Finite Element Simulations with Ansys Workbench
学会使用AnsysWorkbench进行有限元分析和结构优化
学会使用AnsysWorkbench进行有限元分析和结构优化Chapter 1: Introduction to Ansys WorkbenchAnsys Workbench是一款广泛应用于工程领域的有限元分析和结构优化软件。
它的功能强大,能够帮助工程师在设计过程中进行力学性能预测、应力分析以及结构优化等工作。
本章节将介绍Ansys Workbench的基本概念和工作流程。
1.1 Ansys Workbench的概述Ansys Workbench是由Ansys公司开发的一套工程分析软件,主要用于有限元分析和结构优化。
它集成了各种各样的工具和模块,使得用户可以在一个平台上进行多种分析任务,如结构分析、热分析、电磁分析等。
1.2 Ansys Workbench的工作流程Ansys Workbench的工作流程通常包括几个基本步骤:(1)几何建模:通过Ansys的几何建模功能,用户可以创建出需要分析的结构的几何模型。
(2)加载和边界条件:在这一步骤中,用户需要为结构定义外部加载和边界条件,如施加的力、约束和材料特性等。
(3)网格生成:网格生成是有限元分析的一个关键步骤。
在这一步骤中,Ansys Workbench会将几何模型离散化为有限元网格,以便进行分析计算。
(4)材料属性和模型:用户需要为分析定义合适的材料属性,如弹性模量、泊松比等。
此外,用户还可以选择适合的分析模型,如静力学、动力学等。
(5)求解器设置:在这一步骤中,用户需要选择适当的求解器和设置求解参数,以便进行分析计算。
(6)结果后处理:在完成分析计算后,用户可以对计算结果进行后处理,如产生应力、位移和变形等结果图表。
Chapter 2: Finite Element Analysis with Ansys Workbench本章将介绍如何使用Ansys Workbench进行有限元分析。
我们将通过一个简单的示例,演示有限元分析的基本步骤和方法。
机械专业论文中英文
机械专业论文中英文Gearbox Noise —— Correlation with Transmission Error and Influence of Bearing Preload变速箱噪声——相关的传输错误和轴承预压的影响摘要ABSTRACTThe five appended papers all deal with gearbox noise and vibration. The first paper presents a review of previously published literature on gearbox noise and vibration.The second paper describes a test rig that was specially designed and built for noise testing of gears. Finite element analysis was used to predict the dynamic properties of the test rig, and experimental modal analysis of the gearbox housing was used to verify the theoretical predictions of natural frequencies.In the third paper, the influence of gear finishing method and gear deviations on gearbox noise is investigated in what is primarily an experimental study. Eleven test gear pairs were manufactured using three different finishing methods. Transmission error, which is considered to be an important excitation mechanism for gear noise, was measured as well as predicted. The test rig was used to measure gearbox noise and vibration for the different test gear pairs. The measured noise and vibration levels were compared with the predicted and measured transmission error. Most of the experimental results can be interpreted in terms of measured and predicted transmission error. However, it does not seem possible to identify one single parameter,such as measuredpeak-to-peak transmission error, that can be directly related to measured noise and vibration. The measurements also show that disassembly and reassembly of the gearbox with the same gear pair can change the levels of measured noise andvibration considerably.This finding indicates that other factors besides the gears affect gear noise.In the fourth paper, the influence of bearing endplay or preload on gearbox noise and vibration is investigated. Vibration measurements were carried out at torque levels of 140 Nm and 400Nm, with 0.15 mm and 0 mm bearing endplay, and with 0.15 mm bearing preload. The results show that the bearing endplay and preload influence the gearbox vibrations. With preloaded bearings, the vibrations increase at speeds over 2000 rpm and decrease at speeds below 2000 rpm, compared with bearings with endplay. Finite element simulations show the same tendencies as the measurements.The fifth paper describes how gearbox noise is reduced by optimizing the gear geometry for decreased transmission error. Robustness with respect to gear deviations and varying torque is considered in order to find a gear geometry giving low noise in an appropriate torque range despite deviations from the nominal geometry due to manufacturing tolerances. Static and dynamic transmission error, noise, and housing vibrations were measured. The correlation between dynamic transmission error, housing vibrations and noise was investigated in speed sweeps from 500 to 2500 rpm at constant torque. No correlation was found between dynamic transmission error and noise. Static loaded transmission error seems to be correlated with the ability of the gear pair to excite vibration in the gearbox dynamic system.论文描述了该试验台是专门设计和建造噪音齿轮测试。
有限元分析ANSYS简单入门教程
有限元分析ANSYS简单入门教程有限元分析(finite element analysis,简称FEA)是一种数值分析方法,广泛应用于工程设计、材料科学、地质工程、生物医学等领域。
ANSYS是一款领先的有限元分析软件,可以模拟各种复杂的结构和现象。
本文将介绍ANSYS的简单入门教程。
1.安装和启动ANSYS2. 创建新项目(Project)点击“New Project”,然后输入项目名称,选择目录和工作空间,并点击“OK”。
这样就创建了一个新的项目。
3. 建立几何模型(Geometry)在工作空间内,点击左上方的“Geometry”图标,然后选择“3D”或者“2D”,根据你的需要。
在几何模型界面中,可以使用不同的工具进行绘图,如“Line”、“Rectangle”等。
4. 定义材料(Material)在几何模型界面中,点击左下方的“Engineering Data”图标,然后选择“Add Material”。
在材料库中选择合适的材料,并输入必要的参数,如弹性模量、泊松比等。
5. 设置边界条件(Boundary Conditions)在几何模型界面中,点击左上方的“Analysis”图标,然后选择“New Analysis”并选择适合的类型。
然后,在右侧的“Boundary Conditions”面板中,设置边界条件,如约束和加载。
6. 网格划分(Meshing)在几何模型界面中,点击左上方的“Mesh”图标,然后选择“Add Mesh”来进行网格划分。
可以选择不同的网格类型和规模,并进行调整和优化。
7. 定义求解器(Solver)在工作空间内,点击左下方的“Physics”图标,然后选择“Add Physics”。
选择适合的求解器类型,并输入必要的参数。
8. 运行求解器(Run Solver)在工作空间内,点击左侧的“Solve”图标。
ANSYS会对模型进行求解,并会在界面上显示计算过程和结果。
Ansys与Workbench等软件的联合应用
联合ANSYS WORKBENCH和经典界面进行后处理前面几篇文章已经提到过,ANSYS WORKCENCH主要是为不大懂ANSYS 命令和编程的工程师服务的,而经典界面则适用于初学者和研究人员。
初学者和研究人员是完全不同的两个层次,为什么ANSYS经典界面却同时适合二者呢?实际上,学好ANSYS,关键并非是操作界面,而是要学好有限元。
如果初学者直接从WORKBENCH来学习ANSYS,那么对于有限元就毫无收获,可以说一头雾水。
而如果从经典界面进去,因为涉及到很多与有限元概念密切相关的操作,对于理解有限元很有好处。
只是学到一定程度以后,需要转移到WORKBENCH中进行三维零件的分析和装配体的分析。
而当我们用到一定程度以后,发现WOKRBENCH虽然操作方便,但是的确不容易操作底层。
前面的文章已经说明了如何联合二者进行仿真,以充分使用WOKRNBEHCN对于建模的方便性以及经典界面对于底层的操控性。
这里再举一个例子,说明如何用WOKRBENCH进行建模,而后在经典界面中进行后处理,目的是为研究人员提供参考。
一个两边固定的梁,上面受到分布载荷作用如下图。
该分布载荷随时间而改变,其载荷的时间历程如下曲线,从0-1秒,载荷增加到1Mpa,而后保持1秒钟,接着减小到0Mpa,终止时间是3秒。
为了便于控制,这里对每个载荷步均采用自定义载荷子步的方式,划分为10个载荷子步,见下面的细节视图。
然后进行瞬态隐式动力学分析,得到该梁的位移和von mises应力。
我们现在要知道该梁上某一个应力最大的点,其应力是如何随时间而改变的。
这个任务使用WOKRBENCH很难达到,但是用经典界面则轻而易举,因此我们决定使用经典界面进行后处理。
要使用经典界面后处理,只需要把WORKBENCH中生成的结果文件导入到经典界面中即可。
首先找到WORKBENCH中生成的结果文件如下图所示的路径。
该文件叫file.rst,为了方便,把file.rst拷贝到D盘的根目录下,然后启动ANSYS APDL,即经典界面。
SolidWorks和Ansys仿真示例(legend08fda整理)
第七章大作业问题重述:图1 抛物主镜的三维造型图图2 抛物主镜的尺寸图对大型抛物主镜来说,在中心孔侧壁和外侧壁固定条件下,光轴水平时,镜面在自重作用下的变形。
面形最大形变12.9nm,小于632.8nm的1/40,15.8nm,即最大变形小于1/40波长。
镜子重426kg。
如在背面挖去一些质量,可以不改变镜子的面形精度,且减轻重量,要求:1、给出轻质化处理的方案,以及系统轻质化后的重量。
2、求出轻质化后的镜子在主轴水平时的镜面变形量,是否满足1/40波长的要求。
3、分析系统的模态。
4、其它你能求出的系统的特性。
解题思路:通过在SolidWorks中建模,输入参数后,导入到Ansys中进行网格化,再进行力学分析和热学分析。
一、有限元法简介有限元法是在差分法和变分法的基础上发展起来的一种数值方法,它吸取了差分法对求解域进行离散处理的启示,又继承了里兹法选择试探函数的合理方法。
从实质上看,有限元法与里兹法是等效的,它属于里兹法的范畴,多数问题的有限元方程都是利用变分原理来建立的。
但由于有限元法采用离散处理,所以它计算更为简单,处理的问题更为复杂,因而具有更广泛的实用价值。
有限元法的基本思想可归结为两个方面,一是离散,二是分片插值。
有限元法的基本要素有三个:节点(Node)、单元(Element)和自由度(DOF)。
有限元法的解题步骤为:(1)单元剖分和插值函数的确定。
根据构件的几何特性、]载荷情况及所要求的变形点,建立由各种单元所组成的计算模型是。
也就是对整个结构进行离散化,将其分割成若干个单元,单元之间彼此通过节点相连。
再按单元的性质手精度要求,写出表示单元内任意点的位移函数,利用节点位移表示单元体内任意点位移的插值函数。
(2)单元特性分析。
把各单元按节点组集成与原结构相似的整体结构,得到整体结构的节点力与节点位移的关系,即整体结构平衡方程组。
(4)求解有限元方程。
引入支承条件,根据不同的计算方法求解有限元方程,得出各节点的位移。
电磁超声表面波产生机理的ANSYS仿真
2009信息技术‘j应用学术会议论文田43D—ANSYS建横图4中V1、V2分别为承磁体的N、S极,在水磁体中问有州条通有大小相【司方向相反的变坐电流的导线V4、V5、V6、V7,是下方的大矩彤体V3为被目4钢板。
采用ANSYS仿真软件下的3D磁模型SOLID97单Jc,此单,c定义了8个节点和5个自m度。
定义被测工件为可用于涡流计算的SOLlD971单元,其他无涡流计算的单元选用SOLID970电兀。
线圈中加载屠太值为4安培,频率为800Hz的正弦变变电流,空气层施加约束,进行仿真求解。
在被测工件的趋肤层得到感生涡流,该涡流在永磁体提供的偏置碰场的作用下所产生洛伦兹力。
为了能看到工件巾所形成涡流和受力的大小和^向,在后处理时,绘制涡流和济伦兹力的欠{;}用,如罔5所示。
黼7j:J-。
’。
J“2i。
8。
岔鼍b。
曾73;;。
捌。
j£i。
(-)盒一板中生成的涡漉●●■■■■■二二二==—=———二j2,■一00420㈣4.1260]68LJ210025212*1Ⅲ3781(b)盒一板中的洛怆盐力围5钢板寰面产生的潞渣和洛伦矗力*■圈图5a中所示为被测工件表面感生的涡流.在导线正F方的钢扳表面产生的涡流最太,电流密度达到356066A/m2。
涡流在导线的右侧为顺时针,左侧为逆时针方向。
图5b为被测工件质子所受的洛伦兹山,同样,在导线下方的质点所受的洛伦兹力昂太为0378N。
山于相邻导线通有的电流方向相反,所产生的涡流由向相反,则所受的济伦兹力的方向相反,分别为Y轴的负方向和正方向。
此洛伦蓝力即为超声表面波的被源。
线圈中通过交变的电流激励,因此被测工件表面感生出交变的锅流和洛伦兹力,如酗6所示。
图6为钢板表面一点所通过的电流密度和所受洛伦兹力随时间变化的曲线。
从幽6a可以看出,该点通过的电流密度频率与导线中通过的激励电流的颠率相同,同为800|Iz,而且随着时间的增加,电流密度的幅值逐渐碱小。
而幽6b为改点所受Y方向的力随时何变化的曲线。
ANSYS中的错误
1. Warning:Both solid model and finite element model boundary conditions have been applied to this model. As solid loads are transferred to the nodes or elements, they can overwrite directly applied loads. 解:ANSYS实际上是有两种模型的,一种是几何模型,一种是有限元模型,计算用的是有限元模型,建模时可以建几何模型划分网格得到有限元模型,也可以直接建有限元模型。
而对于载荷的处理,你可以添加到几何模型上,如点、线、面、体,也可以添加到有限元模型上,如节点、单元等,默认的几何模型划分网格时,几何模型上的载荷会转换到有限元模型上,而此时你可能又在有限元模型上添加了载荷,所以会出来提示你检查一下,以免几何模型上的载荷和有限元模型上的载荷冲突以造成overwrite的问题。
如果确定没有问题,这个提示可直接无视。
2. Warning:Shape testing revealed that 481 of the 38538 new or modified elements violate shape warning limits. 解:单元形状奇异,可忽略,但有时计算应力时会出错。
基于有限元方法的多导体传输线电感电容参数的计算
∫∫
B gd S
(7)
通过有限元方法求出所需积分曲面上的磁感应强 度,并利用数值积分的方法求解相应边界条件下 的磁链ψ 1 ,ψ 2 ,L ,ψ n ,带入上式(6)中就可求出 相应的电感值。
Ci 0 =
C ij
qi Ui 0
Ui1 =L Uii−1 =Uii+1L =Uin =0
(3.1)
3 传输线电容电感参数的计算实例
r3 = 0.004m 、 r4 = 0.005m 、 h = 0.126m 。内
绝缘介质的相对介电常数为 ε r = 2.5 ,外绝缘皮 的相对介电常数为 ε r = 2.6 ,所有介质的相对磁 导率为 1。
h = 0.126m ,D = 0.01m ,µr = 1 , 根据式 (6.1)
(6.2)加磁场边界条件,分析导线周围的磁场分 布, 并通过式 (7) 计算所需磁链, 再带入到式 (6.1) (6.2)便得到单位长度电感参数矩阵如式(9)所 示。
(4)
q =
Ò ∫∫
D gd S
通过有限元方法求出所需积分曲面上的电位移矢 量,并利用数值积分的方法求解相应边界条件下 的电荷量 q1 , q2 ,L , qn ,带入上式(3)中就可求 出相应的电容值。 2.2 电感的计算 考虑 n 个载流线圈的回路系统, 空间的磁场是 由 n 个线圈中的电流产生的。在线性磁媒质情况 下,空间的磁感应强度与各线圈中的电流成线性 关系。任一个线圈的磁链与空间磁场成正比,因 此任一个线圈中的磁链与各线圈中电流成线性关 系。且有
[8-10]
等对传输线的参数进行了一系列的
研究。本文基于有限元软件 ANSYS 分析研究了传 输线单位长度的电感、电容,计算结果在精度以 及适用范围上都有一定的优势。
ANSYS在钢筋混凝土梁热分析中的应用
ANSYS在钢筋混凝土梁热分析中的应用【摘要】在火灾荷载的条件下,钢筋混凝土构件内部的温度场分布,对火灾后的构件能否继续使用,具有重要的作用。
ANSYS作为大型有限元软件,在有限元分析中得到了普遍的应用.本文首先从混凝土梁截面热分析入手,然后进行混凝土构件梁整体热分析,从而比较两者在热分析中的误差,从而得出ANSYS 在热分析中方法及思路。
【关键词】ANSYS;热分析;钢筋混凝土梁Reinforced concreted beam in the application of thermal analysis with ANSYS【Abstract】With the fire load conditions, the inside temperature field distribution of concrete beam has an important role on the components. As large-scale finite element software, the finite element analysis has gained widespread application. Comparing the thermal analysis of concrete beam section with the overall thermal analysis of concrete beams, and then draw the differences and similarities, which take thermal analysis in ANSYS in the methods and ideas.【Key words】ANSYS;Thermal analysis;Reinforced concrete beam1. 前言组成钢筋混凝土梁构件的材料,在火灾荷载作用下,其热工性能和力学性能会产生明显的变化,变形也会明显增大,由于构件在受火时,体积膨胀、截面温度不均匀分布,都会使截面产生自平衡的温度应力和构件弯曲变形[1]。
有限元仿真的英语
有限元仿真的英语Finite Element SimulationThe field of engineering has seen a remarkable evolution in recent decades, with the advent of advanced computational tools and techniques that have revolutionized the way we approach design, analysis, and problem-solving. One such powerful tool is the finite element method (FEM), a numerical technique that has become an indispensable part of the modern engineer's toolkit.The finite element method is a powerful computational tool that allows for the simulation and analysis of complex physical systems, ranging from structural mechanics and fluid dynamics to heat transfer and electromagnetic phenomena. At its core, the finite element method involves discretizing a continuous domain into a finite number of smaller, interconnected elements, each with its own set of properties and governing equations. By solving these equations numerically, the finite element method can provide detailed insights into the behavior of the system, enabling engineers to make informed decisions and optimize their designs.One of the key advantages of the finite element method is its abilityto handle complex geometries and boundary conditions. Traditional analytical methods often struggle with intricate shapes and boundary conditions, but the finite element method can easily accommodate these complexities by breaking down the domain into smaller, manageable elements. This flexibility allows engineers to model real-world systems with a high degree of accuracy, leading to more reliable and efficient designs.Another important aspect of the finite element method is its versatility. The technique can be applied to a wide range of engineering disciplines, from structural analysis and fluid dynamics to heat transfer and electromagnetic field simulations. This versatility has made the finite element method an indispensable tool in the arsenal of modern engineers, allowing them to tackle a diverse array of problems with a single computational framework.The power of the finite element method lies in its ability to provide detailed, quantitative insights into the behavior of complex systems. By discretizing the domain and solving the governing equations numerically, the finite element method can generate comprehensive data on stresses, strains, temperatures, fluid flow patterns, and other critical parameters. This information is invaluable for engineers, as it allows them to identify potential failure points, optimize designs, and make informed decisions that lead to more reliable and efficient products.The implementation of the finite element method, however, is not without its challenges. The process of discretizing the domain, selecting appropriate element types, and defining boundary conditions can be complex and time-consuming. Additionally, the accuracy of the finite element analysis is heavily dependent on the quality of the input data, the selection of appropriate material models, and the proper interpretation of the results.To address these challenges, researchers and software developers have invested significant effort in improving the finite element method and developing user-friendly software tools. Modern finite element analysis (FEA) software packages, such as ANSYS, ABAQUS, and COMSOL, provide intuitive graphical user interfaces, advanced meshing algorithms, and powerful post-processing capabilities, making the finite element method more accessible to engineers of all levels of expertise.Furthermore, the ongoing advancements in computational power and parallel processing have enabled the finite element method to tackle increasingly complex problems, pushing the boundaries of what was previously possible. High-performance computing (HPC) clusters and cloud-based computing resources have made it possible to perform large-scale, multi-physics simulations, allowing engineers to gain deeper insights into the behavior of their designs.As the engineering field continues to evolve, the finite element method is poised to play an even more pivotal role in the design, analysis, and optimization of complex systems. With its ability to handle a wide range of physical phenomena, the finite element method has become an indispensable tool in the modern engineer's toolkit, enabling them to push the boundaries of innovation and create products that are more reliable, efficient, and sustainable.In conclusion, the finite element method is a powerful computational tool that has transformed the field of engineering. By discretizing complex domains and solving the governing equations numerically, the finite element method provides engineers with detailed insights into the behavior of their designs, allowing them to make informed decisions and optimize their products. As the field of engineering continues to evolve, the finite element method will undoubtedly remain a crucial component of the modern engineer's arsenal, driving innovation and shaping the future of technological advancement.。
有限元(FEM, Finite Element Method)分析-ANSYS界面与操作
July 15, 2011
Math Modeling-FEM with ANSYS Application
பைடு நூலகம்
C-3
产品发射台
• 发射台有四个标签, Launch, File Management, Customization 和 Preferences.
• Launch常用于选择仿真 环境 (ANSYS, Batch, Workbench*, LS-DYNA 求解器等)
Math Modeling-FEM with ANSYS Application
C-21
主菜单
用“扩展标题”和“关闭同属”激活…
打开建立体分支
July 15, 2011
当删除分支打开时,建立体分支被关闭
注意:没有激活“关闭同属”将保持建立 体分支
Math Modeling-FEM with ANSYS Application
C-27
输入窗口
• 允许用户输入命令。 (大多数 GUI功能 都能通过输入命令来实现. 如果 用户知道这些命令,可以通过输入窗口键入。)
• 命令格式动态显示
单击命令窗口按钮,输入窗 口将被分离出来,并且可以 在屏幕上移动。
单击X,命令 窗口将回到输 入工具条上.
July 15, 2011
Math Modeling-FEM with ANSYS Application
自己的缩写。这需要用户了解ANSYS命令。 • 强大的功能允许用户建立自己的“按钮菜单”体系!
July 15, 2011
Math Modeling-FEM with ANSYS Application
C-24
工具栏菜单图标
• 包含常用的工具图标。 • 用户可以设置工具图标内容 (如: 添加项目, 辅助工具条)
ansys workbench提取指定点的位移幅频响应曲线
ansys workbench提取指定点的位移幅频响应曲线英文版Extracting Displacement Amplitude-Frequency Response Curves at Specified Points Using ANSYS Workbench IntroductionIn the field of engineering simulation, ANSYS Workbench is a powerful tool that enables engineers to analyze and understand the behavior of complex systems. One such analysis is the extraction of displacement amplitude-frequency response curves, which provides valuable insights into the dynamic characteristics of a system. This article aims to guide users through the process of extracting displacement amplitude-frequency response curves at specified points using ANSYS Workbench.ProcedureSetting Up the Model: Begin by importing or creating the desired finite element model in ANSYS Workbench. Ensure thatthe model is properly meshed and boundary conditions are defined accurately.Defining Analysis Settings: Navigate to the "Harmonic Response" analysis type and configure the necessary settings. Specify the frequency range and the number of steps to capture the desired frequency resolution.Applying Loads and Constraints: Define the loads and constraints that are relevant to the analysis. This includes applying harmonic loads or excitations at the appropriate locations.Specifying Points of Interest: Identify the specific points where you wish to extract the displacement amplitude-frequency response. These points can be nodes or elements within the model.Running the Analysis: Once all the settings are configured, initiate the harmonic response analysis. ANSYS Workbench will simulate the model's response to the defined harmonic loads.Extracting the Response Curves: After the analysis is complete, navigate to the results section and select the "Displacement" option. Use the post-processing tools to extract the displacement amplitude-frequency response curves at the specified points. These curves can be plotted or exported for further analysis.ConclusionExtracting displacement amplitude-frequency response curves at specified points using ANSYS Workbench provides a valuable tool for engineers to understand the dynamic behavior of their systems. By following the steps outlined in this article, users can effectively utilize ANSYS Workbench to obtain insights into the frequency-dependent displacement responses of their models.中文版使用ANSYS Workbench提取指定点的位移幅频响应曲线引言在工程模拟领域,ANSYS Workbench是一款强大的工具,使工程师能够分析和理解复杂系统的行为。
钢芯铝绞线的拉扭耦合力学性能
收稿日期:2020-03-07 修回日期:2020-07-23 网络首发日期:2020-09-16
基金项目:国家自然科学基金(51778097)
第一作者:张龙(1977—),男,高级工程师,硕士,研究方向为输电线路工程,E-mail:11984726@
通信作者:晏致涛(1978—),男,教授,博士,研究方向为输电线路工程,E-mail:yzt@
(a) 扭转试验机
铝绞线 钢芯
(b) LGJ/JL/G1A-70/10 试件 (c) 试件截面 图 1 扭转试验机及试件
Fig. 1 Torsion testing machine and test specimens 试件采用型号为 LGJ/JL/G1A-70/10 的钢芯铝 绞线,如图 1(b),型号名称中的 JL 表示 L 型硬铝线 制成的铝绞线[3]. 其截面如图 1(c)所示,钢芯铝绞线 的物理参数如表 1 所示. 使其两端固定在夹具上,通 过一端夹具固定,另一端夹具以稳定的速率转动来 检测扭转特性. 钢芯铝绞线扭转试验步骤: 1) 在试件两端测量出试件的内径与外径,利用
ቤተ መጻሕፍቲ ባይዱ4期
张 龙,等:钢芯铝绞线的拉扭耦合力学性能
891
几何方法计算平均钢芯铝绞线截面的扭转极惯性 矩,记录初始位置;
2) 调节夹具距离,将钢芯铝绞线试件夹装在试 验机上并固定夹具;
3) 选择传感器设定基本参数:极惯性矩、试样 标距、强度修正系数,转角速度等;
4) 观察扭矩-转角曲线,判断试件进入塑性阶段 后停止试验,关闭试验机;
5) 保存软件得到的曲线图与数据,在相同标距 下,重复试验得到 5 组扭矩-转角曲线图.
1 导线扭转试验
在重庆科技学院成型实验室进行了导线扭转 试验. 试验采用由济南永测工业设备有限公司生产 的微机控制扭转试验机,型号为 YCNZ-W500,如 图 1(a)所示. 主机采用卧式结构. 被测试件固定在 通过履带可调间距的夹具之间,可进行定角度扭矩 试验. 计算机显示器可显示被测试件的扭矩-转角曲 线、实时显示角度及扭矩峰值等. 右端扭矩盘连接了 传感器为固定端,左端通过减速机传动带动加力盘 转动,通过试样加载将扭矩传到扭矩盘端检测扭矩. 通过高精度扭矩传感器,可正、反两方向测量扭矩.
学习使用Ansys进行流体力学仿真与分析
学习使用Ansys进行流体力学仿真与分析Chapter 1: Introduction to AnsysAnsys is a powerful software package used for engineering simulation and analysis. With its robust capabilities, engineers and researchers can simulate and analyze various fluid mechanics problems. In this chapter, we will explore the fundamental concepts of Ansys and its applications in fluid mechanics simulations.1.1 Overview of AnsysAnsys is a widely used software package that provides advanced engineering simulation capabilities. It offers several modules for different engineering disciplines, including structural mechanics, fluid mechanics, electromagnetics, and more. The software utilizes finite element analysis (FEA) to simulate and analyze complex engineering problems accurately.1.2 Applications of Ansys in Fluid MechanicsIn fluid mechanics, Ansys can be employed for a range of applications, such as:1.2.1 Flow VisualizationAnsys allows engineers to visualize complex fluid flows using tools like streamlines, particle traces, and velocity vectors. This helps in understanding flow patterns, identifying areas of turbulence, and optimizing designs for better performance.1.2.2 Flow AnalysisAnsys allows for detailed analysis of fluid flows, including pressure distribution, velocity profiles, and turbulence intensity. This information is crucial for engineers to optimize designs, reduce drag, and improve overall system efficiency.1.2.3 Heat Transfer AnalysisAnsys provides the capability to analyze combined fluid flow and heat transfer problems. Engineers can simulate heat transfer mechanisms such as conduction, convection, and radiation to optimize cooling systems, HVAC designs, and thermal management strategies.Chapter 2: Basic Steps in Ansys Fluid Mechanics Simulation2.1 Geometry CreationThe first step in Ansys fluid mechanics simulation is creating a detailed geometric model of the system or component being analyzed. Ansys offers various tools for creating 2D or 3D geometries, including parametric modeling, importing CAD files, or using built-in shapes and primitives.2.2 Mesh GenerationAfter creating the geometry, the next step is to generate a mesh. A mesh consists of small elements that discretize the fluid domain for numerical analysis. Ansys provides powerful meshing tools to generatestructured or unstructured meshes, ensuring accurate representation of the geometry and efficient computation.2.3 Setting Boundary ConditionsBoundary conditions define the behavior of the fluid at the system boundaries. This includes specifying inlet and outlet velocities, pressures, temperature, and other relevant parameters. Ansys allows engineers to impose these conditions through intuitive graphical interfaces or by defining mathematical functions.2.4 Defining Material PropertiesThe next step is to assign appropriate material properties to the fluid being analyzed. This includes parameters like density, viscosity, thermal conductivity, and specific heat capacity. Ansys provides a wide range of pre-defined material libraries, or engineers can input custom material properties as required.Chapter 3: Ansys Fluid Mechanics Simulation Techniques3.1 Solver SelectionAnsys offers several solvers for fluid mechanics simulations, including the finite volume method, finite element method, and boundary element method. Each solver has its advantages and is suitable for different types of problems. It is essential to choose the appropriate solver based on the geometry, physics, and desired level of accuracy.3.2 Solution InitializationBefore starting the simulation, it is crucial to initialize the solution with appropriate initial conditions. This includes setting the initial velocity, pressure, and temperature values throughout the fluid domain. Ansys provides tools to ensure the solution starts from a realistic state, increasing the reliability of the results.3.3 Solving the EquationsAnsys uses numerical methods to solve the fluid flow equations, such as the Navier-Stokes equations, energy equation, and turbulent model equations. The software employs iterative numerical techniques to converge towards a stable solution. Engineers can specify convergence criteria to control the accuracy and computational effort of the simulation.Chapter 4: Post-processing and Result Analysis4.1 Post-processing ToolsAfter the simulation is complete, Ansys provides a wide range of post-processing tools to analyze and interpret the results. These tools include 2D and 3D visualization, contour plots, iso-surfaces, animations, and comprehensive quantitative reports. Engineers can extract valuable insights from these post-processed results to optimize designs or validate hypotheses.4.2 Result AnalysisAnsys allows engineers to perform in-depth result analysis by comparing numerical simulations with experimental data or analytical solutions. This helps in validating the accuracy of the simulation and providing further insights into the physics of the problem.Conclusion:Ansys is an indispensable tool for fluid mechanics simulation and analysis. Its wide range of capabilities, from geometry creation to post-processing, simplifies the complex process of studying fluid flow and heat transfer phenomena. By using Ansys, engineers and researchers can optimize designs, improve system efficiency, and make informed engineering decisions. With its ever-expanding features and continuous development, Ansys remains at the forefront of fluid mechanics simulation software.。
ansys热分析
ANSYS热分析概述ANSYS是一种通用的有限元方法(Finite Element Method,FEM)软件,可以用于热分析。
热分析是通过模拟和分析物体的温度和热流来研究热传导、热膨胀、热辐射等热现象的一种方法。
在工程设计和科学研究中,热分析在许多领域都具有重要的应用价值。
在ANSYS中,热分析可以通过添加适当的热边界条件和材料参数来实现。
热分析步骤ANSYS热分析的一般步骤如下:1.几何建模:在ANSYS中创建或导入需要进行热分析的几何模型。
可以使用ANSYS的几何建模工具来创建模型,也可以从CAD软件中导入模型。
2.材料定义:定义模型中各个部分的材料属性。
对于热分析来说,主要需要定义材料的热导率、热容等参数。
ANSYS提供了各种材料模型和材料数据库来方便用户进行材料定义。
3.网格划分:将几何模型划分成小的有限元单元,以便将其离散化为一系列小区域。
这一步骤通常由ANSYS自动完成,但也可以手动调整网格密度和精度。
4.热边界条件:根据需要为模型设置热边界条件。
热边界条件包括固定温度、热通量、对流换热等。
这些边界条件将直接影响热分析的结果。
5.求解:使用ANSYS提供的求解器对热分析进行求解。
求解过程将根据模型的几何形状、材料属性和边界条件来计算模型的温度分布和热流。
6.结果分析:对求解得到的结果进行分析和后处理。
可以通过ANSYS提供的可视化工具、图表和数据输出来展示和分析计算结果。
根据需要,可以进一步优化模型和参数。
ANSYS热分析的应用领域ANSYS热分析在许多工程和科学领域都有广泛的应用。
以下是几个常见的应用领域:1. 热传导分析热传导分析是研究物体内部温度分布和热传导过程的一种方法。
它在热处理、电路设计、能源系统等领域有重要应用。
利用ANSYS进行热传导分析可以帮助工程师优化设计,改善热传导性能。
2. 热应力分析热应力分析是研究物体在热载荷下产生的应力和变形的一种方法。
热应力分析在焊接、高温材料等领域有应用。
毕业论文(设计)合金钢热处理加热过程对组织和性能的影响
毕业设计任务书1.设计的主要任务及目标建立有限元模型,模拟合金钢热处理加热过程温度场分布;通过实验研究,分析加热温度和保温时间对合金钢组织和力学性能的影响,为优化热处理工艺提高零件质量提供一定的理论依据。
2.设计的基本要求和内容1)设计的基本要求:论文结构完整,层次分明,语言顺畅;避免错别字和错误标点符号;论文格式符合太原工业学院学位论文格式的统一要求。
2)设计内容:模拟合金钢热处理加热过程温度场与时间的变化关系;研究三种加热温度下水淬后合金钢组织及力学性能的变化;研究三种保温时间下水淬后合金钢组织和力学性能的变化。
3.主要参考文献1)ANSYS有限元分析软件在热分析中的应用[J].冶金能源,2004(05)2)钢件淬火过程温度场的数值模拟[J].热加工工艺技术与材料研究,2008(11)3)45钢零件淬火过程温度场分布的数值模拟[J].重庆大学学报,2003(03)4) 材料科学基础(铁碳合金相图与热处理部分)5)淬火过程数值模拟研究进展[J].兵器材料科学与工程,1999(03)4.进度安排合金钢热处理加热过程对组织和性能的影响摘要:利用有限元分析软件ANSYS模拟40Cr钢热处理过程温度场与时间的变化关系。
根据温度场的分布,合理的选择不同的加热温度和保温时间做热处理水淬实验,并打磨式样,通过金相组织观察比较不同热处理工艺对40Cr钢内部组织结构的影响。
并结合冲击韧性试验、硬度试验及拉伸试验来获取40Cr钢的机械性能、物理性能、工艺性能等,从而通过热处理工艺改变金属表面或内部组织结构,达到优化金属性能的目的。
通过实验表明,40Cr在850℃保温时间20min热处理所到的钢的性能最佳,其组织为回火索氏体,其强度、硬度及韧性等综合性能都处于较好的状态。
过低的温度会导致淬火不均匀,有铁素体存在也会使硬度降低;温度过高又会使回火索氏体粗大,造成钢的综合性能降低。
保温时间对组织性能也有影响,保温时间太短,回火索氏体的晶粒小,组织不均匀;保温时间太长,晶粒粗大,影响组织性能。
ansys有限元分析报告
ANSYS有限元分析报告1. 引言有限元分析(Finite Element Analysis, FEA)是一种常用的工程分析方法,可以用于预测材料和结构在各种工况下的行为和性能。
本报告旨在通过使用ANSYS软件进行有限元分析,对某一具体的工程问题进行模拟和分析,并得出相应的结论和建议。
2. 问题描述本次有限元分析的问题是研究某结构在受载情况下的应力分布和变形情况。
具体而言,我们关注的结构是一个柱形零件,其材料为XXX,尺寸为XXX。
该结构在受到垂直向下的均布载荷时,会发生弯曲变形和应力集中现象。
我们的目标是通过有限元方法对该结构进行分析,预测其应力分布情况,并评估其承载能力。
3. 模型建立我们使用ANSYS软件来建立和分析该结构的有限元模型。
首先,我们将导入该零件的几何数据,然后通过ANSYS的建模工具创建相应的有限元模型。
在建立模型的过程中,我们需要注意几何尺寸、材料特性、约束条件和加载方式等参数的设定,以确保模型的准确性和可靠性。
4. 材料属性和加载条件在进行有限元分析之前,我们需要确定材料的特性和加载条件。
根据提供的信息,我们将采用XXX材料的力学特性进行模拟。
同时,我们假设该结构受到均布载荷的作用,其大小为XXX。
这些参数将在后续的分析中使用。
5. 模型网格划分在进行有限元分析之前,我们需要对模型进行网格划分。
网格的密度和质量将直接影响分析结果的准确性和计算效率。
在本次分析中,我们将采用适当的网格划分策略,以满足准确性和计算效率的要求。
6. 模型分析和结果通过ANSYS软件进行有限元分析后,我们得到了该结构在受载情况下的应力分布和变形情况。
根据分析结果,我们可以观察到应力集中区域和变形程度,并根据材料的特性进行评估。
同时,我们可以通过对加载条件的变化进行分析,预测该结构的承载能力和安全系数。
7. 结论和建议根据有限元分析的结果,我们得出以下结论和建议:•该结构在受均布载荷作用下发生应力集中现象,需要对其进行加强和优化设计。
ansys警告错误信息汇总 (1)
警告错误信息汇总NO.0001、ESYS is not valid for line element.原因:是因为我使用LATT的时候,把“--”的那个不小心填成了“1”。
经过ANSYS的命令手册里说那是没有用的项目,但是根据我的理解,这些所谓的没有用的项目实际上都是ANSYS在为后续的版本留接口。
对于LATT,实际上那个项目可能就是单元坐标系的设置。
当我发现原因后,把1改成0——即使用全局直角坐标系,就没有WARNING了。
当然,直接空白也没有问题。
NO.0002、使用*TREAD的时候,有的时候明明看文件好好的,可是却出现*TREAD end-of-file in dataread.后来仔细检查,发现我TXT的数据文件里,分隔是采用TAB键分隔的。
但是在最后一列后面,如果把鼠标点上去,发现数据后面还有一个空格键。
于是,我把每个列最后多的空格键删除,,然后发现上面的信息就没有了。
NO.0003、Coefficient ratio exceeds 1.0e8 - Check results.这个大概是跟收敛有关,但是我找不到具体的原因。
我建立的一个桥梁分析模型,尽管我分析的结果完全符合我的力学概念判断,规律完全符合基本规律,数据也基本符合实际观测,但是却还是不断出现这个警告信息。
有人知道这个信息是什么意思,怎么调试能消除吗?NO.0004、*TREAD end-of-file in data readtxt中的表格数据不完整!NO.0005、No *CREATE for *END. The *END command is ignored忘了写*END了吧,呵呵NO.0006、Keypoint 1 is referenced by only one line. Improperly connected lineset for ALcommand两条线不共点,尝试nummrg命令NO.0007、L1 is not a recognized PREP7 command, abbreviation, or macro.This command willbe ignored还没有进入prep7,先:/prep7NO.0008、Keypoint 2 belongs to line 4 and cannot be moved同一位置点2已经存在了,尝试对同位置的生成新点换个编号,比如1002NO.0009、Shape testing revealed that 32 of the 640 new or modified elementsviolate shape warning limits. To review test results, please see theoutput file or issue the CHECK command.单元形状奇异,在我的模型中6面体单元的三个边长差距较大,可忽略该错误NO.0010、用命令流建模的时候遇到的The drag direction (from the keypoint on drag line 27 that is closestto a keypoint KP of the given area 95) is orthogonal to the areanormal at that KP. Area cannot be dragged by the VDRAG command.意思是拉伸源面的法向与拉伸路径垂直,不能使用VDRAG命令。
ANSYS与ANSYS WOKRBENCH的区别与联系
ANSYS经典界面与ANSYS WOKRBENCH的区别与联系经常在网上看到有些ANSYS爱好者谈到ANSYS经典界面和WORKBENCH界面的使用区别,这里就我的使用经验,谈谈一些认识。
总体上,我感觉,WORKBENCH是为仿真工程师准备的,而经典界面主要是为研究人员准备的,下面详细说明其区别和联系。
1.界面上的区别经典界面总体感觉很呆板,主菜单一层一层的嵌套进行选择,有时候让人迷失方向。
而WORKBENCH界面则清新爽朗,工作采用了流程化的方式,首先就确定了分析的任务,并把分析任务进行细分,用户只需要进入各个子单元进行操作,所以用起来思路清晰。
而且,感觉经典界面脱胎于DOS方式,操作总感觉繁琐,而WOKRBENCH则以WINDOWS界面作为交互的窗口,感觉很亲切。
2. 单元类型的选择经典界面需要用户自己决定用什么单元,并对单元的输入,输出选项进行设置。
而WORKBENCH界面则把这一点完全封装起来,它根据用户使用的是哪个学科的分析,是1D,2D,3D分析来自动挑选单元,一般而言,对于结构分析,他会自动挑选18*系列单元。
这有利有弊。
经典界面下,用户可以进行全面的控制,而在WOKRBENCH中,这就不要用户操心,但是这也会让一些熟悉经典界面的用户感到很不方便,不知道自己选择的是什么单元,心里面没有底。
的确有这样的问题。
要想傻瓜化,必然会牺牲操控性。
一般的软件都在朝着傻瓜化的方向发展,比如操作系统,最早的时候我们用DOS,启动的全过程我们都可以控制,甚至我们可以深入到硬盘的每一个分区,去手工查杀病毒,而自从WINDOWS登上历史舞台以后,我们的这种乐趣就消失殆尽。
WINDOWS在启动的时候调用了一个又一个文件,让我们应接不暇,想要弄清楚哪个文件是做什么事情的,简直太难了。
而在现在这个时代,要像20年前那样去手工杀病毒,只有疯子才会那么做了。
3.材料模型的确定经典界面中,材料模型需要自己确定,实际上也还算比较方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Finite Element Simulations with ANSYS Workbench 12 Theory – Applications – Case StudiesHuei-Huang LeeSDCPUBLICATIONSSchroff Development CorporationBetter Textbooks. Lower Prices.Visit the following websites to learn more about this book:46 Chapter 2 Sketching Chapter 2SketchingA simulation project starts with the creation of a geometric model. T o be pro0cient at simulations, an engineer has to be pro0cient at geometric modeling 0rst. In a simulation project, it is not uncommon to take the majority of human-hours to create a geometric model, that is particularly true in a 3D simulation.A complex 3D geometry can be viewed as a collection of simpler 3D solid bodies. Each solid body is often created by 0rst drawi ng a sketch on a plane, and then the sketch i s used to generate the 3D soli d body usi ng tools such as extrude, revolve, sweep, etc. In turn, to be pro0cient at 3D bodies creation, an engineer has to be pro0cient at sketching 0rst.Purpose of the ChapterThe purpose of this chapter is to provide exercises for the students so that they can be pro0cient at sketching using DesignModeler. Five mechanical parts are sketched in this chapters. Although each sketch is used to generate a 3D models, the generation of 3D models is so trivial that we should be able to focus on the 2D sketches without being distracted. More exercises of sketching will be provided in later chapters.About Each SectionEach sketch of a mechani cal part wi ll be completed i n a secti on. Sketches i n the 0rst two secti ons are gui ded i n a step-by-step fashion. Section 1 sketches a cross section of W16x50; the cross section is then extruded to generate a solid model in 3D space. Section 2 sketches a triangular plate; the sketch is then extruded to generate a solid model in 3D space.Secti on 3 does not mean to provi de a hands-on case. It overvi ews the sketchi ng tools i n a systemati c way, attempting to complement what were missed in the 0rst two sections.Sections 4, 5, and 6 provide three cases for more exercises. Sketches in these sections are in a not-so-step-by-step fashion; we purposely leave some room for the students to 0gure out the details.2.1-2 Start Up <DesignModeler>25".628".380"7.07"R.375"[4] Detail dimensions[2] After a while, the <Workbench GUI> shows up.[3] Click the plus sign (+) to expand the <Component Systems>. Note that the plus sign become minussign.[4] Double-click <Geometry> to place a system in the<Project Schematic>.[6] Double-click <Geometry> tostart up DesignModeler.[5] If anything goes wrong, click here to show message.[1] From Start menu, click to launch the Workbench.Notes: In a step-by-step exercise, whenever a circle is used with a speech bubble, it is to indicate that mouse or keynoard ACTIONS must be taken in that step (e.g., [1, 3, 4, 6, 8, 9]). The circle may be small or large, ;lled with white color or un ;lled, depending on whichever gives more information. A speech bubble without a circle (e.g., [2, 7]) or with a rectangle (e.g., [5]) is used for commentary only, no mouse or keyboard actions are needed.2.1-3 Draw a Rectangle on <XYPlane>[9] Click <OK>. Note that, after clicking <OK>, the length unit connot be changed anymore.[8] Select <Inch> as the length unit.[7] After a while, the DesignModeler [1] <XYPlane> is already the current sketchingplane.[2] Click <Sketching> to enter the sketching mode.[4] Click <Rectangle> tool.[3] Click <Look At> to rotate the coordinate axes, so that you face the <XYPlane>.[5] Draw a rectangle (using click-and-drag) roughly like this.Impose symmetry constraints...Specify dimensions...[6] Click<Constraint>toolbox.[8] Click<Symmetry>tool.[9] Click the verticalaxis and then twovertical lines on bothsides to make themsymmetric about thevertical axis.[10] Right-clickanywhere on the graphicarea to open the contextmenu, and choose<Select new symmetryaxis>.[11] Click thehorizontal axis andthen two horizontallines on both sidesto make themsymmetric aboutthe horizontal axis.[7] If you don'tsee <Symmetry>tool, click here toscroll down toreveal the tool.[12] Click<Dimensions>toolbox.[13] Leave<General> as the default tool.[17] In the<Detai ls Vi ew>, type 7.07 (in) for H1 and 16.25 (in)for V2.[14] Click this line,move the mouseupward, and click againto create H1.[15] Click this line,move the mouserightward, and clickagain to create V2.[17] Click<Zoom to Fit>.[16] The segments turn toblue color. Colors are usedto indicate the constraintstatus. The blue color meansthat the geometric entitiesare well constrained.The ruler occupies space and is sometimes annoying; let's turn it off...Let's display dimension values (in stead of names) on the graphic area...[2] The ruler disappears. It creates more space for the graphic area. For the rest of the book, we always turn off the ruler to make more space in the graphic area.[1] Pull-down-select <View/Ruler> to turn the ruler off.[3] If you don't see <Display> tool, click here to scroll all the way down to the bottom.[4] Click <Display> tool.[5] Click <Name> to turn it off. The <Value> automatically turns on.[6] The di mensi on names are replaced by the values. For the rest of the book, we always display values instead of names, so that the sketching will be more ef8cient.Draw a polyline; the dimensions are not important for now...Copy the newly created polyline to the right side, ;ip horizontally...2.1-6 Copy the Polyline[1] Select <Draw> toolbox.[2] Select <Polyline> tool.[3] Click roughly here to start the polyline. Make sure a <C> (coincident) appearsbefore clicking.[4] Click the second point roughly here. Make sure an <H> (horizontal) appearsbefore clicking.[5] Click the third point roughly here. Make sure a <V> (vertical) appears before clicking.[6] Click the last point roughly here. Make sure an <H> and a <C> appearbefore clicking.[7] Right-click anywhere on the graphic area to open the context menu, and select <Open End> to end the <Polyline> tool.[4] Right-click anywhere on the graphic area to open the context menu, and select <End/Use Plane Origin asHandle>.[1] Select <Modify> toolbox.[2] Select <Copy> tool.[3] Control-click (see [11, 12]) the three newly created segments one by one.Context menu is used heavily...Basic Mouse OperationsAt this point, let's look into some basic mouse operations [10-16]. Skill of these operations is one of the keys to be pro<cient at geometric modeling.[8] Right-click anywhere to open the context menu again and select <End> to end the <Copy> tool. An alternative way (and better way) is to press ESC to end a tool.[9] The horizontally =ipped polyline has been copied.[6] Right-click anywhere to open the context menu again and select <Flip Horizontal>.[5] The tool automatically changes from <Copy> to<Paste>.[7] Right-click anywhere to open the context menu again and select <Paste at PlaneOrigin>.[10] Click: singleselection[11] Control-click: add/remove selection [12] Click-sweep: continuous selection.[13] Right-click: open context menu.[14] Right-click-drag:box zoom.[15] Scroll-wheel: zoom in/out.[16] Middle-click-drag:rotation.rim Away Unwanted Segments2.1-8 Impose Symmetry Constraints[3] Click this segment to trim it away.[4] And click this segment to trim it away.[1] Select <T rim>tool.urn on <Ignore Axis>. If you don't turn it on, the axes will be treated as trimming tools.[2] Select <Symmetry>.[3] Click thishorizontal axis and then two horizontal segments on both sides as shownto make them symmetric about the horizontal axis.[1] Select <Constraints> toolbox.[4] Right-click anywhere to open the context menu and select <Select new symmetryaxis>[5] Click this vertical axis and then two vertical segments on both sides as shown to make them symmetric about the vertical axis. They seemed already symmetric before we impose this constraint, but the symmetry is "weak" and may be overridden (destroyed)by other constraints.[2] Leave <General> as default tool.<Dimensions> toolbox.[4] Select <Horizontal>.[3] Click this segment and move leftward to create a vertical dimension. Note that the entity isblue-colored.[5] Click these two segments sequentially and move upward tocreate a horizontal dimension.[6] T ype 0.38 for H4 and 0.628 for V3.2.1-11 Move Dimensionstoolbox.[2] Select <Fillet> tool.[3] T ype 0.375 for the :llet radius.[4] Click two adjacent segments sequentially to create a :llet. Repeat this step for other three corners.[2] Select <Move>.[3] Click a dimension value and move to a suitable position as you like. Repeat this step for other dimensions.[1] Select <Dimensions> toolbox.[5] The greenish-blue color of the :llets indicates that these :llets are under-constrained. The radius speci:ed in [3] is a "weak" dimension (may be destroyed by other constraints). Y ou could impose a <Radius> (which is in <Dimension> toolbox) to turn the :llets to blue. We, however, decide to ignore the color. We want toshow that an under-constrained sketch can stillbe used. In general, however, it is a good practice to well-constrain all entitiesin a sketch.[9] Click <Zoom to Fit> whenever needed.[10] Click <Display Plane> to switch off the display of sketching plane.[11] Click all plus signs (+) to expand the model tree and examine the <T ree Outline>.[6] Active sketch is shown here.[5] The active sketch(Sketch1) is automatically chosen as <Base Object> you can change to other sketch if needed.[2] The model is now in isometricview.[4] Note that the <Modeling> mode is automatically activated.[7] T ype 120 (in) for <Depth>[1] Click the little cyan sphere to rotate the model in isometric view for a better visual effect.[3] Click <Extrude>.[8] Click <Generate>[1] Click <SaveProject>. T ype"W16x50" as projectname.[2] Pull-down-select<File/CloseDesignModeler> toclose DesignModeler.[3] Alternatively youcan click <SaveProject> in the<Workbench GUI>.[4] Pull-down-select<File/Exit> toexi t Workbench.riangular Platemm30 mm300 mm2.2-2 Start up <DesignModeler>[1] From Start menu, launch the <Workbench>[2] Double-click tocreate a <Geometry>system.[3] Double-click tostart up<DesignModeler>.[1] Thehas threeplanes ofsymmetry.[2] Radii ofthe 7lletsare 10 mm.[3] Forces areapplied oneach side face.2.2-3 Draw a T riangle on <XYPlane>[6] Select <Sketching> mode.[7] Click <Look At> to look at <XYPlane>.[5] Pull-down-select <View/Ruler> to turn the ruler off. For the rest of the book, we always turn off the ruler to make more space in the graphicarea.[4] Select <Millimeter> as length unit.[2] Click roughly here to start a polyline.[3] Click the second point roughly here. Make sure a <V> (vertical) constraint appears beforeclicking.[4] Click the third point roughly here. Make sure a <C> (coincident) constraint appears before clicking. <Auto Constraints> is an important feature of DesignModeler and will be discussed in Section 2.3-5.[5] Right-click anywhere to open the context menu and select <Close End> to close the polyline andend the tool.[1] Select <Polyline> from <Draw> toolbox.Before we proceed, let's spend a few minutes looking into some useful tools for 2D graphics controls [1-10]; feel free to use these tools whenever needed. The tools are numbered according to roughly their frequency of use. Note that more useful mouse short-cuts for <Pan>, <Zoom>, and <Box Zoom> are available; please see Section 2.3-4.2.2-4 Make the T riangle Regular2.2-5 2D Graphics Controls[1] Select <Equal Length> from <Constraints> toolbox.[2] Click these two segments one after the other to make their lengths equal.[3] Click these two segments one after the other to make their lengths equal.[9] <Undo>. Click this tool to undo what you've just done. Multiple undo is possible. This tool is [10] <Redo>. Click this tool to redo what you've just undone. This tool is [2] <Zoom to Fit>. Click this tool to Bt the entire sketch in the graphic area.[4] <Box Zoom>. Click to turn on/off this mode. Y ou can click-and-drag a box on the graphic area to enlarge that portion of graphics.[5] <Zoom>. Click to turn on/off this mode. Y ou can click-and-drag upward or downward on the graphic area to zoom in or out.[1] <Look At>. Click this tool to make current sketching plane rotate towardyou.[6] <Previous View>. Click this tool to go to the previous view.[7] <Next View>. Click this tool to go to the next view.[8] These tools work in both <Sketching> or <Modeling> mode.[3] <Pan>. Click to turn on/off this mode. Y ou can click-and-drag on the graphic area tomove the sketch.2.2-7 Draw an Arc[2] Select <Horizontal>.[6] Select <Move> and thenmove the dimensions as you like (Section2.1-11).[1] Click <Display> in the<Dimension> toolbox. Click <Name> to switch it off and turn <Value> on. For the rest of the book, we always display values instead of names.[3] Click the vertex on the left and the vertical line on the right sequentially, and then move the mouse downward to create this dimension. Before clicking, make sure the cursor changes to indicate that the point or edge has been"snapped."[4] Click the vertex on the left and the vertical axis, and then move the mouse downward to create this dimension. Note thatthe triangle turns to blue, indicating they are well de =nednow.[5] In the <Details View>, type 300 and 200 for the dimensions just created. Click <Zoom to Fit>(2.2-5[2]).[2] Click this vertex as the arc center. Make sure a <P> (point) constraint appears before clicking.[3] Click the second point roughly here. Make sure a <C> (coincident) constraint appears before clicking.[4] Click the third point here. Make sure a <C> (coincident) constraint appears before clicking.[1] Select <Arc by Center> from <Draw> toolbox.2.2-6 Specify Dimensions[2] Click thearc.[1] Select <Replicate> from <Modify> toolbox. T ype 120 (degrees) for <r>. <Replicate> is equivalent to <Copy>+<Paste>.[7] Whenever you have dif<culty making <P> appear, click <Selection Filter: Points> in the toolbar. The <Selection Filter> also can be set from the context menu,see [8].Handle> in the context menu.[8] The <Selecti on Filter> also can be set from the contextmenu.[5] Right-click-select<Rotate by r Degrees> from the context menu.[6] Click this vertex to paste the arc. Make sure a <P> appears before clicking. If you have dif<culty making <P> appear, see [7, 8].For instructional purpose, we chose to manually set the paste handle [3] on the vertex [4]. We could have used plane origin as handle. In fact, that would have been easier since we wouldn't have to struggle to make sure whether a <P> appears or not. Whenever you have dif ;culty to "snap" a parti cular poi nt, you should take advantage of <Selecti on Filter> [7, 8].2.2-9 T rim Away Unwanted Segments[10] Click this vertex to paste the arc. Make sure a <P> appears before clicking (see [7, 8]).[9] Right-click-select<Rotate by r Degrees> in the context menu.[11] Right-click-select <End> in the context menu to end <Replicate> tool. Alternatively, you may press ESC to end atool.[3] Click to trim unwanted segments as shown, totally 6 segments are trimmed away.[1] Select <T rim> from <Modify> toolbox.[2] T urn on <Ignore Axis>.2.2-11 Specify Dimension of Side FacesAfter impose dimension in [2], the arcs turns to blue, indicating they are well de ;ned now. Note that we didn't specify the radii of the arcs; after wellde ;ned, the radii of the arcs can be calculated from other dimensions.Constraint StatusNote the arcs have a greenish-blue color, indicating they are not well de ;ned yet (i.e., under-constrained). Other color codes are: blue and blackcolors for well de ;ned entities (i.e., ;xed in the space); red color for over-constrained entities; gray to indicate an inconsistency.[1] Select <Equal Length> from <Constraints> toolbox[5] Click the horizontal axis as the line of symmetry.[4] Select <Symmetry>.[2] Click this segment and the vertical segment sequentially to make theirlengths equal.[3] Click this segment and the vertical segment sequentially to make theirlengths equal.[6] Click the lower and upper arcs sequentially tomake them symmetric.[1] Select <Dimension> toolbox and leave <General> as default.[2] Click the vertical segment and move the mouse rightward tocreate this dimension.[3] T ype 40 for the dimension just created.2.2-10 Impose Constraints[1] Select <Offset> from <Modify> toolbox.[2] Sweep-select all the segments (sweep each segment while holding your left mouse button down, see 2.1-6[12]). After selected, the segments turn to yellow. Sweep-select is alsocalled paint-select.[4] Right-click-select <End selection/Place Offset> in the context menu.[6] Right-click-select <End> in the context menu, or press ESC, to close <Offset>tool.[5] Click roughly here to place theoffset.[3] Another way to select multiple entities is to switch the<Select Mode> to <Box Select>, and then draw a box to select all entities inside the box.2.2-13 Create Fillets[1] Select <Fillet> in <Modify> toolbox. T ype 10 (mm) for the<Radius>.[7] Select <Horizontal> from <Dimension> toolbox.[8] Click the two left arcs and move downward to create this dimension. Note the offsetturns to blue.[9] T ype 30 for the dimension just created.[10] It is possible that these two point become separate now. If so, impose a <Coincident> constraint on them, see [11].[11] If necessary,impose a <Coincident> on the separate points.[2] Click These two segments sequentially to create a 7llet. Repeat this step to create the other two 7llets. Note that the 7llets are in greenish-blue color, indicating they are notwell de7ned yet.2.2-14 Extrude to Create 3D Solid[4] Select <Radius> from <Dimension> toolbox.[3] Dimensions speci6ed in a toolbox are usually regarded as "weak"dimensions, meaning they may be changed by imposing other constraints or dimensions.[5] Click one of the 6llets and move upward to create this dimension. This action turns a "weak" dimension to a "strong" one. The 6lletsturn blue now.[2] Click <Extrude>.[1] Click the little cyan sphere to rotate the model in isometric view, to have a better view.[3] T ype 10 (mm) for <Depth>.[4] Click <Generate>.[5] Click <Display Plane> to turn off the display ofsketching plane.[6] Click all plus signs (+) to expand and examine the <T ree Outline>.[1] Click <SaveProject>. T ype"T riplate" as projectname.[2] Pull-down-select<File/CloseDesignModeler> toclose DesignModeler.[3] Alternatively youcan click <SaveProject> in the<Workbench GUI>.[4] Pull-down-select<File/Exit> toexi t Workbench.reeree Outline> contains an outline of the model tree , the tree representation of the geometric model. Each leaf of the tree is called an object . A branch is an object containing one or more objects under itself. A model tree consists of planes , features , and a part branch. The parts are the only objects that are exported to <Mechanical>. ng an object and select a tool from the context menu, you can operate on the object, such as delete, rename, duplicate, etc.[1] Pull-down menusand toolbars.ree Outline>, in <Modeling> mode.[6] <Details View>.[5] Graphics area.[7] Status bar[4] <Sketching T oolboxes> in <Sketching> mode.[2] Mode tabs.[8] A separator allow you to resize the window panes.A sketch consists of points and edges ; edges may be straight lines or curves. Along with these geometric entities, there are dimensions and constraints imposed on these entities. As mentioned (Section 2.3-2), multiple sketches may be created on a plane. T o create a new sketch on a plane on whi ch there i s yet no sketches, you si mply swi <Sketching> mode and draw any geometric entities on it. Later, if you want to add a new sketch on that plane, you need to click <New Sketch> [3]. Only one plane and one sketch is active at a time [1, 2]: newly created sketches are added to the active plane, and newly created geometric entities are added to the active sketch. In this chapter, we only work wi th a si ngle sketch whi ch i s on the <XYPlane>. More on creati ng sketches wi ll be di scussed i n Chapter 4. 2.3-3 Sketchesactive plane is <XYPlane> <New Plane> to create a new plane.[3] Y ou can choose many ways of creating a newplane.Sketch> to create a sketch on the active sketching plane.active sketchingplane.active sketch.[4] Active sketching plane can be changed using the pull-down list, or by selection from the<T ree Outline>.[5] Active sketch can be changed using the pull-down list, or by selectionfrom the <T ree Outline>.toolbox.[3] <Dimensions>toolbox.toolbox.[5] <Settings>toolbox.[1] By default,DesignModeler is in<Auto Constraints> mode, both globally andlocally. Y ou can turnthem off whenevercause troubles. [1] <Draw>toolbox.[2] Right-click andselect one of theoptions to complete the<Spline> tool.[1] <Modify>toolbox.[2] Contextmenu for<Split> tool.[3] Contextmenu for <SplineEdit>.toolbox. [1] <Constraints>toolbox.the grid display.References1. ANSYS Help System>DesignModeler>2D Sketching>Auto Constraints2. ANSYS Help System>DesignModeler>2D Sketching>Constraints3. ANSYS Help System>DesignModeler>2D Sketching>Draw4. ANSYS Help System>DesignModeler>2D Sketching>Modify5. ANSYS Help System>DesignModeler>2D Sketching>Dimensions6. ANSYS Help System>DesignModeler>2D Sketching>Constraints7. ANSYS Help System>DesignModeler>2D Sketching>Settings toolbox.[3]the snap capability.[4] If you turn onthe grid display, youcan specify the gridle the nut has i nternal threads. Thi sd body for a porti on of the bolt [1] In Section 3.2, we will use this sketch again to generate a 2D solid model. The 2DExternal threads (bolt)Internalthreads(nut)H 8pMinor diameter of internal thread d1Nominal diameter d 60o[1] The threaded boltcreated in thisexercise.[1] Draw ahorizontal linewith dimensionsas shown.ons (30o, 60o, 60o, 0.541, and 2.165) as shown below. Note that, to avoid confusion, we explicitly specify all the dimensions. Y ou may apply constraints instead. For example, using <Parallel> constraint in stead of specifying an angle dimension [1].[1] Y ou may impose a<Parallel> constrainton this line instead ofspecifying the angle.rim Unwanted Segments2.4-6 Replicate 10 TimesSelect all segments except the horizontal one (totally 4 segments), and replicate 10 times. Y ou may need to manually<Selection Filter: Points> [2].[1] T angentpoint. [1] Set Paste Handle at thispoint.[1] The sketch after trimming.The Finite Element Method in Machine Design , Prentice-Hall, 1992; Chapter 7. Threaded Fasteners.Machine Design: Theory and Practice , Macmillan Publishing Co.,[1] Create this segment by using <Replicate>.[2] Draw this segment, which passes through the origin.[4] Draw this vertical segment. Y ou can trim it after next step.[5] Draw this horizontal segment.The 8gure below shows a pair of identical spur gears in mesh [1-12]. Spur gears have their teeth cut parallel to the axis of the shaft on which the gears are mounted. Spur gears are used to transmit power between parallel shafts. In o, they must sati sfy the fundamental law of point of contact between two teeth This 8xed point is called the pitch point [6].for a mechanical engineer. However, if you are not concerned about these geometric details for now, you may skip the 8rst two subsections and jump directly to Subsection 2.5-3.[7] Common tangent of the pitch circles.[6] Contact point (pitch point).[3] Pitch circle [9] Addendum vi ng gear rotates clockwise.[4] Pitch circle of the driving gear.[5] Line of centers.[12] The has a radius of[11] The shaft has a radius of 1.25 in.dimensions as shown (the vertical dimensions are measured down to the X-axis). Note that the dimension values display three digits after decimal point, but we actually typed with @ve digits (refer to the above table). Impose a <Coincident> constraint on the Y-axis for the-coordinate of 2.500.Connect these six points using <Spline> tool, keeping <Flexible> option on, and close the spline with <Open End>. Note that you could draw <Spline> directly without creating <Construction Points> @rst, but2.5-4 Draw CirclesDraw three circles [1-3]. Let the outermost construction point [3]. Specify radii for the circle of shaft (1.25 in) and the dedendum circle 2.5-5 Complete the Pro4leDraw a line starting from the lowestconstruction point, and make it perpendicular to the dedendum circle [1-2]. Note that, when drawing the line, avoid a <V> auto-constraint. Draw a 4llet [3] of radius 0.1 in to [3] Let addendum circle "snap" to the outermost construction point.[1] The circle ofshaft.[2] Dedendumcircle.This segment is a straight line and perpendicular to the dedendum circle.[3] This 4llet has a radius of 0.1 in.[1] Dedendum circle.[1] Replicatedpro:le.Times Project>Section 2.5 Exercise: Spur Gears 85References1. Deutschman, A. D., Michels, W . J., and Wilson, C. E., Machine Design: Theory and Practice , Macmillan Publishing Co.,Inc., 1975; Chapter 10. Spur Gears.2. Zahavi, E., The Finite Element Method in Machine Design , Prentice-Hall, 1992; Chapter 9. Spur Gears.2.5-8 Trim Away Unwanted Segments2.5-9 Extrude to Create 3D SolidExtrude the sketch 1.0 inch to create a 3D solid as shown. Save the project and exit from <Workbench>. We will resume this project again in Section 3.4.T rim away unwanted portion on the addendum circle and the dedendum circle.。