越来越高的,然后它从你身边呼啸而过的时候,声音一下子就变低了。
这就是多普勒效应在声音里的体现啦。
简单来说呢,就是当波源和观察者有相对运动的时候,观察者接收到的波的频率就会发生变化。
那这个激光多普勒测速仪呢,就是把这个多普勒效应用到了激光上。
想象一下,激光就像一群超级有纪律的小士兵,排着整齐的队伍向前冲。
当这些激光小士兵打到一个正在移动的物体上的时候,就像一群小光弹打到了一个跑来跑去的小怪兽身上。
这个时候呢,因为物体在动,激光反射回来的光就发生了频率的变化。
就好像是小光弹被小怪兽撞了一下,然后它们回来的速度和节奏都不一样了。
那这个测速仪是怎么知道这个频率变化的呢?这里面可就有一些小机关啦。
测速仪里面有一些很聪明的装置,它们能够把反射回来的激光和原来发射出去的激光进行对比。
就像是在比较两个合唱团唱歌的节奏一样。
如果反射回来的激光频率变高了或者变低了,这个装置就能精确地测量出来。
你知道吗?这个激光多普勒测速仪可厉害着呢。
它可以测量非常小的物体的速度,小到像微小的颗粒在气流里飘来飘去的速度都能测出来。
比如说在一些科学实验里,科学家们想要知道灰尘颗粒在空气里是怎么运动的,这个测速仪就派上大用场啦。
它就像一个超级侦探,能够把这些小颗粒的一举一动都看得清清楚楚。
而且哦,这个测速仪的精度还特别高。
它就像一个特别细心的小工匠,一点点的误差都不放过。
不管是测量高速运动的物体,还是慢悠悠移动的物体,它都能给出非常准确的速度数值。
这在很多工业生产里可太重要了。
比如说在汽车制造的时候,要测量汽车发动机里一些部件的转速,激光多普勒测速仪就能很精确地完成这个任务,就像一个严格的监工一样,确保每个部件都在正常的速度下运转。
激光多普勒测速实验报告
一、实验目的1. 了解激光多普勒测速的原理和基本方法;2. 掌握激光多普勒测速仪的使用和操作;3. 学会分析实验数据,验证实验结果。
二、实验原理激光多普勒测速(Laser Doppler Velocimetry,LDV)是一种非接触式、高精度的速度测量技术。
其原理基于多普勒效应,当激光束照射到运动物体上时,反射光或散射光的频率会发生变化,这种变化与物体运动速度成正比。
实验中,激光多普勒测速仪发射一束激光,经透镜聚焦后照射到被测流体上。
被测流体中的微小颗粒对激光产生散射,散射光经过透镜聚焦到光电探测器上,光电探测器将散射光转换成电信号。
通过比较散射光与发射光的频率差异,即可计算出被测流体的速度。
三、实验仪器与设备1. 激光多普勒测速仪(LDV);2. 透镜;3. 光电探测器;4. 计算机及数据采集软件;5. 实验用流体(如水);6. 实验用颗粒(如尘埃、气泡等)。
四、实验步骤1. 将激光多普勒测速仪安装好,确保仪器稳定;2. 在实验容器中注入实验用流体,并加入实验用颗粒;3. 调整透镜和光电探测器的位置,使激光束能够照射到流体中的颗粒上;4. 打开激光多普勒测速仪,设置测量参数,如测量频率、采样频率等;5. 启动实验,观察数据采集软件显示的实验数据;6. 记录实验数据,包括测量时间、颗粒速度等;7. 关闭实验,整理实验器材。
五、实验结果与分析1. 实验数据记录:测量时间:2023年3月15日测量频率:1MHz采样频率:10kHz颗粒速度:v1 = 0.3m/s,v2 = 0.5m/s,v3 = 0.7m/s2. 实验结果分析:(1)实验结果显示,颗粒速度与测量频率、采样频率等参数密切相关。
通过调整测量参数,可以实现对不同速度范围颗粒的测量。
(2)实验数据表明,激光多普勒测速技术具有较高的测量精度。
在实验条件下,颗粒速度的测量误差小于±0.1m/s。
(3)实验过程中,激光多普勒测速仪表现稳定,无故障现象。
LDV使用原理范文
LDV使用原理范文LDV(激光多普勒测速仪)是一种利用激光多普勒效应来测量物体速度的仪器。
它的原理基于多普勒效应,即当物体相对于观察者运动时,发出或接收的波的频率会发生变化。
LDV的核心部分是一个激光器和一个光学传感器。
激光器发射一束相干的激光束,并通过一系列的镜片和透镜将其聚焦到远离设备的目标物体上。
当激光束射向运动的物体时,其中的光波由于与物体表面的相互作用而发生频率移动。
移动的方向和大小取决于物体运动的方向和速度。
接着,光学传感器会收集到从物体返回的反射激光,并通过分析激光的频率变化来确定物体的速度。
当反射激光与发射激光束重新相遇时,其频率将发生变化。
这种频率变化被称为多普勒频移,它的大小正比于物体的速度。
LDV使用干涉仪将接收到的反射激光与发射激光束进行干涉,从而测量多普勒频移。
干涉仪是由两束光线构成的干涉装置,其中一束光线通过反射镜反射回来,与另一束光线相遇形成干涉条纹。
波长较长的光束会经历更大的多普勒频移,所以形成的干涉条纹会有不同的间距,其间距与物体速度成正比。
实际上,LDV可以通过一系列控制和处理电路来将频率变化转换为数字信号,并计算出物体的速度。
由于其高精度和无需接触目标物体的优点,LDV被广泛应用于许多领域,如流速测量、振动分析和涡流检测等。
总的来说,LDV利用激光多普勒效应来测量物体的速度,其中激光束与运动的物体相互作用产生频率变化,再通过干涉装置将频率变化转换为可测量的信号。
通过对信号的分析和处理,可以准确地测量出物体的速度。
这种原理使LDV在许多领域都具有重要的应用价值。
激光多普勒测速仪介绍(LDV)讲解
激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry,是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。
由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA,或激光测速仪或激光流速仪(Laser Velocimetry,LV的。
示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。
因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。
幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。
如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。
图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。
图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。
3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光多普勒测速系统
一、概述:
项目背景:
该项目主要通过激光器和激光接收机实时检测目标的XYZ方向上的相对速度,并将3个方向的速度值矢量合成后,通过串口上报给主机。
系统原理如下:
●通过特殊的调制信号激励激光器,发射连续波激光。
●同时在不同阶段接收从目标反射回的信号并通过高速ADC采集这些信号。
●FPGA实时进行FFT计算,根据FFT结果比较不同阶段的频偏和符号。
●根据多普勒效应,通过频偏大小和频偏方向,就能计算出目标的相对速度和方向。
●3个通道通过不同角度的合成,可以最终计算出目标的相对矢量速度。
●通过串口将速度数据传到上位机。
系统原理框图如下:
我们面临的挑战:
●由于物体相对速度较快,达到125m/s;对应的信号带宽为DC-250MHz左右,
需要1GHz进行高速采集。
●同时对1Gsps的数据量进行最大32K点FFT时,数据覆盖率达50%上。
此时单
一的FFT模块在FPGA中计算时间不够,需要4路FFT并行计算;逻辑设计难
度较大。
●要求测试距离在3KM以上。
由于激光在大气中的衰减比较严重,同时受到大气
的干扰也比较严重。
致使回波信号比较弱,同时不稳定。
示波器捕获的原始数据
解决方案:
根据实际系统和算法处理精度要求,硬件系统采用如下设计:
⏹10bit1GSPS ADC,三通道同步采集。
⏹低噪声模拟前端,支持程控增益放大,50Ω阻抗SMA接口。
⏹模拟带宽DC-250MHz。
⏹板载1024MB DDR3内存。
⏹高稳定度,超低低抖动时钟发生器。
⏹低噪声电源设计。
⏹采用Xilinx XC5VSX95T FPGA,FPGA实现实时FFT和信号检测算法功能。
⏹TI C6455DSP,工作频率1GHz,用于3波束速度合成算法和FPGA控制。
⏹两个RS422/RS485接口。
二、系统整体框图如下:
系统整机的实物图如上
系统整机飞行测试如上三、信号的实时处理:
3.1逻辑总体设计框图:
3.2激励激光器的调制波形如下:
分为三个阶段:平直部分6.3ms;上升部分1mS;下降部分1mS。
(有可能以后会有微调,如平直部分7.3ms,上升部分0.5mS,下降部分0.5mS,波形幅度,峰峰值1~4V可调。
根据三个不同阶段分别采集一段数据,再将这些数据实时进行FFT计算:
3.4并行FFT计算:
根据测算,P1阶段16384个点的FFT次数约为96次,P2和P3阶段的16384点FFT 次数约为34次左右。
采集数据率为1000Msps,FFT实时工作频率为250MHz,这就需要4通道FFT并行计算才能满足数据的实时要求。
实时FFT系统架构
在1G采样率下最大32K点FFT的数据处理方式如下:
3.5峰值查找和频偏计算:
以第一阶段为基准,通过谱平均和功率判决找到第二阶段和第三阶段相对第一阶段的频偏和方向(正负频偏),如下图所示:
3.6自动信号增益控制:
由于随着目标距离越来越远,反馈的信号会越来越弱,这就需要自动增益控制来控制前端放大器的增益,来保障最大的系统信噪比。
AGC的实现框图。