初三数学试题1
2023年数学中考试题精选:几何综合证明(一)
1.(2023.营口24题)在平行四边形ABCD中,∠ADB=90°,点E在CD 上,点G在AB上,点F在BD的延长线上,连接EF,DG, ∠FED=∠ADG,ADBD =DG EF=k.(1)如图1,当k=1时,请用等式表示线段AG与线段DF的数量关系________;(2)如图2,当k=√(3)时,写出线段AD,DE和DF之间的数量关系,并说明理由;(3)在(2)的条件下,当点G是AB的中点时,连接BE,求tan∠EBF的值2.(2023.本溪铁岭辽阳25题)在Rt△ABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图1,当点D与点O重合时,请直接写出线段AD与线段EF 的数量关系;(2)如图2,当点D在线段AB上时,求证:CG+BD=√2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.3.(2023.大连25题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质。
已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折,同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”补足探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.4.(2023.牡丹江26题)平行四边形ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.(1)当点E在线段BC上,∠ABC=45°时,如图1,求证:AE+EC=BF;(2)当点E在线段BC延长线上,∠ABC=45°时,如图2,当点E在线段CB延长线上,∠ABC=135°时,如图3,请猜想并直接写出线段AE,EC,BF的数量关系;(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE=______.5.(2023.贵州省25题)如图1,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图2,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为______度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图3,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD将于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.6.(2023.沈阳24题)如图1.在平行四边形纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将平行四边形ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C`,D`,射线C`E与射线AD将于点F.(1)求证:AF=EF;(2)如图2,当EF⊥AF时,DF的长为______;(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM 交C`D`于点N,连接AN,EN,求△ANE的面积。
2023年数学中考试题精选:一次函数应用(一)
2023年数学中考试题精选(一)1.(2023.大连22题)为了增强学生身体素质,学校要求男女同学练习跑步,开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为 4.5m/s,当到达终点时男、女均停止跑步,女生从开始匀速跑到停止跑步共用时120s。
已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则:(1)男女跑步的总路程为________.(2)当男、女相遇时,求此时男、女同学距离终点的距离。
2.(2023.江苏省无锡市26题)某景区旅游商店以20元/kg的价格采购一款旅游食品加工后出售,销售价格不低于22元/kg,不高于45元/kg,经市场调查发现每天的销售量y(kg)与销售价格x(元/kg)之间的函数关系如图所示.(1)求y关于x的函数表达式;(2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润=(销售价格-采购价格)•销售量】3.(2023.锦州市23题)端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y(袋)与售价x(元/袋)满足如图所示的一次函数关系。
(1)求y与x之间的函数关系式;(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?3.(2023.湖北黄冈市22题)加强劳动教育,落实五育并举,孝礼中学在当地政府的支持下,建成了一处劳动实践基地. 2023年计划将其中1000m2的土地全部种植甲乙两种蔬菜. 经调查发现:甲种蔬菜种植成本y(单位:元/m2)与其种植面积x(单位:m2)的函数关系如图所示,其中200≤x≤700; 乙种蔬菜的种植成本为50元/m2.(1)当x=____m2时,y=35元/m2;(2)设2023年甲乙两种蔬菜总种植成本为w元,如何分配两种蔬菜的种植面积,使w最小?(3)学校计划今后每年在这1000m2土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降a%,当a为何值时,2025年的总种植成本为28920元?4.(2023.牡丹江25题)在一条高速公路上依次有A,B,C三地,甲车从A地出发匀速驶向C地,到达C地休息1h后调头(调头时间忽略不计)按原路原速驶向B地,甲车从A地出发1.5h后,乙车从C地出发匀速驶向A地,两车同时到达目的地,两车距A地路程ykm与甲车行驶时间xh之间的函数关系如图所示,请结合图象信息,解答下列问题:(1)甲车行驶的速度是___km/h,乙车行驶的速度是______km/h; (2)求图中线段MN所表示的y与x之间的函数解析式,并直接写出自变量x的取值范围;(3)乙车出发多少小时,两车距各自出发地路程的差是160km?请直接写出答案。
太原市九年级上阶段性测评数学试题(一)含答案解析
太原市九年级上学期阶段性测评(一)数学一、选择题(本大题含10个小题,每小题2分,共20分)1.已知关于x的一元二次方程的一个根为1,则m的值为()A.2B.-2C.4D.-4【答案】A【解析】把x=1代入原方程可得,得m=22.如图,在菱形ABCD中,AB=5,∠B=60°,则对角线AC的长等于()A.8B.7C.6D.5【答案】D【解析】∵四边形ABCD是菱形,∴AB=BC,又∵∠B=60°,∴△ABC为等边三角形,∴AC=53.在一个不透明的盒子中,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中.不断重复以上操作过程,共摸了100次球,发现有20次摸到黑球,据此估计盒子中白球的个数为()A.12个B.16个C.20个D.30个【答案】B【解析】先算出盒子中黑球所占百分比,则,即共有20个球,则白球有个÷0=20%,则4÷20%=20,。
4.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根【答案】A【解析】把a=1,b=3,c=-2代入中,所以有两个不相等的实数根。
5.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.你知道竹竿有多长吗?设竹竿的长度为x尺,根据题意列出的方程是()【答案】C【解析】根据题意可得门框的高和宽分别是x-2和x-4,利用勾股定理可得6.小明、小颖、和小凡都想去看山西第二届文博会,但现在只有一张门票,三人决定一起做游戏,谁获胜谁就去.游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜.关于这个游戏,下列判断正确的是()A.三个人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大【答案】D【解析】P(小明)=,P(小颖)=,P(小凡)=7.小明一家人在国庆间自驾汽车从家里出发到某著名旅游景点游玩.他在1:500000的地图上测得家所在的城市与旅游景点所在城市的图上距离为40cm,则这两城市的实际距离为()A.100kmB.200kmC.1000kmD.2000km【答案】B【解析】40cm=40×10-5km,1:500000=40×10-5:x,可得x=200km.8.小红利用一些花布的边角料,裁剪后装饰手工画.下面四个图案是她裁剪出的空心等边三角形、菱形、矩形、正方形,若每个图案花边的宽度都相等,那么每个图案中花边的内外边缘所围成的几何图形不一定相似的是()【答案】C【解析】等边三角形、菱形和正方形在保证各个角度对应相等的情况下,各个边长都相等,即使每条边都减少同样的长度,比例也仍相等,矩形则未必,可举具体数据来说明9.如图,以正方形ABCD的对角线AC为边作菱形AEFC,点E在边AB的延长线上,则∠FAE的度数为()A.15°B.22.5°C.30°D.37.5°【答案】B【解析】由图知,AC、AF分别为正方形ABCD和菱形AEFC的对角线,所以∠DAC=∠BAC=45°,∠FAE=∠FAC=12∠BAC=22.5°。
中考数学 第1章 有理数复习题 试题
卜人入州八九几市潮王学校第1篇代数篇第1章有理数1.1有理数的概念★1.1.1 a 、b 在数轴上的位置如下列图,那么在a +b ,b -2a ,a b -,b -a 中负数的个数是().(A )1(B )2(C )3(D )4★1.1.2设有理数a 、b 、c 在数轴上的对应点如下列图,那么代数式b a -+a c -+c b -=____. ★1.1.3a 、b 是有理数,有以下三式: ①a b +<a b -;②a 2+b 2+a +b +1<0;③a 2+b 2-2a -2b +1<0.其中一定不成立的是(填写上序号)★1.1.4在a 、b 、c 三个数中,有如下三个结论:甲:假设至少有两个数互为相反数,那么a +b +c =0;乙:假设至少有两个数互为相反数,那么(a +b )2+(b +c )2+(c -0)2=0; 丙:假设至少有两个数互为相反数,那么(a +b )(b +c )(c +0)=0.其中正确结论的个数是().(A )0(B )1(C )2(D )3★1.1.5数轴上有A 和B 两点,A 、B 之间的间隔为1,点A 与原点O 的间隔为3,那么所有满足条件的点B 与原点O 的间隔之和等于★★1.1.62()1a b -++(a +b -2)2=1,x +ay =1,bx -y =3,那么2(x )1y -++(x +y -2)2 =★★1.1.7求2x --10x +的最小值.★★1.1.8求1x -+2x -+3x -的最小值.★★1.1.9abcde 是一个五位数,其中a ,b ,c ,d ,e 为阿拉伯数字,且a <b <c <d ,那么a b -+b c -+c d -+d e -的最大值是★★1.1.10设x 、y 、a 都是实数,并且x =1-a ,y =(1-a )(a -1-a 2),试求x +y +a 3+1的值. ★★1.1.11数轴上有一动点a ,从原点出发沿着数轴挪动,每次只允许挪动1个单位.经过10次挪动,a 点挪动到间隔原点6个单位处,问:a 点的挪动方法有多少种?★★1.1.12圆周上有和为94的n 个整数(n >3),每个数都等于它后面(按顺时针方向)的两个数的差的绝对值.问:n 的所有可能值是多少?★★★1.1.13如下列图,数轴上标有2n +1个点,它们对应的整数是-n ,-(n -1),…,-2,-1,0,1,2,…,(n -1),n ,它们称为整点,为了确保从这些整点中可以取出2021个,使其中任意两个点之间的间隔不等于4,问:n 的最小值是多少1.2有理数的大小比较★1.2.1假设有理数a 、b 在数轴上的位置如下列图,那么以下各式中错误的选项是().(A )-ab <2(B )1b >-1a (C )a +b <-12(D )a b<一1 ★1.2.2P =999999,Q =990119,那么P 、Q 的大小关系是(). (A )P >Q (B )P =Q (C )P <Q (D )无法确定★1.2.3假设实数a 、b 、c 满足abc >0,a +b +c =0,a <-b <c ,那么a 、b 、c 的大小为().(A )a >0,b >0,c >0(B )a >0,b <0,c >0(C )a <0,b <0,c >0(D )a <0,b >0,c <0★1.2.4有四个数:a =3.852.57-,b =15341023-,c =-487325,d =-267178,它们的大小关系是(). A .d <c <b <aB .d <b <c <aC .b <c <a <dD .d <a <c <b★1.2.5假设a = 3.143.13-÷3.12,b =2.142.13-÷2.12,c =1.141.13÷(-1.12),那么a 、b 、c 的大小顺序是().(A)a>b>c(B)a>c>b(C)b>c>a(D)c>b>a★★1.2.6比较2234和5100的大小,并说明理由.1.3有理数的运算★1.3.1以下说法中,正确的个数是().(1)n个有理数相乘,当因数有奇数个时,积为负;(2)n个有理数相乘,当正因数有奇数个时,积为负;(3)n个有理数相乘,当负因数有奇数个时,积为负;(4)n个有理数相乘,当积为负数时,负因数有奇数个.(A)1(B)2(C)3(D)4★1.3.2计算:-4012×(114+109144)÷(-0.5)÷34×43-13×[(-2)2-22]=____.★1.3.3计算:(-313)2-413×(-6.5)+(-2)4÷(-6).★1.3.4计算:(-2)5÷(-6)-417×(-8.5)-(-313)2.★1.3.5设a=1÷2÷3÷4,b=1÷(2÷3÷4),c=1÷(2÷3)÷4,d=1÷2÷(3÷4),那么(b÷a)÷(c÷d)=____.★1.3.6某地区2021年2月21-28日的平均气温为-1℃,2月22-29日的平均气温为-0.5℃,2月21日的平均气温为-3C,那么2月29日的平均气温为.★★1.3.7计算:(1+111+113+117)×(111+113+117+119)-(1+111+113+117+119)×(111+113+117)=().(A)111(B)113(C)117(D)119★1.3.8计算:1+2+3+ (100)★1.3.9计算:-1+3-5+7-9+11-…-1993+1995-1997=().(A)999(B)-998(C)998(D)-999★1.3.10计算:-1-(-1)1-(-1)2-(-1)3-…-(-1)99-(-1)100.★★1.3.11计算:(12+32+52+…+992)-(22+42+62+…+1002) ★★1.3.12代数和-1×2021+2×2021-3×2021+4×2021+…-1003×1006+1004×1005的个位数字是 ★★1.3.13计算:11+(21-12)+(31-22+13)+(41-32+23-14)+…+(91-82+73-64+…+19) ★★1.3.14计算:(13-712+920-1130+1342-1556)×23×21. ★1.3.15计算:112⨯+123⨯+134⨯+…+120082009⨯. ★1.3.16求证:113⨯+124⨯+135⨯+146⨯+…+1(n 1)n +=34-232(n 1)(n 2)n +++ ★★1.3.17计算:1+112++1123+++…+11232010++++ ★★1.3.18计算:1-11(12)⨯+-1(12)(123)+⨯++-1(123)(1234)++⨯+++ ★★1.3.19计算:2-22-23-24-…-218-219+220=____. ★★1.3.20S =12-24+38-416+…+(-1)k -12k k +…+200520052-200620062,那么小于S 的最大整数是____. ★★1.3.21计算:1+3+32+33+…+32021.★★★1.3.22计算:12+22+…+n 2. ★★1.3.23比较12+24+38+416+…+2n n 与2的大小. ★★1.3.24计算:(1-2111)×(1-2112)×(1-2113)×…×(1-211994)=. ★★1.3.25m ,n 都是正整数,并且A =(1-12)×(1+12)×(1-13)×(1+13)×…×(1-1m )×(1+1m ), B =(1-12)×(1+12)×(1-13)×(1+13)×…×(1-1n )×(1+1n) (1)证明:A =12m m +,B =12n n+ (2)假设A -B =126,求m 和n 的值. ★★1.3.26算式(1+113⨯)×(1+124⨯)×(1+135⨯)×(1+146⨯)×…×(1+198100⨯)×(1+199101⨯)的整数局部为()(A )1(B )2(C )3(D )4★1.3.27按一定规律排列的一串数11,-13,23,-33,15,-25,35,-45,55,123,,,777--…中,第98个数是____________________. 1.3.28运算*按下表定义,例如3*2=1,那么(2*4)*(1*3)=()A .1B .2C .3D .41.3.29现定义两种运算“⊕〞,“⊗〞,定义,对于任意两个整数a 、b ,1a b a b ⊕=+-,1a b ab ⊗=-, 求4[(68)(35)]⊗⊕⊕⊗.。
天津市2019年中考数学真题试题(含解析)(1)
2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。
第I 卷一、选择题目(本大题12小题,每小题3分,共36分)1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的值等于A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。
故选A 5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】图中的立体图形主视图为,故选B.6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得,由菱形性质可得, 所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x代入2=x 到①中,726=+y 则21=y ,故选D. 10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系 A. 312y y y << B.213y y y << C.321y y y << D.123y y y << 【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ), ∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。
中学初三年级第一次月考数学试题
2 中学初三年级第一次月考数学试题一、选择题(3×8=24)1、下列函数中,y 是x 的反比例函数的有( ) (1)y =-πχ (2)xy =2 (3)y =2x 2 (4)y = x1 (5)y =x 12+ (6)y =11+x (7)y =x 21- (8)y =21-x A.1个 B.2个 C.3个 D.4个 2、已知反比例函数y =xk 2-的图像位于第一、三象限,则k 的取值范围是( )A.k >2B.k ≥2C.k ≤2D.k <23、若点A (1,1y )B (2,2y )都是反从例函数y=xk (k >0)的图象上,则1y与2y 的大小关系是( )A.1y <2y B.1y ≤2y C.1y >2y D.1y ≥2y4、正比例函数y =x 6的图象与反比例函数y =x6的图像的交点位于( ) A.第一象限 B.第二象限 C.第二、四象限 D.第一、三象限 5、下列方程中,一元二次方程有( )① x x =5 ①(x -3)2-6=0 ①x 2 =1 ①7x (x -2)=7x 2 ①ax 2+bx +c=0 A.1个 B.2个 C.3个 D.4个 6、一元二次方程x 2-2x -4=0的根的情况是( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根7、若一元二次方程2x (kx -4)-x 2-6=0有实数根,则k 的最小整数值是( )A.-1B.0C.1D.28、若关于x 的一元二次方程x 2+kx +4k 2-3=0的两个实数根分别是1x .2x ,且满足1x +2x =1x .2x ,则k 的值为( )A.-1或43B.-1C.43 D.不存在 二、填空题(3×6=18)9、如图,已知A 点是反比例函数y =xk (k ≠0)的图像上一点,AB①y 轴于B ,①ABO 的面积为5,则k 的值为 。
10、已知反比例函数y =x6在第一象限的图像,如图所示,点A 在其图象上,点B 在x 轴的正半轴上,连结A0、AB,且AO=AB,则①AOB 的面积= 11、若y =x 2与双曲线y =xk的一个交点是(36),则另一个交点是 12、若关于x 的一元二次方程kx 2+3x +1=0有两不相等的实数根,则k 的取值范围是13、关于x 的一元二次方程(m -2)x 2+2x +m 2+m -6=0有一个实数根为0,则m 的值是14、已知一个三角形的两边长分别是3cm 和7cm ,第三边长为acm ,且满足a 2-10a+21=0,则此三角形的周长为 。
2024年江西新余中考数学试题及答案(1)
2024年江西中考数学试题及答案说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 实数5-的相反数是( )A. 5B. 5-C. 15 D. 15-2. “长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为( )A. 60.2510´B. 52.510´ C. 42.510´ D. 32510´3. 如图所示的几何体,其主视图为()A. B. C. D.4. 将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为( )A. B. C. D.5. 如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )A. 五月份空气质量为优的天数是16天B. 这组数据的众数是15天C. 这组数据的中位数是15天D. 这组数据的平均数是15天6. 如图是43´的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A. 1种B. 2种C. 3种D. 4种二、填空题(本大题共6小题,每小题3分,共18分)7. 计算:()21-=____.8. 因式分解:22a a +=_________.9. 在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为______.10. 观察a ,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为______.11. 将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB Ð=______.12. 如图,AB 是O e 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ^,将¼DBE沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为______.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:0π5+-;(2)化简:888x x x ---.14. 如图,AC 为菱形ABCD 的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线;(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.15. 某校一年级开设人数相同的A ,B ,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.16. 如图,AOB V 是等腰直角三角形,90Ð=°ABO ,双曲线()0,0k y k x x=>>经过点B ,过点()4,0A 作x 轴的垂线交双曲线于点C ,连接BC .(1)点B 的坐标为______;(2)求BC 所在直线的解析式.17. 如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC Ð=Ð=°.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求»AC 的长.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?19. 图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ^,DN MN ^,点M ,E ,F ,N 在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE Ð=°.(结果精确到0.1m )(1)求“大碗”的口径AD 的长;(2)求“大碗”的高度AM 的长.(参考数据:sin620.88°»,cos620.47°»,tan62 1.88°»)20. 追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC V 中,BD 平分ABC Ð,交AC 于点D ,过点D 作BC 的平行线,交AB 于点E ,请判断BDE V 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC Ð,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .①图中一定是等腰三角形的有( )A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.五、解答题(本大题共2小题,每小题9分,共18分)21. 近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦;18.524BMI £<为正常;2428BMI £<为偏胖;28BMI ³为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI £<;B .2024BMI £<;C .2428BMI £<;D .2832BMI £<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m )1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI 21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m )1.46 1.62 1.551.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI 21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI 男生频数女生频数A1620BMI £<32B2024BMI £<46C2428BMI £<t 2D 2832BMI £<10应用数据(1)s =______,t =______a =______;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生24BMI ³的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22. 如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.六、解答题(本大题共12分)23. 综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE Ð=°,连接BE ,CE CB m CD CA==.特例感知(1)如图1,当1m =时,BE 与AD 之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当1m ¹时,猜想BE 与AD 之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F 与点C 关于DE 对称,连接DF ,EF ,BF ,如图3.已知6AC =,设AD x =,四边形CDFE 的面积为y .①求y 与x 的函数表达式,并求出y 的最小值;②当2BF =时,请直接写出AD 长度.的江西省2024年初中学业水平考试数学试题卷说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B二、填空题(本大题共6小题,每小题3分,共18分)【7题答案】【答案】1【8题答案】a a+【答案】(2)【9题答案】3,4【答案】()【10题答案】a【答案】100【11题答案】【答案】12##0.5【12题答案】【答案】2或2+或2三、解答题(本大题共5小题,每小题6分,共30分)【13题答案】【答案】(1)6;(2)1【14题答案】【答案】(1)作图见解析;(2)作图见解析.【15题答案】【答案】(1)13(2)甲、乙两位新生分到同一个班的概率为13.【16题答案】【答案】(1)()2,2(2)132y x =-+【17题答案】【答案】(1)见解析(2)2p 四、解答题(本大题共3小题,每小题8分,共24分)【18题答案】【答案】(1)书架上有数学书60本,语文书30本. (2)数学书最多还可以摆90本【19题答案】【答案】(1)“大碗”的口径AD 的长为80.0m ; (2)“大碗”的高度AM 的长为40.0m .【20题答案】【答案】(1)BDE V 等腰三角形;理由见解析;(2)①B ;②2CF =.五、解答题(本大题共2小题,每小题9分,共18分)【21题答案】是【答案】(1)22;2;72°;(2)①52人;②126人(3)见解析【22题答案】【答案】(1)①3,6;②1515,28æöç÷èø;(2)①8,②v =六、解答题(本大题共12分)【23题答案】【答案】(1)AD BE ^,AD BE =(2)BE 与AD 之间的位置关系是AD BE ^,数量关系是BE m AD =;(3)①y 与x 的函数表达式((2180y x x =-+<£,当x =y 的最小值为18;②当2BF =时,AD 为或.2024年江西中考数学试题及答案说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 实数5-的相反数是( )A. 5B. 5-C. 15 D. 15-2. “长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为( )A. 60.2510´B. 52.510´ C. 42.510´ D. 32510´3. 如图所示的几何体,其主视图为()A. B. C. D.4. 将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为( )A. B. C. D.5. 如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )A. 五月份空气质量为优的天数是16天B. 这组数据的众数是15天C. 这组数据的中位数是15天D. 这组数据的平均数是15天6. 如图是43´的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A. 1种B. 2种C. 3种D. 4种二、填空题(本大题共6小题,每小题3分,共18分)7. 计算:()21-=____.8. 因式分解:22a a +=_________.9. 在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为______.10. 观察a ,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为______.11. 将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB Ð=______.12. 如图,AB 是O e 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ^,将¼DBE沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为______.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:0π5+-;(2)化简:888x x x ---.14. 如图,AC 为菱形ABCD 的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线;(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.15. 某校一年级开设人数相同的A ,B ,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.16. 如图,AOB V 是等腰直角三角形,90Ð=°ABO ,双曲线()0,0k y k x x=>>经过点B ,过点()4,0A 作x 轴的垂线交双曲线于点C ,连接BC .(1)点B 的坐标为______;(2)求BC 所在直线的解析式.17. 如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC Ð=Ð=°.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求»AC 的长.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?19. 图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ^,DN MN ^,点M ,E ,F ,N 在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE Ð=°.(结果精确到0.1m )(1)求“大碗”的口径AD 的长;(2)求“大碗”的高度AM 的长.(参考数据:sin620.88°»,cos620.47°»,tan62 1.88°»)20. 追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC V 中,BD 平分ABC Ð,交AC 于点D ,过点D 作BC 的平行线,交AB 于点E ,请判断BDE V 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC Ð,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .①图中一定是等腰三角形的有( )A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.五、解答题(本大题共2小题,每小题9分,共18分)21. 近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦;18.524BMI £<为正常;2428BMI £<为偏胖;28BMI ³为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI £<;B .2024BMI £<;C .2428BMI £<;D .2832BMI £<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m )1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI 21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m )1.46 1.62 1.551.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI 21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI 男生频数女生频数A1620BMI £<32B2024BMI £<46C2428BMI £<t 2D 2832BMI £<10应用数据(1)s =______,t =______a =______;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生24BMI ³的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22. 如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.六、解答题(本大题共12分)23. 综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE Ð=°,连接BE ,CE CB m CD CA==.特例感知(1)如图1,当1m =时,BE 与AD 之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当1m ¹时,猜想BE 与AD 之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F 与点C 关于DE 对称,连接DF ,EF ,BF ,如图3.已知6AC =,设AD x =,四边形CDFE 的面积为y .①求y 与x 的函数表达式,并求出y 的最小值;②当2BF =时,请直接写出AD 长度.的江西省2024年初中学业水平考试数学试题卷说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B二、填空题(本大题共6小题,每小题3分,共18分)【7题答案】【答案】1【8题答案】a a+【答案】(2)【9题答案】3,4【答案】()【10题答案】a【答案】100【11题答案】【答案】12##0.5【12题答案】【答案】2或2+或2三、解答题(本大题共5小题,每小题6分,共30分)【13题答案】【答案】(1)6;(2)1【14题答案】【答案】(1)作图见解析;(2)作图见解析.【15题答案】【答案】(1)13(2)甲、乙两位新生分到同一个班的概率为13.【16题答案】【答案】(1)()2,2(2)132y x =-+【17题答案】【答案】(1)见解析(2)2p 四、解答题(本大题共3小题,每小题8分,共24分)【18题答案】【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【19题答案】【答案】(1)“大碗”的口径AD 的长为80.0m ;(2)“大碗”的高度AM 的长为40.0m .【20题答案】【答案】(1)BDE V 等腰三角形;理由见解析;(2)①B ;②2CF =.五、解答题(本大题共2小题,每小题9分,共18分)【21题答案】是【答案】(1)22;2;72°;(2)①52人;②126人(3)见解析【22题答案】【答案】(1)①3,6;②1515,28æöç÷èø;(2)①8,②v =六、解答题(本大题共12分)【23题答案】【答案】(1)AD BE ^,AD BE =(2)BE 与AD 之间的位置关系是AD BE ^,数量关系是BE m AD =;(3)①y 与x 的函数表达式((2180y x x =-+<£,当x =y 的最小值为18;②当2BF =时,AD 为或.。
2020年初三数学下期末试题带答案(1)
2020年初三数学下期末试题带答案(1)一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°4.下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1B.2C.3D.45.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分6.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()A.B.C.D.⊥于点D,连接BD,BC,且7.如图,AB,AC分别是⊙O的直径和弦,OD ACAC=,则BD的长为()10AB=,8A.25B.4C.213D.4.88.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体9.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.1210.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().A.B.C.D.11.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .12.cos45°的值等于( )A .2B .1C .32D .22二、填空题13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x的图象上,则k 的值为________.15.分解因式:x 3﹣4xy 2=_____.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a +的值等于_______.18.当m =____________时,解分式方程533x m x x-=--会出现增根. 19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .20.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD .(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为83,求AC的长.22.(问题背景)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F 分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.(探索延伸)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(学以致用)如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为.23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?26.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理3.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.5.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.C解析:C【解析】【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】解:将图形按三次对折的方式展开,依次为:.故选:C.【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=,∴6BC ==,∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.8.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.9.A解析:A【解析】试题解析:∵直线l :与x 轴、y 轴分别交于A 、B ,∴B (0,∴在RT △AOB 中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.10.C解析:C【解析】从上面看,看到两个圆形,故选C.11.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°= 2.故选D.【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 15.x (x+2y )(x ﹣2y )【解析】分析:原式提取x 再利用平方差公式分解即可详解:原式=x (x2-4y2)=x (x+2y )(x-2y )故答案为x (x+2y )(x-2y )点睛:此题考查了提公因式法与公式解析:x (x+2y )(x ﹣2y )【解析】分析:原式提取x ,再利用平方差公式分解即可.详解:原式=x (x 2-4y 2)=x (x+2y )(x-2y ),故答案为x (x+2y )(x-2y )点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【解析】根据弧长公式可得:=故答案为 解析:2π3【解析】 根据弧长公式可得:602180π⨯⨯=23π, 故答案为23π.17.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.18.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:43【解析】【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F Q 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =Q8BD ∴=又Q 8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.22.【问题背景】:EF=BE+FD;【探索延伸】:结论EF=BE+DF仍然成立,见解析;【学以致用】:5.【解析】【分析】[问题背景]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[探索延伸]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[学以致用]过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.【详解】[问题背景】解:如图1,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.【点睛】此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣19225.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.25.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图26.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。
安徽省2023年中考数学试题+参考答案
安徽省2023年中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。
1.-5的相反数是()A.5B.-5C.15D.-152.某几何体的三视图如图所示,则该几何体为()A. B.C. D.3.下列计算正确的是()A.a4+a4=a8B.a4⋅a4=a16C.a4 4=a16D.a8÷a4=a24.在数轴上表示不等式x-12<0的解集,正确的是()A. B.C. D.5.下列函数中,y的值随x值的增大而减小的是()A.y=x2+1B.y=-x2+1C.y=2x+1D.y=-2x+16.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A.60°B.54°C.48°D.36°7.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59B.12C.13D.298.如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.109.已知反比例函数y =kxk ≠0 在第一象限内的图象与一次函数y =-x +b 的图象如图所示,则函数y =x 2-bx +k -1的图象可能为()A. B.C. D.10.如图,E 是线段AB 上一点,△ADE 和△BCE 是位于直线AB 同侧的两个等边三角形,点P ,F 分别是CD ,AB 的中点.若AB =4,则下列结论错误的是()A.PA +PB 的最小值为33B.PE +PF 的最小值为23C.△CDE 周长的最小值为6D.四边形ABCD 面积的最小值为33二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:38+1=。
最新九年级中考数学模拟试题 及答案 (1)
九年级数学模拟题(一)(考试时间120分钟,试卷满分150分)一、选择题(本大题共10个小题,每小题3分,共30分)1、-2的倒数是()A.2 B.-21C.21D.-22、左下图为主视方向的几何体,它的俯视图是()3、下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D4、下列运算正确的是()A、x2x3 =x6B、(-2x)2 =4x2C、x2+x2=2x4D、(-2x)2 (-3x )3=6x55、下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.6、下列方程中是关于x的一元二次方程的是()A.(x-1)(x+2)=1 B.ax2+bx+c=0C.x2+21x=0 D.3x3-2xy-5y2=07、如图,四边形P AOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形P AOB的形状、大小随之变化,则P A2+PB2的值A.逐渐变大B.逐渐变小C.不变D.不能确定8、如图,A是反比例函数y=xk图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则K的值为()(第8题)ABP xyOA .1B .2C .3D .49、某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ( )A .205.0420420=--x x B .204205.0420=--x x C .5.020420420=--x x D .5.042020420=--xx10、已知二次函数2y ax bx c =++ ()0a ≠ 的图像,如图所示,有下列5个结论: ⑴0abc >; ⑵b a c <+;⑶420a b c ++>;⑷23c b <;⑸()a b m am b +>+,()1m ≠的实数.其中,正确结论的个数为( )A .4B .3C .2D .1二、填空题(本大题共8个小题,每小题3分,共24分) 11、要使式子aa 2+有意义,则a 的取值范围为_________. 12、根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过8000000人次,试用科学记数法表示8000000= .13、若m 2-5m +2=0,则2m 2-10m +2012= .14、如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于 .15、如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到C B A ''的位置.若BC 的长为15cm ,那么顶点A •从开始到结束所经过的路径长为 ㎝.16、如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF = __________.17、如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .18、在直角坐标系中,直线y =x +1与y 轴交于点A 1, 按 如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…, 点A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在 x 轴上,图中阴影部分三角形的面积从左到右依次记 为S 1、S 2、S 3、…S n ,则S n 的值为____________ (用含n 的代数式表示,n 为正整数).三、解答题(本大题共2个题,第19题10分,第20题12分,共22分)19、先化简,再求值:4441x 1122++-÷x x x )--(,其中1311+⎪⎭⎫ ⎝⎛=-x20、如图,在平面直角坐标系中,已知点(42)B ,,BA x ⊥轴于A .(1)画出将△OAB 绕原点旋转180°后所得的△OA 1B 1,并写出 点A 1、B 1的坐标;(2)将△OAB 平移得到△O 2A 2B 2,点A 的对应点是A 2,点B 的对应点B 2的坐标为(22)-,在坐标系中作出△O 2A 2B 2,并写出点O 2、A 2的坐标;(3)△OA 1B 1与△O 2A 2B 2成中心对称吗?若是,找出对称中心,并写出对称中心的坐标.四、解答题(本大题共2个题,每题10分,共20分)21、有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2,B 布袋中有三个完全相同的小球,分别标有数字-l ,-2和-3.小强从A 布袋中随机取出一个小球,记录其标有的数字为a ,再从B 布袋中随机取出一个小球,记录其标有的数字为b ,这样就确定点Q 的一个坐标为OxAB11 y(a,b).⑴用列表或画树状图的方法写出点Q的所有可能坐标;⑵求点Q落在直线y=x-3上的概率、22、数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(3≈1.73要求结果精确到0.1m)五、解答题(本大题共12分)23、如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.六、解答题(本大题14分)24、某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,每多买一本,售价就降低0.10元,但最低价为16元/本.(1)客户一次至少买多少本,才能以最低价购买?(2)写出当一次购买x本时(x>10),书店利润y(元)与购买量x(本)之间的函数关系式;(3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由.七、解答题(本大题14分)ll l25、已知,在△ABC中,AB=AC.过A 点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.八、解答题(本大题14分)26、如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行与y轴交CD于点N.设点M的横坐标为t,MN的长度为,求与t之间的函数关系式,并求取最大值时,点M的坐标。
初三数学第一章测试题(含答案)
初三数学第一章测试题(含答案)一、选择题(每小题2分,共30分)1. 设 a+b=5,a-b=3,那么a和b的值分别是多少?A. a=4, b=1B. a=3, b=-2C. a=2, b=3D. a=1, b=4 (答案:A)2. 已知正方形面积为36平方厘米,那么正方形的边长是多少?A. 4厘米B. 6厘米C. 9厘米D. 12厘米 (答案:C)3. 一架飞机从A地出发,每小时飞行400千米,飞了2个小时后到达B地,B地与A地相距多少千米?A. 400千米B. 600千米C. 800千米D. 1000千米 (答案:B)4. 有一个长为8厘米的木棍,现需切割成5段,每段长为多少厘米?A. 1厘米B. 2厘米C. 4厘米D. 8厘米 (答案:C)5. 如果80%的学生喜欢数学,且班级共有40名学生,那么班级有多少名学生喜欢数学?A. 8名学生B. 16名学生C. 32名学生D. 64名学生 (答案:B)二、填空题(每空2分,共20分)1. 已知一个数字是3的倍数,则这个数字最小是___。
答案:32. 圆的半径与直径的关系是___。
答案:半径与直径的关系是直径的两倍。
3. 在一部小说中,第一天读了全书的1/4,第二天读了余下的3/4中的一半,剩下的20页需要第三天才能读完,这本小说共有___页。
答案:80页4. 一年有___个月。
答案:12个月5. 设正方形的边长为x,那么它的周长是___。
答案:4x三、解答题(每题10分,共30分)1. 请用代数解方程:已知一个数的五倍减去2等于13,求这个数。
答案:令这个数为x,则方程为5x - 2 = 13,解得 x = 3。
2. 一个数的1/5等于15,这个数是多少?答案:令这个数为x,则方程为x/5 = 15,解得 x = 75。
3. 请用文字说明如何计算一个长方体的体积。
答案:长方体的体积可以通过将长、宽、高相乘来计算,公式为 V = 长 * 宽 * 高。
2020-2021学年人教版九年级中考数学练习试题1
2020-2021学年人教新版中考数学练习试题1一.选择题1.如图,数轴上点A,B,C对应的有理数分别为a,b,c.下列结论:①a+b+c>0;②abc>0;③a+b﹣c<0;④.其中正确的是()A.①②③B.②③C.①④D.②③④2.下列计算正确的是()A.=(y≠0)B.÷=C.|﹣2|=2﹣D.2﹣=13.下列计算正确的是()A.4a﹣2a=2B.2(a+2b)=2a+2bC.7ab﹣(﹣3ab)=4ab D.﹣a2﹣a2=﹣2a24.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°5.下列说法错误的是()A.若a+3>b+3,则a>b B.若,则a>bC.若a>b,则ac>bc D.若a>b,则a+3>b+26.如图,CE是△ABC的外角∠ACD的平分线,CE交BA的延长线于点E,∠B=35°,∠E=25°,则∠ACD的度数为()A.100°B.110°C.120°D.130°7.如图,在平行四边形ABCD中,点E为边DC上一点,且DE:EC=3:1,连接AE并延长,与BC的延长线交于点G,AE与BD交于点F,则△GEC的面积与△DEF的面积之比为()A.1:3B.3:7C.4:21D.7:278.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C 以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P恰好为AC的中点时,PQ的长为()A.2B.4C.2D.4二.填空题9.的平方根是.10.如图,在△ABC中,∠BAC=90°,∠B=60°,分别以点A和点C为圆心,大于AC 长为半径画弧,两弧相交于点M、N,作直线MN分别交BC、AC与点D、E.若AE=4cm,△ABD的周长为cm.11.如图,在平面直角坐标系中,点A从点M(0,5)出发向原点O匀速运动,与此同时点B从点N(3,0)出发,在x轴正半轴上以相同的速度向右运动,当点A到达终点O 时,两点同时停止运动.连接AB,以线段AB为一边在第一象限内作正方形ABCD,则正方形ABCD面积的最小值为.12.若x+y=4,x2+y2=6,则xy=.13.科学防疫从勤洗手开始,一双没洗干净的手上带有各种细菌病毒大约850000000个,这个数据用科学记数法表示为.14.若关于x的分式方程,有负数解,则实数a的取值范围是.15.如图,直线y=kx﹣b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx﹣b 的解集为.16.在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为.17.如图,在正方形网格中,小正方形的边长均为1,点A、B、C都是格点,则cos∠BAC =.18.平面直角坐标系xOy中,已知点A(8,0)及第一象限的动点P(x,y),且x+y=10.设△OPA的面积为S,周长为l.给出下列结论:①0≤y≤10;②≤PA<2;③S=﹣4x+40;④l的最小值为8+2其中所有正确结论的代号是.三.解答题19.先化简,再求值:÷(1﹣),其中a是方程x2+x﹣2=0的解.20.(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:.21.在一个不透明的箱子内装入标记数字分别为﹣1,2,3,﹣6的四个小球,小球除标记数字不同外其他都相同.随机取出一个小球,记下标记的数字为m,不放回;再从箱内剩下的球中再随机取出一个小球,记下标记的数字为n.请用画树状图或列表的方法,求“点(m,n)在第二象限”的概率.22.随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈,某校举行了“母亲节暖心特别行动”,从中随机调查了部分同学的暖心行动,并将其分为A,B,C,D四种类型(分别对应送服务、送鲜花、送红包、送话语).现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)求出扇形统计图中扇形B的圆心角度数?(3)若该校共有2400名同学,请估计该校进行送鲜花行动的同学约有多少名?23.在▱ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF;(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.24.某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m 与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为,x的取值范围为;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.25.如图,在平面直角坐标系中,一次函数y=mx+5(m≠0)的图象与反比例函数y=(k ≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A作y轴的垂线,垂足为M.(1)求一次函数和反比例函数的表达式.(2)求△OAM的面积S.(3)在y轴上求一点P,使PA+PB的值最小并求出此时点P的坐标.26.如图,在矩形ABCD中,=,F、G分别为AB、DC边上的动点,连接GF,沿GF将四边形AFGD翻折至四边形EFGP,点E落在BC上,EP交CD于点H,连接AE交GF于点O.(1)GF与AE之间的位置关系是:,的值是:,请证明你的结论;(2)连接CP,若tan∠CGP=,GF=2,求CP的长.27.定义:有一个内角等于与其相邻的两个内角之差的四边形称为幸福四边形.(1)已知∠A=120°,∠B=50°,∠C=α,请直接写出一个α的值,使四边形ABCD为幸福四边形;(2)如图1,△ABC中,D、E分别是边AB,AC上的点,AE=DE.求证:四边形DBCE 为幸福四边形;(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于另一点F,与边BC交于点G,且BF=FC.①求证:E G是⊙O的直径;②连接FG,若AE=1,BG=7,∠BGF﹣∠B=45°,求EG的长和幸福四边形DBCE的周长.28.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且直线BC的解析式为y=x﹣2,作垂直于x轴的直线x=m,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).(1)求抛物线的解析式;(2)若△CEF是以CE为腰的等腰三角形,求m的值;(3)点P为y轴左侧抛物线上的一点,过点P作PM⊥BC交直线BC于点M,连接PB,若以P、M、B为顶点的三角形与△ABC相似,求P点的坐标.参考答案与试题解析一.选择题1.解:由数轴可得:a<﹣2<b<﹣1<0<c<1,∴a+b+c<0,故①错误;∵a,b,c中两负一正,∴abc>0,故②正确;∵a<0,b<0,c>0,∴a+b﹣c<0,故③正确;∵a<﹣2<b<﹣1,∴0<<1,故④正确.综上,可知,正确的有3个.故选:D.2.解:A、原式不能化简,不符合题意;B、原式=•=x,不符合题意;C、原式=2﹣,符合题意;D、原式=,不符合题意.故选:C.3.解:A、应为4a﹣2a=2a,故选项错误;B、应为2(a+2b)=2a+4b,故选项错误;C、应为7ab﹣(﹣3ab)=10ab,故选项错误;D、﹣a2﹣a2=﹣2a2,故选项正确.故选:D.4.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°, 故选:B .5.解:A 、若a +3>b +3,则a >b ,原变形正确,故此选项不符合题意; B 、若>,则a >b ,原变形正确,故此选项不符合题意;C 、若a >b ,则ac >bc ,这里必须满足c ≠0,原变形错误,故此选项符合题意;D 、若a >b ,则a +3>b +2,原变形正确,故此选项不符合题意; 故选:C .6.解:∵∠ECD 是△BCE 的一个外角, ∴∠ECD =∠B +∠E =35°+25°=60°, ∵CE 平分∠ACD ,∴∠ACD =2∠ECD =120°, 故选:C .7.解:∵平行四边形ABCD , ∴CD =AB ,CD ∥AB ,AD ∥BC ,∴△GEC ∽△GAB ,△GEC ∽AED ,△DEF ∽△ABF , ∵DE :EC =3:1,∴EC :CD =1:4,DE :AB =3:4, ∴==,==,==;设S △ECG =a ,则S △ABG =16a ,S △ADE =9a ,∴四边形ABCE 的面积为16a ﹣a =15a ,平行四边形ABCD 的面积为9a +15a =24a , ∴S △ABD =12a ,因此S △ABF ﹣S △DEF =3a , 设S △DEF =x ,则S △ABF =3a +x , 于是=, 解得,x =a ,∴△GEC 的面积与△DEF 的面积之比为a : a =,故选:D .8.解:设AB=a,∠C=30°,则AC=2a,BC=a,设P、Q同时到达的时间为T,则点P的速度为,点Q的速度为,故点P、Q的速度比为3:,故设点P、Q的速度分别为:3v、v,由图2知,当x=2时,y=6,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×v=2v,y=AB×BQ=6v×2v=6,解得:v=1,故点P、Q的速度分别为:3,,AB=6v=6=a,则AC=12,BC=6,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=x=4,CQ=BC﹣BQ=6﹣4=2,故点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×=3,同理CH=3,则HQ=CH﹣CQ=3﹣2=,PQ===2,故选:C.二.填空题9.解:=10,10的平方根是.故答案为:±.10.解:∵∠BAC=90°,∠B=60°,∴∠C=90°﹣60°=30°,由作图可知,DE垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠BAD=90°﹣30°=60°,∴∠B=∠BAD=∠ADB=60°,∴△ABD是等边三角形,∵AD==(cm),∴△ABD的周长=8(cm).故答案为8.11.解:由题意可得,NB=MA,则AO+OB=8,设AO=x,则OB=8﹣x,=AB2=AO2+OB2=x2+(8﹣x)2=2(x﹣4)2+32,∵S正方形ABCD∴当x=4时,正方形ABCD的面积取得最小值32,故答案为:32.12.解:将x+y=4两边平方得:(x+y)2=x2+y2+2xy=16,把x2+y2=6代入得:6+2xy=16,解得:xy=5,故答案为:513.解:850 000 000=8.5×108.故答案是:8.5×108.14.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.15.解:不等式4x+2<kx﹣b表示的是直线y=4x+2的图象位于直线y=kx﹣b的图象的下方,则由点A(﹣1,﹣2)的坐标得:x<﹣1.故答案为:x<﹣1.16.解:作△AB C的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=AB==3,∴OA==3,∴CM=OC+OM=3+3,∴S=AB•CM=×6×(3+3)=9+9.△ABC故答案为:9+9.17.解:AB=BC==,AC==,则AB2+BC2=5+5=10=AC2,则△ABC为等腰直角三角形,∠BAC=45°,则cos∠BAC=.故答案为:.18.解:如图所示,∵A(8,0),P(x,y),△OPA的面积为S,∴S=OA•y=×8y=4y.∵x+y=10,∴y=10﹣x,∴S=4(10﹣x)=40﹣4x;∵0≠y和y≠10,若y=0,则O、P、A三点在一条直线上;若y=10,则x=0,P点落在y轴上,与题干不合∴①0≤y≤10,错误;②≤PA<2,正确;③S=﹣4x+40,正确;④l的最小值为8+2,正确;故答案为:②③④.三.解答题19.解:原式=•=,∵a是方程x2+x﹣2=0的解,∴a=1(没有意义舍去)或a=﹣2,则原式=﹣.20.解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x1=3,x2=﹣1;(2)解不等式2x>1﹣x,得:x>,解不等式2(2x+1)<x+4,得:x<,则不等式组的解集为<x<.21.解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中点(m,n)在第二象限的有4种,所以点(m,n)在第二象限的概率为=.22.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.23.(1)证明:∵四边形ABCD是平行四边形,∴BD=2BO,∵BD=2AB,∴AB=BO,∵E为OA中点,∴BE⊥AC,∴∠BEC=90°,∵F为BC中点,∴EF=BF=CF,即EF=BF;(2)四边形EBFG是菱形,证明:连接CG,∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,BD=2BO=2OD,∴BD=2AB=2CD,∴OC=CD,∵BG:GD=3:1,OB=OD,∴G为OD中点,∴CG⊥OD(三线合一定理),即∠CGB=90°,∵F为BC中点,∴GF=BC=AD,∵E为OA中点,G为OD中点,∴EG∥AD,EG=AD,∴EG∥BC,EG=BC,∵F为BC中点,∴BF=BC,EG=GF,即EG∥BF,EG=BF,∴四边形EBFG是平行四边形,∵EG=GF,∴平行四边形EBFG是菱形(有一组邻边相等的平行四边形是菱形).24.解:(1)根据题意,得y与x的解析式为:y=22+2(x﹣1)=2x+20(1≤x≤12),故答案为:y=2x+20,1≤x≤12;(2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200﹣800)(2x+20)=800x+8000,∴w随x的增大而增大,=800×6+8000=12800.∴当x=6时,w最大值当6<x≤12时,设m=kx+b,将(6,800)和(10,1000)代入得:,解得:,∴m与x的关系式为:m=50x+500,∴w=[1200﹣(50x+500)]×(2x+20)=﹣100x2+400x+14000=﹣100(x﹣2)2+14400.∵此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,∴当x=7时,w有最大值,为11900元,∵12800>11900,=12800元,∴当x=6时,w最大,且w最大值答:该厂第6天获得的利润最大,最大利润是12800元.(3)由(2)可得,1≤x≤6时,800x+8000<10800,解得:x<3.5则第1﹣3天当天利润低于10800元,当6<x≤12时,﹣100(x﹣2)2+14400<10800,解得x<﹣4(舍去),或x>8,∴第9﹣12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天.25.解:(1)将B(4,1)代入y=得:.∴k=4.∴y=.将B(4,1)代入y=mx+5得:1=4m+5,∴y=﹣x+5.(2)在y=中,令x=1,解得y=4.∴A(1,4).∴S=×1×4=2.(3)作点A关于y轴的对称点N,则N(﹣1,4).连接BN交y轴于点P,点P即为所求.设直线BN的关系式为y=kx+b,由,得,∴y=﹣x+.∴点P的坐标为(0,).26.解:(1)GF⊥AE,.理由如下:由折叠性质可知,∠AOF=∠EOF,∵∠AOF+∠EOF=180°,∴∠AOF=∠EOF=90°,∴AE⊥GF;过G作GM⊥AB于M,如图,得矩形ADGM,则AD=GM,∠MFG+∠MGF=90°,∵∠MFG+∠FAO=90°,∴∠BAE=∠MGF,∵∠B=∠FMG=90°,∴△ABE∽△GMF,∴=2,∴,故答案为:AE⊥GF;;(2)延长BC与GP,两延长线交于点L,过P作PK⊥CL于点K,如图,由折叠知,∠FEP=∠FAD=∠D=∠EPG=90°,∴∠PEL+∠L=90°,∵∠BCD=∠DCL=90°,∴∠CGP+∠L=90°,∴∠PEL=∠CGL,∵∠BEF+∠BFE=∠BEF+∠PEL=90°,∴∠BFE=∠PEL=∠CGL,∵tan∠CGP=,∴tan∠bBFE=,不妨设BE=3x,则BF=4x,∴AF=EF=,∴AB=9x,∵AE=2FG,GF=2,∴AG=4,在Rt△ABE中,由勾股定理得81x2+9x2=160,解得x=,∴AB=9×=12,BE=4,∴EP=AD==6,CE=BC﹣BE=6﹣4=2,∵tan∠PEK=,不妨设PK=3y,EK=4y,在Rt△PEK中,由勾股定理得16y2+9y2=62,解得,y=,∴PK=,EK=,∴CK=EK﹣EC=,∴CP=.27.(1)解:∵∠A=120°,∠B=50°,∠C=α,∴∠D=360°﹣120°﹣50°﹣α=190°﹣α,若∠A=∠B﹣∠D,则120°=50°﹣(190°﹣α),解得:α=260°(舍),若∠A=∠D﹣∠B,则120°=(190°﹣α)﹣50°,解得:a=20°,若∠B=∠A﹣∠C,则50°=120°﹣α,解得:α=70°,若∠B=∠C﹣∠A,则50°=α﹣120°,解得:α=170°,若∠C=∠B﹣∠D,则α=50°﹣(190°﹣α),无解,若∠C=∠D﹣∠B,则α=(190°﹣α)﹣50°,解得:α=70°,若∠D=∠A﹣∠C,则190°﹣α=120°﹣α,无解,若∠D=∠C﹣∠A,则190°﹣α=α﹣120°,解得:α=155°,综上,α的值是20°或70°或170°或155°(写一个即可),故答案为:20°或70°或170°或155°(写一个即可);(2)证明:如图1,设∠A=x,∠C=y,则∠B=180°﹣x﹣y,∵AE=DE,∴∠ADE=∠A=x,∴∠BDE=180°﹣x,在四边形DBCE中,∠B=180°﹣x﹣y=∠BDE﹣∠C,∴四边形DBCE为幸福四边形;(3)①证明:如图2,∵D、F、G、E四点都在⊙O上,∴∠ADE=∠FGE,∵∠ADE=∠A,∴∠FGE=∠A,∵∠FGE=∠ACF,∴∠A=∠ACF,∵BF=CF,∴∠B=∠BCF,∵∠A+∠B+∠BCA=180°,∴∠ACF+∠BCF=90°,即∠ACB=90°,∴EG是⊙O的直径;②如图3,过E作EH⊥AB于H,连接DG,∵BF=CF,∴∠B=∠BCF=∠BDG,∴BG=DG=7,∵EG是⊙O的直径,∴∠GDE=90°,∵DE=AE=1,∴EG==5,∵∠BGF﹣∠B=45°,∠BGF﹣∠BCF=∠CFG,∴∠CFG=∠CEG=45°,∴△ECG是等腰直角三角形,∴CE=CG=5,∴BC=7+5=12,AC=5+1=6,∴AB===6,∵∠AHE=∠ACB=90°,∠A=∠A,∴△AHE∽△ACB,∴,即,∴AH=,∵AE=DE,EH⊥AD,∴AD=2AH=,∴幸福四边形DBCE的周长=BD+ED+CE+BC=6﹣+1+5+12=18+.28.解:(1)∵直线BC的解析式为y=x﹣2,∴C(0,﹣2),B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,解得,,∴y=x﹣2;(2)∵∴,=,,若以C为顶点,则CE2=CF2,∴,解得:m1=2,m2=4(舍去),若以E为顶点,则EC2=EF2,∴=,解得:m3=4﹣,m4=4+(舍去),综合以上得m=2或m=4﹣.(3)①∵AC=,BC=2,∴AC2+BC2=25=AB2,∴当点P与点A重合时,点M与点C重合,此时P1(﹣1,0),②如图,当△BPM∽△ABC时,过点M作HR∥x轴,作PH⊥HR于点H,BR⊥HR于点R,∵∠PMB=∠PHM=∠BRM=90°,∴∠BMR=∠MPH,∴△PHM∽△MRB,∴又∵AB∥HR,∴∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,令BR=a,MR=2a,又∵∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,∴,∴PH=4a,HM=2a,∴PQ=PH﹣QH=3a,∴HR=4a,∴P(4﹣4a,3a),又∵点P在抛物线上,将P(4﹣4a,3a)代入y=x﹣2得:(4﹣4a)﹣2=3a,∴a(8a﹣13)=0,a1=0(舍),a2=.∴.∴符合条件的点P为P1(﹣1,0)或.。
精品解析:2023年陕西省西安市交通大学附属中学九年级第一次模考数学试题(解析版)
【详解】解:令 ,变形得: ,
∵图象有交点,
∴ 有解,
∴ ,
解得: .
故答案为: .
【点睛】此题运用了方程组的知识和一元二次方程根的判别式的有关内容,注意函数图像的交点问题和对应一元二次方程的根的关系.
13.如图,在矩形 中, , ,点 为线段 的中点,动点 从点 出发,沿 的方向在 和 上运动,将矩形沿 折叠,点 的对应点为 ,当点 恰好落在矩形的对角线上时,点 运动的距离为________.
【分析】根据对角线互相垂直的矩形是正方形即可求解.
【详解】解:添加条件 ,能使矩形 成为正方形,A、C、D选项都是矩形的性质,都不符合题意,
故选:B.
【点睛】本题考查了正方形的判定,矩形的性质,掌握以上知识是解题的关键.
5.四边形不具稳定性,四条边长都确定的四边形.当内角的大小发生变化时.其形状也随之改变.如图,改变正方形 的内角,使正方形 变为菱形 ,如果 ,那么菱形 与正方形 的面积之比是( )
初三数学(一)
一、选择题(共8小题,每小题3分,共24分)
1. 的倒数是()
A.3B. C. D.1
【答案】B
【解析】
【分析】根据倒数的概念即可得到答案.
【详解】解: 的倒数是﹣3,
故选:B.
【点睛】本题考查的是一个数的倒数,解题的关键是掌握倒数的概念:两个数乘积为1,则这两个数互为倒数.
2.如图,将三角尺的直角顶点放在直尺的一边上, , ,则 的度数等于()
A. B. C. D.1
【答案】A
【解析】
【分析】过D'作D'M⊥AB于M,求出正方形ABCD的面积=AB2,再由含30°角的直角三角形的性质得AM= AD',D'M= AM= AD',然后求出菱形ABCD的面积=AB×D'M= AB2,即可求解.
【压轴卷】中考数学试题(带答案)(1)
【压轴卷】中考数学试题(带答案)(1)一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0) B .(1,0) C .(32,0) D .(52,0) 2.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .43.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++=4.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁5.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .546.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( ) A .1069605076020500x x -=+B .5076010696020500x x -=+ C .1069605076050020x x-=+D .5076010696050020x x -=+ 7.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( ) A .96096054848x -=+ B .96096054848x +=+ C .960960548x-= D .96096054848x-=+ 8.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x ⨯+-=D .6060(125%)30x x⨯+-= 9.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .10.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .311.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 16.3x +x 的取值范围是_____.17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____. 18.分解因式:2x 2﹣18=_____.19.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).23.已知关于x的方程220++-=.x ax a(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.24.修建隧道可以方便出行.如图:A ,B 两地被大山阻隔,由A 地到B 地需要爬坡到山顶C 地,再下坡到B 地.若打通穿山隧道,建成直达A ,B 两地的公路,可以缩短从A 地到B 地的路程.已知:从A 到C 坡面的坡度1:3i =,从B 到C 坡面的坡角45CBA ∠=︒,42BC =公里.(1)求隧道打通后从A 到B 的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A 地到B 地的路程约缩短多少公里?(结果精确到0.012 1.414≈3 1.732) 25.解方程:3x x +﹣1x=1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可. 【详解】 ∵把A (12,y 1),B (2,y 2)代入反比例函数y=1x 得:y 1=2,y 2=12, ∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB , ∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB , 即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b , 把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D . 【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.B解析:B 【解析】 【分析】6的大小,即可得到结果. 【详解】46 6.25<<Q ,26 2.5∴<<,6的点距离最近的整数点所表示的数是2, 故选:B . 【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.3.D解析:D 【解析】 【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可. 【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=,又,a b 满足等式:229a b +=, ∴()222349m n ++=, 故选D . 【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.4.D解析:D 【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x-÷--=2221·1x x x x x --- =()2212·1x x x x x---- =()()221·1x x x x x ---- =()2x x --=2x x-, ∴出现错误是在乙和丁,故选D .【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.5.B解析:B 【解析】 【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置, ∴AE=AB ,∠E=∠B=90°, 又∵四边形ABCD 为矩形, ∴AB=CD , ∴AE=DC , 而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4, ∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.6.A解析:A 【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A .考点:由实际问题抽象出分式方程.7.D解析:D 【解析】解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D .点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.8.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.9.D解析:D 【解析】 【分析】根据从上边看得到的图形是俯视图,可得答案. 【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形. 故选:D . 【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.10.B解析:B 【解析】 【分析】 【详解】过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB , ∴四边形PQCD 与四边形APQB 都为平行四边形, ∴△PDC ≌△CQP ,△ABP ≌△QPB , ∴S △PDC =S △CQP ,S △ABP =S △QPB , ∵EF 为△PCB 的中位线, ∴EF ∥BC ,EF=12BC , ∴△PEF ∽△PBC ,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,S S =12.∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12故选B.11.D解析:D【解析】【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.12.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案. 详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =, ∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106. 【解析】 【分析】 【详解】将9600000用科学记数法表示为9.6×106. 故答案为9.6×106. 15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<. 【解析】 【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x ≥﹣3【解析】 【分析】直接利用二次根式的定义求出x 的取值范围. 【详解】.在实数范围内有意义, 则x +3≥0, 解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3. 故答案为:x ≥﹣3. 【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.17.【解析】【分析】设复兴号的速度为x 千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x 千米/时则原来列车的速度为(x ﹣40解析:13201320304060x x -=-. 【解析】 【分析】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可. 【详解】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x ﹣40)千米/时, 根据题意得:13201320304060x x -=-. 故答案为:13201320304060x x -=-. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.18.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.三、解答题21.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y1、y2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y1=3,y2=1,∵y1﹣y2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y1=mx+n,y2=a(x﹣6)2+1.将(3,5)、(6,3)代入y1=mx+n,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1, 4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2.设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克, 根据题意得:2t+73(t+2)=22, 解得:t=4, ∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.22.(1)280名;(2)补图见解析;108°;(3)0.1. 【解析】 【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率. 【详解】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.23.(1)12,32;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>, ∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24.(1)隧道打通后从A 到B 的总路程是(434)+公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里. 【解析】 【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离. 【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =, ∴4CD BD ==. 在Rt ACD ∆中, ∵1:3CDi AD==, ∴343AD CD ==, ∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中, ∵3CDi AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴8AC CB +=+∵4AB =,∴84 2.73AC CB AB +-=+≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里. 【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义. 25.分式方程的解为x=﹣34. 【解析】【分析】方程两边都乘以x (x+3)得出方程x ﹣1+2x=2,求出方程的解,再代入x (x+3)进行检验即可.【详解】两边都乘以x (x+3),得:x 2﹣(x+3)=x (x+3), 解得:x=﹣34, 检验:当x=﹣34时,x (x+3)=﹣2716≠0, 所以分式方程的解为x=﹣34. 【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键.。
2024年北京中考数学试题及答案(1)
2024年北京中考数学试题及答案考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。
满分100分。
考试时间120分钟。
2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D.2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .165.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .146.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯7.下面是“作一个角使其等于AOB ”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。
山东省济南市南山区2022-2023学年九年级上学期期末考试数学试题(1)
山东省济南市南山区2022-2023学年九年级上学期期末考试数学试题满分为150分.考试时间为120分钟.第I 卷(选择题 共40分)注意事项:第1卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若85b a .则ba 等于() A.58 B.35 C.53 D.85 2.已知反比例函数y=x k 的图像经过点(3.2),那么下列四个点中,也在这个函数图像上的是( ).A.(-3-2)B.(3-2)C. (1.-6)D.(-6.1)3.把抛物线y=-2x ²先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A. y=-2(x+1)2+2B. y=-2(x+1)2-2C. y=-2(x -1)²+2D. y=-2(x -1)2-24.如图,已知△ADE~△ABC ,且AD:DB=2:1,则S △ADE :S △ABC =()A. 2:1B. 4:1C. 2:3D. 4:95.在同一平面直角坐标系中,函数y=kx+k 与y=xk (k ≠0)的图象可能是( )6. 如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠BOD=130°,则∠ACD 的度数为()A. 50°B. 30°C. 25°D. 20°7.若点A (-6.x 1),B (-1,x 2),C (3,x 3)都在反比例函数y=xm (m>0)的图象上,则y 1,y 2,y 3的大小关系为( )A. y 1>y 2>y 3B. y 2>y 3>y 1C. y 3>y 2>y 1D. y 3>y 1>y 28.如图,△ABC 的顶点是正方形网格的格点,则sin 4的值为( )A. 21 B. 55 C. 1010 D. 552 9. AB 为⊙O 的直径,延长AB 到点P ,过点P 作⊙O 的切线,切点为C ,连接AC ,∠P=40°,D 为圆上一点,则∠D 的度数为( )A. 20°B. 25°C. 30°D. 40°10.在平面直角坐标系中,若点P 的横坐标和纵坐标相等,则称点P 为雅系点,已知二次函数y=ax 2-4x+c (a ≠0)的图象上有且只有一个雅系点(-25,-25),且当m ≤x ≤0时,函数 y=ax 2-4x+c+41(a ≠0)的最小值为-6,最大值为-2,则m 的取值范围是() A. -1≤m ≤0 B.-27≤m ≤-2 C. -4≤m ≤-2 D.-27≤m ≤-49 第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11.如图,在△ABC 中,BC=4cm ,点D 是AB 的中点,过点D 作DE//BC 交AC 于点E ,则DE=_________cm.12.如图,M 为反比例函数y=xk 的图象上的一点,MA 垂直y 轴,垂足为A ,△MA 的面积为2,则k 的值为13.已知在R △ABC 中,∠C=90°,AB=5,BC=3,那么cosA 的值是14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE=40cm ,EF=20cm ,测得边DF 离地面的高度AC=15m ,CD=8m ,则树高AB=___m.15.如图①,一个扇形纸片的圆心角为90°,半径为4.如图②,将这张扇形纸片折叠,使点4与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为___16.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接 MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若AD =8,AB=5,则线段PE 的长等于__三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分6分)计算2cos 45°-23tan 30°cos 30°+sin 260°18. (本小题满分6分)在平面直角坐标系xOy 中,二次函数y=x ²-2mx+5m 的图象经过点(1,-2).(1)求二次函数的表达式;(2)求二次函数图象的对称轴.19.(本小题满分6分)如图,已知∠ACD=∠B ,BD=5,AD=4,求AC 的长.20.(本小题满分8分)如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,∠ADB=∠CDB.(1)试判断△ABC 的形状,并给出证明;(2)若AB=22,AD=2,求CD 的长度.21.(本小题满分8分)小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A ,B 两个观测点,然后选定对岸河边的一棵树记为点M.测得AB=50m ,∠MAB=22°,∠MBA =67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m ).参考数据:sin22°≈83,sin67°≈1312,cos67°≈135,cos22°≈1615,tan67°≈51222. (本小题满分8分)如图,有长为18m 的篱笆,一面利用墙(墙的最大可用长度为10m )围成中间隔有一道篱笆的长方形养鸡场ABCD ,设养鸡场的宽AB 为xm ,长为BC ,面积为ym ².(1)求y 与x 的函数关系,并写出x 的取值范围;(2)当长方形的长、宽各为多少时,养鸡场的面积最大,最大面积是多少?23. (本小题满分10分)如图,⊙O 是△ABC 的外接圆,AB 是直径,过点C 作⊙O 的切线FC ,过点B 作BD ⊥FC 于点D ,DB 的延长线交⊙O 于点E.(1)求证:∠ABC=∠DBC ;(2)若⊙O 的半径为5,BC=6,求CE 的长.24. (本小题满分10分)如图,函数y=x k (x>0)的图象过点A (n ,2)和B (58,2n -3)两点。
中考数学真题试题含解析试题_1_1 2
2021年中考数学试卷一、选择题〔本大题有10小题,每一小题3分,一共30分〕下面每一小题给出的四个选项里面,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多项选择、错选均不给分1.计算〔﹣20〕+16的结果是〔〕A.﹣4 B.4 C.﹣2021 D.20212.为了迎接G20峰会,某校开展了设计“YJG20〞图标的活动,以下图形中及时轴对称图形又是中心对称图形的是〔〕A. B. C. D.3.由六个一样的立方体搭成的几何体如下图,那么它的主视图是〔〕A. B.C. D.4.受“乡村旅游第一〞的品牌效应和2021年国际乡村旅游大会的宣传效应的影响,2021年在春节黄金周期间一共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是〔〕A.28×105B.2.8×106C.2.8×105D.0.28×1055.数据1,2,3,4,4,5的众数是〔〕A.5 B.3 C.3.5 D.46.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.假设AD=8,那么点P到BC的间隔是〔〕A.8 B.6 C.4 D.27.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,假设任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,那么其结果恰为2的概率是〔〕A. B. C. D.8.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB 的延长线于点D,那么∠D的度数是〔〕A.25° B.40° C.50° D.65°9.定义:假设点P〔a,b〕在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数〞.例如:点〔2,〕在函数y=的图象上,那么函数y=2x2+称为函数y=的一个“派生函数〞.现给出以下两个命题:〔1〕存在函数y=的一个“派生函数〞,其图象的对称轴在y轴的右侧〔2〕函数y=的所有“派生函数〞,的图象都进过同一点,以下判断正确的选项是〔〕A.命题〔1〕与命题〔2〕都是真命题B.命题〔1〕与命题〔2〕都是假命题C.命题〔1〕是假命题,命题〔2〕是真命题D.命题〔1〕是真命题,命题〔2〕是假命题10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.那么BE的长是〔〕A.4 B. C.3D.2二、填空题〔此题有6小题,每一小题4分,一共24分〕11.数5的相反数是.12.方程=1的根是x= .13.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,那么CD的长是.14.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,那么∠1与∠2的度数和是度.15.四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<〞连接起来是.16.点P在一次函数y=kx+b〔k,b为常数,且k<0,b>0〕的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.〔1〕k的值是;〔2〕如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点〔点C在第二象限内〕,过点C作CE⊥x轴于点E,记S1为四边形CEOB 的面积,S2为△OAB的面积,假设=,那么b的值是.三、解答题〔此题有8小题,一共66分〕17.计算:tan45°﹣sin30°+〔2﹣〕0.18.当a=3,b=﹣1时,求以下代数式的值.〔1〕〔a+b〕〔a﹣b〕;〔2〕a2+2ab+b2.19.菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.〔1〕求鱼塘的长y〔米〕关于宽x〔米〕的函数表达式;〔2〕由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?20.如图,四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.〔1〕求证:BD=CD;〔2〕假设圆O的半径为3,求的长.21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我某校团委组织了一次全校2000名学生参加的“中国诗词大会〞海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地理解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩〔成绩x取整数,总分100分〕作为样本进展整理,得到以下统计图表:抽取的200名学生海选成绩分组表海选成绩组别xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<9090≤x<E组100请根据所给信息,解答以下问题:〔1〕请把图1中的条形统计图补充完好;〔温馨提示:请画在答题卷相对应的图上〕〔2〕在图2的扇形统计图中,记表示B组人数所占的百分比为a%,那么a的值是,表示C组扇形的圆心角θ的度数为度;〔3〕规定海选成绩在90分以上〔包括90分〕记为“优等〞,请估计该校参加这次海选比赛的2000名学生中成绩“优等〞的有多少人?22.随着某养老机构〔养老机构指社会福利院、养老院、社区养老中心等〕建立稳步推进,拥有的养老床位不断增加.〔1〕该的养老床位数从2021年底的2万个增长到2021年底的2.88万个,求该这两年〔从2021年度到2021年底〕拥有的养老床位数的平均年增长率;〔2〕假设该某社区今年准备新建一养老中心,其中规划建造三类养老专用房间一共100间,这三类养老专用房间分别为单人间〔1个养老床位〕,双人间〔2个养老床位〕,三人间〔3个养老床位〕,因实际需要,单人间房间数在10至30之间〔包括10和30〕,且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①假设该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?23.如图,二次函数y=﹣x2+bx+c〔b,c为常数〕的图象经过点A〔3,1〕,点C〔0,4〕,顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.〔1〕求该二次函数的解析式及点M的坐标;〔2〕假设将该二次函数图象向下平移m〔m>0〕个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部〔不包括△ABC的边界〕,求m的取值范围;〔3〕点P是直线AC上的动点,假设点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标〔直接写出结果,不必写解答过程〕.24.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD〔∠BAD=120°〕进展探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F 〔不包括线段的端点〕.〔1〕初步尝试如图1,假设AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;〔2〕类比发现如图2,假设AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;〔3〕深化探究如图3,假设AD=3AB,探究得:的值是常数t,那么t= .2021年中考数学试卷参考答案与试题解析一、选择题〔本大题有10小题,每一小题3分,一共30分〕下面每一小题给出的四个选项里面,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多项选择、错选均不给分1.计算〔﹣20〕+16的结果是〔〕A.﹣4 B.4 C.﹣2021 D.2021【考点】有理数的加法.【分析】根据有理数的加法运算法那么进展计算即可得解.【解答】解:〔﹣20〕+16,=﹣〔20﹣16〕,=﹣4.应选A.2.为了迎接G20峰会,某校开展了设计“YJG20〞图标的活动,以下图形中及时轴对称图形又是中心对称图形的是〔〕A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两局部可以重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两局部可以重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两局部可以重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误;D、是轴对称图形,又是中心对称图形.故正确.应选:D.3.由六个一样的立方体搭成的几何体如下图,那么它的主视图是〔〕A. B.C. D.【考点】简单组合体的三视图.【分析】根据主视方向确定看到的平面图形即可.【解答】解:结合几何体发现:从主视方向看到上面有一个正方形,下面有3个正方形,应选A.4.受“乡村旅游第一〞的品牌效应和2021年国际乡村旅游大会的宣传效应的影响,2021年在春节黄金周期间一共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是〔〕A.28×105B.2.8×106C.2.8×105D.0.28×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数一样.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:2800000=2.8×106,应选:B.5.数据1,2,3,4,4,5的众数是〔〕A.5 B.3 C.3.5 D.4【考点】众数.【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据1,2,3,4,4,5中,4出现的次数最多,∴这组数据的众数是:4.应选:D.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.假设AD=8,那么点P到BC的间隔是〔〕A.8 B.6 C.4 D.2【考点】角平分线的性质.【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的间隔相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.应选C.7.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,假设任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,那么其结果恰为2的概率是〔〕A. B. C. D.【考点】列表法与树状图法;绝对值;概率的意义.【分析】先求出绝对值方程|x﹣4|=2的解,即可解决问题.【解答】解:∵|x﹣4|=2,∴x=2或者6.∴其结果恰为2的概率==.应选C.8.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB 的延长线于点D,那么∠D的度数是〔〕A.25° B.40° C.50° D.65°【考点】切线的性质;圆周角定理.【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.【解答】解:连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°﹣∠BOC=40°.应选B.9.定义:假设点P〔a,b〕在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数〞.例如:点〔2,〕在函数y=的图象上,那么函数y=2x2+称为函数y=的一个“派生函数〞.现给出以下两个命题:〔1〕存在函数y=的一个“派生函数〞,其图象的对称轴在y轴的右侧〔2〕函数y=的所有“派生函数〞,的图象都进过同一点,以下判断正确的选项是〔〕A.命题〔1〕与命题〔2〕都是真命题B.命题〔1〕与命题〔2〕都是假命题C.命题〔1〕是假命题,命题〔2〕是真命题D.命题〔1〕是真命题,命题〔2〕是假命题【考点】命题与定理.【分析】〔1〕根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.〔2〕根据“派生函数〞y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.【解答】解:〔1〕∵P〔a,b〕在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数〞,其图象的对称轴在y轴的右侧是假命题.〔2〕∵函数y=的所有“派生函数〞为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数〞为y=ax2+bx经过原点,∴函数y=的所有“派生函数〞,的图象都进过同一点,是真命题.应选C.10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.那么BE的长是〔〕A.4 B. C.3D.2【考点】翻折变换〔折叠问题〕;四点一共圆;等腰三角形的性质;相似三角形的断定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点一共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.应选B.二、填空题〔此题有6小题,每一小题4分,一共24分〕11.数5的相反数是﹣5 .【考点】相反数.【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:数5的相反数是:﹣5.故答案为:﹣5.12.方程=1的根是x= ﹣2 .【考点】分式方程的解.【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x﹣3进展检验即可.【解答】解:两边都乘以x﹣3,得:2x﹣1=x﹣3,解得:x=﹣2,检验:当x=﹣2时,x﹣3=﹣5≠0,故方程的解为x=﹣2,故答案为:﹣2.13.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,那么CD的长是 5 .【考点】作图—根本作图;直角三角形斜边上的中线;勾股定理.【分析】首先说明AD=DB,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解答】解:由题意EF是线段AB的垂直平分线,∴AD=DB,Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,∴AB===10,∵AD=DB,∠ACB=90°,∴CD=AB=5.故答案为5.14.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,那么∠1与∠2的度数和是90 度.【考点】平行线的性质.【分析】如图2,AB∥CD,∠AEC=90°,作EF∥AB,根据平行线的传递性得到EF∥CD,那么根据平行线的性质得∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEC=90°【解答】解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,那么EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.15.四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<〞连接起来是y<a<b<x .【考点】有理数大小比拟.【分析】由x+y=a+b得出y=a+b﹣x,x=a+b﹣y,求出b<x,y<a,即可得出答案.【解答】解:∵x+y=a+b,∴y=a+b﹣x,x=a+b﹣y,把y=a=b﹣x代入y﹣x<a﹣b得:a+b﹣x﹣x<a﹣b,2b<2x,b<x①,把x=a+b﹣y代入y﹣x<a﹣b得:y﹣〔a+b﹣y〕<a﹣b,2y<2a,y<a②,∵b>a③,∴由①②③得:y<a<b<x,故答案为:y<a<b<x.16.点P在一次函数y=kx+b〔k,b为常数,且k<0,b>0〕的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.〔1〕k的值是﹣2 ;〔2〕如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点〔点C在第二象限内〕,过点C作CE⊥x轴于点E,记S1为四边形CEOB 的面积,S2为△OAB的面积,假设=,那么b的值是3.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义.【分析】〔1〕设出点P的坐标,根据平移的特性写出点Q的坐标,由点P、Q均在一次函数y=kx+b〔k,b为常数,且k<0,b>0〕的图象上,即可得出关于k、m、n、b的四元一次方程组,两式做差即可得出k值;〔2〕根据BO⊥x轴,CE⊥x轴可以找出△AOB∽△AEC,再根据给定图形的面积比即可得出,根据一次函数的解析式可以用含b的代数式表示出来线段AO、BO,由此即可得出线段CE、AE的长度,利用OE=AE﹣AO求出OE的长度,再借助于反比例函数系数k的几何意义即可得出关于b的一元二次方程,解方程即可得出结论.【解答】解:〔1〕设点P的坐标为〔m,n〕,那么点Q的坐标为〔m﹣1,n+2〕,依题意得:,解得:k=﹣2.故答案为:﹣2.〔2〕∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵=,∴==.令一次函数y=﹣2x+b中x=0,那么y=b,∴BO=b;令一次函数y=﹣2x+b中y=0,那么0=﹣2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且=,∴.∴AE=AO=b,CE=BO=b,OE=AE﹣AO=b.∵OE•CE=|﹣4|=4,即b2=4,解得:b=3,或者b=﹣3〔舍去〕.故答案为:3.三、解答题〔此题有8小题,一共66分〕17.计算:tan45°﹣sin30°+〔2﹣〕0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及零指数幂的性质分析得出答案.【解答】解:原式=1﹣+1=.18.当a=3,b=﹣1时,求以下代数式的值.〔1〕〔a+b〕〔a﹣b〕;〔2〕a2+2ab+b2.【考点】代数式求值.【分析】〔1〕把a与b的值代入计算即可求出值;〔2〕原式利用完全平方公式变形,将a与b的值代入计算即可求出值.【解答】解:〔1〕当a=3,b=﹣1时,原式=2×4=8;〔2〕当a=3,b=﹣1时,原式=〔a+b〕2=22=4.19.菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.〔1〕求鱼塘的长y〔米〕关于宽x〔米〕的函数表达式;〔2〕由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?【考点】反比例函数的应用.【分析】〔1〕根据矩形的面积=长×宽,列出y与x的函数表达式即可;〔2〕把x=20代入计算求出y的值,即可得到结果.【解答】解:〔1〕由长方形面积为2000平方米,得到xy=2000,即y=;〔2〕当x=20〔米〕时,y==100〔米〕,那么当鱼塘的宽是20米时,鱼塘的长为100米.20.如图,四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.〔1〕求证:BD=CD;〔2〕假设圆O的半径为3,求的长.【考点】圆内接四边形的性质;弧长的计算.【分析】〔1〕直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;〔2〕首先求出的度数,再利用弧长公式直接求出答案.【解答】〔1〕证明:∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠BAD=105°,∴∠DCB=180°﹣105°=75°,∵∠DBC=75°,∴∠DCB=∠DBC=75°,∴BD=CD;〔2〕解:∵∠DCB=∠DBC=75°,∴∠BDC=30°,由圆周角定理,得,的度数为:60°,故===π,答:的长为π.21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我某校团委组织了一次全校2000名学生参加的“中国诗词大会〞海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地理解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩〔成绩x取整数,总分100分〕作为样本进展整理,得到以下统计图表:抽取的200名学生海选成绩分组表海选成绩组别xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<9090≤x<E组100请根据所给信息,解答以下问题:〔1〕请把图1中的条形统计图补充完好;〔温馨提示:请画在答题卷相对应的图上〕〔2〕在图2的扇形统计图中,记表示B组人数所占的百分比为a%,那么a的值是15 ,表示C组扇形的圆心角θ的度数为72 度;〔3〕规定海选成绩在90分以上〔包括90分〕记为“优等〞,请估计该校参加这次海选比赛的2000名学生中成绩“优等〞的有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】〔1〕用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;〔2〕用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C 组扇形的圆心角θ的度数;〔3〕用该校参加这次海选比赛的总人数乘以成绩在90分以上〔包括90分〕所占的百分比,即可得出答案.【解答】解:〔1〕D的人数是:200﹣10﹣30﹣40﹣70=50〔人〕,补图如下:〔2〕B组人数所占的百分比是×100%=15%,那么a的值是15;C组扇形的圆心角θ的度数为360×=72°;故答案为:15,72;〔3〕根据题意得:2000×=700〔人〕,答:估计该校参加这次海选比赛的2000名学生中成绩“优等〞的有700人.22.随着某养老机构〔养老机构指社会福利院、养老院、社区养老中心等〕建立稳步推进,拥有的养老床位不断增加.〔1〕该的养老床位数从2021年底的2万个增长到2021年底的2.88万个,求该这两年〔从2021年度到2021年底〕拥有的养老床位数的平均年增长率;〔2〕假设该某社区今年准备新建一养老中心,其中规划建造三类养老专用房间一共100间,这三类养老专用房间分别为单人间〔1个养老床位〕,双人间〔2个养老床位〕,三人间〔3个养老床位〕,因实际需要,单人间房间数在10至30之间〔包括10和30〕,且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①假设该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?【考点】一次函数的应用;一元一次方程的应用;一元二次方程的应用.【分析】〔1〕设该这两年〔从2021年度到2021年底〕拥有的养老床位数的平均年增长率为x,根据“2021年的床位数=2021年的床位数×〔1+增长率〕的平方〞可列出关于x的一元二次方程,解方程即可得出结论;〔2〕①设规划建造单人间的房间数为t〔10≤t≤30〕,那么建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数〞即可得出关于t的一元一次方程,解方程即可得出结论;②设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数〞即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:〔1〕设该这两年〔从2021年度到2021年底〕拥有的养老床位数的平均年增长率为x,由题意可列出方程:2〔1+x〕2=2.88,解得:x1=0.2=20%,x2=﹣2.2〔不合题意,舍去〕.答:该这两年拥有的养老床位数的平均年增长率为20%.〔2〕①设规划建造单人间的房间数为t〔10≤t≤30〕,那么建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3=200,解得:t=25.答:t的值是25.②设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3=﹣4t+300〔10≤t≤30〕,∵k=﹣4<0,∴y随t的增大而减小.当t=10时,y的最大值为300﹣4×10=260〔个〕,当t=30时,y的最小值为300﹣4×30=180〔个〕.答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.23.如图,二次函数y=﹣x2+bx+c〔b,c为常数〕的图象经过点A〔3,1〕,点C〔0,4〕,顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.〔1〕求该二次函数的解析式及点M的坐标;〔2〕假设将该二次函数图象向下平移m〔m>0〕个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部〔不包括△ABC的边界〕,求m的取值范围;〔3〕点P是直线AC上的动点,假设点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标〔直接写出结果,不必写解答过程〕.【考点】二次函数综合题.【分析】〔1〕将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;〔2〕点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;〔3〕由题意分析可得∠MCP=90°,那么假设△PCM与△BCD相似,那么要进展分类讨论,分成△PCM∽△BDC或者△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.【解答】解:〔1〕把点A〔3,1〕,点C〔0,4〕代入二次函数y=﹣x2+bx+c得,解得∴二次函数解析式为y=﹣x2+2x+4,配方得y=﹣〔x﹣1〕2+5,∴点M的坐标为〔1,5〕;〔2〕设直线AC解析式为y=kx+b,把点A〔3,1〕,C〔0,4〕代入得,解得∴直线AC的解析式为y=﹣x+4,如下图,对称轴直线x=1与△ABC两边分别交于点E、点F把x=1代入直线AC解析式y=﹣x+4解得y=3,那么点E坐标为〔1,3〕,点F坐标为〔1,1〕∴1<5﹣m<3,解得2<m<4;〔3〕连接MC,作MG⊥y轴并延长交AC于点N,那么点G坐标为〔0,5〕∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,那么点N坐标为〔﹣1,5〕,∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,假设点P在AC上,那么∠MCP=90°,那么点D与点C必为相似三角形对应点①假设有△PCM∽△BDC,那么有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,假设点P在y轴右侧,作PH⊥y轴,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1〔〕;同理可得,假设点P在y轴左侧,那么把x=﹣代入y=﹣x+4,解得y=∴P2〔〕;②假设有△PCM∽△CDB,那么有∴CP==3∴PH=3÷=3,假设点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;假设点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P3〔3,1〕;P4〔﹣3,7〕.∴所有符合题意得点P坐标有4个,分别为P1〔〕,P2〔〕,P3〔3,1〕,P4〔﹣3,7〕.24.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD〔∠BAD=120°〕进展探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F 〔不包括线段的端点〕.〔1〕初步尝试如图1,假设AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;〔2〕类比发现如图2,假设AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;〔3〕深化探究如图3,假设AD=3AB,探究得:的值是常数t,那么t= .【考点】几何变换综合题.【分析】〔1〕①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.〔2〕设DH=x,由由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明.〔3〕如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB•CM=AD•CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,那么CM=3a,EM=3b,想方法求出AC,AE+3AF即可解决问题.【解答】解;〔1〕①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.〔2〕设DH=x,由由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.〔3〕如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,FN=b,那么CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=〔EM﹣AM〕+3〔AH+HN﹣FN〕=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,∴==.故答案为.励志赠言经典语录精选句;挥动**,放飞梦想。
浙教版2020-2021学年九年级上册数学期末复习试题1(含答案)
浙教新版2020-2021学年九年级上册数学期末复习试题1 一.选择题(共10小题,满分40分,每小题4分)1.已知A(m,2020),B(m+n,2020)是抛物线y=﹣(x﹣h)2+2036上两点,则正数n=()A.2B.4C.8D.162.如图所示的是正十二角形体,因为其独特的对称美,所以2019年在英国举办的第60界国际数学奥林匹克的会标,就选用了正十二角形体,若将它绕自身中心旋转一定角度后能与原图重合,则这个角度不可能是()A.60°B.90°C.120°D.180°3.如图,AB是⊙O的直径,CD是弦,点C,D在直径AB的两侧.若∠AOC:∠AOD:∠DOB=2:7:11,CD=4,则的长为()A.2πB.4πC.D.π4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.6.已知点(﹣1,y1),(,y2),(2,y3)在函数y=ax2﹣2ax+a﹣2(a>0)的图象上,则将y1、y2、y3按由大到小的顺序排列是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y2>y1 7.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①②B.②③C.①③D.②④8.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1B.=﹣1C.=+2D.=﹣29.如图,△ABC的三个顶点坐标分别为A(1,2),B(4,2),C(4,4),若反比例函数y=在第一象限内的图象与△ABC有交点,则实数k的取值范围是()A.2≤k≤16B.2≤k≤8C.1≤k≤4D.8≤k≤16 10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.某学校食堂为了了解服务质量,随机调查了来食堂就餐的200名学生,调查的结果如图所示,根据图中给出的信息,这200名学生中对该食堂的服务质表示不满意的有人.12.若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.某市民广场有一个直径16米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA的顶端A处汇合,水柱离中心3米处达最高5米,如图所示建立直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的他站立时必须在离水池中心O米以内.14.一面墙上有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图,若矩形的高为2m,宽为m,则要打掉墙体的面积为m2.15.如图是一株美丽的勾股树.所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为7cm,则正方形A、B、C、D的面积的和是.16.如图,平行四边形ABCD中,∠A=60°,.以A为圆心,AB为半径画弧,交AD于点E,以D为圆心,DE为半径画弧,交CD于点F.若用扇形ABE围成一个圆维的侧面,记这个圆锥的底面半径为r1;若用扇形DEF围成另一个圆锥的侧面,记这个圆锥的底面半径为r2与,则的值为.三.解答题(共8小题,满分80分,每小题10分)17.(1)解方程:(x﹣2)x=2x﹣1.(2)计算:|﹣|+×+()﹣1﹣(﹣)0.18.如图,在▱ABCD中,AE、CF分别平分∠BAD、∠BCD.求证:(1)AE=CF;(2)AE∥CF.19.目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度,在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2位家长来自相同班级的概率.温馨提示:初三(1)班两名家长用A1,A2表示;初三(2)班两名家长用B1,B2表示.20.如图,下列网格由小正方形组成,点A,B,C都在正方形网格的格点上.(1)在图1中画出一个以线段BC为边,且与△ABC面积相等但不全等的格点三角形;(2)在图2和图3中分别画出一个以线段AB为边,且与△ABC相似(但不全等)的格点三角形,并写出所画三角形与△ABC的相似比.(相同的相似比算一种)21.如图,Rt△ABC中,∠C=90°,AB=4,在BC上取一点D,连结AD,作△ACD 的外接圆⊙O,交A B于点E.张老师要求添加条件后,编制一道题目,并解答.(1)小明编制题目是:若AD=BD,求证:AE=BE.请你解答.(2)在小明添加条件的基础上请你再添加一条线段的长度,编制一个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)22.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.23.阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,S有最大值?并求出最大值.24.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,垂足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵A(m,2020),B(m+n,2020)是抛物线y=﹣(x﹣h)2+2036上两点,∴2020=﹣(x﹣h)2+2036,解得x1=h﹣4,x2=h+4,∴A(h﹣4,2020),B(h+4,2020),∵m=h﹣4,m+n=h+4,∴n=8,故选:C.2.解:∵正十二角形体的中心角为30°,∴观察图象可知,旋转角是30°的偶数倍数时,可以与本身重合,故选:B.3.解:∵∠AOC:∠AOD:∠DOB=2:7:11,∠AOD+∠DOB=180°,∴∠AOD=×180°=70°,∠DOB=110°,∠COA=20°,∴∠COD=∠COA+∠AOD=90°,∵OD=OC,CD=4,∴2OD2=42,∴OD=2,∴的长是==,故选:D.4.解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,﹣2),所以所得抛物线解析式为:y=﹣(x+1)2﹣2.故选:B.5.解:由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:第一次选择,它有3种路径;第二次选择,每次又都有2种路径;两次共6种等可能结果,其中获得食物的有2种结果,∴获得食物的概率是=,故选:C.6.解:∵y=ax2﹣2ax+a﹣2=a(x﹣1)2﹣2(a>0),∴图象的开口向上,对称轴是直线x=1,∵点(﹣1,y1)到对称轴的距离最大,点(,y2)到对称轴的距离最小,∴y1>y3>y2,故选:B.7.解:∵①中的三角形的三边分别是:2,,,②中的三角形的三边分别是:3,,,③中的三角形的三边分别是:2,2,2,④中的三角形的三边分别是:3,,4,∵①与③中的三角形的三边的比为:1:,∴①与③相似.故选:C.8.解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.9.解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:A.10.解:如图,连接BF,取BF的中点O,连接OE,OC.∵四边形ABCD是矩形,EF⊥BE,∴∠BEF=∠BCF=90°,AB=CD=3,BC=AD=5,∵OB=OF,∴OE=OB=OF=OC,∴B,C,F,E四点共圆,∴∠EBF=∠ECF,∴tan∠EBF=tan∠ACD,∴==,故选:B.二.填空题(共6小题,满分30分,每小题5分)11.解:因为200名学生中对该食堂的服务质量表示不满意占总体的百分比为:1﹣46%﹣38%﹣9%=7%,所以200名学生中对该食堂的服务质量表示很满意有:200×7%=14(人).故答案为:14.12.解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.13.解:设OA右侧的抛物线的解析式为y=a(x﹣3)2+5,∵某市民广场有一个直径16米的圆形喷水池,∴该抛物线过点(8,0),∴0=a(8﹣3)2+5,得a=﹣,∴OA 右侧的抛物线的解析式为y =﹣(x ﹣3)2+5=x 2++,当y =1.8时,1.8=﹣(x ﹣3)2+5,得x 1=7,x 2=﹣1,∵各方向喷出的水柱恰好在喷水池中心的装饰物OA 的顶端A 处汇合,点A 的坐标为(0,),∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心O 7米以内, 故答案为:7.14.解:如图,连结AD 、BC 交于O ,∵∠BDC =90°,∴BC 是直径,∴BC ===, ∴OA =OB =AB =, ∴△AOB 是正三角形,∴∠AOB =60°,∠AOC =120°,∴S △AOB =,S △AOC =,∴S =2(S 扇形OAC ﹣S △AOC )+S 扇形OAB ﹣S △AOB=2[﹣]+[﹣]=π﹣,∴打掉墙体面积为(π﹣)平方米, 故答案为:(π﹣).15.解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故答案为49cm2.16.解:设AD=3k,AB=2k,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=60°,∴∠D=120°,∴的长===2πr1,可得r1=,∴的长===2πr2,可得r2=,∴=1,故答案为1.三.解答题(共8小题,满分80分,每小题10分)17.解:(1)(x﹣2)x=2x﹣1x2﹣2x﹣2x=﹣1,则x2﹣4x=﹣1,x2﹣4x+4=3,(x﹣2)2=3,则x﹣2=±,解得:x1=2+,x2=2﹣;(2)|﹣|+×+()﹣1﹣(﹣)0=+2+2﹣1=3+1.18.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAD=∠DCB,∴∠ADE=∠CBF,∵AE、CF分别平分∠BAD、∠BCD,∴∠DAE=∠DAB,∠BCF=∠DCB,∴∠DAE=∠BCF,∴△ADE≌△CBF(ASA),∴AE=CF.(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∴AE∥CF.19.解:画树状图如下:共有12种等可能结果,其中2人来自相同班级的共有4种,所以2人来自相同班级的概率为=.20.解:(1)如图所示,△BCD即为所求.(2)如图所示,△ABE和△ABF即为所求,相似比;相似比.21.(1)证明:连结DE,∵∠C=90°,∴AD为直径,∴DE⊥AB,∵AD=BD,∴AE=BE;(2)答案不唯一.①第一层次:若AC=4,求BC的长.答案:BC=8;②第二层次:若CD=3,求BD的长.答案:BD=5;③第三层次:若CD=3,求AC的长.设BD=x,∵∠B=∠B,∠C=∠DEB=90°,∴△ABC~△DBE,∴=,∴=,∴x=5,∴AD=BD=5,∴AC==4.22.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当A B是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).23.解:(1)由题意可得,S=x(32﹣2x)=﹣2x2+32x,∵,解得,6≤x<16,即S与x之间的函数关系式是S=﹣2x2+32x(6≤x<16);(2)∵S=﹣2x2+32x=﹣2(x﹣8)2+128,∴当x=8时,S有最大值,最大值是128平方米.24.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,=2,∴∠APB=90°,∠AOP=×180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=8×=4,在Rt △CFB 中,BF ====CF , ∵PB =PF +BF ,∴PB =CF +BF ,即:4=CF +CF ,解得:CF =6﹣2; (3)①∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,∵CA =CB ,∴∠ADC =∠BDC ,同(1)得:四边形DEPF 是正方形,∴PE =PF ,∠APE +∠BPF =90°,∠PEA =∠PFB =90°,∴将△APE 绕点P 逆时针旋转90°,得到△A ′PF ,PA ′=PA ,如图3所示: 则A ′、F 、B 三点共线,∠APE =∠A ′PF ,∴∠A ′PF +∠BPF =90°,即∠A ′PB =90°,∴S △PAE +S △PBF =S △PA ′B =PA ′•PB =x (70﹣x ),在Rt △ACB 中,AC =BC =AB =×70=35, ∴S △ACB =AC 2=×(35)2=1225,∴y =S △PA ′B +S △ACB =x (70﹣x )+1225=﹣x 2+35x +1225;②当AP =30时,A ′P =30,PB =AB ﹣AP =70﹣30=40,在Rt △A ′PB 中,由勾股定理得:A ′B ===50,∵S △A ′PB =A ′B •PF =PB •A ′P ,∴×50×PF =×40×30,解得:PF =24,∴S 四边形PEDF =PF 2=242=576(m 2),∴当AP =30m 时.室内活动区(四边形PEDF )的面积为576m 2.。
贵州省2023-2024学年九年级上学期质量测评数学试题(一)
贵州省2023-2024学年九年级上学期质量测评数学试题(一)学校:___________姓名:___________班级:___________考号:___________..C.D..解方程2x-=最适当的方法是()490.直接开方法B.配方法C.公式法D.分解因式法.如图,将长方形纸片折叠,使A点落BC上的F处,折痕为BE,若沿折叠部分是一个正方形,其数学原理是().邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .两个全等的直角三角形构成正方形D .轴对称图形是正方形7.如图是一张长8cm 、宽5cm 的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是218cm 的一个无盖长方体纸盒,设剪去的正方形边长为x cm ,那么x 满足的方程是()A .240418x -=B .(82)(52)18x x --=C .402(85)18x x -+=D .(82)(52)9x x --=8.如图,在菱形ABCD 中,点B 在x 轴上,点C 的坐标为(6,2),点A 的坐标为(0,2),则点D 的坐标为()A .(4,4)B .(3,3)C .(3,4)D .(2,3)9.用配方法解方程2430x x -+=时,方程可变形为()A .()221x -=B .()227x -=C .()221x +=D .()227x +=10.如图,在矩形ABCD 中,点E 为BA 延长线上一点,F 为CE 的中点,以B 为圆心,BF 长为半径的圆弧过AD 与CE 的交点G ,连接BG .若4AB =,10CE =,则AG =()A .2B .2.5C .3D .3.511.我国党的二十大报告指出从2020年到2035年基本实现社会主义现代化,从2035年到本世纪中叶把我国建成富强民主文明和谐美丽的社会主义现代化强国.2021年我国GDP 约为115万亿元,如果以后每年按相同的增长率增长,2023年我国GDP 约达135万亿元,将增长率记作x ,可列方程为()A .2.5B .二、填空题13.当=a 时,13a x --14.在菱形ABCD 中,对角线15.如图,在正方形ABCD 中,16.已知实数00a b ≥≥,,且数式w 的最大值与最小值,则三、解答题17.解方程并解答:(1)212x x =+(2)()()2233x x x +=+.(3)若关于x 的一元二次方程()2210m x x m m --+-=的常数项为0,则m 的值为多少.18.如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,BE 交AC 于F ,连接DF .(1)求证:BAC DAC ∠=∠.(2)若AB CD ∥,试证明四边形ABCD 是菱形.19.某公司设计了一款工艺品,每件的成本是40元,为了合力定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?20.如图,在四边形ABCD 中,//,90︒∠=AD BC D ,E 为边BC 上一点,且EC=AD ,连接AC .(1)求证:四边形AECD 是矩形;(2)若AC 平分∠DAB ,AB=5,EC=2,求AE 的长,21.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程;()2请写出第n 个方程和它的根.22.如图.已知AD BD ⊥,AC BC ⊥,AC 与BD 交于点F ,E 为AB 的中点,(1)证明:DE CE =;(1)EAF ∠=°直接写出结果不写解答过程)(2)①求证:四边形ABCD ②若3BE EC ==,求DF 25.我们知道:x 2﹣6x =﹣(x ﹣5)2+25,这一种方法称为配方法,利用配方法请解以下各题:(1)按上面材料提示的方法填空:(2)探究:当a 取不同的实数时在得到的代数式理由.(3)应用:如图.已知线段作正方形AMND ,再以运动时,长方形MBCN 说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题(一)
1.BD是☉o直径
A是BD延长线上的一点
AC切☉o于E
BC⊥AE于C
若AC = 12 BC = 9
求:AD的长
2.直径BA延长线上一点F
FE切☉o于D
BE交☉o于C
弧AD = 弧DC
若DE = 6 DF = 10
求:FA及EC的长
3.△ABC中,AC、BC的长
分别是方程X2–(AB + 4)X
+ 4AB + 8 = 0的两个根且
满足25BC·sinA = 9AB
BD是直径、O为圆心
AC切半☉o于E
BC交半☉o于F
求:△ABC三边及AD的长
4.Rt△ABC,∠C = 90O AB = 13
BC = a,AC = b,o在AB上
半径r = 6/5的☉o切AC于F,切BC于E
求:a,b的值
5.BA切☉o于A,BC切☉o于E
直径AD延长线交BC于C
若CD = 1,CE = 2
求:AB的长
6.Rt△ABC,∠C = 90O
o在BC上,☉o切AB于E
AE = BE AC交☉o于D AD=DC
若AC = 3,BC = 4
求:OC的长
7.△ABC,AB = AC
以AB为直径的☉o交AC于F
交BC于D,DE切☉o于D
(1)求证:DE⊥AC
(2)若AB :BC = 5 :6,AF = 7
求:CE的长
8.如图Rt△ABC,∠ACB = 90O
o在BC上,☉o切AB于D
若OC :OB = 1 :3,AD = 2
求:BE的长
9.AC是☉o直径
延长弦DA、CB交于E
且EA = 12,AD = 6,CE = 36
求:(1) BD的长;(2)∠BDC的正弦值
10.圆内接四边形ABCD
AB = 3,AC = 5,BC = 7
∠BCD = 45O
求:(1)sinD的值;(2)BD的长
11.PCD是过o的割线
PA切☉o于A,AB⊥CD于E
AB = 6cm,EC = 1cm
求:☉o的半径;PA的长
12.AD是☉o的直径,AB、AC是弦,
且∠CAD = 45O,AB = 3,AC = 2
求:以A、B、C、D四点所构成的四边形的周长
数学试题(二)
1.两圆相交于M、N,过M作直线交两圆于A、C,过N 作直线交两圆于B、D
求证: AB∥CD
2.两圆相交于M、N,过M、N分别作,
直线AM、BN交于P
且P在小圆(或大圆)上,CD切小圆
(或大圆)于P
求证:CD∥AB
3.两圆外(内)切于P
过P作两直线分别相交两圆于A、C、B、D
求证:AB∥CD
4.两圆外(内)切于P,过P的直线交两圆于A、C,AB、CD分别是两圆的切线求证:AB∥CD
5.☉o、☉o’交于A、B
CD是公切线,切点是C、D
求证:∠CAD + ∠CBD = 180o
6.☉o 、☉o ’交于A 、B
CDE 切☉o ’于C ,交☉o 于D 、E
求证:∠DAC + ∠EBC = 180o
7.☉o 、☉o ’交于A 、B
CFED 交两圆于D 、E 、F 、C
求证:∠DAC + ∠EBF = 180o
8.两圆交于A 、B
求证:∠DAC + ∠EBF = 180o
9.两圆外切于P
求证:∠APB + ∠CPD = 180o
10.两圆外切于P
CBA 切☉o ’于A
求证:∠CPA + ∠BPA = 180o
11.☉o 、☉B 交于M 、N ,B 在☉o 上, 求证:AB ⊥NC
12.AB切小圆于B,两圆交于B、D
求证:AB = AC
13.两圆内(外)切于E
大圆弦AD(或其延长线)切小圆于C
求证:CD·BE = AB·DE
14.☉o、☉o’交于A、B
AD是☉o直径
且AD切☉o’于A
☉o半径为6,☉o’半径为4
求:AC的长
15.图两圆交于M、N
C是AB中点
求证:DC = CE
16.两圆相交于M、N,过M作直线交两圆于A、C,过N 作直线交两圆于B、D,两圆外切于M点
NAB、NCD分别为外公切线
A、B、C、D为切点
求证:AC + BD = AB + CD
数学试题(三)
1.1、圆内比例线段AD切☉o于A AE平分∠DAC
求证:AF·BC = AB·FC
2.△ABC内接于☉o
MN切☉o于A
D是BC中点
DF∥BA
求证:CE2 = DE·EF
3.如图∠1 = ∠2
BE切☉o于B
求证:CD·CE = CB·EB
4.BC∥GF
GF切☉o于D
求证:BD2 = CE·DG
5.AB是☉o直径
弧AD = 弧DC
DE⊥AB于M
求证:FG·AC = AM·AB
6.AB是直径
CF⊥AB于F
求证:DF2 = CF·GF
7.BD是直径
AG⊥BD于F
求证:AB2 = BG·BC
8.弧AC = 弧AD
求证:AM·AN = AE·AF
9.直径AB⊥EN
求证:AM·AN = AE·AF
10.☉o中弦AB = CD
延长DC、BA交于P
E是弧BD上一点
CE交BD于F
求证:AB·EF = BE·DF
11.PA·PB切☉o于AB
割线PC交☉o于DC
求证:AD·BC = AC·BD
12.AE切☉o于A
BF切☉o于B
PC⊥AB于C
求证:PC2 = PE·PF
13.MB 切☉o 于B
MC ∥BA
求证:FM FD
CF EF
14.等边△ABC 内接于☉o D 是弧BC 上一点
求证:AB 2 = BE ·CF
15.等边△ABC 内接于☉o E 是弧BC 上一点
求证:AB 2 = BE ·BD
16.△ABC 内接于☉o
过A 的切线交CB 延长线于P AD 平分∠BAC
求证:PD ·AC = PC ·AB
17.AB 是☉o 直径
AB = AC
过D 的切线交AC 于E 求证:BD 2 = CE ·CA
18.AB = AC
BE = CD
求证:AC ·ED = AD ·BC
19.☉o 、☉o ’交于AB O 在☉o ’上
求证:OD 2 = OC ·OE
20.BC 是☉o 直径 AD 是☉o 切线 AE = AD
EF ⊥AB
求证:AC AE
AF AB。