二元一次不等式组与简单的线性规划问题教案样本
数学3.3《二元一次不等式(组)与简单的线性规划问题》教案三(新人教A版必修五)
课题: §3.3.1二元一次不等式(组)与平面区域第2课时授课类型:新授课 【教学目标】1.知识与技能:巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;2.过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;3.情态与价值:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。
【教学重点】理解二元一次不等式表示平面区域并能把不等式(组)所表示的平面区域画出来; 【教学难点】把实际问题抽象化,用二元一次不等式(组)表示平面区域。
【教学过程】1.课题导入[复习引入]二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)判断方法:由于对在直线Ax +By +C =0同一侧的所有点(x ,y ),把它的坐标(x ,y )代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)。
随堂练习11、画出不等式2x +y -6<0表示的平面区域.2、画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域。
2.讲授新课【应用举例】例3 某人准备投资 1 200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的学段 班级学生人数配备教师数硬件建设/万元教师年薪/万元初中 45 2 26/班 2/人 高中40354/班2/人分别用数学关系式和图形表示上述的限制条件。
解:设开设初中班x 个,开设高中班y 个,根据题意,总共招生班数应限制在20-30之间,所以有2030x y ≤+≤考虑到所投资金的限制,得到265422231200x y x y ++⨯+⨯≤B(-52,52)C(3,-3)A(3,8)x=3x+y=0x-y+5=063xy即 240x y +≤ 另外,开设的班数不能为负,则0,0x y ≥≥ 把上面的四个不等式合在一起,得到:203024000x y x y x y ≤+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩用图形表示这个限制条件,得到如图的平面区域(阴影部分)例4 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐18t ;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t 、硝酸盐66t ,在此基础上生产两种混合肥料。
《二元一次不等式组与简单的线性规划问题》教案5新人教A版
《二元一次不等式(组)与简单的线性规划问题》教案5(新人教A版必修5)
二元一次不等式与简单的线性规划问题
二元一次不等式与平面区域
教学目的:从实际问题中抽象出二元一次不等式(组)表示的平面区域。
理解、在平面坐标系中的位置(上方、右侧)
重点难点:根据、、的正负,快速判断、的位置
教学过程:
一.知识引入:
1)解一元一次不等式的解,并在数轴上表示出来。
2)课本91
3)二元一次不等式的定义?
4)二元一次方程的解的构成。
二.新课
⒈对直线的知识要点:
⑴当时,直线没有斜率,是一条垂直于轴的直线;
⑵当时,斜率,在轴上的截距;
⑶斜率、截距对直线的图象的影响.
⒉不等式在平面直角坐标系中的区域问题
⑴b0时,不等式的解的区域在直线的上方;不等式的解的区
域在直线的下方。
(2)b0时,不等式的解的区域在直线的下方;不等式的解的区域在直线的上方。
3.不等式组的区域问题。
三例题分析
1.课本94页例1
2.课本94页例2
3.不等式所表示的区域恰好使点(3,4)不在此区域,而点(4,4)在此区域,求b的取值范围。
4.已知点A(a,b)在由不等式组确定的平面区域内,求A (a,b)所在区域的面积。
5.课本95页例3
四.小结
五.作业
1课本105页 1,2
2.课本106页 1, 2
3.画出不等式的区域,并求这个区域的面积.。
精品教案:二元一次不等式组与简单的线性规划问题
二元一次不等式组与简单的线性规划问题【知识网络】1、二元一次不等式组以及可化成二元一次不等式组的不等式的解法;2、作二元一次不等式组表示的平面区域,会求最值;3、线性规划的实际问题和其中的整点问题。
【典型例题】例1:(1)已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则( ) A .02300>+y x B .<+0023y x 0C .82300<+y xD .82300>+y x答案: D 。
解析:将(1,2)代入l 得小于0,则003280x y +->。
(2)满足2≤+y x 的整点的点(x ,y )的个数是( )A .5B .8C .12D .13答案:D 。
解析:作出图形找整点即可。
(3)不等式(x -2y +1)(x +y -3)≤0表示的平面区域是 ( )答案:C 。
解析:原不等式等价于⎩⎨⎧≤-+≥+-⎩⎨⎧≥-+≤+-0301203012y x y x y x y x 或 两不等式表示的平面区域合并起来即是原不等式表示的平面区域.(4)设实数x , y 满足20240230x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则y x 的最大值为 .答案:32。
解析:过点3(1,)2时,yx 有最大值32。
(5)已知1224a b a b ≤-≤⎧⎨≤+≤⎩,求42t a b =-的取值范围 .答案: ]10,5[。
解析:过点31(,)22时有最小值5,过点(3,1)时有最大值10。
例2:试求由不等式y ≤2及|x |≤y ≤|x |+1所表示的平面区域的面积大小. 答案: 解:原不等式组可化为如下两个不等式组:①⎪⎪⎩⎪⎪⎨⎧≤+≤≥≥210y x y x y x 或 ②⎪⎪⎩⎪⎪⎨⎧≤+-≤-≥≤210y x y x y x上述两个不等式组所表示的平面区域为如图所示的阴影部分.它所围成的面积S =21×4×2-21×2×1=3.例3:已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .(Ⅰ)求函数g (x )的解析式;(Ⅱ)若h (x )=g (x )-λf (x )+1在[-1,1]上是增函数,求实数λ的取值范围。
教学设计5:7.3 二元一次不等式(组)与简单的线性规划问题
7.3 二元一次不等式(组)与简单的线性规划问题[知识梳理]1.二元一次不等式(组)表示的平面区域(1)在平面直角坐标系中二元一次不等式(组)表示的平面区域:二元一次不等式所表示的平面区域的确定,一般是取不在直线上的点(x0,y0)作为测试点来进行判定,满足不等式的,则平面区域在测试点所在的直线的一侧,反之在直线的另一侧.2.线性规划中的基本概念3.确定二元一次不等式表示平面区域的方法与技巧确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.(1)直线定界,即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线;(2)特殊点定域,即在直线Ax+By+C=0的某一侧取一个特殊点(x0,y0)作为测试点代入不等式检验,若满足不等式,则表示的就是包括该点的这一侧,否则就表示直线的另一侧.特别地,当C≠0时,常把原点作为测试点;当C=0时,常选点(1,0)或者(0,1)作为测试点.4.最优解问题如果可行域是一个多边形,那么目标函数一般在某顶点处取得最大值或最小值,最优解就是该点的坐标,到底哪个顶点为最优解,只要将目标函数的直线平行移动,最先通过或最后通过的顶点便是.特别地,当表示线性目标函数的直线与可行域的某条边平行时,其最优解可能有无数个.[考点探究]典题导入[例1]直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个由题悟法二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意:不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,测试点常选取原点.以题试法1.(1)若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0(2)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +4≥0,x ≤a 所表示的平面区域的面积是9,则实数a的值为________.典题导入[例2](1)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤3,x ≥0,y ≥0,则z =x -2y 的取值范围为________.(2)已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≤1,2x -2y +1≤0,若目标函数z =ax +y (a ≠0)取得最小值时的最优解有无数个,则实数a 的值为________.若本例(2)条件变为目标函数z =ax +y (a ≠0)仅在点⎝⎛⎭⎫12,1处取得最小值,其它条件不变,求a 的取值范围.由题悟法1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a .注意:转化的等价性及几何意义.以题试法2.(1)设z =2x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则k 的值为________;z 的最小值为________.(2)已知O 是坐标原点,点A (1,0),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则|OA +OM |的最小值是________.典题导入[例3] 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1 800元B .2 400元C .2 800元D .3 100元由题悟法与线性规划有关的应用问题,通常涉及最优化问题.如用料最省、获利最大等,其解题步骤是:①设未知数,确定线性约束条件及目标函数;②转化为线性规划模型;③解该线性规划问题,求出最优解;④调整最优解.以题试法3.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________百万元.答案[知识梳理] 1.(1)不等式表示区域Ax+By+C>0直线Ax+By+C=0某一侧的所有点组成的平面区域不包括边界直线Ax+By+C≥0包括边界直线不等式组各个不等式所表示平面区域的公共部分2.名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式(组)目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题[例1]【解析】由不等式组画出平面区域如图(阴影部分).直线2x+y-10=0恰过点A(5,0),且斜率k=-2<k AB=-43,即直线2x+y-10=0与平面区域仅有一个公共点A(5,0).【答案】B1.【解析】(1)不等式组所表示的平面区域如图中阴影部分,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点,故选C.(2)不等式组所表示的平面区域是如图所示的△ABC,且A(-2,2),B(a,a+4),C(a,-a),若a≤0,则有△ABC的面积S△ABC≤4,故a>0,BC的长为2a+4,由面积公式可得△ABC的面积S△ABC=12(a+2)·(2a+4)=9,解得a=1.【答案】(1)C (2)1 [例2]【解析】 (1)依题意,画出可行域,如图阴影部分所示,显然,当直线y =12x -z2过点B (1,2)时,z 取得最小值为-3;当直线过点A (3,0)时,z 取得最大值为3,综上可知z 的取值范围为[-3,3].(2)画出平面区域所表示的图形,如图中的阴影部分所示,平移直线ax +y =0,可知当平移到与直线2x -2y +1=0重合,即a =-1时,目标函数z =ax +y 的最小值有无数多个.【答案】 (1)[-3,3] (2)-1解:由本例图知,当直线ax +y =0的斜率k =-a >1, 即a <-1时,满足条件, 所求a 的取值范围为(-∞,-1).2.【解析】(1)在坐标平面内画出题中的不等式组表示的平面区域及直线2x +y =6,结合图形分析可知,要使z =2x +y 的最大值是6,直线y =k 必过直线2x +y =6与x -y =0的交点,即必过点(2,2),于是有k =2;平移直线2x +y =6,当平移到经过该平面区域内的点(-2,2)时,相应直线在y 轴上的截距达到最小,此时z =2x +y 取得最小值,最小值是z =2×(-2)+2=-2.(2)依题意得,OA +OM =(x +1,y ),|OA +OM |=x +12+y 2可视为点(x ,y )与点(-1,0)间的距离,在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,在该平面区域内的点中,由点(-1,0)向直线x +y =2引垂线的垂足位于该平面区域内,且与点(-1,0)的距离最小,因此|OA +OM |的最小值是|-1+0-2|2=322.【答案】(1)2 -2(2)322[例3]【解析】 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,则⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点A (4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元.【答案】 C 3.【解析】可设需购买A 铁矿石x 万吨,B 铁矿石y 万吨, 则根据题意得到约束条件为⎩⎪⎨⎪⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,画出不等式组表示的平面区域如图所示当目标函数经过(1,2)点时目标函数取最小值,最小值为z min =3×1+6×2=15.【答案】15。
高中数学必修5《二元一次不等式(组)与简单的线性规划问题》教案
高中数学必修5《二元一次不等式(组)与简单的线性规划问题》教案一、教学目标:1、理解二元一次不等式及其组的概念和运算法则,掌握解二元一次不等式及其组的方法。
2、能够应用二元一次不等式及其组的解法解决实际问题,了解简单线性规划问题的基本概念和求解方法。
二、教学重点难点:1、二元一次不等式及其组的概念和运算法则。
2、解二元一次不等式及其组的方法。
三、教学方法:1、课堂讲解法2、实例讲解法3、课堂练习法四、教学内容及进度安排:教学内容学时数一、二元一次不等式及其组的概念和运算法则 4二、解二元一次不等式及其组的方法 8三、应用二元一次不等式及其组的解法解决实际问题 4四、简单线性规划问题的基本概念和求解方法 4总计 20具体教学内容和进度安排:一、二元一次不等式及其组的概念和运算法则(4学时)1、概念:⑴二元一次不等式及其组定义;⑵不等式的符号和解集的含义;⑶一次不等式及其图像;⑷解二元一次不等式的方法,化为标准式;⑸同时含有两个变量的二元一次不等式组的解法。
2、运算法则:⑴二元一次不等式及其组的加减法,思想与方程相似;⑵实质:得到一组解或一些解的并集。
二、解二元一次不等式及其组的方法(8学时)1、解二元一次不等式:⑴将二元一次不等式转化为标准式,再根据各种情况进行分类讨论;⑵根据解集与图形的关系,解二元一次不等式的图像。
2、解二元一次不等式组:⑴联立,消元,分类讨论;⑵根据解集与图形的关系,解二元一次不等式组的图像。
三、应用二元一次不等式及其组的解法解决实际问题(4学时)通过实例,引入应用二元一次不等式及其组的解法解决实际问题,如商场折扣、产品出售等。
四、简单线性规划问题的基本概念和求解方法(4学时)1、概念:线性规划问题定义;2、方法:图形法;3、实例讲解。
五、教学过程:第一课时:二元一次不等式及其组的概念和运算法则知识与技能:1、掌握二元一次不等式及其组的概念和运算法则;2、理解一次不等式的图像。
《二元一次不等式组与简单的线性规划问题》教案1新人教A版
《二元一次不等式(组)与简单的线性规划问题》教案1(新人教A版必修5)3.3 二元一次不等式组与简单的线性规划问题第一课时二元一次不等式(组)与平面区域一、教学目标(1)知识与技能:了解二元一次不等式组的相关概念,并能画出二元一次不等式(组)来表示的平面区域(2)过程与方法:本节课首先借助一个实例提出二元一次不等式组的相关概念,通过例子说明如何用二元一次不等式(组)来表示的平面区域。
始终渗透"直线定界,特殊点定域"的思想,帮助学生用集合的观点和语言来分析和描述结合图形的问题,使问题更清晰和准确。
教学中也特别提醒学生注意表示区域时不包括边界,而则包括边界(3)情感与价值:培养学生数形结合、化归、集合的数学思想二、教学重点、教学难点教学重点:灵活运用二元一次不等式(组)来表示的平面区域教学难点:如何确定不等式表示的哪一侧区域三、教学设计(一)引例:一家银行的信贷部计划年初投入25000000元用于企业和个人贷款,希望这笔贷款至少可带来30000元的收益,其中从企业贷款中获益12﹪,从个人贷款中获益10﹪。
那么,信贷部应如何分配资金呢?提问:1.这个问题中从在一些不等关系,我们应该用什么不等式模型来刻画它们呢?2.设用于企业贷款的资金为元,用于个人贷款的资金为元,由于总资金为25000000元,得到:①3.由于计划从企业贷款中获益12﹪,从个人贷款中获益10﹪,共创收30000元以上,所以(12﹪)+(10﹪)4.企业和个人贷款不能为负,所以解:分析题意,我们可得到以下式子(二)概念1、二元一次不等式:我们把含有两个未知数,并且未知数的次数是1的不等式称为二元一次不等式。
我们把由几个二元一次不等式组成的不等式组称为二元一次不等式组。
3、满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.注意:有序实数对可以看成直角坐标平面内点的坐标.于是, 二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.例如二元一次不等式的解集为(三)问题: 二元一次不等式所表示的图形?在直角坐标系中,所有点被直线分成三类:一类是在直线上;二类是在直线左上方的区域内的点;三类是在直线右下方的区域内的点.尝试:设点P是直线上的点,任取点A,使它的坐标满足不等式,在图中标出点P和点A.观察并讨论我们发现,在直角坐标系中,以二元一次不等式的解为坐标的点都在直线的左上方;反之,直线左上方点的坐标也满足不等式.因此,在直角坐标系中,不等式表示直线左上方的平面区域. 类似地, 不等式表示直线右下方的平面区域.我们称直线为这两个区域的边界.将直线画成虚线,表示区域不包括边界. 结论:1、一般地, 在直角坐标系中,二元一次不等式表示某侧所有点组成的平面区域.我们把直线画成虚线,表示区域不包括边界.而不等式表示区域时则包括边界,把边界画成实线.2、二元一次不等式表示的平面区域常采用"直线定界,特殊点定域"的方法,即画线---取点---判断。
苏教版高中数学(必修5)3.3《二元一次不等式组与简单线性规划问题》word教案3篇
第 5 课时:§3.3.1 二元一次不等式表示的平面区域(1)【三维目标】:一、知识与技能1.从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.能从实际情境中抽象出一些简单的二元线性规划问题,掌握简单的二元线性规划问题的解法,培养学生的数学应用意识和解决实际问题的能力;4.会用“选点法”确定二元一次不等式表示的平面区域. 二、过程与方法1.本节课首先借助一个实例提出二元一次不等式组的相关概念,通过例子说明如何用二元一次不等式(组)来表示的平面区域。
始终渗透“直线定界,特殊点定域”的思想,帮助学生用集合的观点和语言来分析和描述结合图形的问题,使问题更清晰和准确。
教学中也特别提醒学生注意0>++C By Ax (或0<)表示区域时不包括边界,而0(Ax By C ++≥≤或0)则包括边界2.经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;三、情感、态度与价值观1. 通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。
2. 培养学生数形结合、化归、集合的数学思想 【教学重点与难点】:重点:用二元一次不等式表示平面区域;难点:二元一次不等式表示的平面区域的确定,即如何确定不等式0>++C By Ax (或0<)表示0Ax By C ++=的哪一侧区域【学法与教学用具】:1. 学法:启发学生观察图象,循序渐进地理解掌握相关概念。
以学生探究为主,老师点拨为辅。
学生之间分组讨论,交流心得,分享成果,进行思维碰撞。
同时可借助计算机等媒体工具来进行演示。
2. 教学用具:直角板、投影仪(多媒体教室) 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题1.情境:下表给出了,,x y z 三种食物的维生素含量及成本:A 及40000单位的维生素B ,设X 、Y 这两种食物各取x kg 、y kg ,那么,x y 应满足怎样的关系?解答:∵X 、Y 这两种食物分别为x kg 、y kg ,∴食物Z 为100x y --kg ,则有300500300(100)35000700100300(100)40000x y x y x y x y ++--≥⎧⎨++--≥⎩,即25250y x y ≥⎧⎨-≥⎩,又∵,0x y ≥,∴252500,0100y x y x y x y ≥⎧⎪-≥⎪⎨>>⎪⎪+<⎩(介绍二元一次不等式的概念),如果进一步要求,x y 如何取值时总成本W 最小呢?如何解决该问题. 问题转化为在以上不等式组约束下,求543(100)2300W x y x y x y =++--=++(介绍目标函数概念)的最大值问题.要解决以上问题,我们首先要来了解二元一次不等式的几何意义. 2.问题:坐标满足二元一次方程20x y +-=的点组成的图形是一条直线l .怎样才能快速准确地画出直线l 呢?(学生答:描两点连成线.例如:该直线经过点(2,0)A 和(0,2)B ,画出经过,A B 两点的直线即为所求).教师问:怎样判断点(1,3)在不在直线l 上呢?结论:点的坐标满足直线的方程,则点在直线上;点的坐标不满足直线方程,则点不在直线上.坐标满足不等式20x y +->的点是否在直线l 上呢?这些点在哪儿呢?与直线l 的位置有什么关系呢? 二、研探新知通过代特殊点的方法检验满足不等式20x y +->的点的位置,并猜 想出结论:坐标满足不等式20x y +->的点在直线20x y +-=的上方.如图,在直线20x y +-=上方任取一点(,)P x y ,过P 作平行于y 轴的直线交直线20x y +-=于点(,2)A x x -+,∵点P 在直线上方, ∴点P 在点A 上方,∴2y x >-+,即20x y +->,∵点P 为直线20x y +-=上方的任意一点,所以,直线20x y +-=上方任意点(,)x y ,都有2y x >-+,即20x y +->;同理,对于直线20x y +-=左下方任意点(,)x y ,都有2y x <-+,即20x y +-<.又∵平面上任意一点不在直线上即在直线上方或直线下方.因此,满足不等式20x y +->的点在直线的上方,我们称不等式20x y +->表示的是直线20x y +-=上方的平面区域;同样,不等式20x y +->表示的是直线20x y +-=下方的平面区域.学生练习:判断不等式230x y -+>表示的是直线230x y -+=上方还是下方的平面区域?(下方)结论:①一般地, 在直角坐标系中,二元一次不等式0>++C By Ax 表示0=++C By Ax 某侧所有点组成的平面区域.我们把直线画成虚线,表示区域不包括边界.而不等式0≥++C By Ax 表示区域时则包括边界,把边界画成实线. ②一般地,直线y kx b =+把平面分成两个区域(如图):y kx b >+表示直线上方的平面区域; y kx b <+表示直线下方的平面区域.说明:(1)y kx b ≥+表示直线及直线上方的平面区域;y kx b ≤+表示直线及直线下方的平面区域.(2)对于不含边界的区域,要将边界画成虚线.三、质疑答辩,排难解惑,发展思维例1(教材73P 例1)画出下列不等式所表示的平面区域:(1)21y x >-+;(2)20x y -+>. 解:(1)(2)两个不等式所表示的平面区域如下图所示:xy O下半平面y k x b<+上半平面y kx b >+y kx b =+20x y +-=2 2x y O(,)P x y ∙例2 判断下列不等式所表示的平面区域在相应直线的哪个区域?(用“上方”或“下方”填空) (1)不等式32x y >-+表示直线32xy =-+ 的平面区域; (2)不等式230x y +->表示直线230x y +-= 的平面区域; (3)不等式20x y ->表示直线20x y -= 的平面区域; (4)不等式0x y +<表示直线0x y += 的平面区域.说明:二元一次不等式0Ax By C ++>在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域.可以用“选点法”确定具体区域:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式.若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.例3(1)若点(2,)t -在直线2360x y -+=下方区域,则实数t 的取值范围为 . (2)若点(0,0)在直线320x y a -+=的上方区域,则点(1,3)在此直线的下方还是上方区域?解:(1)∵直线2360x y -+=下方的点的坐标满足223y x <+,∴22(2)233t <⨯-+=. (2)∵直线320x y a -+=的上方区域的点的坐标满足322ay x >+,∵点(0,0)在直线320x y a -+=的上方区域,∴02a <,∴0a <.又∵3313022a a -⨯+-=<,∴点(1,3)在此直线的上方区域. 例4(教材74P 例2) 将下列各图中的平面区域(阴影部分)用不等式表示出来(其中图(1)中区域不包括y 轴):解:(1)0x >;(2)6522x y +≤;(3)y x >.例5 原点和点(1,1)在直线0x y a +-=的两侧,则实数a 的取值范围是 . 提示:将点(0,0)和(1,1)的坐标代入x y a +-的符号相反,即(2)0a a -⋅-<,∴02a <<.例6 用平面区域表示.不等式组3122y x x y<-+⎧⎨<⎩的解集。
个人教学设计模板[二元一次不等式(组)与简单的线性规划问题]
1.例题:
设z=2x+y,式中变量 x,y满足4≤x+y≤6(1),2≤x-y≤4,求z 的取值范围
问题(1):上节我们学习了二元一次不等式表示平面区域,那么题中的不等式组能表示什么样的区域呢?
x + y≥4,x + y≤6
x-y≥2,x-y≤4
问题1:学生独立完成
错因分析,怎样来解决此题呢?引出例题,需教师的层层点拨。
解:如图得出不等式组的平面区域,则z=2x+y即y=-2x+z(z为参数),直线在与区域有公共点时根据图象得z的最大值和最小值即当x=3,y=1 =7时;当x=5,y=1时 =11。
处理办法:几何画板演示
2.形成概念:
(1)线性规划
(2)线性约束条件
(3)可行解
(4)可行域
(5)最优解
3. 学生归纳步骤:
二、教学目标(从学段课程标准中找到要求,并细化为本节课的具体要求,目标要明晰、具体、可操作,并说明本课题的重难点)
1.会从实际问题的情景中抽象出二元一次不等式组模型;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;会从实际问题中抽象出一些简单的二元线性规划问题,并能加以解决。
2.了解线性规划问题的坐标法,并会用坐标法求目标函数的最值,培养学生的识图,画图能力。
引例:若实数x,y满足3≤x≤5 ,0≤y≤2
,求2x+y的取值范围
活动设计:(1)教师给出例题并组织学生迅速动手解答此题,估计学生有错误的解法。
(2)错解分析,学生讨论辨析,得出结论.
1.学生错解(展示黑板上)
2.估计学生能通过举特殊值法
本环节通过巧布“陷阱”,目的在于创设一个问题情境,让学生主动的参与。
数学《二元一次不等式(组)与简单的线性规划问题》高中教案
数学《二元一次不等式(组)与简单的线性规划问题》高中教案数学《二元一次不等式(组)与简单的线性规划问题》高中教案上课是理解和掌握基础知识、基本技能和基本方法的关键环节。
学然后知不足,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
下学生通过自己的分析得出了正确的结论,让他们从中体会到了获取新知后的成就感,从而增加了对数学的学习兴趣.同时也让他们体会人们在认识新生事物时从特殊到一般,再从一般到特殊的认知过程.】(二)实例展示:例1、画出不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域.例2、用平面区域表示不等式组二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解集.【通过利用多媒体对实例的展示让学生体会到画出不等式表示的平面区域的基本流程:直线定界,特殊点定域,而不等式(组)表示的平面区域是各个不等式表示的平面区域的公共部分.同时对具体作图中的细节问题进行点拔.】(三)练习:学生练习P86第1-3题.【及时巩固所学,进一步体会画出不等式(组)表示的平面区域的基本流程】(四)课后延伸:师:我们在今天主要解决了在给出不等式(组)的情况下如何用平面区域来表示出来的问题. 如果反过来给出了平面区域你能写出相关的不等式(组)吗?例如你能写出A(2,4),B(2,0),C(1,2)三点构成的三角形内部区域对应的不等式组吗?你能写出不等式形如二元一次不等式(组)与简单的线性规划问题的模块单元教学设计这种不等式表示的平面区域?(五)小结与作业:二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计某侧所有点组成的平面区域,画出不等式(组)表示的平面区域的基本流程:直线定界,特殊点定域(一般找原点)作业:第93页A组习题1、2,补充作业:若线段PQ的两个端点坐标为P(3,-1),Q(2,4),且直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计与线段PQ。
二元一次不等式组与简单线性规划方案教案
二元一次不等式组与简单线性规划方案教案二元一次不等式组和简单线性计划教案一、设计思绪和教材学情分析【设计思绪】前面已经学习了一元一次不等式(或组)、一元二次不等式及其解法而且知道对应几何意义。
作为不等式模型它们在生产、生活中有着广泛应用然而在不等式模型中除了它们之外还有二元一次不等式模型。
本节将经过实际例子抽象出二元一次不等式(组)数学模型引出二元一次不等式(组)相关概念。
本节关键内容有:二元一次不等式(或组)概念、表示平面区域及对应画法。
其中关键是二元一次不等式所表示平面区域难点是复杂二元一次不等式组所表示平面区域确实定。
在教学中可启发学生观察图象循序渐进地了解掌握相关概念以学生探究为主老师点拨为辅学生之间分组讨论交流心得分享结果进行思维碰撞同时可借助计算机等媒体工具来进行动态演示本节内容在教学中应表现以下几点:①重视探究过程。
能正确地画出给定二元一次不等式(组)表示平面区域是学习下节简单线性计划问题图解法关键基础。
②重视探究方法结合等式(函数)所表示图形认知用类比方法提出“二元一次不等式组解集表示什么图形”问题③重视探究手段结合信息计术【教材分析】1.课标要求:?①从实际情境中抽象出二元一次不等式组。
?②了解二元一次不等式几何意义能用平面区域表示二元一次不等式组。
?③从实际情境中抽象出部分简单二元线性计划问题并能加以处理。
?2.教材分析:?本单元包含两节3.3.1?关键内容是用平面区域表示二元一次不等式组解集3.3.2关键内容是从实际情境中抽象出部分简单二元线性计划问题并能加以处理。
其中3.3.1是处理二元线性计划问题基础应作为本单元关键要求全部学生掌握。
【学情分析】在初中学生已学过一元一次不等式组解法学生普遍含有利用不等式组处理问题思想能熟练解一元一次不等式组及相关应用问题这用利于学生了解列二元一次不等式组解实际问题。
也有利于学生了解二元一次不等式组解法。
?在必修2中学生已学习了直线方程相关知识多数学生能画出二元一次方程表示直线这有利于学生学习用平面区域表示二元一次不等式解集也有利于学生了解线性计划问题中最优解确实定方法。
二元一次不等式与简单线性规划教学设计
【教学设计】一、教材分析1 .教学背景分析作为高考的一个重点内容“二元一次不等式与简单线性规划”且二元一次不等式表示平面区域,可用直线动态演示目标函数取值大小状态,与高中数学数形结合重要思想是紧密的结合一起的,对培养学生的综合处理能力有很大的作用。
还有就是二元一次不等式与简单线性规划问题与现实生活也是息息相关的,对学生学习数学的兴趣也会有一定的促进作用。
学生特点:1、高中二年学生经过高一课程学习有一定的认知能力,能够明白二元一次方程、二元一次不等式之间关系。
2、学生已经掌握了基本的数学知识和技能。
3、有的好动、活泼,课堂上表现积极,自信心强烈;有的性格内向,课堂表现比较沉默。
4、能在老师的引导下自主学习、合作学习、探究学习,并且善于探索,敢于质疑,敢于创新。
5、信任老师,对老师布置的任务能按时完成,合作精神积极,富有团队精神,希望得到他人的肯定。
2 .教学目标基础知识:1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;2、理解线性规划问题的图解法。
基本技能:1、会利用图解法求线性目标函数的最优解;2、在应用图解法解题的过程中培养学生的观察能力、理解能力;3、在变式训练的过程中,培养学生的分析能力、探索能力。
过程与方法:1、体验变式训练的过程;2、体验对具体事例的感性认识上升到对线性规划的理性认识过程;3、学会利用多媒体运用图解法解决最优解问题的方法。
情感态度与价值观:1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣;2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辩证关系,渗透辩证唯物主义认识论的思想。
3 .教学重、难点重点:二元一次不等式(组)表示的平面区域及简单线性规划; 难点:会利用图解法求线性目标函数的最优解。
3.3.1二元一次不等式(组)与简单线性规划问题教学设计
3.3.1二元一次不等式(组)与简单的线性规划问题教学设计黄石七中李慧玲一.教学内容分析本节用实例抽象出二元一次不等式的定义,然后从“有序数对”的角度对“二元一次不等式的解集”的含义作出解释,从而自然引出用“直角坐标系内点集”表示“二元一次不等式的解集”的想法;接着用实例抽象出平面区域表示二元一次不等式(组)的方法,让学生体会数形结合思想的实质及其重要性。
二.学生学习情况分析本节课是在一元二次不等式及解法的基础上学习的另一种不等关系的模型,通过实例一步步引出用出用平面区域表示二元一次不等式(组)的方法,在这个过程中,最重要的是数形结合思想和“解析法”的渗透,这是学生不太熟悉的,因此,采取启发、探究结合的教学方法,学生采用小组协作的学习方法。
三.设计思想我根据学生已有的认知结构和教材内容的特点,在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。
在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。
通过课堂教学活动向学生渗透数学思想方法。
四.教学目标知识与技能:①了解从实际情境中抽象出二元一次不等式(组)的模型过程。
②理解二元一次不等式(组)的解集的概念。
③了解二元一次不等式(组)的几何意义,理解(区域)边界的概念及实线、虚线、边界的含义。
④会用二元一次不等式(组)表示平面区域,能画出给定不等式(组)表示的平面区域。
过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、归纳、数形结合的数学思想。
情感与价值:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。
五.教学重难点教学重点:二元一次不等式(组)表示平面区域教学难点:准确画出二元一次不等式(组)所表示平面区域六.教学过程(一)创设情境,引入新课课本实例:一家银行的信贷部计划年初投入25000000元用于企业和个人贷款,希望这笔资金至少带来30000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%。
二元一次不等式(组)及其简单的线性规划问题优秀教案
第六章第三节教案二元一次不等式(组)及其简单的线性规划问题教学目标:1、通过具体例子了解二元一次不等式(组)的相关概念,能从实际情景中抽象出二元一次不等式(组)。
2、通过类比一元一次不等式(组)的集合意义推测并理解二元一次不等式(组)的集合意义,并能画出二元一次不等式(组)来表示平面区域。
教学重点:二元一次不等式(组)表示平面区域的猜想与证明教学难点:二元一次不等式(组)表示平面区域的确定学法指导:运用阅读“九字诀”中的“划、记、练、思、比”来阅读教材,并在阅读后完成评价单上的问题。
划-----划出重点信息或条件,关键词句以及有关概念应划上着重符号。
思-----结合导读单上的目标,思考导读单上的有关问题练、记-----记住相关内容和解题方法去完成后面的习题,并在练习中加深对知识的理解。
比-----通过类比一元一次不等式(组)的几何意义推测并理解二元一次不等式(组)的几何意义。
教学过程:一、求线性目标函数的最值例1、(2013·全国Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最小值是( )A .-7B .-6C .-5D .-3变式训练:设x ,y 满足约束条件10103y x x y x --≤⎧⎪+-≥⎨⎪≤⎩则z =3y -2x 的最小值是( )A .-7B .-6C .-5D .-3二、求非线性目标函数的最值(或范围)例2、已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥03x +4y ≥4,y ≥0则x 2+y 2的最小值是________.经典训练:(2015·衡阳模拟)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0x -y ≥0x ≤a(a 为常数)表示的平面区域的面积为4,则x +y +2x +3的最小值为( ) A .-35 B.15 C.25 D.65三、已知最值(最优解)求参数值(或范围)例3、 (1)(2014·北京高考)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2 C.12 D .-12变式训练:(2014·安徽高考)x ,y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩若z =y -a x取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或 12C .2或1D .2或-1[题后总结]解决线性规划问题的精髓是化归思想和数形结合思想,其解题步骤是“画——移——求——答”,理解线性规划的解题程序是关键.对于与其他知识相交汇的题目,可适当引进变量,建立变量之间的方程或不等式,然后利用图形,结合其几何意义解题即可.(2014·浙江高考)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.(2013·湖北高考)某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元。
3.3二元一次不等式(组)与简单的线性规划问题 教案
的解集为数轴上的一个区间(如图)
表示直线2
=右
x y
≥≤≥)2)2)2
:
件,又已知条件可得
…………
画出不等式组所表示的平面区域:
安排利润最大?
变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要
14.
大利润
的问
的最大值,使式中的
生产1车皮乙种肥能够产生最大的利润?
轴上的截距为2z的一组最大,即z最大。
容易
,这个点不是整数,经过可行域内整
B(3,9),C(4,8).
张,或第一种钢板4张,第二种钢板8张,
的最大值问题可转化为区域内的点和原点的连线的斜率的最大值,画出可
,由此说明y的最大值为
答案:3
③十。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3二元一次不等式(组)与简单的线性规划问题
课标要求与教材分析:
1.课标要求:
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义, 能用平面区域表示二元一次不等式组。
③从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决。
2.教材分析:
本单元包含两节, 3.3.1 主要内容是用平面区域表示二元一次不等式组的解集, 3.3.2主要内容是从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决。
其中3.3.1是解决二元线性规划问题的基础, 应作为本单元的重点要求所有学生掌握。
学情分析:
在初中, 学生已学过一元一次不等式组的的解法, 学生普遍具有利用不等式组解决问题的思想, 能熟练解一元一次不等式组及有关应用问题, 这用利于学生理解列二元一次不等式组解实际问题。
也有利于学生理解二元一次不等式组解法。
在必修2中, 学生已学习了直线方程的有关知识, 多数学生能画出二元一次方程表示的直线, 这有利于学生学习用平面区域表示二元一次不等式的解集, 也有利于学生理解线性规划问题中最优解的确定方法。
教学目标:
1..知识与技能目标:
了解二元一次不等式( 组) 、二元一次不等式的解和解集以及约束条件、目标函数、可行解、可行域、最优解等基本概念; 了解二元一次不等式的几何意义, 能用平面区域表示二元一次不等式组。
能从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决。
2.过程与方法目标:
经历把实际问题抽象为数学问题以及类比一元一次不等式得出二元一次不等式的过程, 体会类比的思想, 数学建模的思想。
3.情感态度与价值观目标:
经过解决线性规划实际问题, 使学生体会数学在解决工作生活问题时巨大作用, 增强学生学习的主动性经过探索二元一次不等式解集的过程, 培养学生的探索方法与精神。
3.3.1二元一次不等式(组)与平面区域
教学目标:
1.知识与技能目标:
了解二元一次不等式( 组) 、二元一次不等式的解和解集的概念。
了解二元一次不等式的几何意义, 能用平面区域表示二元一次不等式组。
2.过程与方法目标:
经历把实际问题抽象为数学问题以及类比一元一次不等式得出二元一次不等式的过程, 体会类比的思想、数学建模的思想。
3.情感态度与价值观目标:
经过探索二元一次不等式解集的过程, 培养学生的探索方法与精神。
教学重点与难点:
重点: 求二元一次不等式表示的平面区域。
难点: 理解二元一次不等式解集的几何表示。
教学方法与手段:
经过列表分析实例, 引导学生从复杂实际问题中抽象出二元一次不等式( 组) 。
引导学生用类比喻法探索出解二元一次不等式的思路, 借助多媒体, 使学生认识到理解二元一次不等式解集的几何表示。
使用教材的构想:
1.3.3.1节分两课时完成, 第一课时学习二元一次不等式解集几何表示。
第二课时学习如何求二元一次不等式组的解集。
这样安排是因为理解二元一次不等式( 组) 解集的几何表示是一个难点, 而这一点直接关系到求二元一次不等式组的解集的学习以及后
面线性规划问题的学习。
2.教材引入部分的实例已知条件较多, 关系复杂, 学生不易找出各已知条件的关系, 为了克服这一难题, 我设计了一个表格, 学生经过填表, 能较快发现问题本质。
3.教材在解释二元一次不等式解集的几何表示时, 理论性过强, 学生理解困难, 我在设计时去掉了理论分析, 主要经过学生观察不等式成立的点的分布, 使学生直观地认识到二元一次不等式解集是直线一侧的部分
教学流程:
一.复习导入:
1.老师提问: 如何画12+=x y 表示的直线?
解:
( 设计意图: 为下面学习作铺垫)
2.今天学习3.3.1二元一次不等式(组)与平面区域( 写出课题)
二.新课讲授:
1.放映多媒体, 出示实例
问题: 一家银行的信贷部计划年初投入25 000 000用于企业和个人贷款, 希望
这笔资金至少可带来30 000元的收益, 其中从企业贷款中获益12﹪, 从个人
贷款中获益10﹪, 那么, 信贷部应该如何分配资金呢?
分析: 放映多媒体, 出示下表
学生填表
( 设计意图: 帮助学生理清已知条件, 为列不等式组做准备)
引导学生列出不等式组: ( 一学生口述, 老师放映多媒体)
设用于企业贷款的资金为x 元, 用于个人贷款的资金为y 元,
则⎪⎪⎩
⎪⎪⎨⎧≥≥≥+≤+0030000%10%1225000000y x y x y x 2.引导学生观察25000000≤+y x 和30000%10%12≥+y x 得出二元一次不等式及二
元一次不等式组概念。
( 多媒体出示二元一次不等式及二元一次不等式组概念。
板书两概念)
( 设计意图: 明确二元一次不等式及二元一次不等式组是两新概念)
3.讨论解法:
学生: 消元
老师: 这不是二元一次方程组, 不能用消元的方法, 如⎩⎨⎧>>5
3x x , 相加得
8
2>x 没有意义。
( 设计意图: 消除学生错误认识)
老师: 引导学生回忆一元一次不等式的解法
( 放映多媒体)
解不等式组⎩⎨⎧>+>+3113x x 解: 解①得2->x
解②得2>x
① ②
原不等式组的解集为{}2>x x
( 设计意图: 使学生产生联想, 从而类比得出二元一次不等式组的解题思路) 老师: 类比一元一次不等式的解法想到先求每个二元一次不等式的解集, 再取公共部分。
4.提出问题: 什么是二元一次不等式的解集? 板书: 二元一次不等式的解集
老师引导学生探索5>+y x 的解集
①( 放映多媒体)
以下各正确y x ,值是5>+y x 的解吗?
⎩⎨⎧==61y x ⎩⎨⎧==60y x ⎩⎨⎧==43y x ⎩⎨⎧==42y x ⎩⎨⎧=-=7
1y x 由学生进行判断
学生检验得出它们都是5>+y x 的解
②教师用多媒体出示不等式解和二元一次不等式的解集的概念及含义: 使二元一次不等式成立的一对x 与y 值是二元一次不等式的一个解. 二元一次不等式的所有解组成的集合是这个二元一次不等式的解集
( 设计意图: 使学生明确什么是二元一次不等式的解, 什么是二元一次不等式的解集)
③老师提出问题: 怎么确定5>+y x 的解集? 经过下面过程引导学生探索 要求学生画出直线5=+y x , 然后在坐标系中描出以上各解所对应的点, 提问学生这些点的分布有什么规律?
学生口答: 这些点分布在直线5=+y x 的一侧。
教师放映多媒体, 验证学生的回答。