第15章ArcGIS地统计分析分解

合集下载

利用ARCGIS进行地类计算与统计讲解

利用ARCGIS进行地类计算与统计讲解

利用ARCGIS进行地类计算与统计讲解ARCGIS是一款强大的地理信息系统软件,可以进行地类计算与统计。

地类计算与统计是对地表覆盖类型进行分类、计算和统计的过程,可以帮助我们了解地表覆盖的分布情况、变化趋势等。

在ARCGIS中,我们可以利用不同的工具和功能来进行地类计算与统计。

首先,我们需要准备一份具有地表覆盖类型信息的矢量数据。

这些数据可以是卫星遥感图像、航空影像等,或者是由人工标注的地表覆盖类型数据。

在ARCGIS中,可以将这些数据导入到地理数据库中,然后进行进一步分析。

一种常用的地类计算方法是栅格化。

即将矢量数据转化为栅格数据,使得每个栅格单元代表一种地表覆盖类型。

ARCGIS中有专门的工具可以进行栅格化操作。

我们可以选择适当的栅格分辨率来进行栅格化,以平衡地表覆盖类型的细节和计算效率。

在得到栅格数据后,我们可以利用栅格数据进行地类计算与统计。

ARCGIS提供了很多工具来进行地类计算,如栅格计算器、遥感分类工具等。

栅格计算器可以进行诸如加减乘除、逻辑运算、统计等操作,可以用来对不同地类进行运算和统计。

遥感分类工具可以通过训练样本或者其他分类方法将栅格数据分类为不同的地表覆盖类型。

地类计算与统计极大地依赖于分类结果的准确性。

为了提高分类精度,我们可以利用ARCGIS提供的功能进行后处理。

例如,可以利用空间滤波器对分类结果进行平滑处理,去除噪声和误分类。

还可以通过多时相的数据进行时序分析,了解地表覆盖类型的变化趋势和演化过程。

另外,ARCGIS还提供了丰富的可视化功能,可以帮助我们更直观地理解地表覆盖类型的分布情况。

我们可以通过色彩映射、分层渲染、饼图等方式将地表覆盖类型数据可视化,以便更好地观察和分析结果。

最后,ARCGIS还支持地类数据的导出和共享。

我们可以将地类计算与统计的结果导出为各种格式的数据,如栅格图像、矢量数据、统计表格等。

这样,我们可以将计算与统计结果与其他人共享,以便更多人能够参与到地表覆盖类型的分析和研究中。

利用ARCGIS进行地类计算与统计讲解

利用ARCGIS进行地类计算与统计讲解

地类计算与统计一、数据准备。

应用到的数据包括社界(DWG文件)和所求年份的现状图(Shape或GeoDatabase)DWG文件的注记的插入点(Text为左下角点)要落在对应的社界面上,这样才能保证数据转换后注记和面层的一一对应。

二、数据处理。

数据的处理主要包括数据的转换、点面属性连接、数据相交三个部分。

2.1数据转换2.1.1建立数据集(1)点击打开ArcCatalog程序,找合适的路径然后【右键】→新建→PersonalGeodatabase:▽(2)新建数据库后,【双击】进入数据库,【右键】→新建数据集→输入名称外,其余使用默认设置,不用修改,直接【下一步】,直到【完成】:▽输入数据集名称▽坐标系统选Unknown(未知),或者用【导入】选DWG文件的投影▽容限使用默认即可,点击【完成】▽2.1.2将DWG数据导入数据集!!首先必须确定DWG文件的路径没有中文名(D:\pssj\sj.dwg),否则导入会一片空白(1)【双击】进入数据集aaa,【右键】→【导入】→【要素类(多个)】(2)在【Input Features】中添加DWG文件的注记层(Annotation)和面层(Polygon)▽添加注记和面层,然后点【确定】导入▽2.1.3检查修改面层的拓扑!!面层可能存在裂缝和重叠错误,这样会带来计算面积的错误,因此要进行拓扑的检查(1)数据集aaa中,【右键】→【新建】→【拓扑】(2)前面两步使用默认直接【下一步】,选择要素的时候勾选面层然后【下一步】▽使用默认等级,然后【下一步】▽添加拓扑规则,规则选择【不能重叠】和【不能有缝隙】,分两次添加,然后【下一步】▽点击【完成】,然后选【是】验证拓扑▽(3)修改拓扑错误打开ArcMap,添加aaa_Topology,即可看到拓扑检查结果(红色部分)可以看出,面层存在重叠,不存在裂缝,修要修改重叠部分,采用挖空的方法▽【编辑器】→【开始编辑】→用【选择工具】()选中重叠部分:▽【编辑器】→【裁切】(clip,可以将与选择部分有重叠的所有面擦除)▽直接【确定】,对所有重叠部分重复以上步骤▽在ArcMap工具栏位置【右键】→【拓扑】调出拓扑工具栏→【验证全部拓扑】重新验证拓扑看还有没有拓扑错误▽修改完没有拓扑问题后,【编辑器】→【保存编辑】→【停止编辑】▽拓扑错误已经消除,可以进行下一步操作!!如果导入DWG文件的线层,然后用线层构面的话,可以省略掉拓扑检查和修改这一步,操作会相对简单些。

arcgis学习--地统计分析

arcgis学习--地统计分析

ArcGIS软件应用实验7一、实验目的使用默认参数值创建模型来生成臭氧浓度表面的整个过程。

二、实验内容1、学习Geostatistical Analyst 扩展模块2、生成臭氧浓度表面三、实验步骤(一)准备工作1、激活地统计模块在主菜单上,单击自定义→扩展模块,选中GeostatisticalAnalyst复选框,单击关闭;图1-1扩展模块2、调出地统计工具条在主菜单上,单击自定义→工具条→GeostatisticalAnalyst,GeostatisticalAnalyst工具条即被添加到ArcMap会话中;图1-2工具条3、添加数据单击标准工具工具条上的添加数据按钮添加数据,按住CTRL键并选择O3_Sep06_3pm和ca_outline两个数据集,单击添加。

图1-3添加数据4、修改属性1、右键单击内容列表中的ca_outline图层图例(图层名称下面的框),然后单击无颜色,确保图层无颜色,只有范围;图1-4无颜色2、双击内容列表中O3_Sep06_3pm图层的名称。

打开图层属性对话框,在图层属性对话框中,单击符号系统选项卡。

在显示对话框中,○1单击数量,然后单击分级色彩;○2在字段框中,将值设置为OZONE;○3选择“黑色到白色”色带,以便这些点可以在本教程将要创建的颜色表面之上凸出来;符号系统对话框应如下所示:图1-5分级符号3、经过属性修改后,图层如下:图1-6结果(二)使用默认选项创建表面使用默认GeostatisticalAnalyst设置创建(插值)臭氧浓度表面。

臭氧点数据集(O3_Sep06_3pm)将用作输入数据集,并采用普通克里金法对值未知的位置处插入臭氧值。

在一系列对话框中单击下一步来接受默认设置。

1、地统计分析对话框单击GeostatisticalAnalyst工具条上的GeostatisticalAnalyst箭头,然后单击地统计向导,将弹出地统计向导对话框;图2-1地统计工具条地统计向导对话框,在方法列表框中,单击克里金法/协同克里金法。

ArcGIS地统计分析报告

ArcGIS地统计分析报告

实验四ArCGIS地统计分析一、实习容1:使用缺省参数创建一个表面2:数据检查3:制作臭氧浓度图4:模型比较5:制作超岀某一临界值的臭氧概率图二、实习过程练习1:利用缺省参数创建一个表面1・添加数据并调整显示设置:當选择丨显示:符号系统自义查谊I I标i∏⅛接和关联I时间I HTML弹出窗显示⑶ 要芽类别数里〕分级色彩r分级符号比例符号图丧多个匡性值0: OZONE ▼归一化(N) 无色帝(B Jiai符号范圉Im |O .021 MX)- .037000 .021 σ∞..037000o .037M)I - .052000 .037031 - .0520000 052001 - 070000 052W1 - .070000◎.070001-.091(XX) .07(XM1 -.091000©.091001-.121000 .ωιωι-.121000侯用颜色表示藪里。

亠√∕1T-Fx分类官然同飾点分级法(Jenk8) 类⑸ 5 ▼[分类©..・2 •使用默认选项创建表面鹹计向导.克里金法步琛4洪6・半变异幽协方差建模) ⊂□ I Ξ∣∣f ⅛⅜]一模型•已丢弃 + □Ψffi.¾ (Meg •),h ・10吒模型:δTδδΓ1451*Nugget÷l. 1451*Stable (1013D0,2) 协万差 H 视≡S≡ 显示.・.False 显示… False 显示点已丢・・・田导出视圉设實B 常规优化複型检査二元分布 FaISe变里 协方差日複型块金值 启用 TrUe 计算块金值 TrUe 块金值 0.001145128测里误差100%B 複型#1类型 稳定的参数 21主交程 101303.2 各向异性 FaISe 计箕偏基台值 TrUe 偏基台值1.145128S 複型X2 S 複型03□步长步长犬小16838.5 1□> < 更多■ 克里金法是一种依赖于测里戻差模型买现精硝或平看命 值的插值法。

ArcGIS地统计分析

ArcGIS地统计分析

探索性数据分析需要借助于ArcGIS的探索性数据分析
工具。
2.1 添加探索性数据分析工具
通常,ArcGIS的探索性数据分析模块并没有打开,在 默认界面上没有探索性数据分析工具,需要手动添加。添加
方法如下。
(1)开启地统计分析扩展模块:单击ArcMAP界面上 “Customize”︱“Extensions”命令,弹出“Extensions”
Geostatistical Analysis 地统计空间分析
2014/10/20
主要内容
1. ArcGIS地统计分析模块介绍 2. 探索性数据分析工具 3. 探索性数据分析
4. 空间插值技术 5. 实例——绘制臭氧浓度图 6. 小结
1 ArcGIS地统计分析模块介绍
ArcGIS地统计分析模块(ArcGIS Geostatistical
局部性插值方法。全局性插值方法以整个研究区的样点数据
集为基础来计算预测值,如全局多项式;局部性插值方法则 使用一个大研究区域内较小的空间区域内的已知样点来计算 预测值,如反距离权重法、局部多项式、径向基函数、核平 滑和扩散核。
4.1.1 反距离加权插值
反距离加权插值法的基本原理在于,一般来讲物体离得 近,它们的性质就越相似。反之,离得越远则相似性越小。 反距离加权插值法以插值点,与样本点间的距离为权重进行 加权平均,离插值点越近的样本点赋予的权重越大。
提供多种计算面值的方法:
简单 熵 平均值 中值 众数 标准差 聚类 四分位距
2.6 Semivariogram/Covariance Cloud (半变异/协方差函数云)
半变异/协方差函数云表示的是数据集中所有样点对
的理论半变异值和协方差,并把它们用两点间距离的函数 来表示,用此函数作图来表示。

ArcGIS地统计分析总结

ArcGIS地统计分析总结

ArcGIS地统计分析总结ArcGIS地统计分析(Geostatistical Analyst) 1 介绍1.1为什么使用ArcGIS Geostatistical Analyst人为判断总是会遗漏某些重要信息,同时也会无中生有。

而ArcGIS GeostatisticalAnalyst提供客观的数据驱动方法,定量预测数据变化趋势和从空间数据中发掘特征模型。

如果数据不够精确或者模型不够准确,这样势必影响输出的地图和从中得到的结论。

而ArcGIS Geostatistical Analyst可以提供一个概率框架,来定量计算生成数据面时的不确定性。

元统计分析方法利用属性数据之间的相关来推断不同变量之间的联系,ArcGIS Geostatistical Analyst可以联合各种数据来做更精确的预测。

ArcGIS GeostatisticalAnalyst可以有效地推测一些空间现象的未知部分,因此,对采样计划的设计和优化非常关键。

1.2使用ArcGIS Geostatistical Analyst的各个领域这个模块的应用对象不计其数,可以使用这个工具包开发任何一种地理数据集(比如坐标和属性),下面列出几个成功应用ArcGIS Geostatistical Analyst的典型领域:气象学家和统计学家应用ArcGIS Geostatistical Analyst来进行气象数据分析。

采矿行业广泛的应用ArcGIS Geostatistical Analyst,涉及从最初的地质特征研究到产量控制的各个阶段。

石油工业成功的应用ArcGIS Geostatistical Analyst,来分析包括地震数据和油井数据集成的空间数据,并且用来研究物理特性和地震属性之间的相关关系。

在环境问题的研究中,ArcGIS Geostatistical Analyst的应用提供了一个分析空气、土壤和地下水污染高效和一致的模型。

最新ArcGIS地统计分析精编

最新ArcGIS地统计分析精编

3.Trend Analysis(趋势分析)
全局趋势分析可以通过Trend Analysis(趋势分析)工 具来实现。地物的空间趋势反映了空间物体在空间区域 上变化的主体特征。 形成以数据某一属性值为高度的三维透视图,从而帮助 用户从不同视角分析采样数据集的全局趋势。 样点的位置由X、Y和Z三个值来决定。X、Y确定样点 平面坐标,Z值则是样点数据的某一属性值。三维透视 图中的每个黑线就代表了样点的位置和高度,位置就是 样点X、Y平面坐标,高度即样点数据的某一属性值的 大小。
5.Semivariogram/Covariance Cloud (半变异/协方差函数云)
半变异/协方差函数云表示的是数据集中所有样点对的 半变异值和协方差,并把它们用两点间距离的函数来表 示,用此函数作图来表示。
描述空间自相物越相似。如果存在空间自相关,那么该变量本身 存在某种数学模型。半变异/协方差函数云图就是这种关 系的定量化表示。 半变异函数有三个表征空间变异特征的参数:基台值 (still)、块金值(nugget)和变程(range)
1.Histogram(直方图)
Histogram(直方图)指对采样数据按一定的分级方案 进行分级,统计采样点落入各个级别中的比例,并通 过柱状图表现出来。直方图可以直观的反映采样数据 分布特征与规律。
2.QQPlot分布图
QQPlot分布图是可以将现有数据的分布与标准 正态分布对比,从而来分析和评价现有数据。 如果数据图形越接近一条直线,则它越接近于 服从正态分布。 1.Normal QQPlot分布图(正态QQPlot分布图) 2.General QQPlot分布图(普通QQPlot分布图)
插值精度评价方法
交叉验证: 假设其中一个站点的要素值未知,通过周围n-1个站点的值来估算,然后轮 流改变未知站点,最后计算所有站点实际观测值与估计值的各项误差。 ArcGIS地统计模块中的各种插值方法,采用交叉验证的方式计算出各种误差, 符合以下标准的模型最优: 误差平均值(Mean)、误差标准平均值(Mean Standardized)最接近于 0 ; 均方根预测误差( Root-Mean-Square)最小 ; 平均标准误差( Average Mean Error)最接近于均方根预测误差(RootMean-Square); 标准均方根预测误差(Root-Mean-Square Standardized)最接近于1。

ArcGIS地统计分析总结

ArcGIS地统计分析总结

ArcGIS地统计分析总结ArcGIS地统计分析(Geostatistical Analyst) 1 介绍1.1为什么使用ArcGIS Geostatistical Analyst人为判断总是会遗漏某些重要信息,同时也会无中生有。

而ArcGIS GeostatisticalAnalyst提供客观的数据驱动方法,定量预测数据变化趋势和从空间数据中发掘特征模型。

如果数据不够精确或者模型不够准确,这样势必影响输出的地图和从中得到的结论。

而ArcGIS Geostatistical Analyst可以提供一个概率框架,来定量计算生成数据面时的不确定性。

元统计分析方法利用属性数据之间的相关来推断不同变量之间的联系,ArcGIS Geostatistical Analyst可以联合各种数据来做更精确的预测。

ArcGIS GeostatisticalAnalyst可以有效地推测一些空间现象的未知部分,因此,对采样计划的设计和优化非常关键。

1.2使用ArcGIS Geostatistical Analyst的各个领域这个模块的应用对象不计其数,可以使用这个工具包开发任何一种地理数据集(比如坐标和属性),下面列出几个成功应用ArcGIS Geostatistical Analyst的典型领域:气象学家和统计学家应用ArcGIS Geostatistical Analyst来进行气象数据分析。

采矿行业广泛的应用ArcGIS Geostatistical Analyst,涉及从最初的地质特征研究到产量控制的各个阶段。

石油工业成功的应用ArcGIS Geostatistical Analyst,来分析包括地震数据和油井数据集成的空间数据,并且用来研究物理特性和地震属性之间的相关关系。

在环境问题的研究中,ArcGIS Geostatistical Analyst的应用提供了一个分析空气、土壤和地下水污染高效和一致的模型。

第15章ArcGIS地统计分析

第15章ArcGIS地统计分析

15.3.5
多数据集协变分析
世界上的事物不会孤立存在,它们都是处于广泛联系 之中的,并相互制约和相互影响。协变分析主要通过分析多 因素(数据集)关联特征,在地统计空间分析中可以有效利 用这种相关特征增强建模效果,如协同克里格插值分析。
15.4
空间确定性插值
对采样数据进行分析,并对采样区地理特征认识之后, 便要选择合适的空间内插方法来创建表面。插值方法按其实 现的数学原理可以分为两类,一类是确定性插值方法;另一 类是地统计插值,也就是克里格插值。 确定性插值方法以研究区域内部的相似性(如反距离加 权插值法)、或者以平滑度为基础(如径向基函数插值法) 由已知样点来创建表面。 确定性插值方法又可以分为两种,即全局性插值方法和 局部性插值方法。全局性插值方法以整个研究区的样点数据 集为基础来计算预测值,局部性插值方法则使用一个大研究 区域内较小的空间区域内的已知样点来计算预测值。
15.5.2
普通克里格插值
普通克里格(Ordinary Kriging)是区域化变量的线性 估计,它假设数据变化成正态分布,认为区域化变量Z的期 望值是未知的。插值过程类似于加权滑动平均,权重值的确 定来自于空间数据分析。 1、创建预测图(Prediction Map) 2、创建分位数图(Quantile Map) 3、创建概率图(Probability Map) 4、创建标准误差预测图(Prediction Standard Error Map)
15.2.6
Semivariogram/Covariance Cloud ( 半变异/协方差函数云)
半变异/协方差函数云表示的是数据集中所有样点对 的理论半变异值和协方差,并把它们用两点间距离的函数来 表示,用此函数作图来表示。
15.2.7

ARCGIS_地统计分析

ARCGIS_地统计分析

ARCGIS_地统计分析地统计分析是一种以地理空间数据为基础,通过空间与属性数据的分析与处理,揭示地理现象的分布规律、相互关系及其演化过程的一种科学方法。

ARCGIS(Arc Geographic Information System)是一种常用的地理信息系统软件,具有强大的地理空间数据分析功能。

本文将介绍ARCGIS地统计分析的原理、应用方法及其在研究、规划和决策等领域的重要性。

ARCGIS地统计分析的原理是将地理空间数据与属性数据相结合,通过特定的算法与方法分析地理现象的分布规律与关系。

ARCGIS提供了多种空间分析工具,包括空间数据插值、空间聚类、空间插值、空间模式、空间点格局等,以支持用户对地理现象进行全面的分析和理解。

其中,空间插值分析是一种根据已有的离散空间点数据,推测未知位置点处的属性值的方法,常用于地质勘查、环境监测等领域;空间聚类分析可用于发现空间集群的位置、大小和分布模式,常用于城市规划、交通规划等领域;空间模式分析则可以通过分析地理对象的空间关系,揭示地理对象分布的内在规律。

在ARCGIS地统计分析中,数据的选择与准备是非常重要的环节。

首先,需要选择与研究对象相适应的数据类型,如矢量数据、栅格数据等。

其次,需要对数据进行预处理,包括数据清洗、数据转换等操作,以确保数据质量和一致性。

然后,需要选择合适的统计分析方法,并根据具体情况制定相应的参数设置。

最后,对分析结果进行可视化展示,以便进一步的分析和解释。

总之,ARCGIS地统计分析是一种有效的地理空间数据分析方法,可以揭示地理现象的分布规律和相互关系,并为各个领域的研究、规划和决策提供科学支持。

通过合理选择和处理数据,结合合适的统计分析方法,可以获取有意义的分析结果,并在实际应用中发挥重要作用。

因此,熟练掌握ARCGIS地统计分析技术,对于科研人员、规划师和决策者来说,具有重要的价值和意义。

利用ARCGIS进行地类计算与统计讲解

利用ARCGIS进行地类计算与统计讲解

利用ARCGIS进行地类计算与统计讲解ARCGIS是一种强大的地理信息系统软件,被广泛用于地理数据的收集、管理、分析和可视化。

其中一个重要的功能是利用ARCGIS进行地类计算与统计。

在这篇文章中,我们将详细讲解如何使用ARCGIS进行地类计算与统计。

首先,什么是地类计算与统计?地类计算与统计是指对地理空间数据进行分类和统计分析的过程。

通过对地理空间数据进行分类,我们可以将地球表面划分为不同的地类,如森林、湖泊、农田等。

而地类统计则是指对这些地类进行数量、面积和比例等统计分析。

在ARCGIS中,进行地类计算与统计有多种方法。

其中一种常见的方法是通过栅格数据进行分析。

首先,我们需要将矢量数据转换为栅格数据。

ARCGIS提供了多种栅格化工具,如“要素到栅格”工具和“栅格样本”工具,可以将矢量数据转换为栅格数据。

在进行转换时,还可以设置栅格像元的大小、压缩比例和像元值的分配方式等参数。

转换完成后,我们可以使用栅格计算器进行地类计算。

栅格计算器是ARCGIS中的一个强大的工具,可以对栅格数据进行代数、逻辑和统计运算。

例如,我们可以使用栅格计算器将不同的栅格数据相加、相减或相乘,从而得到地类的组合或交叉。

此外,栅格计算器还可以进行逻辑运算,如AND、OR和NOT等。

除了栅格数据,ARCGIS还支持矢量数据的地类计算与统计。

对于矢量数据的地类计算,首先需要将矢量数据进行分类。

ARCGIS提供了多种分类方法,如自然断点分类、分位数分类和等间距分类等。

通过选择合适的分类方法,可以根据不同属性的值将矢量数据分成不同的类别。

然后,我们可以使用“汇总统计”工具对每个类别进行统计分析。

该工具可以计算每个类别的数量、面积、平均值、最大值和最小值等统计指标。

在进行地类计算与统计时,还可以利用ARCGIS的空间分析工具进行更复杂的分析。

例如,我们可以使用“空间连接”工具对不同的地类进行空间连接分析,以确定它们之间的关系和相似性。

ArcGIS实战15、地统计分析

ArcGIS实战15、地统计分析
18
局部多项式插值方法的属性设置
局部多项式插值法内插结果
19
15.2.2空间插值
3)反距离权重法 反距离权重法,又称为距离反比加权法,它是一种加权移动平均法,以内插点与 样本点之间的距离为权重,属于确定性的内插方法。如果采样点在整个区域中均 匀分布且未聚类,则反距离权重法的效果最佳。
反距离权重插值法内插结果
泛克里金插值创建的概率图
25
15.2.2空间插值
4)指示克里金法 指示克里金法是一种非参数方法,无需了解数据的分析类型,该方法的特点是可 以将异常值对插值的影像降到最低,因此也是常用的方法之一。
指示克里金法插值的标准误差指示图
Байду номын сангаас
26
15.2.2空间插值
5)概率克里金法 概率克里金法是指示克里金法的一种改进。它不仅具有指示克里 金法的优点,即非参数和无分布特性,同时也减小了估计方差, 提高了插值精度,降低了指示克里金法的平滑作用。
析取克里金法的预测图
28
15.2.2空间插值
3、ArcGIS10新增的插值方法 含障碍的扩散插值法和含障碍的核插值法是AcGIS10地统计提供的 两种新的插值方法,它们也是独立的地理处理工具。 含障碍的扩散插值法是在研究区中考虑障碍的插值方法,可使用 不同的成本表面修改插值(扩散)过程以便更精确地构建感兴趣 的现象的模型。核插值是一阶局部多项式插值法一个变形,当评 估值仅存在较小偏差且比无偏差评估值更加精确时,可以将其作 为首选的评估值。
【直方图】对话框
6
15.2.1探索性空间数据分析工具
2、QQ分布 分位数——分位数图(又称QQ图)用来评估两个数据集分布的相 似程度。包括正态QQ分布图和常规QQ分布图。 正太QQ分布图是将已知数据集与正态分布数据集进行比较,检查 数据的正态分布情况。 常规QQ分布图对两个数据集进行比较,评估两个数据集分布的相 似程度。

利用ARCGIS进行地类计算与统计

利用ARCGIS进行地类计算与统计

利用ARCGIS进行地类计算与统计ARCGIS是一款强大的地理信息系统(GIS)软件,它提供了丰富的功能和工具,可以进行地类计算与统计。

地类计算和统计是研究地理区域内不同地物类型及其分布情况的重要方法之一,对于土地利用规划、环境保护和资源管理等方面都具有重要意义。

ARCGIS的地类计算与统计功能主要通过空间分析工具箱中的多个工具来实现。

下面将介绍一些常用的工具,并结合实际案例来说明其应用。

首先,ARCGIS提供了“分类(Classify)”工具,可以将栅格数据进行地类划分。

用户可以选择合适的分类方法,如自然断点法、等间距法等,根据栅格像素的值将其归类为不同的地类。

例如,在土地利用研究中,可以通过分类工具将遥感图像中的像素值划分为不同的土地利用类型,如耕地、林地、草地等。

然后,可以根据生成的分类结果进行进一步的统计分析。

其次,ARCGIS提供了“面积统计(Zonal Statistics)”工具,可以计算每个地类的面积。

该工具可以根据分类结果和原始栅格数据,将栅格单元格按照地类进行分组,然后统计每个地类的面积。

例如,在土地利用规划中,可以利用该工具计算每个地类在研究区内的面积,从而了解各个地类的分布情况和相对比例。

此外,ARCGIS还提供了“多条件查询(Select by Attributes)”和“交叠分析(Overlay Analysis)”等工具,可以进行地类的条件筛选和重叠分析。

通过多条件查询工具,用户可以根据特定的属性条件,筛选出符合条件的地类。

例如,在环境保护研究中,可以使用该工具筛选出湿地类别中受到威胁的区域。

而交叠分析工具可以将不同地类之间的空间关系进行定量分析,例如计算两个地类的相交面积或者求解包含了一些地类的区域。

最后,ARCGIS还提供了数据可视化工具,如图表生成工具和热力图工具等,可以将地类计算和统计结果以可视化的形式呈现出来。

通过数据可视化,可以更直观的了解和比较不同地类之间的特征和差异。

利用 ArcGIS 进行地理信息系统分析

利用 ArcGIS 进行地理信息系统分析

利用 ArcGIS 进行地理信息系统分析地理信息系统(GIS)在当今的各个领域中发挥着至关重要的作用,它能够帮助我们更好地理解和管理地理空间数据。

而 ArcGIS 作为一款功能强大的 GIS 软件,为地理信息的处理和分析提供了丰富的工具和方法。

接下来,让我们深入探讨如何利用 ArcGIS 进行地理信息系统分析。

首先,我们要了解 ArcGIS 软件的基本界面和操作。

打开 ArcGIS,我们会看到一系列的菜单和工具栏,其中包含了数据导入、编辑、分析、可视化等功能模块。

在开始分析之前,需要将相关的地理数据导入到软件中。

这些数据可以是矢量数据(如点、线、面),也可以是栅格数据(如遥感影像)。

导入数据的方式多种多样,可以通过直接打开文件、连接数据库或者使用数据转换工具等。

数据准备完成后,就可以进行数据分析了。

比如,我们可以进行空间查询。

假设我们有一个城市的土地利用数据,想要找出所有的商业区,就可以通过设置查询条件,快速筛选出符合要求的区域。

这在城市规划、资源管理等方面非常有用,可以帮助决策者快速了解特定区域的土地利用情况。

缓冲区分析也是常见的操作之一。

比如,我们想要分析一条公路周边一定范围内的环境影响,就可以以公路为中心线创建一个缓冲区。

然后,我们可以将其他相关数据(如生态保护区、居民区等)与缓冲区进行叠加分析,从而评估公路建设可能带来的影响。

叠加分析功能更是强大。

它可以将多个图层进行叠加,从而得到新的信息。

例如,将土地利用图层和土壤类型图层叠加,就可以了解不同土地利用类型下的土壤分布情况。

这对于农业规划、环境保护等领域具有重要意义。

除了上述基本的分析功能,ArcGIS 还提供了网络分析工具。

比如,在交通规划中,可以利用网络分析来确定最优的路径。

假设我们要从一个地点到另一个地点,软件可以根据道路的条件、交通流量等因素,计算出最快、最短或者最经济的路线。

在进行地理信息系统分析时,数据的质量和准确性至关重要。

ArcGIS地统计分析介绍

ArcGIS地统计分析介绍
• 对话框上查看 • 弹出帮助
ArcGIS 10的新特性
• 在地统计分析工具箱中, 新增了11个GP工具
– 新增功能 – 之前版本中仅限地统计 分析向导或者地统计分 析工具条
地统计分析中的IDW工具
含障碍的核插值
?
含障碍的扩散插值
采样网络设计
•创建空间平衡点
- 基于预先得到的概率结果
- 输出的结果样本点是空间平衡的
预测值的 概率> 1
百分之95的值
概率图和分位数图需要数据满足正态分布
交叉验证
预测表面的准确性?
|观测值– 预测值|
交叉验证
• 地统计提供了测量值与预测值的散点图和统计信 息。
模型预测值
实际采样值
Optimize Help
子类要素
…通过从一个在[0,1]区间均匀分布的随机值来分割数据
地统计分析GP工具
反距离权重插值
• 表面经过所有的已知样本点 • 使用先入为主的空间相关性 • 根据周围样本值的加权平均来进行预 测 • 权重随着距离增大而递减,越高级数 递减越快
Weight
Power = 1 Power = 2 Distance
Inverse Distance Weights
• 模型参数: 样本点个数和领域搜索参数.
2010 Esri 中国区域用户大会
ArcGIS 地统计分析介绍
张文
概要
• 什么是地统计?
• 如何使用地统计分析模块?
数据分析(Explore Data) 地统计分析向导(Geostatistical Wizard) 创建数据子集(Create Subset) 地统计分析工具(Tools)
• 局部多项式

利用ARCGIS进行地类计算与统计

利用ARCGIS进行地类计算与统计

利用ARCGIS进行地类计算与统计ArcGIS是一种强大的地理信息系统(GIS)软件,可以用于地类计算和统计。

地类计算是指利用GIS软件分析现有的矢量或栅格数据,确定地球表面的不同地类类型,如森林、湿地、城市等;而地类统计是指对地类数据进行数量和空间分布的统计分析。

在ARCGIS中进行地类计算与统计,可以按照以下步骤进行:1.数据准备:首先要准备好所需的地理数据。

这可以包括卫星遥感影像、地图矢量数据和栅格数据等。

确保这些数据的投影坐标一致,以便进行分析。

2. 数据导入:将准备好的数据导入ARCGIS中,可以使用ArcMap或ArcGIS Pro等软件来导入。

将矢量数据和栅格数据分别导入到对应的图层中。

3.数据预处理:进行数据预处理,包括数据的裁剪、栅格化和重分类等操作。

根据需要选择感兴趣的地区进行裁剪,然后将矢量数据转换为栅格数据,以便进行地类计算。

栅格数据的重分类可以将连续的数据转换为离散的地类类型。

4.地类计算:使用ARCGIS中的空间分析工具,如“栅格计算器”或“地表分析”等工具进行地类计算。

这些工具可以根据不同的分类方法,将地类类型进行提取或创建。

例如,可以根据遥感影像的颜色、纹理、植被指数等特征,将栅格数据划分为不同的地类。

5.地类统计:对计算出的地类数据进行统计分析。

可以使用ARCGIS 中的统计工具,如“统计图表”或空间统计工具来进行数量和空间分布的统计分析。

根据需要,生成统计表和图表,了解地类的数量、面积、分布等信息。

6.结果展示:将计算与统计的结果进行可视化展示。

使用ARCGIS中的制图功能,可以根据统计结果创建分级色彩地图或专题图,以便更直观地展示地类的分布情况。

7.结果分析:对计算和统计的结果进行分析,并根据需要进行后续的决策和规划。

通过比较不同地类的数量、面积和分布情况,可以了解地表环境的变化和演变过程,并为土地利用规划、环境保护等提供科学依据。

ARCGIS在地类计算与统计方面具有广泛的应用,可以应用于环境科学、土地利用规划、自然资源管理、城市规划等领域。

ArcGIS地统计分析总结

ArcGIS地统计分析总结

ArcGIS地统计分析(Geostatistical Analyst)1 介绍1.1为什么使用ArcGIS Geostatistical Analyst人为判断总是会遗漏某些重要信息,同时也会无中生有。

而ArcGIS Geostatistical Analyst提供客观的数据驱动方法,定量预测数据变化趋势和从空间数据中发掘特征模型。

如果数据不够精确或者模型不够准确,这样势必影响输出的地图和从中得到的结论。

而ArcGIS Geostatistical Analyst可以提供一个概率框架,来定量计算生成数据面时的不确定性。

元统计分析方法利用属性数据之间的相关来推断不同变量之间的联系,ArcGIS Geostatistical Analyst可以联合各种数据来做更精确的预测。

ArcGIS Geostatistical Analyst可以有效地推测一些空间现象的未知部分,因此,对采样计划的设计和优化非常关键。

1.2使用ArcGIS Geostatistical Analyst的各个领域这个模块的应用对象不计其数,可以使用这个工具包开发任何一种地理数据集(比如坐标和属性),下面列出几个成功应用ArcGIS Geostatistical Analyst的典型领域:气象学家和统计学家应用ArcGIS Geostatistical Analyst来进行气象数据分析。

采矿行业广泛的应用ArcGIS Geostatistical Analyst,涉及从最初的地质特征研究到产量控制的各个阶段。

石油工业成功的应用ArcGIS Geostatistical Analyst,来分析包括地震数据和油井数据集成的空间数据,并且用来研究物理特性和地震属性之间的相关关系。

在环境问题的研究中,ArcGIS Geostatistical Analyst的应用提供了一个分析空气、土壤和地下水污染高效和一致的模型。

演示、个例研究和研究教育论文提供了大量的应用ArcGIS Geostatistical Analyst的例子。

ArcGIS地统计分析方法的应用

ArcGIS地统计分析方法的应用

13:54 13:54
数据是否平稳?

当 Entropy 或 StDev,符号化后,
查看随机( randomness)是否
被泰森多边形分类了.
13:54 13:54
数据是否有聚类?

图形法
数据如果被优先采样,某些位置的采样点密 度可能要比其他位置高。
-
当所寻找到的最邻近的5个邻域时,所有邻域也 许都是在同一个类别中.
• • •
数据分布在什么地方? 数据点的值是什么? 跟点位置相关的值如何?
基 于 数 据 驱 动 , 让 数 据 说 明 本 身
13:54 13:54
探索性空间数据分析(ESDA)
半变异函数/协方差云
13:54 计算数据集中的空间依赖性(半变异函数和协方差) 13:54
探索性空间数据分析(ESDA)
全局多项式插值gpi空间插值确定性插值地统计插值局部性插值反距离权重插值idw径向基插值rbf局部多项式插值lpi普通克里格插值简单克里格插值泛克里格插值概率克里格插值析取克里格插值协同克里格插值设置障碍插值含障碍核插值含障碍扩散插值面插值经验贝叶斯克里格插值地统计中的插值方法?确定性插值全局多项式插值gpi径向基插值rbf局部多项式插值lpi反距离权重idw精确性插值13
基于区域化变量存在空间相关性的假设.
地统计插值
普通克里金插值(µ 是一个未知常量)
地 统 计 插 值
简单克里金插值(µ 是已知常量) 泛克里金插值(µ(s) 为确定性函数) 概率克里金插值(µ 是一个未知常量) 析取克里金插值 协同克里金插值
Z(s) = µ(s) + ε(s)
µ(s) = ß0 + ß1x + ß2y + ß3x2 + ß4y2 + ß5xy 13:54

最新ArcGIS地统计分析

最新ArcGIS地统计分析

一、Explore Data(探索性数据分析)
探索性数据分析是为了让用户更深入地认识研究对象 ,从而对与其数据相关的问题做出更好的分析与决策。
探索性数据分析可以确定数据属性,探测数据分布、 查找异常值、分析全局变化趋势、研究空间自相关和理 解多种数据集之间相关性。
在地统计分析中,克里格插值方法建立在一定的 假设基础上。普通克里格法、简单克里格法和泛克 里格法等都假设数据服从正态分布。如果数据不服 从正态分布,需要进行一定的数据变换,使其服从 正态分布。正态分布的检验可以通过直方图和正态 QQPlot分布图完成。
插值方法分类
插值方法按其实现的数学原理可以分为两类,一类是确 定性插值方法;另一类是地统计插值,也就是克里格插 值。 确定性插值方法以研究区域内部的相似性(如反距离权 重法)、或者以平滑度为基础(如径向基函数法)由已 知样点来创建表面。
反距离权重法
反距离权重法以插值点与样本点间的距离为权 重进行加权平均,离插值点越近的样本点赋予的 权重越大。
1、创建预测图(Prediction Map) 2、创建分位数图(Quantile Map) 3、创建概率图(Probability Map) 4、创建标准误差预测图(Prediction
Standard Error Map)
克里格方法与反距离权插值方法类似的是,两 者都通过对已知样本点赋权重来求考虑已知样本点与未知样点的距离远近, 而克里格方法不仅考虑距离,而且通过变异函 数和结构分析,考虑了已知样本点的空间分布 及与未知样点的空间方位关系。
插值精度评价方法
交叉验证: 假设其中一个站点的要素值未知,通过周围n-1个站点的值来估算,然后轮 流改变未知站点,最后计算所有站点实际观测值与估计值的各项误差。

ArcGIS区域统计分析

ArcGIS区域统计分析

ArcGIS区域统计分析⽮量数据与栅格数据的叠加分析,⼀直是⼤家关注的问题,如何实现简单的⽮量数据与栅格数据的属性表链接?如何实现采⽤⽮量要素类数据统计对应的栅格Dn值?本节主要讲解如何使⽤ArcToolBox中的⼯具进⾏上述功能的实现。

结果需求1、现有数据分析四川周边省县的DEM数据;对应的四川周边省县的⽮量数据;使⽤软件:ArcGIS 10.2 ArcMap图 1 现有的县域数据展⽰2、结果显⽰需求1)统计不同县域⽮量数据对应的DEM的均值;2)统计县政府所在地点对应的DEM⾼程值;3)导出个县界⾯域对应的DEM均值数据以及⾏政单位所在DEM⾼程值。

实现⽅法图 2 实现技术流程1、 Zonal statistics1)在搜索窗⼝查找Zonal statistics ⼯具;图 3 搜索Zonal statistics⼯具2)双击此⼯具,弹出⼀下对话框,按照下图进⾏参数设置;A.⾸先计算⾏政府所在点的DEM值,具体参数设置如下;图 4 ⾸先计算⾏政府所在点对应的DEM值。

B.安装上述的参数设置计算县域数据对应的DEM均值;3)点击ok,查看计算结果。

图 5 ⾏政府所在点DEM值图 6 县域对应的DEM均值该⽅法得到的结果是⼀个栅格数据,对于要统计该栅格数据的⾯域dem均值,还需要进⾏更多的操作步骤,为了更为简单的获取同样结果的数据,可采⽤下⾯的“2、Zonal statistics as Table”进⾏表统计分析。

2、 Zonal statistics as Table1)在搜索窗⼝查找Zonal statistics ⼯具;图 7 Zonalstatistics as Table所在位置2)双击此⼯具,弹出对话框,按照下图进⾏参数设置;A.⾸先对⾏政府所在地的点数据进⾏表统计提取,具体参数设置如下图:图 8 ⾏政府所在点DEM表统计提取B.按照上述A的操作步骤进⾏提取县域⾯数据统计表信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15章 ArcGIS地统计分析
地统计分析方法是空间统计学的一个重要分支,被广泛 应用于许多领域。ArcGIS地统计分析功能是借助于ArcGIS地 统计分析模块(ArcGIS Geostatistical Analyst)来实现的。 ArcGIS地统计分析模块使得复杂的地统计方法可以在软件中 轻易实现。本章主要通过对地统计分析的概念介绍,逐步引导 读者在ARCGIS中,如何应用地统计分析解决实际问题。
15.1 ArcGIS地统计分析概述
很长时间以来,地统计分析一直没能很好的和GIS分析 模型紧密地结合在一起,而ArcGIS地统计分析模块则在地 统计学与GIS之间架起了一座桥梁。
15.1.1 ArcGIS地统计分析模块介绍
ArcGIS地统计分析模块(ArcGIS Geostatistical Analyst)是一个完整的工具包,它带有为默认模型设计的 稳定性参数。这样可以帮助初学者快速的掌握地统计分析。
15.2.4 Trend Analysis(趋势分析)
趋势分析可以利用样点数据生成以数据某一属性值为高 度的三维透视图,从而帮助用户从不同视角分析采样数据集 的全局趋势。 样点的位置由X、Y和Z3个值来决定。X、Y确定样点 平面坐标,Z值则是样点数据的某一属性值。三维透视图中 的每个黑线就代表了样点的位置和高度,位置就是样点X、 Y平面坐标,高度即样点数据的某一属性值的大小。
15.3.1 检验数据分布
在地统计分析中,克里格方法建立在一定的假设基础上, 其在一定程度上要求所有数据值具有相同的变异性。另外,普通 克里格法、简单克里格法和泛克里格法等都假设数据服从正态分 布。如果数据不服从正态分布,需要进行一定的数据变换,从而 使其服从正态分布。因此,在进行地统计分析前,检验数据分布 特征,了解和认识数据具有非常重要的意义。数据的检验可以通 过直方图和正态QQPlot分布图完成。 1.通过直方图检验数据分布 2.通过QQplot图检验数据分布
15.2 探索性数据分析工具
探索性数据分析可以让用户更清楚地了解所用的探索性 数据,包括数据的属性、分布以及空间数据的变异性和相关 性,并以此来分析数据的变化趋势,从而利用已知的数据来 推测拟合未知的数据。探索性数据分析也可以让用户更深入 地认识研究对象,从而对与其数据相关的问题做出更好的分 析与决策。 探索性数据分析需要借助于ArcGIS的探索性数据分析 工具。
正交协方差函数云表示的是两个数据集中所有样点对的 理论正交协方差,并把它们用两点间距离的函数来表示。
15.3 探索性数据分析
对于一组模式未知的数据,可以有很多方法来处理,当数 据偏离严格假定所描述的理想模型,古典统计技术可能不适用。 探索性数据分析技术——新开发的稳健、高效的数据分析方法, 可以让用户更全面地了解自己使用的数据。可以借助其来查看数 据是否服从正态分布,是否存在某种趋势效应、各向异性等。 探索性数据分析主要利用ArcGIS 提供的工具和插值方法, 可以确定统计数据属性,探测数据分布、全局和局部异常值、寻 求全局的变化趋势、研究空间自相关和理解多种数据集之间相关 性。
15.1.2 地统计分析基础简介
地统计(Geostatistics)又称地质统计,也可以称为空 间统计分析,其是统计学的一个分支。地统计于20世纪50年 代初开始形成,60年代在法国著名统计学家G. Matheron的 大量理论研究工作基础上,形成一门新的统计学分支。 地统计学是以区域化变量理论(theory of regionalized variable)为基础,以变异函数(variogram)为基本工具来 研究分布于空间,并呈现出一定的随机性和结构性的自然现 象的科学。
15.2.6 Semivariogram/Covariance Cloud (半变异/协方差函数云)
半变异/协方差函数云表示的是数据集中所有样点对的 理论半变异值和协方差,并把它们用两点间距离的函数来表 示,用此函数作图来表示。
15.2.7 Crosscovariance Cloud(正交协方 差函数云)
15.2.1 添加探索性数据分析工具
通常,ArcGIS的探索性数据分析模块并没有打开,在 默认界面上没有探索性数据分析工具,需要手动添加。添加 方法如下。 (1)开启地统计分析扩展模块:单击ArcMAP界面上 “工具” ︱“扩展”命令,弹出“扩展”对话框,确保 Geostatistical Analyst的复选框被选中。 (2)添加Geostatistical Analyst工具条。选择ArcMAP 界面上的“视图”菜单︱ “工具条”命令,确保 Geostatistical Analyst工具条被选中。之后,在ArcMAP工具 栏将出现Geostatistical Analyst工具条。
15.2.2 Histogram(直方图)
Histogram(直方图)指对采样数据按一定的分级方案 进行分级,统计采样点落入各个级别中的个数或占总采样数 的百分比,并通过条带图或柱状图表现出来。直方图可以直 观的反映采样数据分布特征与规律。
15.2.3 正态QQPlot分布图)和普通QQPlot 分布图
15.2.5 Voronoi Map(Voronoi地图)
Voronoi地图是由样点以及样点周围的一系列多边形所 组成。多边形生成的要求就是多边形内任何位置距这一样点 的距离都,比该多边形到其他样点的距离要近。Voronoi 多 边形生成之后,相邻的点就被定义为其Voronoi多边形,与 选择样点的Voronoi多边形具有公共边的其他样点。
15.3.ቤተ መጻሕፍቲ ባይዱ 寻找数据离群值
QQPlot分布图是可以将现有数据的分布与标准正态分 布对比,从而来分析和评价现有数据。其是利用分布的分位 数而作出的图形,如果数据图形越接近一条直线,则它越接 近于服从正态分布。 1.Normal QQPlot分布图(正态QQPlot分布图)
2.General QQPlot分布图(普通QQPlot分布图)
相关文档
最新文档