双因素方差分析步骤

合集下载

双因素试验的方差分析

双因素试验的方差分析

i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H01 :1 2 a 0
H02 : 1 2 b 0
H03 : ij 0 i 1, 2, , a; j 1, 2, ,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ


50 63 52

47 54 42

47 57 41
F值
F 值临介值
因素A 因素B
SS A SSB
df A
MS A
SS A df A
FA
MS A MSE
df B
MSB
Байду номын сангаас
SSB df B
FB
MSB MSE
F (a 1 ,
ab n 1) F (b 1 ,
ab n 1)
A B
误差 总和
SS AB
SSE SST
df AB df E dfT
MS AB SS AB
F0.01 3,6 9.78 F0.05 3,6 4.76 F0.01 2,6 10.92
FB F0.01 2,6
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。

双因素方差的定义和使用条件

双因素方差的定义和使用条件

双因素方差的定义和使用条件
双因素方差分析(Two-way ANOVA)是一种统计方法,用于分析两个因
素对实验结果的影响。

该方法主要用来检验两个因子对因变量的交互作用。

双因素方差分析特别适用于那些同时受到两个或更多因素影响的因变量研究。

使用双因素方差分析时,需要满足以下条件:
1. 独立性:各个观测值之间必须相互独立,这意味着每个观测值都不受其他观测值的干扰。

2. 正态性:样本必须来自正态分布总体。

3. 方差齐性:各个总体的方差必须相等,即抽样的总体必须是等方差的。

4. 样本容量:每个组中的观测值数量应该足够多,这样才能保证估计的参数接近真实值。

5. 满足其他假设:例如,误差项应该是随机的,并且服从均值为0的正态分布。

双因素方差分析的步骤如下:
1. 提出假设:包括主效应和交互效应的假设。

2. 方差分析表:列出观测值的数量、各组的均值和方差以及总均值和总方差。

3. F检验:通过F检验来检验主效应和交互效应的显著性。

4. 结果解释:如果F检验的结果显著,则说明主效应或交互效应对因变量有影响;否则,说明没有影响。

以上信息仅供参考,如需获取更多详细信息,建议咨询统计学专家或查阅统计学相关书籍。

双因素重复测量方差分析spss

双因素重复测量方差分析spss

双因素重复测量方差分析spss
一、双因素重复测量方差分析(two-way repeated measures ANOVA)
双因素重复测量方差分析(Two-Way repeated measures ANOVA)可以用来检测一个
变量的变化在两个或多个独立变量的作用下是否发生变化。

在双因素重复测量方差分析中,变量1是因素1,因素1有若干水平,变量2是因素2,因素2也有若干水平。

双因素重
复测量方差分析可以检验两个因素是否共同影响变量1的变化,或者检测某个因素是否单
独地影响变量1的变化。

1、打开spss统计软件,点击文件、数据,从窗口中打开需要分析数据文件;
2、点击“分析”菜单,然后从子菜单中点击“多维分析”,再单击“双因素重复测
量方差分析”;
3、在弹出的窗口中,在“变量”框中选择需要分析的变量;
4、在“因素”框中,选择双因素,比如实验组和对照组;
5、点击“定义”按钮,设定因素的水平,比如实验组的水平为A,对照组的水平为B;
6、在“多重比较”框中,勾选“重复测量”框,并且可以设定多重比较的参数;
7、选择“显著性水平”框,设定检验的显著性,通常设定为0.05;
8、单击“OK”按钮,查看分析结果,该分析结果将显示两个因素及其交互作用对变
量1的影响情况。

spssau方差分析之双因素方差分析操作

spssau方差分析之双因素方差分析操作

双因素方差
双因素方差分析,用于分析定类数据(2个)与定量数据之间的关系情况.例如研究人员性别,学历对于网购满意度的差异性;以及男性或者女性时,不同学历是否有着网购满意度差异性;或者同一学历时,不同性别是否有着网购满意度差异性.
双因素方差分析是相对于单因素方差分析而言;区别在于X(定类数据)的个数;如果仅为一个称为单因素方差;两个为双因素方差;单因素方差分析(即方差分析)的使用非常普遍;但双因素方差更多用于实验研究.
首先判断p值是否呈现出显著性,如果呈现出显著性,则说明X或者交互项对于Y有着差异(影响)关系.
分析结果表格示例如下(SPSSAU同时会生成拆线图):
备注:双因素方差分析基本上仅用于实验研究中,请谨慎使用。

SPSSAU操作截图如下:。

论文—双因素试验的方差分析

论文—双因素试验的方差分析

X ijk ~ N (ij , 2 ) ( ij 和 2 未 知 ), 记 X ijk i = ijk , 即 有
ijk X ij ijk ~ N (0, 2 ), 故 X ijk ijk 可视为随机误差. 从而得到如下数学模型
X ijk ij ijk, ijk ~ N(0, 2), 各 ijk 相互独立, i 1, , r; j 1, , s; k 1, , t;
1 st
1 rt
X
j 1 k 1
r t
s
t
ijk
,i=1,2, ,r,
X
j =
X
i 1 k 1
类似地,引入记号: , i , j , i , j , 易见

i 1
r
i 0 ,

j 1
s
j
0.
为水平 B j 的效应. 这样可以将
仍称 为总平均,称 i 为水平 A i 的效应,称 成
ij
j
ij
表示
= + i + j +
ij
( i 1, , r; j 1, , s ) ,
(3)
与无重复试验的情况类似,此类问题的检验方法也是建立在偏差平方和的分解上的。 2. 偏差平方和及其分解 引入记号: X =
1 rst
X
i 1 j 1 k 1
r
s
t
ijk

X
ij =
1 X ijk ,i=1,2, ,r,j=1,2, ,s, t k 1

t
X
i =
试 验 结 因 素 果 A 因 素 B

双因素方差分析spss实例

双因素方差分析spss实例

双因素方差分析spss实例双因素方差分析(ANOVA)是一种统计分析方法,它可以比较不同的组之间的投票者的结果,以确定两个或更多因素是否有显著的影响。

换句话说,它可以测量实验中的不同影响因素,以确定它们之间是否有显著的差异。

本文将介绍如何使用SPSS进行双因素方差分析,以确定两个因素之间是否有显著差异。

首先,需要准备你的数据,将其输入到SPSS程序中。

将你的数据文件保存为.csv格式,确保它的每列的标题是充分描述性的,并包括所有你所需要的因素。

一旦你的数据文件被保存到SPSS中,可以创建一个新的SPSS文件,然后将数据文件拖放到新的SPSS文件中即可。

接下来,在SPSS中,找到“统计”工具栏,点击进入“分析”选项卡。

找到“方差分析”,双击它,以进入“方差分析-双因素方差分析”窗口。

在“自变量”框中输入你要比较的两个因素,即你的实验的两个因素。

然后在“因子”菜单中选择“应变量的每个因子的水平”。

此时,SPSS将自动映射每个因素的水平,可以在“水平”窗口中查看。

现在,可以单击“方差分析”按钮,运行双因素方差分析。

SPSS 将给出结果表,该表显示在多个水平上,因素间是否存在显著差异。

在结果表中,F值说明了实验变量之间的差异。

当F值大于1时,实验变量存在显著差异,说明变量对结果有显著影响;反之,F值小于1时,实验变量没有显著差异,则表明变量对结果没有显著影响。

最后,你可以使用SPSS输出图表,根据结果表中的数据来分析两个因素之间的关系。

这也可以帮助你更好地理解实验结果,并更好地控制你的实验因素。

总之,SPSS双因素方差分析是一种很有用的统计工具,可以帮助研究者测量不同因素之间的关系,并确定它们之间是否存在显著差异。

上面介绍了如何使用SPSS进行双因素方差分析,并介绍了如何分析结果,希望对你有所帮助。

SPSS双因素方差分析

SPSS双因素方差分析

SPSS双因素方差分析例1 对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。

采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。

现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。

三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?这可以认为是无重复实验的双因素方差分析,SPSS软件版本:18.0中文版。

1、建立数据文件变量视图:建立3个变量,如下图数据视图:如下图:区组号用1-8表示,营养素号用1-3表示。

数据文件见“小白鼠喂3种不同的营养素增重数量.sav”,可以直接使用。

2、统计分析菜单选择:分析-> 一般线性模型-> 单变量点击进入“单变量”对话框将“体重”选入“因变量”框,“区组”、“营养素”选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框”点击“设定”单选按钮(无重复双因素方差分析不能选全因子!),在“构建项”下拉菜单中选择“主效应”(只能选主效应)把左边的因子与协变量框中区组和营养素均选入右边的模型框中其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面点击“两两比较”按钮,进入下面对话框将左边框中“区组”、“营养素”均选入右边框中再选择两两比较的方法,LSD、S-N-K,Duncan为常用的三种方法,点击“继续”按钮回到“单变量”主界面。

点击“选项”按钮勾选“统计描述”及“方差齐性检验”,设置显著性水平,点击“继续”按钮,回到“单变量”主界面点击下方“确定”按钮,开始分析。

3、结果解读这是一个所分析因素的取值情况列表。

变量的描述性分析这是一个典型的方差分析表,有2个因素“营养素”和“区组”,首先是所用方差分析模型的检验,F值为11.517,P小于0.05,因此所用的模型有统计学意义,即认为至少有一个因素对体重增长有显著影响,可以用它来判断模型中系数有无统计学意义;第二行是截距,它在我们的分析中没有实际意义,忽略即可;第三行是变量是区组,P<0.001,可见有统计学意义(即认为区组对体重增长有显著影响),不过通常我们关心的也不是他;第四行是我们真正要分析的营养素,非常遗憾,它的P值为0.084,没有统计学意义(即认为营养素对体重增长没有显著影响)。

6-2双因素方差分析

6-2双因素方差分析
– 对地区因素提出的假设为
• H0:m1=m2=m3=m4=m5 (地区对销售量无显著影响) • H1:mj (j =1,2,…,5) 不全相等 (有显著影响)
【例】有4个品牌的彩电在5个地区销售,为分析彩电的品牌( 品牌因素)和销售地区(地区因素)对销售量的影响,对每显著 个品牌在各地区的销售量取得以下数据。试分析品牌和销售 地区对彩电的销售量是否有显著影响?(=0.05)
5. 误差项平方和: SSE SST SSR SSC SSRC
SST=SSR+SSC+SSRC+SSE
可重复双因素方差分析表
(基本结构)
误差来源 平方和 自由度
(SS)
(df)
均方 (MS)
F值
P值
F 临界值
行因素 列因素 交互作用
误差
SSR SSC SSRC SSE
k-1 MSR FR r-1 MSC FC (k-1)(r-1) MSRC FRC kr(m-1) MSE
replication)
3. 如果除了行因素和列因素对试验数据的单
独影响外,两个因素的搭配还会对结果产 生一种新的影响,这时的双因素方差分析
称为有交互作用的双因素方差分析或可重 复 双 因 素 方 差 分 析 (Two-factor with
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 ▪ 对于因素的每一个水平,其观察值是来自正态分布
不同品牌的彩电在5个地区的销售量数据
品牌因素 地区1
地区因素 地区2 地区3 地区4
品牌1
365
350
343
340
品牌2
345
368
363

双因素方差分析

双因素方差分析
由于存在两个因素的影响,就产生一个新问题,两 因素对指标的影响是否正好是它们每个因素对指标的影 响的迭加?
这种各个因素的不同水平的搭配所产生的新的影响 在统计上称为交互作用. 各因素间是否存在交互作用是 多因素方差分析新产生的问题.
一、无交互作用的方差分析
考虑的因素记为A的第i种效应和因素B的第j 种效应分 别记作αi , βj,试验误差记作εij,其数据结构如下:
第7.3节 双因素方差分析
一、无交互作用的方差分析 二、有交互作用的方差分析 三、利用Excel进行双因素方差分析的步骤
在许多实际问题中, 往往需要同时考察几个因素对指 标的影响,这种同时研究两个因素对试验指标影响的方 差分析,就是 双因素方差分析 (double factor analysis of variance)问题.
B1
B2
B3
A1
390 380 440 420 370 350
A2
390 410 450 430 370 380
解 由Excel软件依次单击:工具-数据分析-方差分析:可重 复双因素方差分析, 如下图
单击“确定”后,得分析结果如下:
由此可见,因素B显著,而因素A和A与B交互作用都 不显著.下面着重考察因素B.
方差来源 平方和 自由度
A B 误差 总和
Q1
r-1
Q2
s-1
Q3 (r-1)(s-1)
Q
rs-1
均方 S12 S22 S32
F值 S12/S32 S22/S32
显著性
二、有交互作用的方差分析
如果因素A 和因素B 没有交互作用, 则只需要在各 个组合水平下各做一次试验就可以进行方差分析.
但是如果因素A 和因素B 有交互作用,这时必须在 各个组合水平下做重复试验方可进行方差分析.

双因素方差分析spss步骤

双因素方差分析spss步骤

双因素方差分析spss步骤双因素方差分析SPSS步骤导言:双因素方差分析是一种常用的统计分析方法,用于分析两个或两个以上因素对于研究对象的影响是否存在差异。

在实际研究中,我们通常使用SPSS软件来进行双因素方差分析的计算和结果呈现。

本文将介绍使用SPSS软件进行双因素方差分析的步骤和注意事项。

一、准备数据在进行双因素方差分析之前,我们首先需要准备好所需的数据。

数据应该是一个二维矩阵,其中行代表不同的观测对象,列代表不同的变量。

变量可以分为两个因素,分别是因素A和因素B。

确保数据的格式正确,并且每一列都应该有对应的变量名称。

二、导入数据到SPSS打开SPSS软件,选择“文件”-“打开”-“数据”,然后选择包含你准备好的数据的文件。

在打开数据之后,你将看到数据被加载到SPSS软件的数据编辑器中。

三、设置变量属性在SPSS软件的数据编辑器中,右键点击每个变量的列,然后选择“变量视图”。

在变量视图中,你可以设置每个变量的属性,包括变量的名称、标签、测量尺度等。

对于因素A和因素B,你可以将它们设为分类变量。

四、进行双因素方差分析在SPSS软件中,选择“分析”-“一般线性模型”-“单因素”。

在对话框中,将因变量添加到“因变量”框中,将因素A和因素B 添加到“因子”框中。

确保选择双因素方差分析选项,并点击“确定”按钮。

五、检查假设条件在进行双因素方差分析之前,我们需要确保满足一些假设条件。

首先,各个观测值是彼此独立的,且满足正态分布假设。

其次,各个因子水平的方差相等。

可以使用一些统计方法,如Shapiro-Wilk 检验和Levene检验,来验证这些假设条件。

六、解读结果SPSS软件将为我们提供双因素方差分析的结果。

主要包括因素A 和因素B的主效应、交互效应以及误差项。

对于主效应,我们可以通过检查P值来决定该因素是否对因变量有显著影响。

对于交互效应,我们可以通过检查因素A和因素B的交互作用项的P值来判断是否存在显著交互效应。

实验双因素方差分析

实验双因素方差分析

实验10 双因素方差分析双因素方差分析是对样本观察值的差异进行分解,将两种因素下各组样本观察值之间可能存在的系统误差加以比较,据此推断总体之间是否存在显著性差异,根据两因素是否相互影响,双因素分析分为不存在交互作用的双因素方差分析和存在交互作用的双因素方差分析。

10.1 实验目的掌握使用SAS进行双因素方差分析的方法。

10.2 实验内容一、用INSIGHT作双因素方差分析二、用“分析家”作双因素方差分析三、用glm过程作双因素方差分析10.3 实验指导一、用INSIGHT作双因素方差分析【实验10-1】工厂订单的多少直接反映了工厂生产的产品的畅销程度,因此工厂订单数目的增减是经营者所关心的。

经营者为了研究产品的外形设计及销售地区对月订单数目的影响,记录了一个月中不同外形设计的该类产品在不同地区的订单数据如表10-1(sy10_1.xls)所示。

试用双因子方差分析检验该产品的外形设计与销售地区是否对订单的数量有所影响。

表10-1 不同外形设计的产品在不同地区的订单数据销售地区设计1 设计2 设计3地区1 700 450 560 地区2 597 357 420 地区3 697 552 720 地区4 543 302 515该问题即检验如下假设:H0A:不同的设计对订单数量无影响,H1A:不同的设计对订单数量有显著影响H0B:不同地区对订单数量无影响,H1B:不同地区对订单数量有显著影响具体步骤如下:1. 生成数据集将表10-1在Excel 中整理后导入成如图10-1左所示结构的数据集,存放在Mylib.sy10_1中,其中变量a 、b 、y 分别表示销售地区、外形设计、销售量。

图10-1 数据集mylib.sy10_1与分析变量的选择 2. 方差分析在INSIGHT 模块中打开数据集Mylib.sy10_1。

选择菜单“Analyze (分析)”→“Fit (拟合)”,在打开的“Fit(X Y)”对话框中选择数值型变量作因变量,分类型变量作自变量:选择变量y ,单击“Y ”按钮,选择变量a 和b ,单击“X ”按钮,分别将变量移到列表框中,如图10-1右所示。

双因素方差分析

双因素方差分析

双因素方差分析一、无交互作用下的方差分析设A 与B 是可能对试验结果有影响的两个因素,相互独立,无交互作用。

设在双因素各种水平的组合下进行试验或抽样,得数据结构如下表:表中每行的均值.i X (i=1,2,…r )是在因素A 的各个水平上试验结果的平均数;每列的均值jX .(j=1,2,…,n)是在因素B 的各种水平上试验的平均数。

以上数据的离差平方和分解形式为:SST=SSA+SSB+SSE (6.13) 上式中:∑∑-=2)(X X SST ij(6.14)∑-=∑∑-=2.2.)()(X X n X XSSA i i (6.15)∑-=∑∑-=2.2)()(X Xr X XSSB j j(6.16)∑+-∑-=2..)(X X X X SSE ji ij(6.17)SSA 表示的是因素A 的组间方差总和,SSB 是因素B 的组间方差总和,都是各因素在不同水平下各自均值差异引起的;SSE 仍是组内方差部分,由随机误差产生。

各个方差的自由度是:SST 的自由度为nr-1,SSA 的自由度为r-1,SSB 的自由度为n-1,SSE 的自由度为nr-r-n-1=(r-1)(n-1)。

各个方差对应的均方差是:对因素A 而言: 1-=r SSA MSA (6.18) 对因素B 而言: 1-=n SSB MSB (6.19)对随机误差项而言:1---=n r nr SSEMSE (6.20)我们得到检验因素A 与B 影响是否显著的统计量分别是:)]1)(1(,1[~---=n r r F MSE MSA F A (6.21))]1)(1(,1[~---=n r n F MSE MSBF B (6.22)【例6-2】某企业有三台不同型号的设备,生产同一产品,现有五名工人轮流在此三台设备上操作,记录下他们的日产量如下表。

试根据方差分析说明这三台设备之间和五名工人之间对日产量的影响是否显著?(α=0.05)。

实验5——双因素方差分析(有重复)

实验5——双因素方差分析(有重复)

6 ) 燃料多重比较
Dependent Variable: 火 箭 射 程 Tamhane
Multiple Comparisons
(I) 燃 料 (J) 燃 料
1
2
Mean Difference
(I-J)
6.3000
3
-1.3500
4
-2.0500
2
1
-6.3000
3
-7.6500
4
-8.3500
22.9701
-16.2754
13.0004
-6.2972
21.0972
-22.9701
4.8951
-21.0972
6.2972
8 ) 燃料与助推器的多重比较
3. 燃料 * 助推器
Dependent Variable: 火箭射程
燃料 助推器
1
1
2
3
2
1
2
3
3
1
2
3
4
1
2
3
Mean 55.400 48.700 63.050 45.950 52.300 50.000 59.200 72.050 39.950 73.650 54.600 45.050
2. SPSS输入数据格式: 3列24行 因素A取值有4个,因素B取值有3个。
3. SPSS程序选项
1)Analyze=>GeneralLinearModel=>Univariate; 2)将“火箭射程”设置为因变量(Dependent), 将“燃料”、“推进器”设置为固定因素 (Fixed Factor(s));
Std. Error 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142

双因素试验的方差分析

双因素试验的方差分析

设:
X ijk ~ N ij , 2 , i 1,2,, r, j 1,2,, s, k 1,2,, t ,



X ijk
独立, ij , 2 均为未知参数。或写成:
2 ijk ~ N 0, , 各 ijk 独立 i 1,2,, r , j 1,2,, s, k 1,2,, t.
双因素试验的方差分析
影响试验结果的因素不止一个,要用双因素
或 多因素的方差分析;
确定哪些因素是主要的,它们对试验结果的
影响是否显著; 它们之间是否有交互作用。
(一)双因素等重复试验(有交互作用)的方差分析设有两个因
素A,B作用于试验的指标。 因素A有r个水平
因素B有s个水平
A1 , A2 ,, Ar
X . j.
1 r t X ijk , j 1,2,, s. rt i 1 k 1
总偏差平方和(称为总变差)
ST X ijk X .
2 i 1 j 1 k 1 r s t


ST写成:
S T X ijk X
i 1 j 1 k 1 s t r


1 1319 .82 2 2 2 S A B 110.8 91.9 90.1 2 24 S A S B 1768 .69250 , S E ST S A S B S A B 236.95000 .


得方差分析表如下:
表9.11 例1的方差分析表 方差来源 平方和 自由度 均 方 F 值
A1 A2
X 121 , X 122, , X 12t

X 211 , X 212, X 221 , X 222, , X 21t , X 22t

双因素方差分析

双因素方差分析
(7-13)
三、双因素方差分析
在上述误差平方和的基础上计算均方,也就是将各平方和除 以相应的自由度。与各误差平方和相对应的自由度分别为:
SST的自由度为kr-1,SSR的自由度为k-1,SSC的自由度 为r-1,SSE的自由度为(k-1)(r-1)。
为构造检验统计量,需要计算下列各均方: ①行因素的均方,记为MSR。 ②列因素的均方,记为MSC。 ③随机误差的均方,记为MSE。
三、双因素方差分析
二、 无交互作用的双因素方差分析
1. 数据结构
在无交互作用的双因素方差分析中,由于有两个 因素,因而在获取数据时,需要将一个因素安排在“ 行”的位置,称为行因素;另一个因素安排在“列” 的位置,称为列因素。设行因素有k个水平,列因素 有r个水平,行因素和列因素的每一个水平都可以搭配 成一组,观察它们对试验指标的影响,共抽取kr个观 察数据,其数据结构见表7-8。
三、双因素方差分析
“全因子”单选按钮为系统默认项,用 来建立全模型。全模型中包括因素之间的交 互作用。如果选择分析两个因素的交互作用 ,则必须在每种水平组合下取得两个以上的 试验数据,才能实现两个因素的交互作用的 分析。如果不考虑因素间的交互作用,则应 当选择自定义模型。
三、双因素方差分析
“设定”单选按钮用来自定义模型,本例选择此项并激活下面的各项操 作,如图7-12所示。
三、双因素方差分析
2. 分析步骤
与单因素方差分析类似,双因素方差分析也包括提出假设、构造检验 统计量和决策分析等步骤。
(1)提出假设。
为了检验两个因素的影响,需要对两个因素分别提出如下假设:
①对行因素提出假设。
H0∶μ1=μ2=…=μk=μ
行因素(自变量)对因变量没有显著影响
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、选择模型(我们不考虑交互因素)
• 有的分析需要考虑不同因素的交互效应,而有的分析不需要考虑交互效应,为此需要选择恰当模 型。



步骤4,
点击“Model”,在弹出下列对话框中,选择“Custom”,并把考虑的因素“品牌”、“地区” 选入“model:”框中。"build term"下的框中选择"main effects"
步骤2.
• 在对话框中, 选择变量“销 售量”- >“depende nt variable” 框中; • 选择变量“品 牌”和“地 区”->"fixed factor"框中
三、方差齐次性检验
• 由于方差分析要求 数据的方差相等, 必须查看数据的方 差相等与否的检验 结果。
• 步骤3.
• 点击"Option"按钮, 并选择 "homogenetiy test" 复选框。 • 点击“continue” 返回上一层对话框
双因素方差分析
李俊海 河南工业大学
一、双因素方差分析的数据格式
• 通常格式 spss数据格式
可以用字符串变量“品牌” 也可以用数值型变量“品牌代码”
二、选择因素和数值变量
• 步骤1.
• 在“Ananlyz” 菜单“General linear model” 中,选择 “univariate” 命令,弹出下 列对话框窗口。
消除“include intercept in model”复选框。
点击 “continue” 返回上一层对 话框。
五、查看输出结果
• 点击“ok”, 得到下列 输出结果:
方差分析表
六、寻找差异来源
在"univariate"对话框中, 点击“Post hoc..”,在弹 出的对话框中,选择 “地区”、“品牌”到 “post hoc tests for:” 框,并选择比较方法为 “LSD”,点击“”返 回上一层窗口。
(1)品牌不同水平的比较
(2)地区不同水平的比较
相关文档
最新文档