四年级奥数点拨(第5讲)等积变形(下)
四下奥数-等积变形.doc
等积变形(1)姓名:如图在三角形ABC中,D是BC的中点,三角形ABD的面积是12,那么三角形ABC 的面积是多少?A: 12 B: 20 C: 24 D: 26(★★★)如图,在梯形ABCD中△刃游的面积为15cm:,求三角形DOC的面积.A: 45 B: 60 C: 75 D: 15(★★★★)如图,破;力为平行四边形,矽平行涉如果△血的面积为6平方厘米.求三角形建的面积•A: 4 B: 6 €: 5 D: 8(★★★★)如图,在平行四边形旭CD中,直线CF交旭于交DA延长线于若Sg =1,求3EF的面积.A: 1 B: 2 C: 3 D: 4(★★★★)如图:已知三角形ABC的面积是88平方厘米,是平行四边形Z)EFC的2倍, 求阴影部分的面积。
A: 44 B: 31 C: 22 D; 30(★★★)如图是由大、小两个正方形组成的,小正方形的询长是占厘米,求三角形NBC 的面积.A: 4 B: 8 C: 16 D: 20(★★★)如图,与AEFG均为正方形,三角形如丑的面积为6平方厘米,图中阴影部分的面积为•DA: 3 B: 6 C:9 D: 123 D等积变形(2) 姓名:BD 长4厘米,DC 长16厘米,B 、C 和D 在同一条直线上.则三角形ABC 的面积是三角 形ABD 面积的( )倍;三角形ADC 的面积是三角形ABD 面积的( )倍。
A; 3 , 4 B; 4 , 3 C : 5 , 3 D; S , 4如图,在三角形ABC 中,BC=10厘米,高是6厘米,D 、E 分别为AB 和AC 的中点,那么三角形DEB 的面积是( )平方厘米。
A: 6 B: 6, 5 (': 7 D: 7. 5三角形.4SC 中,DC = 23D, CE = 3北,三角形如)E 的面积是20平方厘米,三角形.45(? 的面积是( )平方厘米。
A:90 B: 100 C; 120 D: 150A; 30B;40 C : 50 D : 60 如图, 的面积是( 三角形ECD 的面积为3,其中CE=3AE, 3D = 4CD,三角形ABC)0 A: 10B; 12 C : 15 P: 16 如图, X13C 的面积是10平方厘米,将一纺、BC 、 得到一个新的SDEF ,则少EF 的面积为( 分别延长一倍到D 、E. F 且两两 )平方厘米。
小学奥数全国推荐四年级奥数通用学案附带练习题解析答案32三角形的等积变形(二)
年 级 四年级 学 科 奥数版 本通用版课程标题三角形的等积变形(二)上一讲我们学习了三角形的面积与底和高之间的关系,在这个基础上,这节课,我们再一起学习一下平行线间的等积变形。
夹在一组平行线间的等积变形:如下图,ACD ∆和BCD ∆夹在一组平行线之间,且有公共底边CD 那么BCD ACD S S ∆∆=;反之,如果BCD ACD S S ∆∆=,则可知直线AB 平行于CD 。
例1 如图,把四边形ABCD 改成一个等积的三角形。
分析与解:本题有两点要求:一是把四边形改成一个三角形;二是改成的三角形与原四边形面积相等。
我们可以利用三角形等积变形的方法,如下图把顶点A 移到CB 的延长线上的点A ′处,△A ′BD 与△ABD 的面积相等,从而△A ′DC 的面积与原四边形ABCD 的面积相等。
这样就把四边形ABCD 等积地改成了△A ′DC 。
问题是A ′位置的选择是依据三角形的等积变形原则。
过A 作一条和DB 平行的直线与CB 的延长线交于A ′点。
具体做法:连接BD ,过A 作BD 的平行线,与CB 的延长线交于A ′。
连接A ′D ,则△A ′CD 与四边形ABCD 等积。
例2 如图,ABCD 为平行四边形,EF 平行于AC ,如果△ADE 的面积为4平方厘米。
求△CDF 的面积。
分析与解:连接AF 、CE 。
∴ADE S △=ACE S △,CDF S △=ACF S △。
又∵AC 与EF 平行,∴ACE S △=ACF S △。
∴ ADE S △=CDF S △=4(平方厘米)。
例3 如图,已知正方形ABCD 和正方形CEFG ,且正方形ABCD 的边长为10厘米,则图中阴影部分的面积为多少平方厘米?分析与解:解法一 :△BEF 的面积 = BE ×EF ÷2,梯形EFDC 的面积=(EF +CD )×CE ÷2=BE ×EF ÷2=△BEF 的面积 ,而四边形CEFH 是它们的公共部分,所以 △DHF 的面积=△BCH 的面积,进而可得阴影部分△BDF 的面积=△BCD 的面积=10×10÷2=50(平方厘米)。
小学四年级奥数下册三角形的等积变形教案
三一文库()/小学四年级〔小学四年级奥数下册三角形的等积变形教案〕小学四年级小学四年级奥数下册三角形的等积变形教案,供大家学习参考。
我们已经掌握了三角形面积的计算公式:# 三角形面积=底×高÷2# 这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小).这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来#角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系.# 为便于实际问题的研究,我们还会常常用到以下结论:# ①等底等高的两个三角形面积相等.# ②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.# ③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.# #,它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等.#同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍.#例如在右图中,△ABC与△DBC的底相同(它们的底都是BC),它所对的两个顶点A、D在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形的面积相等.#例如右图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC高的2倍(D是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍.###。
小学4-5年级奥数重难点解析
小学各年级奥数重难点解析(四、五、六)四年级是一个承前启后的阶段,学习内容的难度和广度有所增加,各种竞赛任务和招生考试的成绩重要性大大增加,不论自己的孩子是刚刚开始学习奥数,还是已经着手为竞赛、升学做准备,如何更好的完成四年级的学习计划,如何做好四年级和五年级的过渡,如何规划小升初之前的这两年时间是每个家长都要面对的问题。
学习重点难点解析1计算计算是贯穿整个小学阶段的重点,每个年级奥数的学习都以计算为基础,较好的计算能力是学好其它章节,取得优异成绩的保证。
每个年级的计算有每个年级的特点,四年级的计算以加入了小数的计算为主,对于奥数基础扎实的同学并且希望在五年级取得一些成绩的同学还应该加入一些分数的计算。
四年级计算应该掌握的重点题型有多位数的计算,小数的基本运算,小数的简便运算。
其中,多位数的计算主要以通过缩放讲多位数凑成各位数全是9的多位数,再利用乘法的分配率进行计算。
小数的简便运算主要与等差数列求和、乘法的分配率和结合率、换元法等结合在一起,需要同学们对各种题型熟练的掌握,尤其是多位数的计算。
最后,小数计算的重点还是最基础的小数的加减乘除混合运算,在初学小数时由于小数点的原因计算经常出错,如果计算不准确,再好的方法和技巧都无从谈起。
所以,四年级学习计算的重点在于以基础计算为主,掌握各种简便运算技巧,提高准确度和速度。
2平均数问题在学习平均数问题的时候一定要先对平均数的概念有很好的理解。
我们在授课过程中经常发现绝大多数同学在解平均数问题时经常犯一个错,尤其是在行程问题中的一道题,错误率最高。
小明从学校到家速度为12,从家到学校速度为24,问往返的平均速度是多少?很多同学答案都是18,误以为平均数度就是速度的平均,这是不对的。
在学习平均数问题的时候还要会利用基准数处理一大串数据的求和问题和求平均数的问题。
很多复杂的平均数问题都是可以利用浓度三角的方法来解决的,尤其是思维导引中后面的一些复杂的平均数问题,同学们应该尝试用浓度三角的方法来解决平均数问题。
春季五年制小学奥数四年级三角形等积变形(下)
三角形等积变形<例1正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?例2两个正方形如图排列,面积相差60,求阴影部分梯形面积。
例3如图所示,已知正方形ABCD的边长为10厘米,EC=2×BE,则,图中阴影部分的面积是________平方厘米。
例4如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。
例5如图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米。
求三角形CDF的面积。
例6如图,在四边形ABCD中,对角线AC、BD交于E,且AF=CE,BG=DE,如果四边形ABCD面积是1,求△EFG 的面积?测试题1.如图,长方形ABCD 的面积是1,M 是AD 边的中点,N 在AB 边上,且2AN BN =。
则,阴影部分的面积是多少?NMDCBA2.如图,梯形ABCD 被它的一条对角线BD 分成了两部分。
三角形BDC 的面积比三角形ABD 的面积大10平方分米。
已知梯形的上底与下底的长度之和是15分米,它们的差是5分米。
求梯形ABCD 的面积。
AB CD3.图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是〔 〕平方厘米。
4.正方形ABCD 和正方形CEFG ,且正方形ABCD 边长为10厘米,则图中阴影面积为多少平方厘米?HG FEDCBA5.如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使2AF AC =,求三角形DEF 的面积。
答案1.连接BM ,因为M 是中点所以ABM ∆的面积为14又因为2AN BN =,所以ANM ∆的面积为1114312⨯=,又因为BDC ∆面积为12,所以阴影部分的面积为:115112212--=2.CB如右图,作AB 的平行线DE 。
【小升初奥数专题】几何之五大模型(已更新完)
【⼩升初奥数专题】⼏何之五⼤模型(已更新完)在⼩学奥数知识体系中,⼏何五⼤模型是⼏何专题中⾮常重要的⼀块知识点,⽅法性很强,掌握了⼏何的五⼤模型,对于我们解决组合型直图形或者⾮规则图形是⾮常有帮助的,所以⼏何五⼤模型在⼩学⼏何体系中的重中之重!⼏何五⼤模型的难点在于我们要在掌握各个模型适⽤的题型、相应的⽅法、公式的基础上学会灵活运⽤,还有就是有时要根据题意同时运⽤多种模型,从⽽更好的解决问题!接下来e 度徐丽⽼师会针对⼏何五⼤模型进⾏解析,希望能帮助到各位家长,让您的孩⼦在这次⼩升初中⼤战全胜!ps:对于不同题型均会有例题讲解分析以及精选练习题,以供⼤家有针对性学习巩固,相信⼤家对于应⽤题的攻克将不在话下!【⼏何五⼤模型知识点】【⼏何五⼤模型经典例题详解】【⼏何五⼤模型巩固练习】【⼏何五⼤模型巩固练习详解】标签:⼏何 模型 五⼤ ⼩升初 奥数回复 收藏1~3年级奥数每⽇⼀题汇总,含试题详解【每⽇不断更新中】4~5年级奥数每⽇⼀题汇总,含试题详解【每⽇不断更新中】⼩升初奥数天天练汇总,含试题详解【每⽇不断更新中】【徐丽⽼师】⼩升初奥数应⽤题专题汇总【徐丽⽼师】⼩升初奥数⾏程专题汇总【徐丽⽼师】⼩升初奥数⼏何专题汇总【徐丽⽼师】⼩升初奥数数论专题汇总【徐丽⽼师】⼩学数学毕业总复习专题汇总⼏⼏何五⼤模型⼀、五⼤模型简介(1)等积变换模型1、等底等⾼的两个三⾓形⾯积相等;2、两个三⾓形⾼相等,⾯积之⽐等于底之⽐,如图①所⽰,S[sub]1[/sub]:S[sub]2[/sub]=a:b ;3、两个三⾓形底相等,⾯积在之⽐等于⾼之⽐,如图②所⽰,S[sub]1[/sub]:S[sub]2[/sub]=a:b ;4、在⼀组平⾏线之间的等积变形,如图③所⽰,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB 平⾏于CD 。
四年级上册数学几何专题讲义(共6讲)-第5讲 三角形的等积变形 全国通用(含答案)
知识要点三角形的等积变形我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积。
如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化。
但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化。
比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样。
这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化。
同时也告诉我们:面积相同三角形有无数多个不同的形状。
在实际问题的研究中,我们还会常常用到以下结论: ① 等底等高的两个三角形面积相等。
② 若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。
若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。
③夹在一组平行线之间的等积变形,如下图,ACD ∆和BCD ∆夹在一组平行线之间,且有公共底边CD 那么ACD BCD S S ∆∆=;反之,如果ACD BCD S S ∆∆=,则可知直线AB 平行于CD 。
ACDB等底等高【例 1】 如图,在ABC ∆中,D 是BC 中点,E 是AD 中点,连结BE 、CE ,那么与ABE ∆等积的三角形一共有哪几个三角形?EABDC【分析】 3个,AEC ∆、BED ∆、DEC ∆ 。
【例 2】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积。
HFFD H【分析】 连接BH 、CH ,AEH BEH AE EB S S ∆∆=∴=同理,BFH CFH CGH DGH S S S S ∆∆∆∆==,,256228阴影长ABCD S S ∴=÷=÷=(平方厘米)【例 3】 如图,在平行四边形ABCD 中,EF 平行AC ,连结BE 、AE 、CF 、BF 那么与BEC ∆等积的三角形一共有哪几个三角形?ABCEDF【分析】 AEC ∆、AFC ∆、ABF ∆。
四年级奥数之等积变形(下)
ABD BD ADC DC
1
【例3】(★★★) 如图,△ABC中,DC=2BD,CE=3AE,△ADE的面积是20cm2, △ABC的面积是多少?
【例4】(★★★) 如图,△ABC的面积是40,D、E和F分别是BC、 AC和AD的中点。求: △DEF的面积。
4. “鸟头”模型:有角共线的两个三角形,它们的面积之比等于相 应边长乘积之比。
A D
E
E C
D
D
A
B
C
B
A
E
B
C
ห้องสมุดไป่ตู้
ABC AB AC ADE AD AE
2
【今日讲题】 例3,例5,超常大挑战
【讲题心得】 ___________________________________________ __________________________________________。
A
C
E
D E
D
D
A
B
CB
ABC AB AC ADE AD AE
A
E
B
C
【例5】(★★★★) 如图,△ABC中,AB是AD的5倍,AC是AE的3倍,如果△ADE的面 积等于1,那么△ABC的面积是多少?
等积变形(下)
1. 三角形中的“二合一”模型。 2. 三角形中的“鸟头”模型。
【超常大挑战】(★★★★) 如图,△ABC的面积为2,其中AE=3AB,BD= 2BC,△BDE的面积是多少?
【家长评价】
____________________________________________ ____________________________________________ ________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【动手算一算】
⑴
⑵
⑴如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上。
①求三角形ABC的面积是三角形ADC面积的多少倍?
②求三角形ABD的面积是三角形ADC面积的多少倍?
⑵如图,E在AD上,AD垂直BC,AD=12厘米,DE=3厘米。
求三角形ABC的面积是三角形EBC面积的几倍?
如图,三角形ABC的面积是40,D、E和F分别是BC、AC和AD的中点。
求:三角形DEF 的面积。
等积变形(下)
(★★)
(★★★)
如图,在三角形ABC中,BC=8厘米,高是6厘米,E、F分别为AB和AC的中点,那么三角形EBF的面积是多少平方厘米?
如图所示,在平行四边形ABCD中,E为AB的中点,AF=2CF,三角形AFE(图中阴影部分)的面积为10平方厘米。
平行四边形ABCD的面积是多少平方厘米?
如图,三角形ABC被分成了甲、乙两部分,BD=DC=4,BE=3,AE=6,乙部分面积是甲部分面积的几倍?
如图,三角形ABC的面积为1,其中AE=3AB,BD=2BC,三角形BDE的面积是多少?
(★★★)
(★★★★) (★★★) (★★★★) (★★★)
如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=BC;延长CA至F,使AF=2AC,求三角形DEF的面积。
(★★★★★)
如图,D是三角形ABC一边上的中点,两个长方形分别以B、D为顶点,并且有一个公共顶点E,已知两块阴影部分的面积分别是100和120,则三角形BDE的面积是多少?
【大海点睛】
一、重要结论
1.结论㈠:等底等高的两个三角形面积相等
结论㈠拓展:夹在平行线间的一组同底三角形面积相等
如下图,△ACD和△BCD夹在一组平行线之间,且有公共底边CD,那么S△ACD=S △BCD
2.结论㈡
⑴若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个
三角形的面积也是另一个三角形面积的几倍。
⑵若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个
三角形的面积也是另一个三角形面积的几倍。
二、技巧方法
1.平行线的来源
⑴平行四边形(包括长方形和正方形)和梯形
⑵已知平行
⑶并排摆放的正方形的同方向对角线
2.已知做底边,等高优先找
三、经典例题
等积变形(上):例3,例5,例6,例7
等积变形(下):例2,例4,例5,例7。