枚举法解应用题(汇编)

合集下载

计数枚举法经典例题讲解【三篇】

计数枚举法经典例题讲解【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。

以下是为⼤家整理的《计数枚举法经典例题讲解【三篇】》供您查阅。

【第⼀篇】例4 印刷⼯⼈在排印⼀本书的页码时共⽤1890个数码,这本书有多少页?(适于四年级程度) 解:(1)数码⼀共有10个:0、1、2……8、9。

0不能⽤于表⽰页码,所以页码是⼀位数的页有9页,⽤数码9个。

(2)页码是两位数的从第10页到第99页。

因为99-9=90,所以,页码是两位数的页有90页,⽤数码: 2×90=180(个) (3)还剩下的数码: 1890-9-180=1701(个) (4)因为页码是三位数的页,每页⽤3个数码,100页到999页,999-99=900,⽽剩下的1701个数码除以3时,商不⾜600,即商⼩于900。

所以页码是3位数,不必考虑是4位数了。

往下要看1701个数码可以排多少页。

1701÷3=567(页) (5)这本书的页数: 9+90+567=666(页) 答略。

【第⼆篇】 例5 ⽤⼀根80厘⽶长的铁丝围成⼀个长⽅形,长和宽都要是5的倍数。

哪⼀种⽅法围成的长⽅形⾯积?(适于四年级程度)解:要知道哪种⽅法所围成的⾯积,应将符合条件的围法⼀⼀列举出来,然后加以⽐较。

因为长⽅形的周长是80厘⽶,所以长与宽的和是40厘⽶。

列表3-1:表3-1表3-1中,长、宽的数字都是5的倍数。

因为题⽬要求的是哪⼀种围法的长⽅形⾯积,第四种围法围出的是正⽅形,所以第四种围法应舍去。

前三种围法的长⽅形⾯积分别是:35×5=175(平⽅厘⽶)30×10=300(平⽅厘⽶)25×15=375(平⽅厘⽶)答:当长⽅形的长是25厘⽶,宽是15厘⽶时,长⽅形的⾯积。

【第三篇】例6 如图3-2,有三张卡⽚,每⼀张上写有⼀个数字1、2、3,从中抽出⼀张、两张、三张,按任意次序排列起来,可以得到不同的⼀位数、两位数、三位数。

枚举算法经典例题

枚举算法经典例题

枚举算法经典例题一、以下哪个问题适合使用枚举算法解决?A. 查找一个无序数组中的最大值B. 求解旅行商问题(TSP)的最短路径C. 生成一个集合的所有子集D. 对一个有序数组进行二分查找(答案)C二、在使用枚举算法生成一个长度为n的二进制串的所有可能组合时,时间复杂度为多少?A. O(n)B. O(n!)C. O(2n)D. O(n2)(答案)C三、枚举算法在解决以下哪个问题时,可能会因为问题规模过大而变得不实际?A. 找出一个字符串中的所有字符排列B. 计算一个数的阶乘C. 验证一个数是否为素数D. 求解一个50x50的棋盘上的骑士周游问题(答案)D四、以下哪个不是枚举算法的特点?A. 简单易实现B. 适用于所有问题C. 可能产生大量计算D. 通常用于小规模问题(答案)B五、在使用枚举算法解决排列问题时,如果要对n个元素进行排列,总共会有多少种不同的排列方式?A. nB. n!C. 2nD. n2(答案)B六、以下哪个问题不适合直接使用枚举算法解决,因为其解空间太大?A. 找出一个数组中所有元素的和B. 求解一个密码的所有可能组合(密码长度为10,字符集为大小写字母和数字)C. 找出一个字符串中的最长回文子串D. 计算一个数的平方根(精确到小数点后10位)(答案)B七、枚举算法在解决组合问题时,如果要从n个元素中选出k个元素,总共会有多少种不同的组合方式?A. nkB. k!C. C(n, k) = n! / (k!(n-k)!)D. 2n(答案)C八、以下哪个场景是枚举算法的典型应用?A. 大规模数据的排序B. 图的遍历C. 查找一个数是否在有序数组中D. 生成并检查所有可能的解以找到满足条件的解(答案)D。

小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)小学数学《常规应用题的解法——枚举法》练习题(含答案)在小学数学中,常规应用题是我们在学习数学的过程中经常会遇到的一种题型。

而枚举法则是解决常规应用题的一种常见方法。

本文将通过一系列练习题,帮助小学生们更好地理解和掌握枚举法的解题技巧。

练习题一:小明买苹果小明从超市买了6个苹果,每个苹果的重量都不相同。

他想从中选择两个苹果,使得这两个苹果的重量之和恰好等于10克。

请问小明有多少种选择的可能性?解法:首先我们需要列举出所有的可能情况:(1, 9), (2, 8), (3, 7), (4, 6), (5, 5)共有5种选择的可能性。

练习题二:小华的生日礼物小华过生日了,他爸爸送给他3个盒子作为礼物,里面分别装着红、黄、蓝三种颜色的贴纸。

小华每次可以从一个或多个盒子中任意选择贴纸,但是每种颜色的贴纸只能拿一次,问小华一共有多少种选择的方式?解法:对于每个盒子,小华可以选择拿或不拿,所以对于三个盒子就有2^3种选择的方式。

但是,每个盒子至少要拿一个贴纸,所以我们需要减去只拿空盒子的情况,剩下的就是不同选择的方式。

2^3 - 1 = 7小华一共有7种选择的方式。

练习题三:买水果小明去水果店买水果,他买了6个苹果,4个橙子和3个香蕉。

他打算把这些水果分给他的两个朋友,每人至少分到一个水果,并且每个人分到的水果数目不能相同。

请问他有多少种分法?解法:首先,我们先找出所有可能的分法。

(1, 1, 6, 4, 3)(1, 2, 5, 4, 3)(1, 2, 6, 3, 4)(1, 3, 4, 2, 6)(1, 3, 4, 6, 2)(1, 3, 6, 2, 4)(1, 4, 3, 2, 6)(1, 4, 3, 6, 2)共有8种分法。

练习题四:座位安排现在有6个小朋友,他们要坐在一张圆桌周围,每个位置只能坐一个人。

其中小明和小华是好朋友,他们希望他们之间至少有一个空位。

分类枚举经典讲解和练习题(经典完整版)

分类枚举经典讲解和练习题(经典完整版)

分类枚举经典讲解和练习题小芳为了给灾区儿童捐款,把储蓄罐里的钱全拿了出来。

她想数数有多少钱。

小朋友,你知道小芳是怎么数的吗?小芳是个聪明的孩子,她把钱按1分、2分、5分、1角、2角、5角、1元等分类去数。

所以很快就好了。

小芳数钱,用的就是分类枚举的方法。

这是一种很重要的思考方法,在很多问题的思考过程中都发挥了很大的作用。

下面就让我们一起来看看它的本领吧!例题与方法例1.右图中有多少个三角形?例2.右图中有多少个正方形?例3.在算盘上,用两粒珠子可以表示几个不同的三位数?分别是哪几个数?例4.用数字1,2,3可以组成多少个不同的三位数?分别是哪几个数?例5.往返于南京和上海之间的泸宁高速列车沿途要停靠常州、无锡、苏州三站。

问:铁路部门要为这趟车准备多少种车票?例6.小明有面值为3角、5角的邮票各两枚。

他用灾些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数)?例7.有一种用6位数表示日期的方法。

例如,用940812表示1994年8月12日。

用这种方法表示1991年全年的日期,那么全年中6位数字都不相同的日期共有多少天?练习与思考1.下图中有多少个三角形?(1)(2)2.右图中有多少个长方形?3.用0,1,2,3可组成多少个不同的三位数?4.从北京到南京的特快列车,中途要停靠9个站。

在几种不同标价的车票?5.用3张10元和2张50元一共可以组成多少咱币值(组成的钱数)?6.中、日、韩进行四国足球赛。

每两队踢一场。

按积分排名次,一共踢多少场?7.丽丽有红、蓝、黑帽子各一顶,红蓝、黑围巾各一条。

冬天,丽丽每天戴一顶帽子、围一条围巾,有几种不同的搭配方式?8.用例7的方法表示1994年的日期,6位数字各不相同的共有多少天?。

(完整版)小学奥数枚举法题及答案【三篇】

(完整版)小学奥数枚举法题及答案【三篇】

小学奥数枚举法题及答案【三篇】导读:本文小学奥数枚举法题及答案【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【篇一】枚举法问题在一个圆周上放了1个红球和1994个黄球。

一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。

你知道这时圆周上还剩下多少个黄球吗?答案与解析:根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。

在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。

他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。

因为在上一圈操作时,排在这498个黄球中最后一个位置上的黄球没有被取走,所以他再进行操作时,第一个被取走的就是那个红球,这时,他的操作停止,圆周上剩下249个黄球。

【篇二】在一个圆周上放了1个红球和1994个黄球。

一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。

你知道这时圆周上还剩下多少个黄球吗? 答案与解析:根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。

在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。

小学四年级数学 枚举法解应用题

小学四年级数学 枚举法解应用题

小学四年级数学讲义第十一讲枚举法解应用题
1、有2 分和5 分两种硬币,要拿出5 角钱,可以有几种方法?
2、从1~8这8 个数字中,每次取两个数,要使它们的和大于8,有多少和取法?
3、在所有的两位数中,任取两个,它们的和仍为两位数,有多少种不同的组合?
4、走廊里装有8盏灯,为了节约用电又不影响照明,要求关闭其中的4盏,但不能关闭相邻的灯,有几种方法?
5、有3个相同的小球放在A、B、C三个口袋中,共有多少种不同的放法?
6、有足够多的写有4和5的卡片相加,可以得到无穷多的和,用这种卡片不能凑成的最大自然数是几?
7、A、B、C 三个自然数的乘积是6,求A、B、C三个自然数分别可能是几?
(A、B、C可以是不同的数,也可以是相同的数。


8、甲、乙、丙、丁四人共有图书38本,已知乙比甲的一半多1本,丙比乙的一半多1本,丁比丙的一半多1本,甲、乙、丙、丁各有图书多少本?
9、用5 个1×2的小矩形卡片覆盖一个2×5的大矩形,共有多少种不同的覆盖方法?
10、甲、乙两人进行网球比赛,五局三胜,已知甲胜了第一局并最终获胜,问各局的胜负情况有多少种可能?
11、在700以内找一个自然数,使这个自然数,是三个不同奇数的立方和且是11的倍数。

12、求由偶数数码(不包括0)组成,且能被13整除的最小三位数。

13、四个互不相等的自然数,其中任意两个数的和可以被它们的差整除,这四个自然数之和最小是多少?。

(12)用枚举法解题

(12)用枚举法解题

(12)用枚举法解题【知识精读】有一类问题的解答,可依题意一一列举,并从中找出规律。

列举解答要注意:① 按一定的顺序,有系统地进行;② 分类列举时,要做到既不重复又不违漏;③ 遇到较大数字或抽象的字母,可从较小数字入手,由列举中找到规律。

【分类解析】例1 如图由西向东走,从A 处到B 处有几 解:我们在交叉路上有顺序地标上不同走法的数目,例如 从A 到C 有三种走法,在C 处标上3, 从A 到M (N )有3+1=4种, 从A 到P 有3+4+4=11种,这样逐步累计到B ,可得1+1+11=13(种走法)例2 写出由字母X ,Y ,Z 中的一个或几个组成的非同类项(系数为1)的所有四次单项式。

解法一:按X 4,X 3,X 2,X ,以及不含X 的项的顺序列出(如左)解法二:按X →Y →Z →X 的顺序轮换写出(如右)X 4 , X 4 , Y 4 , Z 4X 3Y , X 3Z , X 3Y , Y 3Z , Z 3XX 2Y 2, X 2Z 2, X 2YZ , X 3Z , Y 3X , Z 3YXY 3, XZ 3, XY 2Z , XYZ 2, X 2Y 2, Y 2Z 2 , Z 2X 2Y 4, Z 4 Y 3Z , Y 2Z 2, YZ 3。

X 2YZ , Y 2ZX , Z 2XY解法三:还可按3个字母,2个字母,1个字母的顺序轮换写出(略)例3 讨论不等式ax<b 的解集。

当a>0时,解集是x<a , 当a<0时,解集是x>a, 当a=0,b>0时,解集是所有学过的数,当a=0,b ≤0时,解集是空集(即无解)例4 如图把等边三角形各边4等分,分别连结对应点,试计算图中所有的三角形个数 解:设原等边三角形边长为4个单位,则最小的等边三角形边长是1个单位,再按顶点在上△和顶点在下▽两种情况,逐一统计:边长1单位,顶点在上的△有:1+2+3+4=10边长1单位,顶点在下的▽有:1+2+3=613A B边长2单位,顶点在上的△有:1+2+3=6边长2单位,顶点在下的▽有:1边长3单位,顶点在上的△有:1+2=3边长4单位,顶点在上的△有:1合计共27个【实战模拟】1. 己知x ,y 都是整数,且xy=6,那么适合等式解共___个,它们是___2. a+b=37,适合等式的非负整数解共___组,它们是__________3. xyz=6,写出所有的正整数解有:_____4. 如图线段AF 上有B ,C ,D ,E 四点,试分别写出以A ,B ,C ,D ,E 为一端且不重复的所有线段,并统计总条数。

二年级奥数枚举法试题

二年级奥数枚举法试题

二年级奥数枚举法试题一、枚举法试题。

1. 小明有3件不同的上衣,2条不同的裤子,小明一共有多少种不同的穿法?- 解析:我们可以用枚举法来解决这个问题。

上衣分别设为A、B、C,裤子设为1、2。

那么穿法有:A1、A2、B1、B2、C1、C2,一共3×2 = 6种不同的穿法。

2. 用1、2、3这三个数字可以组成多少个不同的三位数?- 解析:百位上是1时,有123和132;百位上是2时,有213和231;百位上是3时,有312和321。

所以一共可以组成6个不同的三位数。

3. 从1 - 5这五个数字中,每次取两个不同的数字相加,能得到多少个不同的和?- 解析:1 + 2=3,1+3 = 4,1+4 = 5,1+5 = 6,2 + 3=5(与前面重复舍去),2+4 = 6(与前面重复舍去),2+5 = 7,3+4 = 7(与前面重复舍去),3 + 5=8,4+5 = 9。

所以能得到3、4、5、6、7、8、9共7个不同的和。

4. 有5个小朋友,每两个人握一次手,一共要握多少次手?- 解析:设这5个小朋友为A、B、C、D、E。

A小朋友要和B、C、D、E握手,共4次;B小朋友已经和A握过了,所以B要和C、D、E握手,共3次;C小朋友已经和A、B握过了,所以C要和D、E握手,共2次;D小朋友已经和A、B、C握过了,所以D要和E握手,共1次。

所以一共握手4+3+2 + 1=10次。

5. 把7个相同的苹果放在3个不同的盘子里,每个盘子至少放1个,有多少种不同的放法?- 解析:可以这样枚举:(1,1,5)、(1,2,4)、(1,3,3)、(2,2,3),共4种不同的放法。

6. 用0、1、2、3能组成多少个没有重复数字的两位数?- 解析:当十位是1时,有10、12、13;当十位是2时,有20、21、23;当十位是3时,有30、31、32。

一共9个没有重复数字的两位数。

7. 有红、黄、蓝三种颜色的小旗各一面,从中选用1面或2面升上旗杆,分别用来表示一种信号。

小学五年级数学枚举法练习题

小学五年级数学枚举法练习题

小学五年级数学枚举法练习题枚举法是一种解决数学问题的方法,通过列举可能的情况,排除不符合条件的答案,找到满足条件的答案。

在小学五年级数学学习中,枚举法被广泛用于解决各种问题。

本文将为大家提供一些小学五年级数学枚举法练习题,帮助同学们熟悉和掌握这一解题方法。

1. 鸡兔同笼问题一只笼子里有鸡和兔子,共有26只脚,共有10个头,请问鸡和兔子各有多少只?解:我们设鸡的数量为x,兔子的数量为y。

根据题意,我们可以列出以下方程:x + y = 10 (1)2x + 4y = 26 (2)通过枚举法,我们可以列举出可能的解:当x = 1时,方程(1)变为:1 + y = 10,解得y = 9。

由方程(2)可知此时总脚数为2 + 4 × 9 = 38,与题意不符。

当x = 2时,方程(1)变为:2 + y = 10,解得y = 8。

由方程(2)可知此时总脚数为2 × 2 + 4 × 8 = 36,与题意不符。

当x = 3时,方程(1)变为:3 + y = 10,解得y = 7。

此时总脚数为2 × 3 + 4 × 7 = 34,与题意不符。

当x = 4时,方程(1)变为:4 + y = 10,解得y = 6。

此时总脚数为2 × 4 + 4 × 6 = 32,与题意不符。

当x = 5时,方程(1)变为:5 + y = 10,解得y = 5。

此时总脚数为2 × 5 + 4 × 5 = 30,与题意符合。

因此,鸡的数量为5只,兔子的数量为5只。

2. 铅笔盒问题一个铅笔盒里有红、黄、蓝三种颜色的铅笔,共有12支铅笔。

其中红色铅笔的数量是黄色铅笔数量的两倍,而蓝色铅笔的数量又是红色和黄色铅笔数量之和的两倍。

请问各种颜色的铅笔分别有多少支?解:我们设红色铅笔的数量为x,黄色铅笔的数量为y,蓝色铅笔的数量为z。

根据题意,我们可以列出以下方程:x + y + z = 12 (1)x = 2y (2)z = 2(x + y) (3)通过枚举法,我们可以列举出可能的解:当x = 2时,方程(2)变为:2 = 2y,解得y = 1。

枚举法经典例题

枚举法经典例题

一、选择题1.题目:一个骰子有六个面,每个面上的点数分别为1、2、3、4、5、6。

现在投掷这个骰子一次,问出现点数为偶数的概率是多少?A.1/6B.1/3C.1/2(正确答案)D.2/32.题目:一个密码箱有4个数字转盘,每个转盘上有0-9共10个数字。

若某人只记得密码是由不同的数字组成,但不记得具体顺序,问此人最多需尝试多少次才能确保打开密码箱?A.10000B.5040(正确答案)C.2400D.1203.题目:某班级有10名学生,需要选出3名学生参加学校的数学竞赛。

如果甲和乙两名学生不能同时被选上,那么一共有多少种不同的选法?A.108B.112C.120(正确答案)D.1404.题目:一个正方体有6个面,每个面上分别写有数字1、2、3、4、5、6。

现在将这个正方体任意投掷,问出现数字小于4的面的概率是多少?A.1/2(正确答案)B.1/3C.1/4D.2/35.题目:从1到100的自然数中,任取一个数,求取到的数是7的倍数或者含有7的数字的概率是多少?A.0.14B.0.19(正确答案)C.0.21D.0.266.题目:一个足球队有11名队员,其中包括队长和副队长。

现在要从这11名队员中选出3名队员参加一个访谈节目,要求队长和副队长不能同时被选上,问有多少种不同的选法?A.140B.150C.160D.165(正确答案)7.题目:一个口袋中有5个红球和3个白球,从中任意摸出一个球,记下颜色后放回,再摸出一个球。

问两次都摸到红球的概率是多少?A.1/4B.9/16C.25/64(正确答案)D.5/88.题目:某班级有8名学生,需要分成两组进行辩论,每组4人。

如果甲和乙两名学生必须分在同一组,那么一共有多少种不同的分组方法?A.30B.35(正确答案)C.40D.45。

小学奥数枚举法题及答案

小学奥数枚举法题及答案

小学奥数枚举法题及答案【三篇】【篇一】枚举法问题在一个圆周上放了1个红球和1994个黄球。

一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。

你知道这时圆周上还剩下多少个黄球吗?答案与解析:根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。

在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。

他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。

因为在上一圈操作时,排在这498个黄球中最后一个位置上的黄球没有被取走,所以他再进行操作时,第一个被取走的就是那个红球,这时,他的操作停止,圆周上剩下249个黄球。

【篇二】在一个圆周上放了1个红球和1994个黄球。

一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。

你知道这时圆周上还剩下多少个黄球吗?答案与解析:根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。

在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。

他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。

三年级简单枚举法解题

三年级简单枚举法解题

三年级简单枚举法解题一、简单枚举法题目及解析。

1. 题目:小明有3件不同的上衣,2条不同的裤子,他有多少种不同的穿法?- 解析:- 我们可以用枚举法来解决。

当选择第一件上衣时,可以搭配2条不同的裤子,这样就有2种穿法;当选择第二件上衣时,同样可以搭配2条不同的裤子,又有2种穿法;当选择第三件上衣时,还是可以搭配2条不同的裤子,再有2种穿法。

- 所以总的穿法有2 + 2+2=3×2 = 6种。

2. 题目:用1、2、3这三个数字能组成多少个不同的三位数?- 解析:- 百位上是1时,组成的数有123、132;百位上是2时,组成的数有213、231;百位上是3时,组成的数有312、321。

- 一共可以组成2 + 2+2 = 6个不同的三位数。

3. 题目:从甲地到乙地有2条路可走,从乙地到丙地有3条路可走,从甲地到丙地有多少种不同的走法?- 解析:- 从甲地到乙地的第一条路,到乙地后再去丙地有3种走法;从甲地到乙地的第二条路,到乙地后再去丙地又有3种走法。

- 所以从甲地到丙地不同的走法有3+3 = 2×3=6种。

4. 题目:有红、黄、蓝三种颜色的小旗各一面,从中选用1面或2面升上旗杆,分别用来表示一种信号。

一共可以表示多少种不同的信号?- 选1面小旗时,有红、黄、蓝3种信号;选2面小旗时,有红黄、红蓝、黄蓝3种信号。

- 总共可以表示3 + 3=6种不同的信号。

5. 题目:有3个小朋友,每两个人握一次手,一共握几次手?- 解析:- 设三个小朋友为A、B、C。

A和B握一次手,A和C握一次手,B和C握一次手。

- 一共握1+1 + 1=3次手。

6. 题目:用0、1、2这三个数字能组成多少个不同的两位数(数字不能重复)?- 解析:- 十位上是1时,组成的两位数有10、12;十位上是2时,组成的两位数有20、21。

- 一共能组成2+2 = 4个不同的两位数。

7. 题目:从1 - 9这9个数字中,每次取2个数字,这两个数字的和大于10,有多少种取法?- 解析:- 两个数为9和2、9和3、9和4、9和5、9和6、9和7、9和8;8和3、8和4、8和5、8和6、8和7;7和4、7和5、7和6;6和5。

分类枚举奥数题目

分类枚举奥数题目

分类枚举
注意:1、合理分类,不能遗漏.
2、枚举要清,要将每一个符合条件的对象列举出来。

1、用4、7、8这三个数字,可以组成多少个没有重复数字的三位数,它们有哪
些?其中最大的数和最小的数各是多少?
2、用0、
3、5可以组成多少个不同的三位数?
3、从A地到B地,有3条公路直达,从B地到C地有两条铁路直达。

从A地经
B地到C地有多少种不同走法?
4、往返于长沙到北京的T1次列车,沿途要停靠岳阳、武昌、郑州三个车站。


问铁路部门要为这趟列车准备多少种门票?
5、六个队进行排球赛,每两队比赛一场,共要进行多少场比赛?
6、六年级(1)、(2)、(3)、(4)班举行篮球赛,每两个队打一场,一共要赛多少场?
7、文具店有3种不同的书包,4种不同的文具盒,妈妈想给聪聪买一个书包和
文具盒,共有多少种不同买法?
8、有8位小朋友,在寒假中要互相通一次电话,他们一共要打多少次电话?
9、乐乐有2件不同的上衣,3双不同的鞋,4条不同的裤子,最多可搭配多少种
不同的装束?
10、幼儿园把一批糖果分给中班的小朋友,中班的男生、女生共15人,如果
只分给男生,每人3颗余4颗,如果只分给女生,每人5颗余1颗。

请问这批糖果有多少颗?
11、一个灯架上有红、黄、绿三盏灯。

不同的亮灯方式可以表示不同的信号,
这个灯架上的灯一共可以表示多少种不同的信号?
12、有一架天平和1克、2克、5克的砝码各一个,用这三个砝码在天平上能
称出几种不同重量的物体?(砝码只放在天平的同一边)。

三年级奥数—简单枚举

三年级奥数—简单枚举

三年级奥数训练——简单枚举姓名:思维训练:运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

关键是要正确分类,注意一下两点:一是分类要齐全,不能造成遗漏;二是枚举要清楚,要将每一个符合条件的对象都列举出来。

经典例题:例题1从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?练习一从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。

从甲地到丙地有多少种不同走法?例题2用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?练习二用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?○○○例题3 一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?练习三一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?例题4有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?练习四6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?例题5一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?练习五上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?课堂练习1、明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?2、用2、3、5、7四个数字,可以组成多少个不同的四位数?3、3个自然数的乘积是18,问由这样的3个数所组成的数组有多少个?如(1,2,9)就是其中的一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,9)和(2,9,1)是同一数组。

4、小芳出席由19人参加的联欢会,散会后,每两人都要握一次手,他们一共握了多少次手?5、在长江的某一航线上共有6个码头,如果每个起点终点只许用一种船票(中间至少要相隔2个码头),那么这样的船票共有多少种?课外练习1、新华书店有3种不同的英语书,4种不同的数学读物销售。

小学奥数计数枚举法经典例题讲解【三篇】

小学奥数计数枚举法经典例题讲解【三篇】

小学奥数计数枚举法经典例题讲解【三篇】解:看图3-3,可以断定粮食不能集中在1号和2号粮站。

下面将运到3号、4号、5号粮站时所用的运费一一列举,并比较。

(1)如果运到3号粮站,所用运费是:0.5×10×(10+10)+0.5×20×10+0.5×40×(10+10)=100+100+400=600(元)(2)如果运到4号粮站,所用运费是:0.5×10×(10+10+10)+0.5×20×(10+10)+0.5×30×10+0.5×40×10=150+200+150+200=700(元)(3)如果运到5号粮站,所用费用是:0.5×10×(10+10+10+10)+0.5×20×(10+10+10)+0.5×30×(10+10)=200+300+300=800(元)800>700>600答:集中到第三号粮站所用运费最少。

【第二篇】例8 小明有10个1分硬币,5个2分硬币,2个5分硬币。

要拿出1角钱买1支铅笔,问可以有几种拿法?用算式表达出来。

(适于五年级程度)解:(1)只拿出一种硬币的方法:①全拿1分的:1+1+1+1+1+1+1+1+1+1=1(角)②全拿2分的:2+2+2+2+2=1(角)③全拿5分的:5+5=1(角)只拿出一种硬币,有3种方法。

(2)只拿两种硬币的方法:①拿8枚1分的,1枚2分的:1+1+1+1+1+1+1+1+2=1(角)②拿6枚1分的,2枚2分的:1+1+1+1+1+1+2+2=1(角)③拿4枚1分的,3枚2分的:1+1+1+1+2+2+2=1(角)④拿2枚1分的,4枚2分的:1+1+2+2+2+2=1(角)⑤拿5枚1分的,1枚5分的:1+1+1+1+1+5=1(角)只拿出两种硬币,有5种方法。

奥数教程(第八版)四年级 第12讲 用枚举法解应用题

奥数教程(第八版)四年级 第12讲 用枚举法解应用题
小学 (第八版)
经典例题精讲 四年级
第12讲 用枚举法解应用题
主讲老师: Mathematical Olympiad Tutorial
第12讲 用枚举法解应用题
例1 有三张数字卡片,分别为 4 , 9 , 0 。 从中挑出两张排成一个两位数,一共可以排 成多少个两位数?
第12讲 用枚举法解应用题
第12讲 用枚举法解应用题
例5 计划将甲、乙、丙三种不同的树苗种植在一条 直路的同一侧,要求相邻的两棵树苗不能相同, 那么考虑前5棵,第1棵与第5棵同是甲种树苗 的种法共有 6 种。 解: 画树状图枚举如下:
因此,第1棵与第 5棵同是甲种树苗 的种法共有6种。
第12讲 用枚举法解应用题
例6 用长48厘米的铁丝围成各种长方形(长和宽都 是整厘米数,且长和宽不相等),围成的最大 一个长方形面积是多少平方厘米? 解: 列表如下:
(2)剩下1张5元,取出 1+10+50+100=161(元);
(3)剩下1张10元,取出 1+5+50+100=156(元);
第12讲 用枚举法解应用题
例3 你的口袋里有1元、5元、10元、50元、100元 的纸币各1张。如果每次取出4张计算它们的钱 数,共有 5 种不同的钱数。
解: (4)剩下1张50元,取出 1+5+10+100=116(元);
圆珠笔 橡皮 签字笔 (支 ) (块) (支)
圆珠笔 橡皮 签字笔 (支 ) (块) (支)
第12讲 用枚举法解应用题
例4 一个文具店中橡皮的售价为每块5角,圆珠笔 的售价为每支1元,签字笔的售价为每支2元5 角。小明要在该店花5元5角购买其中的两种文 具,他有多少种不同的选择? 解: 5+2+1=8(种), 所以他有8种不同的选择。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

枚举法解应用题
【知识要点和基本方法】
一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的,这种分析问题、解决问题的方法,称之为枚举法,我们也可以通俗地称枚举法为举例子。

枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。

【例题精选】
例1.用数字1,2,3可以组成多少个不同的数字?分别是哪几个数?
分析:根据百位上数字的不同,我们可以把它们分为三类:
第1类:百位上的数字为1,有123,132;
第2类:百位上的数字为2,有213,231;
第3类:百位上的数字为3,有312,321。

所以可以组成123,132,213,231,312,321,共6个三位数。

课堂练习题:
用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?
例2.小明有面值为5角、8角的邮票各两枚。

他用这些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数)
分析:我们可根据小明寄信时所用邮票枚数的多少,把它们分成四类——一枚、二枚、三枚、四枚。

一枚:5角
二枚:10角,13角
三枚:18角,21角
四枚:26角
课堂练习题:
10元钱买6角邮票和8角邮票共14张,问两种邮票各多少张?
例3.用一台天平和重1克、3克、9克的砝码各一个(不再用其他物体当砝码),当砝码只能放在一个盘内时,可称出不同的重量有多少种?
分析:共有三个重量各不相同的砝码,可以取出其中的一个、两个或三个来称不同的重量,一一列举这三种情况。

1个:1克,3克,9克
2个:4克,10克,12克
3个:13克
同学们可以思考一下:如果砝码可以放天平的两边,又能称出多少不同的重量?
例4.课外小组组织30人做游戏,按1-30号排队报数。

第一次报数后,单号全部站出来;以后每次余下的人中第一个人开始站出来,隔一人站出来一人。

到第几次这些人全部站出来了?最后站出来的人应是第几号?
分析:根据题目的特点,先用排列法把题中的条件、问题排列出来,再用枚举法完成题目的要求。

例5.用长48厘米的铁丝围成各种长方形(长和宽都是整厘米数,且长和宽部不相等),围成的最大一个长方形面积是多少平方厘米?
分析:各种长方形的长和宽之和都是48÷2=24(厘米)。

两数的和一定,当两数越接近,它们的乘积越大,
当两数相等的时候,乘积最大。

例6.商店出售饼干,现存10箱5千克重的,4箱2千克重的,8箱1千克重的。

一顾客要买9千克饼干,为了便于携带要求不开箱。

营业员有多少种发货方法?
分析:买9千克饼干要求不开箱,从题目告诉的条件来看,并不难做到,但问题是求“有多少种发货方法?”这意味着要求无遗漏、无重复的把各种发货的可能性都考虑到,显然用枚举法是一种好方法。

用列表的形式,为了避免重复、遗漏,可先取5千克重的箱,再取2千克重的箱,最后取1千克重的箱。

例7将三个相同的小球放入A、B、C三个盒子中,一共有多少种方法?
分析:三个球相同,所以就考虑盒子,分别有下面这样的方法:0,0,3;0,1,2;0,2,1;0,3,0;3,0,0;1,2,0;1,1,1;2,1,0;2,0,1;1,0,2;一共有10种不同的方法。

【听课记录】
类别例题编号自我评价
基础题
较难题
难题
【课后练习题】
1.从甲地到乙地有2条路可走,由乙地到丙地有3条路可走,那么由甲地经乙地到丙地共有几条路可走?
2.有4个小足球队参加“希望杯”足球比赛,每两个队都必须比赛一场,共比赛多少场?如果进行淘汰赛,最后决出冠军共需多少场比赛?
3.甲、乙、丙、丁站成一排照相,但甲必须站在两头,共有多少种不同的排法?
4.从3、6、7、8四张数字卡片中,任取3张,排成三位数,能排成多少个不同的三位数?最大的三位数是多少?最小的三位数是多少?
5.从两张5元币、五张2元币、十张1元币中,拿出10元钱买钢笔,一共有多少种不同的拿法?
6.用1、0、3、5这四个数可以组成多少个四位数?
7.有7张卡片上写着数字2、3、4、5、6、7、8,从中抽出两张,组成的所有的两位数是奇数的个数是多少?
8.两人见面要握一次手,照这样规定,6人见面共握多少次手?
9.有红、黄、蓝色的小旗各1面,从中选出1面、2面或3面升上旗杆,作出各种不同的信号,一共可以作几种不同的信号?
10.已知三位数的各位数字之和等于8,那么这样的三位数共有多少个?
11.有四张8角邮票与三张1元邮票,用这些邮票中的一张或若干张能得出多少种不同的邮资?
12.已知三个自然数的积等于12,这三个自然数分别是多少?
13.现有1克、2克、3克重的天平砝码,要用10个砝码称出重20克的物体。

在取出的砝码中,1克重的有3个,那么3克重的砝码应有多少个?
如果任一种砝码至少取一个,那么除情况(1)外,取出的砝码还有哪几种情况?
14.某食堂的菜单如下:
汤类:A. 鸡蛋汤;B. 三鲜汤。

菜类:C. 炒肉丝;D. 红烧猪肉;E. 炒青菜。

饮料类:(1)高橙;(2)健力宝;(3)葡萄酒。

每顿饭若只能各类选一种,试问:
(1)可以有多少种不同的选购方法?(2)请写出这些选购菜单。

15.5个茶杯的价钱分别是8角、6角、5角、4角和3角,3个茶盘的价格分别是9角、7角和2角,如果一个茶杯配一个茶盘,一共可以配成多少种不同价格的茶具?。

相关文档
最新文档