第15章ArcGIS地统计分析分解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.2.2 Histogram(直方图)
Histogram(直方图)指对采样数据按一定的分级方案 进行分级,统计采样点落入各个级别中的个数或占总采样数 的百分比,并通过条带图或柱状图表现出来。直方图可以直 观的反映采样数据分布特征与规律。
15.2.3 正态QQPlot分布图)和普通QQPlot 分布图
第15章 ArcGIS地统计分析
地统计分析方法是空间统计学的一个重要分支,被广泛 应用于许多领域。ArcGIS地统计分析功能是借助于ArcGIS地 统计分析模块(ArcGIS Geostatistical Analyst)来实现的。 ArcGIS地统计分析模块使得复杂的地统计方法可以在软件中 轻易实现。本章主要通过对地统计分析的概念介绍,逐步引导 读者在ARCGIS中,如何应用地统计分析解决实际问题。
15.2.5 Voronoi Map(Voronoi地图)
Voronoi地图是由样点以及样点周围的一系列多边形所 组成。多边形生成的要求就是多边形内任何位置距这一样点 的距离都,比该多边形到其他样点的距离要近。Voronoi 多 边形生成之后,相邻的点就被定义为其Voronoi多边形,与 选择样点的Voronoi多边形具有公共边的其他样点。
15.3.2 寻找数据离群值
15.2 探索性数据分析工具
探索性数据分析可以让用户更清楚地了解所用的探索性 数据,包括数据的属性、分布以及空间数据的变异性和相关 性,并以此来分析数据的变化趋势,从而利用已知的数据来 推测拟合未知的数据。探索性数据分析也可以让用户更深入 地认识研究对象,从而对与其数据相关的问题做出更好的分 析与决策。 探索性数据分析需要借助于ArcGIS的探索性数据分析 工具。
正交协方差函数云表示的是两个数据集中所有样点对的 理论正交协方差,并把它们用两点间距离的函数来表示。
wenku.baidu.com5.3 探索性数据分析
对于一组模式未知的数据,可以有很多方法来处理,当数 据偏离严格假定所描述的理想模型,古典统计技术可能不适用。 探索性数据分析技术——新开发的稳健、高效的数据分析方法, 可以让用户更全面地了解自己使用的数据。可以借助其来查看数 据是否服从正态分布,是否存在某种趋势效应、各向异性等。 探索性数据分析主要利用ArcGIS 提供的工具和插值方法, 可以确定统计数据属性,探测数据分布、全局和局部异常值、寻 求全局的变化趋势、研究空间自相关和理解多种数据集之间相关 性。
15.2.1 添加探索性数据分析工具
通常,ArcGIS的探索性数据分析模块并没有打开,在 默认界面上没有探索性数据分析工具,需要手动添加。添加 方法如下。 (1)开启地统计分析扩展模块:单击ArcMAP界面上 “工具” ︱“扩展”命令,弹出“扩展”对话框,确保 Geostatistical Analyst的复选框被选中。 (2)添加Geostatistical Analyst工具条。选择ArcMAP 界面上的“视图”菜单︱ “工具条”命令,确保 Geostatistical Analyst工具条被选中。之后,在ArcMAP工具 栏将出现Geostatistical Analyst工具条。
QQPlot分布图是可以将现有数据的分布与标准正态分 布对比,从而来分析和评价现有数据。其是利用分布的分位 数而作出的图形,如果数据图形越接近一条直线,则它越接 近于服从正态分布。 1.Normal QQPlot分布图(正态QQPlot分布图)
2.General QQPlot分布图(普通QQPlot分布图)
15.1 ArcGIS地统计分析概述
很长时间以来,地统计分析一直没能很好的和GIS分析 模型紧密地结合在一起,而ArcGIS地统计分析模块则在地 统计学与GIS之间架起了一座桥梁。
15.1.1 ArcGIS地统计分析模块介绍
ArcGIS地统计分析模块(ArcGIS Geostatistical Analyst)是一个完整的工具包,它带有为默认模型设计的 稳定性参数。这样可以帮助初学者快速的掌握地统计分析。
15.1.2 地统计分析基础简介
地统计(Geostatistics)又称地质统计,也可以称为空 间统计分析,其是统计学的一个分支。地统计于20世纪50年 代初开始形成,60年代在法国著名统计学家G. Matheron的 大量理论研究工作基础上,形成一门新的统计学分支。 地统计学是以区域化变量理论(theory of regionalized variable)为基础,以变异函数(variogram)为基本工具来 研究分布于空间,并呈现出一定的随机性和结构性的自然现 象的科学。
15.2.4 Trend Analysis(趋势分析)
趋势分析可以利用样点数据生成以数据某一属性值为高 度的三维透视图,从而帮助用户从不同视角分析采样数据集 的全局趋势。 样点的位置由X、Y和Z3个值来决定。X、Y确定样点 平面坐标,Z值则是样点数据的某一属性值。三维透视图中 的每个黑线就代表了样点的位置和高度,位置就是样点X、 Y平面坐标,高度即样点数据的某一属性值的大小。
15.2.6 Semivariogram/Covariance Cloud (半变异/协方差函数云)
半变异/协方差函数云表示的是数据集中所有样点对的 理论半变异值和协方差,并把它们用两点间距离的函数来表 示,用此函数作图来表示。
15.2.7 Crosscovariance Cloud(正交协方 差函数云)
15.3.1 检验数据分布
在地统计分析中,克里格方法建立在一定的假设基础上, 其在一定程度上要求所有数据值具有相同的变异性。另外,普通 克里格法、简单克里格法和泛克里格法等都假设数据服从正态分 布。如果数据不服从正态分布,需要进行一定的数据变换,从而 使其服从正态分布。因此,在进行地统计分析前,检验数据分布 特征,了解和认识数据具有非常重要的意义。数据的检验可以通 过直方图和正态QQPlot分布图完成。 1.通过直方图检验数据分布 2.通过QQplot图检验数据分布