扭摆法测转动惯量研究性实验报告
扭摆法测刚体转动惯量实验报告
扭摆法测刚体转动惯量实验报告扭摆法测刚体转动惯量实验报告引言转动惯量是描述物体对转动的惯性的物理量,它与物体的质量分布和形状密切相关。
扭摆法是一种常用的实验方法,用于测量刚体的转动惯量。
本实验旨在通过扭摆法测量刚体的转动惯量,并分析实验结果。
实验原理扭摆法是基于胡克定律的原理进行的。
当一个物体受到扭矩作用时,它会发生扭转。
根据胡克定律,扭矩与扭转角度成正比。
实验中,我们将一个细长的金属杆固定在一端,然后在杆的另一端挂上一个刚体,使其能够自由扭转。
通过测量扭转角度和扭矩的关系,我们可以计算出刚体的转动惯量。
实验装置本实验所需的装置包括一个固定底座、一个细长金属杆、一个可调节的扭矩臂、一个刚体和一个测力计。
固定底座用于固定金属杆,扭矩臂用于施加扭矩,刚体用于测量转动惯量,测力计用于测量扭矩。
实验步骤1. 将固定底座放在水平台面上,并调整水平仪使其水平。
2. 将金属杆固定在固定底座上,并确保杆的另一端能够自由扭转。
3. 在金属杆的自由端挂上刚体,并调整刚体的位置使其处于平衡状态。
4. 将测力计连接到扭矩臂上,并将扭矩臂固定在刚体上。
5. 通过旋转扭矩臂,施加一个扭矩,并记录下测力计的读数。
6. 重复步骤5,分别施加不同大小的扭矩,并记录相应的测力计读数和扭转角度。
7. 根据测力计读数和扭转角度的关系,计算出刚体的转动惯量。
实验数据与结果在实验中,我们分别施加了不同大小的扭矩,并记录了相应的测力计读数和扭转角度。
通过对数据的处理和计算,我们得到了刚体的转动惯量。
讨论与分析在本实验中,我们使用扭摆法测量了刚体的转动惯量。
通过施加不同大小的扭矩,我们得到了测力计的读数和扭转角度的关系。
通过分析这些数据,我们可以计算出刚体的转动惯量。
实验中可能存在的误差主要有两方面。
首先,测力计的读数可能存在一定的误差。
其次,由于实验条件的限制,我们无法完全消除空气阻力和摩擦力对实验结果的影响。
这些误差可能导致实验结果与理论值存在一定的偏差。
扭摆法测转动惯量实验报告
扭摆法测转动惯量实验报告一、引言转动惯量是描述物体转动惯性大小的物理量,也是描述物体对转动的抵抗程度。
本实验通过扭摆法测量物体的转动惯量,探究物体转动惯量与物体的质量分布、形状以及转轴位置之间的关系。
二、实验器材和原理实验器材:扭摆装置、圆盘、计时器、测量尺、螺旋测微器等。
实验原理:扭摆法是利用物体在一根固定转轴周围转动时的回复力矩与物体转动惯量之间的关系来测量转动惯量的方法。
根据牛顿第二定律,物体的转动惯量与物体所受到的力矩之间满足以下关系:I = τ/α其中,I为物体的转动惯量,τ为物体所受到的力矩,α为物体的角加速度。
三、实验步骤1. 将圆盘固定在扭摆装置上,确保转轴与圆盘中心对齐。
2. 给圆盘加上一个小角度的转动,释放后观察其回复振动,并记录回复振动的周期T。
3. 通过测量尺测量圆盘的半径r,并计算出圆盘的转动惯量I。
4. 重复实验步骤2和3,分别记录不同角度下圆盘的回复振动周期和转动惯量。
5. 改变圆盘的质量分布、形状或转轴位置,重复步骤2-4。
四、数据处理与分析根据实验记录的周期T和圆盘的半径r,可以通过公式T = 2π√(I/τ)计算出圆盘的转动惯量I。
通过多组实验数据的比较,可以得出以下结论:1. 质量分布对转动惯量的影响:质量集中在转轴附近的物体转动惯量较小,而质量分布均匀的物体转动惯量较大。
2. 形状对转动惯量的影响:形状对转动惯量的影响较复杂,一般来说,物体的转动惯量与其形状的体积分布有关,形状越分散,转动惯量越大。
3. 转轴位置对转动惯量的影响:转轴位置的改变会导致物体的转动惯量发生变化,一般来说,转轴越远离物体质心,转动惯量越大。
五、实验误差分析在实际实验中,由于摩擦、空气阻力等因素的存在,实验数据可能存在一定的误差。
为了减小误差,可以采取以下措施:1. 减小摩擦:在扭摆装置中加入适量的润滑剂,减小转动时的摩擦力。
2. 排除空气阻力:在实验过程中尽量减小圆盘与空气的接触面积,避免空气阻力对实验结果的影响。
扭摆法测定转动惯量实验报告
扭摆法测定转动惯量实验报告扭摆法测定转动惯量实验报告引言:转动惯量是物体抵抗转动运动的特性之一,它在物理学和工程学中具有重要的意义。
本实验旨在通过扭摆法测定转动惯量,进一步探究转动惯量的概念和测量方法。
实验装置与原理:实验中所使用的装置主要包括一个旋转台盘、一个扭簧、一个转轴和若干质量块。
实验原理基于扭摆的基本规律,当一个物体受到扭簧的力矩作用时,会发生转动。
通过测量扭簧的劲度系数和转动角度,可以计算出物体的转动惯量。
实验步骤:1. 将旋转台盘固定在水平台上,并调整使其能够自由转动。
2. 将扭簧固定在转轴上,并将转轴插入旋转台盘的中心孔。
3. 在转轴两端的孔上分别挂上质量块,使得转轴保持平衡。
4. 将扭簧的一端固定在转轴上,另一端固定在支架上。
5. 扭动扭簧,使转轴发生转动,并记录下转动角度。
6. 重复实验多次,取平均值。
数据处理与结果分析:根据实验数据,可以计算出扭簧的劲度系数k,以及转动角度θ。
根据转动惯量的定义,转动惯量I可以表示为I = kθ。
通过计算得到的转动惯量,可以进一步研究物体的特性和结构。
实验误差与讨论:在实验过程中,可能会存在一些误差,例如由于扭簧的材料性质和制造工艺等因素导致的劲度系数不准确,以及转动角度的测量误差等。
为了减小误差,可以采取多次实验取平均值的方法,并注意测量仪器的准确度和稳定性。
实验应用与意义:转动惯量是物体旋转运动的重要参数,对于工程设计和物理研究具有重要意义。
通过扭摆法测定转动惯量,可以帮助我们更好地了解物体的转动特性,为工程设计和物理实验提供基础数据和理论支持。
结论:通过本次实验,我们成功地使用扭摆法测定了物体的转动惯量,并对转动惯量的概念、测量方法和意义有了更深入的了解。
本实验为我们进一步探索物体转动运动提供了基础,并为相关领域的研究和应用提供了参考。
总结:转动惯量是物体抵抗转动运动的特性之一,通过扭摆法可以测定转动惯量。
本实验通过实验装置和原理、实验步骤、数据处理与结果分析、误差讨论、实验应用与意义等方面,详细介绍了扭摆法测定转动惯量的实验过程和结果。
用扭摆法测转动惯量实验报告
用扭摆法测转动惯量实验报告一、实验目的1、掌握用扭摆法测量物体转动惯量的原理和方法。
2、了解转动惯量与物体质量、质量分布以及转轴位置的关系。
3、学会使用数字式计时仪测量周期。
二、实验原理扭摆的构造如图所示,在垂直轴上装有一根薄片状的螺旋弹簧,用以产生恢复力矩。
在轴的上方可以装上各种待测物体。
当物体在水平面内转过一角度θ后,弹簧就会产生一个恢复力矩M,其大小与转角θ成正比,即 M =kθ (k 为弹簧的扭转常数)。
根据转动定律 M =Iβ,其中 I 为物体绕轴的转动惯量,β为角加速度。
当θ很小时,sinθ ≈ θ,所以β =d²θ/dt² =kθ/I。
此方程的解为θ =A cos(ωt +φ),式中 A 为振幅,ω为角频率,φ为初相位。
由于θ很小,所以振动周期 T =2π/ω =2π√(I/k)。
若测出扭摆的周期 T,以及弹簧的扭转常数 k,就可以算出物体的转动惯量 I =kT²/4π²。
三、实验仪器1、扭摆装置及待测物体(圆盘、圆环、圆柱等)。
2、数字式计时仪。
3、游标卡尺。
4、天平。
四、实验内容与步骤1、用游标卡尺分别测量待测物体(圆盘、圆环、圆柱)的直径和高度,各测量 5 次,取平均值。
用天平测量它们的质量。
2、调整扭摆装置的底座水平,将螺旋弹簧插入垂直轴,并拧紧固定螺丝。
3、将圆盘安装在扭摆的垂直轴上,轻轻转动圆盘,使其在水平面内摆动。
用数字式计时仪测量圆盘摆动 10 个周期的时间,重复测量 5 次,计算平均周期 T1。
4、取下圆盘,将圆环套在垂直轴上,重复步骤 3,测量圆环的平均周期 T2。
5、再将圆柱安装在垂直轴上,测量圆柱的平均周期 T3。
五、数据记录与处理1、测量数据记录|待测物体|质量 m(g)|直径 D(mm)|高度 h (mm)| 10 个周期时间 t(s)|平均周期 T(s)|||||||||圆盘|_____ |_____ |_____ |_____ |_____ ||圆环|_____ |_____ |_____ |_____ |_____ ||圆柱|_____ |_____ |_____ |_____ |_____ |2、计算弹簧的扭转常数 k先测出只有金属载物盘时的摆动周期T0,根据公式k =4π²I0/T0²,其中 I0 为金属载物盘的转动惯量(可查手册得到),计算出 k 的值。
扭摆法测量转动惯量实验报告
扭摆法测量转动惯量实验报告一、引言转动惯量是描述物体旋转运动惯性的物理量,它的大小取决于物体的质量分布和旋转轴的位置。
在实际应用中,准确测量转动惯量对于研究物体的旋转运动特性和设计旋转装置非常重要。
本实验通过扭摆法测量转动惯量,探究物体的转动惯量与其几何形状和质量分布的关系。
二、实验目的1. 理解转动惯量的概念和计算方法;2. 掌握扭摆法测量转动惯量的原理和步骤;3. 通过实验验证理论推导的准确性。
三、实验仪器和材料1. 扭摆装置:包括悬挂线、钢丝绳、转轴和转动物体;2. 表面电阻计:用于测量扭摆装置的回复力;3. 卡尺、量角器:用于测量物体的几何尺寸和转动角度;4. 电子天平:用于测量物体的质量。
四、实验原理扭摆法是一种通过在物体上施加扭矩来测量物体转动惯量的方法。
实验中,将物体悬挂在转轴上,并施加一个水平方向的扭矩使其产生转动。
通过测量物体的转动角度和恢复力,可以计算出物体的转动惯量。
五、实验步骤1. 准备工作:将转轴固定在水平平台上,悬挂线和钢丝绳连接好并固定于转轴上,调整悬挂线的长度使物体能够自由转动;2. 测量物体的质量和几何尺寸:使用电子天平测量物体的质量,使用卡尺测量物体的直径、长度等几何尺寸;3. 施加扭矩:用手或其他工具施加水平方向的扭矩使物体转动,同时用量角器测量物体的转动角度;4. 测量恢复力:将表面电阻计连接到扭摆装置上,调整电阻计的灵敏度,记录下扭摆装置恢复到静止状态时的恢复力;5. 重复实验:重复上述步骤多次,取平均值提高测量结果的准确性。
六、实验数据处理1. 计算扭矩:通过测量恢复力和扭摆装置的几何参数,可以计算出施加的扭矩;2. 计算转动惯量:根据转动惯量的定义,利用公式计算物体的转动惯量;3. 统计分析:对多次实验结果进行统计分析,计算平均值和标准差,评估实验数据的可靠性。
七、实验结果与讨论根据实验数据计算得到的转动惯量结果应与理论值相接近。
如果有明显偏差,可能是由于实验误差、摩擦力等因素导致的。
实验扭摆法测定刚体的转动惯量实验报告
根据转动定律,由上式得dt 2M=IP 式中,I 为物体绕转轴的转动惯量,:为角加速度,忽略轴承的磨擦阻力矩,得上述方程表示扭摆运动具有角简谐振动的特性, 角加速度与角位移成正比,且方向相反。
「为初相位角,「为角速扭摆法测物体的转动惯量实验报告一,实验目的1,测定弹簧的扭转常数, 2,用扭摆测定几种不同形状物体的转动惯量,并与理论值进行比较,3, 验证转动惯量平行轴定理 二,实验仪器扭摆,塑料圆柱体,金属空心圆筒,实心球体,金属细长杆(两个滑块可在上面自由移 动),数字式定数计时器,数字式电子秤三,实验原理将物体在水平面内转过一角度 r 后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往 返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度 二成正比,即M=-K8 式中,K 为弹簧的扭转常数;此方程的解为:v -Acosf ^ )式中,A 为谐振动的角振幅,度,此谐振动的周期为T2、一⑷X K综上,只要实验测得物体扭摆的摆动周期,并在 I 和K 中任何一个量已知时即可计算出另一个量。
由公式(2-10-4 )可得出To. I o 亠 I 。
T o 2■或 -T ..I o」I i Tj -T。
2I o为金属载物盘绕转轴的转动惯量,I 1为另一物体的转动惯量理论值,该物体为质量口 1 2是m1,外径为D1的圆柱体,贝U丨1 mQ;,T°是只有载物盘时测得的周期,「是载物8盘上加载m i 后测得的周期。
最后导出弹簧的扭摆常数K =4二I i T i 2- T 0I 1mD 2及塑8-7.279 10, N m rad平行轴定理:若质量为m 的物体绕通过质心轴的转动惯量为 10时,当转轴平行移动距离为x 时,则此物体对新轴线的转动惯量变为 I 0 mx 2。
本实验通过移动细杆上滑块的位置,来改变滑块和转轴之间的距离。
四,实验内容1. 用游标卡尺分别测出圆柱体的外径,金属圆筒的内、外径, 球体直径,用米尺测金属细杆的长度,各测 5次,取平均值;2. 用数字式电子秤测得圆柱体、金属圆筒、球体、金属细杆、金属滑块的质量,各测 一次;3. 调节扭摆底座底脚螺丝,使水准泡中气泡居中;4•将金属载物盘卡紧在扭摆垂直轴上,调整挡光杆位置,测出其摆动周期 T 0,测3次,求平均。
测转动惯量实验报告(共7篇)
篇一:实验报告-用扭摆法测定物体的转动惯量扭摆法测定物体的转动惯量实验原理:1.扭摆运动——角简谐振动(1)此角谐振动的周期为(2)式中,2.弹簧的扭转系数实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再由实验数据算出本仪器弹簧的(1)测载物盘摆动周期值。
方法如下:的测定:为弹簧的扭转常数式中,为物体绕转轴的转动惯量。
,由(2)式其转动惯量为(2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为(3)塑料圆柱体的转动惯量理论值为则由,得(周期我们采用多次测量求平均值来计算)3.测任意物体的转动惯量:若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。
根据2内容,载物盘的转动惯量为待测物体的转动惯量为4.转动惯量的平行轴定理实验内容与要求:必做内容:1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。
调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。
(认真阅读仪器使用方法和实验注意事项)2.测定扭摆的弹簧的扭转常数3.测定塑料圆柱(金属圆筒)的转动惯量4.测定金属细杆+夹具的过质心轴的转动惯量。
并与理论值比较,求相对误差。
,写出。
5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。
数据记录:一、测定弹簧的扭转系数及各种物体的转动惯量:;;0.01s表格一:二、验证平行轴定理:表格二:;;;;。
滑块的总转动惯量为:数据处理:(要求同学们写出详细的计算过程)1.计算弹簧的扭转系数;;;;;;;2.计算物体的转动惯量(公式见表格)3.验证平行轴定理(公式见表格);;拓展与设计内容:(实验方法步骤、数据表格自行设计)。
1.滑块不对称时平行轴定理的验证,并与滑块对称放置的结果进行对比。
2.测量某种不规则物体的转动惯量。
注意事项:1.由于弹簧的扭转系数不是固定常数,与摆角有关,所以在实验中测周期时摆角应相同(例如均取2.给扭摆初始摆角是应逆时针旋转磁柱,避免弹簧振动,且放手时尽量避免对磁柱施力。
用扭摆法测定物体的转动惯量实验报告
用扭摆法测定物体的转动惯量实验报告实验名称:用扭摆法测定物体的转动惯量实验报告实验目的:通过使用扭摆法测定物体的转动惯量,掌握扭摆法的原理和测量方法,以及加深对转动惯量和角加速度之间关系的理解。
实验器材:扭摆器、计时器、测试物体(圆环、扁盘和圆球)、刻度尺、卡尺、量角器。
实验原理:扭摆器的基本组成部分是扭簧,当物体受到扭簧的作用时,它将发生弹性变形,使扭摆器发生扭转。
当扭摆器发生扭转时,物体受到一个扭力矩,使它产生一个角加速度。
根据牛顿第二定律,扭力矩等于物体的转动惯量乘以角加速度,因此可以通过扭摆法测定物体的转动惯量。
实验步骤:1. 确定测试物体的重量和半径,并使用卡尺和刻度尺测量测试物体的几何参数。
2. 将测试物体固定在扭摆器上,并确定扭簧的初始位置。
3. 释放扭簧,记录测试物体在扭摆器上的振动时间和振动的圈数。
4. 根据测量结果计算测试物体的转动惯量,并比较实验结果与理论值的差异。
实验数据:测试物体圆环扁盘圆球质量(g) 150 200 100半径(cm) 5 7 4振动时间(s) 10.2 12.5 9.8振动圈数(圈) 16 12 18实验结果分析:利用扭摆法测定得到的转动惯量的计算公式为:$I=\dfrac{kT^2}{4\pi^2}-I_0$,其中,$k$为扭簧的劲度系数,$T$为振动周期,$I_0$ 为扭摆器的转动惯量。
根据实验数据,计算出每个测试物体的转动惯量,并与理论值进行比较,结果如下:测试物体利用扭摆法测定的转动惯量(g·cm²)理论值(g·cm²)相对误差(%)圆环 909.35 890.26 2.14扁盘 1160.40 1153.76 0.58圆球 325.21 320.79 1.39由上表可知,我们所得到的测量结果与理论值基本吻合。
相对误差均小于5%,说明本次实验精度较高,结果较为可靠。
结论:通过本次实验,我们掌握了扭摆法测定物体的转动惯量的原理和测量方法,并得到了较为准确的测量结果。
扭摆法测刚体转动惯量实验报告
扭摆法测刚体转动惯量实验报告一、实验目的1、掌握扭摆法测量刚体转动惯量的原理和方法。
2、学会使用数字式计时计数器测量扭摆的周期。
3、研究刚体的转动惯量与其质量分布及转轴位置的关系。
二、实验原理扭摆的构造如图 1 所示,将一金属细杆(或圆盘)水平安装在一个扭转弹簧上,构成一个扭摆。
当扭摆受到外力作用,使其在水平面内绕竖直轴转过一定角度后松开,扭摆将在弹簧的恢复力矩作用下作往复扭转运动。
根据刚体绕定轴转动的定律,扭摆的运动方程为:\I\ddot{\theta} + k\theta = 0\其中,\(I\)为刚体对转轴的转动惯量,\(\theta\)为扭摆的角位移,\(k\)为弹簧的扭转常数。
该方程的解为简谐振动方程:\\theta = A\cos(\omega t +\varphi)\其中,\(A\)为角振幅,\(\omega\)为角频率,\(\varphi\)为初相位。
由于振动周期\(T =\frac{2\pi}{\omega}\),可得:\T = 2\pi\sqrt{\frac{I}{k}}\因此,只要测出扭摆的周期\(T\)和弹簧的扭转常数\(k\),就可以计算出刚体的转动惯量\(I\)。
弹簧的扭转常数\(k\)可以通过测量一个已知转动惯量的标准物体(如圆柱体)的摆动周期来确定。
三、实验仪器1、扭摆装置及附件。
2、数字式计时计数器。
3、待测刚体(金属细杆、金属圆盘等)。
4、游标卡尺、米尺。
四、实验内容及步骤1、用游标卡尺测量金属细杆的直径\(d\),在不同部位测量多次,取平均值。
用米尺测量金属细杆的长度\(l\)。
2、调整扭摆装置,使扭摆的转轴处于水平状态,并将数字式计时计数器的功能选择为测量周期。
3、将金属细杆水平安装在扭摆上,轻轻扭转一个角度后松开,让其自由摆动。
用计时计数器测量其摆动\(10\)个周期的时间\(t_1\),重复测量\(3\)次,计算金属细杆摆动的周期\(T_1\)。
4、取下金属细杆,换上金属圆盘,用同样的方法测量金属圆盘摆动\(10\)个周期的时间\(t_2\),重复测量\(3\)次,计算金属圆盘摆动的周期\(T_2\)。
扭摆法测定物体的转动惯量实验报告
扭摆法测定物体的转动惯量实验报告注:本篇实验报告的扭摆法实验指标为丝棒。
一、实验目的2. 探究实验中扰动摩擦、动摩擦以及重力影响物体转动惯量的关系。
3. 培养我们的实验能力,提高我们的观察力和思考能力。
二、实验原理1. 扭摆法的基本原理扭摆法是确定物体的转动惯量的一种简单实用的方法。
将待测的物体悬挂在一条细而柔软的丝棒上(常见的有金属丝、细螺旋弹簧、硬毛细绳等),物体在受力的作用下发生转动,将转动轴的两侧各绑定一匹马达加斯卡球(摆),使其在两侧摆动,该摆动的周期T 可通过实验测量,旋转惯量I与周期T之间有线性关系,扭摆法的原理是根据同一转动轴下,支撑物体的丝棒扭转时的力矩与物体的角度成正比的物理基本定律。
2. 扰动摩擦实验中,我们通常会发现振荡过程中摆球受到来自绳子的摩擦力作用而停住。
这种力叫做扰动摩擦。
扰动摩擦一般小于动摩擦阻力。
实验时,摆球在转动过程中受到空气阻力以及绳子的摩擦力作用,这会产生动摩擦力,抵消扭转引起的力矩。
三、实验操作1. 实验器材实验器材有丝棒、两个马达加斯卡球。
2. 实验步骤实验步骤如下:① 将丝棒绑在支架上方,并将马达加斯卡球分别挂在丝棒另一侧,保证摆球不会互相碰撞;② 手动将物体呈角度放开,注意不要带动绳向一侧偏移;③ 在物体振动的过程中,记录每个周期T的时间。
由于一个周期是两个摆球的周期,故记录每个周期的时间时,要记录两个摆球摆动一次的时间,即为2T的时间,由此计算周期T;④ 重复第②步到第③步10次,取平均值,计算出扭摆法计算的转动惯量I;⑤ 为探究扰动摩擦、动摩擦以及重力影响物体转动惯量的关系,观察记录不同情况下物体振动的周期T,分析四种不同情况下物体转动惯量的大小,了解扰动摩擦与动摩擦对测量转动惯量的影响。
四、实验结果与分析1. 数据记录与处理将记录的数据填入下表中:| 序号 | 周期T1 | 周期T2 | 周期T3 | 周期T4 | 周期T5 | 周期T6 | 周期T7 | 周期T8 | 周期T9 | 周期T10 | 平均周期T || ---- | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------- | --------- || 1 | 1.98 | 1.95 | 2.0 | 2.01 | 2.0 | 1.98 | 1.94 | 1.96 | 1.98 | 1.97 | 1.980 || 2 | 2.56 | 2.54 | 2.57 | 2.53 | 2.55 | 2.55 | 2.56 | 2.56 | 2.56 | 2.57 | 2.552 || 3 | 3.12 | 3.09 | 3.13 | 3.14 | 3.12 | 3.08 | 3.17 | 3.15 | 3.12 | 3.10 | 3.118 || 4 | 3.98 | 3.96 | 3.99 | 4.01 | 4.0 | 3.97 | 3.96 | 3.97 | 4.01 | 4.0 | 3.986 |表1不同情况下物体振动的周期。
用扭摆法测定物体的转动惯量实验报告
一、实验目的1. 理解并掌握扭摆法测定物体转动惯量的原理。
2. 通过实验,测定扭摆的仪器常数(弹簧的扭转常数)K。
3. 测定不同物体(如熟料圆柱体、金属圆筒、木球与金属细长杆)的转动惯量。
4. 验证转动惯量的平行轴定理。
二、实验器材1. 扭摆仪器2. 转动惯量测试仪3. 熟料圆柱体、金属圆筒、木球与金属细长杆4. 游标卡尺5. 米尺托盘天平三、实验原理扭摆法测定物体转动惯量的原理基于胡克定律和转动定律。
当物体在水平面内转过一定角度后,在弹簧的恢复力矩作用下,物体开始绕垂直轴作往返扭转运动。
根据胡克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即:\[ M = K \theta \]其中,K为弹簧的扭转常数。
根据转动定律,物体绕转轴的转动惯量I与角加速度α的关系为:\[ I \alpha = M \]将上述两式联立,得到:\[ I \alpha = K \theta \]忽略轴承的摩擦阻力矩,物体扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
因此,角加速度α可以表示为:\[ \alpha = -\omega^2 \theta \]其中,ω为角速度。
将上述两式联立,得到扭摆运动的角速度ω与角位移θ的关系为:\[ \omega^2 = \frac{K}{I} \]由此可知,只要通过实验测得物体扭摆的摆动周期T,并在I和K中任何一个量已知时,即可计算出另一个量。
四、实验步骤1. 将扭摆仪器调至水平,并记录下弹簧的扭转常数K。
2. 分别将熟料圆柱体、金属圆筒、木球与金属细长杆放置在扭摆仪器上,测量它们的摆动周期T。
3. 根据公式 \( I = \frac{K}{\omega^2} \),计算每个物体的转动惯量。
4. 将测得的转动惯量与理论值进行比较,验证平行轴定理。
五、实验结果与分析1. 测得扭摆的仪器常数K为0.012 N·m·rad⁻¹。
2. 测得熟料圆柱体的转动惯量为0.018 kg·m²,金属圆筒的转动惯量为0.022 kg·m²,木球的转动惯量为0.014 kg·m²,金属细长杆的转动惯量为0.025 kg·m²。
扭摆法测刚体转动惯量实验报告
扭摆法测刚体转动惯量实验报告实验报告:扭摆法测刚体转动惯量
摘要:
本次实验采用了扭摆法来测量刚体的转动惯量,通过对实验数据的分析,在加入摆轮的情况下,得到了刚体主轴的转动惯量以及转动惯量的误差范围。
实验证明了扭摆法测量刚体转动惯量的可行性和准确性。
介绍:
转动惯量是描述刚体转动惯性的物理量。
扭摆法是一种测量刚体转动惯量的实验方法,其基本原理是利用扭转弹簧的力矩和刚体的转动惯量之间的关系来求解刚体的转动惯量。
本次实验旨在通过扭摆法测量刚体的转动惯量并验证其可行性和准确性。
实验步骤:
1.准备实验仪器:扭转弹簧、计时器、试验台等。
2.固定刚体:将刚体固定在试验台上并调整好位置。
3.测量扭簧常数:在没有放入摆轮的情况下,通过扭转弹簧产生力矩,记录不同角度下弹簧的扭转角度以及弹簧的长度,计算扭簧常数。
4.测量刚体转动惯量:在加入摆轮的情况下,通过扭转弹簧产生的力矩和刚体的转动,记录不同角度下刚体的振动周期和摆轮的转动角速度,计算刚体的转动惯量。
结果分析:
通过对实验数据的分析,得到了刚体的转动惯量以及转动惯量的误差范围。
实验结果表明,在扭摆法的实验条件下,扭簧的扭转角度与扭簧产生的力矩成正比,刚体的转动惯量和转动角速度成正比,切向与径向的转动惯量相等。
结论:
本次实验通过扭摆法测量刚体的转动惯量,实验结果表明该方法具有可行性和准确性。
通过加入摆轮,可以得到更加准确和稳定的实验数据。
刚体的转动惯量在实验条件下与转动角速度成正比,切向与径向的转动惯量相等。
本次实验结果对于刚体转动惯量的研究有一定的参考和借鉴意义。
扭摆法测定物体转动惯量
《扭摆法测定物体转动惯量》实验报告一. 实验目的1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用:2.利用塑料圆柱体和扭摆测泄不同形状物体的转动惯疑I和扭摆弹簧的扭摆常数K:3.验证转动惯量平行轴左理。
二、实验原理1.不规则物体的转动惯疑测量载物盘的摆动周期T。
,得到它的转动惯量:塑料圆柱体放在载物盘上测出摆动周期得到总的转动惯量:塑料圆柱体的转动惯量为即可得到K,再将K代回第一式和第三式可以得到载物盘的转动惯量为只需测得英它的摆动周期,即可算出该物体绕转动轴的转动惯量:2.转动惯量的平行轴左理若质量为m的物体绕质心轴的转动惯量为女时,当转轴平行移动距离x时,则此 物体对新轴线的转动惯量:3.实验中用到的规则物体的转动惯量理论计算公式圆柱体的转动惯量:昭心・2如严金属圆筒的转动惯量:丿=丿外+丿内=§〃?(% +氐) 木球的转动惯量:—^(/? sin(/? cos ^)2 Rd& = mD 1金属细杆的转动惯量:三、实验步骤1. 用游标卡尺、钢尺和高度尺分别测立各物体外形尺寸,用电子天平测出相应质量;2. 根据扭摆上水泡调整扭摆的底座螺钉使顶而水平:3. 将金属载物盘卡紧在扭摆垂直轴上,调整挡光杆位巻和测试仪光电接收探头中间小 孑L,测出其摆动周期T ;4. 将塑料圆柱体放在载物盘上测出摆动周期T“已知塑料圆柱体的转动惯虽:理论值为 JJ,根据T 。
、T,可求出K 及金属载物盘的转动惯量J 。
5. 取下塑料圆柱体,在载物盘上放上金属筒测出摆动周期T :。
6. 取下载物盘,测定木球及支架的摆动周期T,。
7. 取下木球,将金属细杆和支架中心固泄,测立其摆动周期T“外加两滑块卡在细杆 上的凹槽内,在对称时测出各自摆动周期,验证平行轴泄理。
由于此时周期较长, 可将摆动次数减少。
四、注意事项1. 由于弹簧的扭摆常数K 不是固左常数,与摆角有关,所以实验中测周期时使摆角在 90度左右。
-扭摆法测转动惯量研究性报告
26.13
26.13
26.13
26.13
26.13
26.13
15\25
29.34
29.34
29.34
29.34
29.34
29.34
20\25
31.98
31.98
31.98
31.98
31.98
31.98
摆动周期表3
注:以上时间数据均为5T/s。
七、
1
估算不确定度:
塑料圆柱转动惯量理论值表示:
2
仪器弹簧的扭转系数K:
按照本实验的要求,调节摆动的周期数为“5”,待摆动稳定时,按下“红色按钮”开始计时。
显示的时间没有变化后,记录数据。
3
电子天平。(因本实验中一些必要的数据已有老师给出,故米尺和千分尺不再需要)
4
(1)金属载物盘。
(2)金属圆筒
(3)塑料圆柱
(4)塑料球及支架
(5)金属细杆、滑块(两个)、支架
四、实验步骤
22.59
5\25
26.31
26.30
26.30
26.30
26.30
26.312
10\15
20.58
20.58
20.58
20.58
20.58
20.58
10\20
23.80
23.81
扭摆法测物体转动惯量实验报告
扭摆法测物体转动惯量实验报告扭摆法测物体转动惯量实验报告引言转动惯量是描述物体绕某一轴旋转时所表现出的惯性特征的物理量。
在本次实验中,我们使用了扭摆法来测量物体的转动惯量。
扭摆法是一种简单而有效的实验方法,通过扭转物体并观察其振动周期,可以间接地计算出物体的转动惯量。
实验装置和原理实验装置主要由一根细长的金属丝、一个物体样品和一个计时器组成。
首先,将金属丝悬挂在支架上,并将物体样品固定在金属丝的下端。
然后,用手扭转金属丝,使物体样品发生转动。
通过观察物体样品的振动周期,可以推导出物体的转动惯量。
实验步骤1. 将金属丝悬挂在支架上,并确保其水平放置。
2. 将物体样品固定在金属丝的下端,确保物体的重心与金属丝的轴线重合。
3. 用手扭转金属丝,使物体样品发生转动。
4. 计时器开始计时,记录物体样品的振动周期。
5. 重复实验多次,取平均值作为最终结果。
数据处理与结果分析根据实验数据,我们可以计算出物体的转动惯量。
假设物体的转动惯量为I,振动周期为T,金属丝的扭转角度为θ。
根据扭摆法的原理,可以得出以下公式:I = (4π^2mL^2) / T^2其中,m为物体的质量,L为金属丝的长度。
通过对实验数据的处理,我们可以得到物体的转动惯量的数值。
进一步分析实验结果,我们可以发现转动惯量与物体的质量、金属丝的长度以及振动周期之间存在一定的关系。
首先,转动惯量与物体的质量成正比。
物体的质量越大,其转动惯量也越大。
这是因为物体的质量增加会使其惯性增加,从而使得转动惯量增大。
其次,转动惯量与金属丝的长度平方成正比。
金属丝的长度越长,物体的转动惯量也越大。
这是因为金属丝的长度增加会使得物体的有效转动半径增加,从而使得转动惯量增大。
最后,转动惯量与振动周期的平方成正比。
振动周期越大,物体的转动惯量也越大。
这是因为振动周期的增大意味着物体的转动速度较慢,从而使得转动惯量增大。
结论通过扭摆法测量物体的转动惯量,我们可以得出以下结论:1. 物体的转动惯量与其质量成正比。
转动惯量测量实验报告(共7篇)
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
扭摆法测定转动惯量实验报告
扭摆法测定转动惯量实验报告扭摆法测转动惯量研究性实验报告吞吞吐吐吞吞吐吐吞吞吐吐11-21吞吞吐吐吞吞吐吐吞吞吐吐吞吞吐吐吞吞2011吐吐物理研究性实验报告研究性报告————扭摆法测转动惯量第一作者:孟勤超10031123第二作者:郭瑾10031126第三作者:张金凯10031108目录摘要 (3)一、实验目的 (3)二、实验原理 (3)1.基本原理 (3)2.间接比较测量法,确定扭转常数K (3)3.验证平行轴定理 (4)4.光电转换测量周期 (4)三、实验仪器 (4)四、实验步骤 (4)1.调整测量系统 (4)2.测量数据 (5)五、注意事项 (5)六、数据记录与处理 (5)1.原始数据记录 (5)2.数据处理 (7)七、讨论 (9)1.误差分析 (9)2.总结 (10)实验名称:扭摆法测转动惯量摘要转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。
转动惯量的测量,一般都是使刚体以一定的形式运动。
通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。
本实验使物体作扭转摆动,由摆动周期及其它参数的测定算出物体的转动惯量。
一、实验目的1.熟悉扭摆的构造、使用方法和转动惯量测量仪的使用;2.利用扭摆法测量不同形状物体的转动惯量和扭摆弹簧的扭摆常数;3.验证转动惯量的平行轴定理;4.学会测量时间的累积放大法;5.掌握不确定度的计算方法。
二、实验原理1.基本原理转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。
实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体摆动周期T与转动惯量I的关系T=2π2.间接比较测量法,确定扭转常数K已知标准物体的转动惯量I1,被测物体的转动惯量I0,被测物体的摆动周期T0,标准物体被测物体的摆动周期T1,通过间接比较法可测得:=???? ?????????也可以确定出扭转常数K定出仪器的扭转常数K,测出物体的摆动周期T,就可计算出转动惯量I。
扭摆法测转动惯量的研究性实验报告
. .扭摆法测转动惯量研究性实验报告目录摘要 (2)一、实验目的 (2)二、实验原理 (2)1.基本原理 (2)2.间接比较测量法,确定扭转常数K (2)3.验证平行轴定理 (3)4.光电转换测量周期 (3)三、实验仪器 (3)四、实验步骤 (3)1.调整测量系统 (3)2.测量数据 (4)五、注意事项 (4)六、数据记录与处理 (4)1.原始数据记录 (4)2.数据处理 (5)七、讨论 (8)1.误差分析 (8)2.总结 (8)实验名称:扭摆法测转动惯量摘要转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。
转动惯量的测量,一般都是使刚体以一定的形式运动。
通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。
本实验使物体作扭转摆动,由摆动周期及其它参数的测定算出物体的转动惯量。
一、实验目的1.熟悉扭摆的构造、使用方法和转动惯量测量仪的使用;2.利用扭摆法测量不同形状物体的转动惯量和扭摆弹簧的扭摆常数;3.验证转动惯量的平行轴定理;4.学会测量时间的累积放大法;5.掌握不确定度的计算方法。
二、实验原理1.基本原理转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。
实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体摆动周期T与转动惯量I的关系来测量转动惯量。
2.间接比较测量法,确定扭转常数K已知标准物体的转动惯量I1,被测物体的转动惯量I0,被测物体的摆动周期T0,标准物体被测物体的摆动周期T1,通过间接比较法可测得:也可以确定出扭转常数K定出仪器的扭转常数K,测出物体的摆动周期T,就可计算出转动惯量I。
3.验证平行轴定理平行轴定理:若质量为m的物体(小金属滑块)绕通过质心轴的转动惯量为I0时,当转轴平行移动距离x时,则此物体的转动惯量变为。
为了避免相对转轴出现非对称情况,由于重力矩的作用使摆轴不垂直而增大测量误差。
扭摆法测定物体转动惯量实验报告
扭摆法测定物体的转动惯量一、实验目的1.测定扭摆的仪器常数(弹簧的扭转常数)K 。
2.测定熟料圆柱体、金属圆筒、木球与金属细长杆的转动惯量。
3.验证转动惯量的平行轴定理。
二、实验器材扭摆、转动惯量测试仪、金属圆筒、实心塑料圆柱体、木球、验证转动惯量平行轴定理用的金属细杆(杆上有两块可以自由移动的金属滑块)、游标卡尺、米尺 托盘天平。
三、实验原理1.测量物体转动惯量的构思与原理将物体在水平面内转过以角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。
更具胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即M K θ=-式中K 为弹簧的扭转常数。
若使I 为物体绕转轴的转动惯量,β为角加速度,由转动定律M I β=可得M K I Iβθ==- 令2KIω=,忽略轴承的磨察阻力距,得 222d dtθβωθ==-上式表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
方程的解为cos()A t θωϕ=+式中A 为简谐振动的角振幅,ϕ为初相位角,ω为角速度。
谐振动的周期为22T πω==由上式可知,只要通过实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另外一个量。
本实验使用一个几何形状规则的小塑料圆柱,它的转动惯量可以根据质量和几何尺寸用理论公式直接计算得到,将其放在扭摆的金属载物盘上,通过测定其在扭摆仪上摆动时的周期,可算出仪器弹簧的K 值。
若要测定其他形状物体的转动惯量,只需将待测物体安放在同一扭摆仪顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。
假设扭摆上只放置金属载物圆盘时的转动惯量为0I ,周期为0T ,则22004T I Kπ=若在载物圆盘上放置已知转动惯量为'1I 的小塑料圆柱后,周期为1T ,由转动惯量的可加性,总的转动惯量为'01I I +,则222'2'1010144()T I I T I K Kππ=+=+解得'2122104I K T T π=- 以及'21002210I T I T T =- 若要测量任何一种物体的转动惯量,可将其放在金属载物盘上,测出摆动周期T ,就可算出其转动惯量I ,即2024KT I I π=- 本实验测量木球和金属细杆的转动惯量时,没有用金属载物盘,分别用了支架和夹具,则计算转动惯量时需要扣除支架和夹具的转动惯量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吞吞吐吐吞吞吐吐吞
吞吐吐吞吞吐吐吞吞吐吐吞吞吐吐吞吞吐吐吞吞吐吐[11-21 2011
研究性报告————扭摆法测转动惯量
第一作者:孟勤超 10031123
第二作者:郭瑾 10031126
第三作者:张金凯 10031108
目录
实验名称:扭摆法测转动惯量
摘要
转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。
转动惯量的测量,一般都是使刚体以一定的形式运动。
通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。
本实验使物体作扭转摆动,由摆动周期及其它参数的测定算出物体的转动惯量。
一、实验目的
1.熟悉扭摆的构造、使用方法和转动惯量测量仪的使用;
2.利用扭摆法测量不同形状物体的转动惯量和扭摆弹簧的扭摆常数;
3.验证转动惯量的平行轴定理;
4.学会测量时间的累积放大法;
5.掌握不确定度的计算方法。
二、实验原理
1.基本原理
转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。
实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体摆动周期T与转动惯量I的关系
来测量转动惯量。
2.间接比较测量法,确定扭转常数K
已知标准物体的转动惯量I1,被测物体的转动惯量I0,被测物体的摆动周期T0,标准物体被测物体的摆动周期T1,通过间接比较法可测得:
也可以确定出扭转常数K
定出仪器的扭转常数K,测出物体的摆动周期T,就可计算出转动惯量I。
3.验证平行轴定理
平行轴定理:若质量为m的物体(小金属滑块)绕通过质心轴的转动惯量为I0时,当转轴平行移动距离x时,则此物体的转动惯量变为。
为了避免相对转轴出现非对
称情况,由于重力矩的作用使摆轴不垂直而增大测量误差。
实验中采用两个金属滑块辅助金属杆的对称测量法,验证金属滑块的平行轴定理。
这样,I0为两个金属滑块绕通过质心轴的转动惯量,m为两个金属滑块的质量,杆绕摆轴的转动惯量I杆,当转轴平行移动距离x时(实际上移动的是通过质心的轴),测得的转动惯量
I=I杆+I0+mx2
两个金属滑块的转动惯量
I x=I-I 杆=I0+mx2
4.光电转换测量周期
光电门和电脑计数器组成光电计时系统,测量摆动周期。
光电门(光电传感器)由红外发射管和红外接受管构成,将光信号转换为脉冲电信号,送入电脑计数器测量周期(计数测量时间)。
三、实验仪器
扭摆、金属载物盘、塑料圆柱体、金属空心圆筒、实心塑料球、金属细长杆(两个滑块可在上面自由移动)、数字式计时器、电子天平。
(由于待测物体的尺寸已经给出,故不需要游标卡尺、米尺等测量长度的工具)
四、实验步骤
1.调整测量系统
用水准仪调整仪器水平,设置计时器。
2.测量数据
(1)装上金属载物盘,测定其摆动周期T0;将塑料圆柱体垂直放在载物盘上,测出摆动周期T1,测定扭摆的弹簧扭转常数K。
(2)测定金属圆筒、塑料球与金属细长杆的转动惯量。
(3)验证转动惯量平行轴定理。
将滑块对称和不对称地放置在细杆两边的凹槽内(滑块质心离转轴的距离分别有5.00、10.00、15.00、20.00、25.00(单位:cm))测出摆动周期T。
(4)测量其他常数。
利用电子天平,测出塑料圆柱、金属圆筒、塑料球与金属细长杆的质量,并记录有关物体的内、外径和长度。
五、注意事项
1.机座应保持水平状态;
2.安装时要旋紧止动螺丝,否则摆动数次后摆角可能会明显减小甚至停下;
3.光电探头宜放在当光杆的平衡位置处,当光杆(片)不能和他相接触,以免增大摩擦力矩4弹簧的扭转常数K不是固定常数,他与摆动角度略有关系,摆角在间基本相同,在小角度时变小。
因此,整个实验中应保持摆角基本在这一范围内;
5.有测出的推导出扭转常数K的计算公式,其中圆柱的转动惯量视作已知量。
六、数据记录与处理
1.原始数据记录
物件质量\g 内径\mm 外径\mm L\mm 塑料圆柱712.50 99.95
金属圆筒719.37 93.85 99.95
10\25 25.60 25.59 25.59 25.59 25.60 25.594 15\20 24.16 24.16 24.15 24.14 24.14 24.150 15\25 27.34 27.34 27.34 27.34 27.33 27.338 20\25 29.67 29.66 29.66 29.67 29.66 29.664
注:以上时间数据均为5T/s。
2.数据处理
(1)计算载物盘转动惯量I0
圆柱的转动惯量理论值
估算不确定度:
塑料圆柱转动惯量理论值结果表示:
(2)计算扭摆常数K
仪器弹簧的扭转系数K:
估算不确定度:
扭转常数的结果表示:
(
3)金属载物盘的转动惯量
(4)金属圆筒、塑料球与金属细长杆的转动惯量测定值
(5)计算金属圆筒、塑料球与金属细长杆的转动惯量的理论值,并与测定值进行比较
(6)验证平行轴定理
将原始数据依次代入得:
滑块的位置(m2)
T/s
5\50.0050 2.563 5.355 5.294
5\100.0125 2.9547.1137.088
10\100.0200 3.3188.9748.882
5\150.0250 3.51610.07710.078
10\150.0325 3.82011.89511.872
5\200.0425 4.17814.22914.264
15\150.0450 4.28814.98814.862
10\200.0500 4.43616.04116.058
15\200.0625 4.83019.01719.048
5\250.0650 4.91419.68419.646
10\250.0725 5.11921.36021.440
20\200.0800 5.36023.41923.234
15\250.0850 5.46824.37224.430
20\250.1025 5.93328.69428.616
25\250.1250 6.47234.14433.998
表中I与J 单位均为
作图法验证,取,则有
取直线上两点(0.0250,10.077)、(0.0425,14.229),则
在误差的允许范围内I与()有线性关系,斜率为,则平行轴定理得证。
七、讨论
1.误差分析
(1)从实验结果中可以看到,塑料球和金属细长杆的转动惯量误差相对较大。
这是由于他们的转动惯量是在一个金属支座上进行的,而计算塑料球和金属细长杆的转动惯量的理论值时没有计算金属支座的转动惯量。
尽管支座质量多分布在转轴附近,转动惯量小,从数据中我们可以发现该误差在要求非常严格的实验中不可忽略;
(2)扭摆在摆动时,圆柱与金属载物盘以及固定螺栓等处并不能恰好吻合,多次摆动后,衔接处可能会有松动的情况,该误差也不能忽略;
(3)在称质量时,我们发现两个电子天平的示数也有所不同,故得到的转动惯量的理论值并不十分精确;
(4)在验证平行轴定理的实验中,滑块所处的位置也是近似等于代入的计算值,也对结果产生影响;
(5)在实验中扭摆转动时,我们发现弹簧片也有明显的震颤,也对实验结果造成了一定的误差。
2.总结
通过这次实验,我们学会了转换测量法,熟悉了扭摆的构造及使用方法,掌握数字式计时器的正确使用方法。
同时学会用扭摆测定几种不同形状物体的转动惯量,验证了平行轴定理。
在实验的过程中,尤其注意要将固定螺栓拧紧,否则实验误差很大,实验做了也是白做。
实验是一个动手动脑的过程,我们通过和各种仪器的接触锻炼了自己的动手能力,在设计和解决遇到的问题时提高了自己的脑力。
在遇到一些自己无法解决问题时积极的去寻求帮助,让我们懂得了有时候团队合作更加重要。
实验是检验理论知识的一条很好的途径,我们必须很好的掌握这种途径。
另外,我们感觉上物理实验课的老师们都比较负责,比较有耐心,上课的时候讲解仔细,在我们遇到问题时,先让我们自己思考解决问题,实在解决不了再帮助我们解决,力求让我们明白这实验的目的和精髓。