2017年内蒙古包头市中考数学试卷与试卷解析

合集下载

包头近三年中考数学题目含答案详解)

包头近三年中考数学题目含答案详解)

2017年内蒙古包头市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算(12)﹣1所得结果是()A.﹣2 B.−12C.12D.22.(3分)a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣33.(3分)一组数据5,7,8,10,12,12,44的众数是()A.10 B.12 C.14 D.444.(3分)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.5.(3分)下列说法中正确的是()A.8的立方根是±2B.√8是一个最简二次根式C.函数y=1x−1的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称6.(3分)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm7.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为()A.14B.13C.512D.128.(3分)若关于x的不等式x﹣a2<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.无法确定9.(3分)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4√2,则图中阴影部分的面积为()A.π+1 B.π+2 C.2π+2 D.4π+110.(3分)已知下列命题:①若ab>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A .1个B .2个C .3个D .4个11.(3分)已知一次函数y 1=4x ,二次函数y 2=2x 2+2,在实数范围内,对于x 的同一个值,这两个函数所对应的函数值为y 1与y 2,则下列关系正确的是( )A .y 1>y 2B .y 1≥y 2C .y 1<y 2D .y 1≤y 212.(3分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为( )A .32B .43C .53D .85二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.(3分)2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为 .14.(3分)化简:a 2−1a 2÷(1a﹣1)•a= . 15.(3分)某班有50名学生,平均身高为166cm ,其中20名女生的平均身高为163cm ,则30名男生的平均身高为 cm .16.(3分)若关于x 、y 的二元一次方程组{x +y =32x −ay =5的解是{x =b y =1,则a b 的值为 .17.(3分)如图,点A 、B 、C 为⊙O 上的三个点,∠BOC=2∠AOB ,∠BAC=40°,则∠ACB= 度.18.(3分)如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC=2BF ,连接AE ,EF .若AB=2,AD=3,则cos ∠AEF 的值是 .19.(3分)如图,一次函数y=x ﹣1的图象与反比例函数y=2x 的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC=BC ,则点C 的坐标为 .20.(3分)如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB 上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN.下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④若点D是AB的中点,则S△ABC =2S△ABE.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤. 21.(8分)有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.22.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)23.(10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?24.(10分)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD 的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,CEDE=95,求tan∠OBC的值及DP的长.25.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.26.(12分)如图,在平面直角坐标系中,已知抛物线y=32x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点 M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为53.求点H到OM'的距离d的值.2017年内蒙古包头市中考数学试卷2016年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分。

内蒙古包头市2017年中考数学试题含答案解析

内蒙古包头市2017年中考数学试题含答案解析

三、解答题:本大题共 6 小题,共 60 分.解答应写出文字说明、证明过程或演算步骤.
21.有三张正面分别标有数字﹣3,1,3 的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从 三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张. (1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率; (2)求两次抽取的卡片上的数字之和为非负数的概率. 【答案】 ) (1) 【解析】 试题分析: (1)画出树状图列出所有等可能结果,再找到数字之积为负数的结果数,根据概率公式可得; (2)根据(1)中树状图列出数字之和为非负数的结果数,再根据概率公式求解可得. 试题解析: (1)画树状图如下:
A.
3 2
B.
4 3
C.
5 3
D.
8 5
【答案】A. 【解析】 试题分析:过点 F 作 FG⊥AB 于点 G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°, ∠FAD+∠AED=90°,∵AF 平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF 平分 ∠CAB, ∠ACF=∠AGF=90°, ∴FC=FG, ∵∠B=∠B, ∠FGB=∠ACB=90°, ∴△BFG∽△BAC, ∴
1 4
B.
1 3
1 ,则随机摸出一个红球的概率为( 3 5 1 C. D. 12 2

【答案】A. 【解析】
考点:概率公式. 8.若关于 x 的不等式 x A.有两个相等的实数根 C.无实数根 【答案】C. 【解析】 试题分析:解不等式 x
2
a 1 的解集为 x<1,则关于 x 的一元二次方程 x 2 ax 1 0 根的情况是( 2

内蒙古包头市中考数学试卷

内蒙古包头市中考数学试卷

2017年内蒙古包头市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算()﹣1所得结果是()A.﹣2 B. C.D.22.(3分)a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣33.(3分)一组数据5,7,8,10,12,12,44的众数是()A.10 B.12 C.14 D.444.(3分)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.5.(3分)下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称6.(3分)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm7.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.B.C.D.8.(3分)若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定9.(3分)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1 B.π+2 C.2π+2 D.4π+110.(3分)已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个11.(3分)已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y212.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.(3分)2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为.14.(3分)化简:÷(﹣1)•a= .15.(3分)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为cm.16.(3分)若关于x、y的二元一次方程组的解是,则a b的值为.17.(3分)如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB= 度.18.(3分)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.19.(3分)如图,一次函数y=x﹣1的图象与反比例函数y=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为.20.(3分)如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN.下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④若点D是AB的中点,则S△ABC =2S△ABE.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤. 21.(8分)有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.22.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA 交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)23.(10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?24.(10分)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求tan∠OBC的值及DP的长.25.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点 M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值.2017年内蒙古包头市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•包头)计算()﹣1所得结果是()A.﹣2 B. C.D.2【分析】根据负整数指数幂的运算法则计算即可.【解答】解:()﹣1==2,故选:D.【点评】本题考查的是负整数指数幂的运算,掌握a﹣p=是解题的关键.2.(3分)(2017•包头)a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣3【分析】分别求出a b的值,分为两种情况:①当a=﹣1,b=﹣2时,②当a=1,b=﹣2时,分别代入求出即可.【解答】解:∵a2=1,b是2的相反数,∴a=±1,b=﹣2,①当=﹣1,b=﹣2时,a+b=﹣3;②当a=1,b=﹣2时,a+b=﹣1.故选C.【点评】本题考查了有理数的乘方,相反数,求代数式的值等知识点,关键是求出a b 的值,注意有两种情况啊.3.(3分)(2017•包头)一组数据5,7,8,10,12,12,44的众数是()A.10 B.12 C.14 D.44【分析】根据众数的定义即可得.【解答】解:这组数据中12出现了2次,次数最多,∴众数为12,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.4.(3分)(2017•包头)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.【分析】由平面图形的折叠及无盖正方体的展开图就可以求出结论.【解答】解:由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C 拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.【点评】本题考查了正方体的平面展开图,解答时熟悉四棱柱的特征及无盖正方体展开图的各种情形是关键.5.(3分)(2017•包头)下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称【分析】根据开立方,最简二次根式的定义,分母不能为零,关于原点对称的点的坐标,可得答案.【解答】解:A、8的立方根是2,故A不符合题意;B、不是最简二次根式,故B不符合题意;C、函数y=的自变量x的取值范围是x≠1,故C不符合题意;D、在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称,故D符合题意;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6.(3分)(2017•包头)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.7.(3分)(2017•包头)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.B.C.D.【分析】设红球有x个,根据摸出一个球是蓝球的概率是,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【解答】解:∵在一个不透明的口袋里有红、黄、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有5个黄球,4个蓝球,随机摸出一个蓝球的概率是,设红球有x个,∴=,解得:x=3∴随机摸出一个红球的概率是:=.故选A.【点评】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.8.(3分)(2017•包头)若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定【分析】先解不等式,再利用不等式的解集得到1+=1,则a=0,然后计算判别式的值,最后根据判别式的意义判断方程根的情况.【解答】解:解不等式x﹣<1得x<1+,而不等式x﹣<1的解集为x<1,所以1+=1,解得a=0,又因为△=a2﹣4=﹣4,所以关于x的一元二次方程x2+ax+1=0没有实数根.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.(3分)(2017•包头)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1 B.π+2 C.2π+2 D.4π+1【分析】连接DO、AD,求出圆的半径,求出∠BOD和∠DOA的度数,再分别求出△BOD和扇形DOA的面积即可.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选B.【点评】本题考查了扇形的面积计算,解直角三角形等知识点,能求出扇形DOA的面积和△DOB的面积是解此题的关键.10.(3分)(2017•包头)已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【分析】根据不等式的性质、等边三角形的性质和判定、等腰三角形的性质和判定、相反数逐个判断即可.【解答】解:∵当b<0时,如果>1,那么a<b,∴①错误;∵若a+b=0,则|a|=|b|正确,但是若|a|=|b|,则a+b=0错误,∴②错误;∵等边三角形的三个内角都相等,正确,逆命题也正确,∴③正确;∵底角相等的两个等腰三角形不一定全等,∴④错误;其中原命题与逆命题均为真命题的个数是1个,故选A.【点评】本题考查了不等式的性质、等边三角形的性质和判定、等腰三角形的性质和判定、相反数、命题与定理等知识点,能熟记知识点的内容是解此题的关键.11.(3分)(2017•包头)已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2【分析】首先判断直线y=4x与抛物线y=2x2+2只有一个交点,如图所示,利用图象法即可解决问题.【解答】解:由消去y得到:x2﹣2x+1=0,∵△=0,∴直线y=4x与抛物线y=2x2+2只有一个交点,如图所示,观察图象可知:y1≤y2,故选D.【点评】本题考查一次函数与二次函数的应用,解题的关键是判断出直线与抛物线只有一个交点,学会利用图象法解决问题.12.(3分)(2017•包头)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF 平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.(3分)(2017•包头)2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为3×1012.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3万亿=3×1012,故答案为:3×1012.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)(2017•包头)化简:÷(﹣1)•a= ﹣a﹣1 .【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=••a=﹣(a+1)=﹣a﹣1,故答案为:﹣a﹣1【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(3分)(2017•包头)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为168 cm.【分析】根据平均数的公式求解即可.用50名身高的总和减去20名女生身高的和除以30即可.【解答】解:设男生的平均身高为x,根据题意有:=166,解可得x=168(cm).故答案为168.【点评】本题考查的是样本平均数的求法及运用,即平均数公式:=.16.(3分)(2017•包头)若关于x、y的二元一次方程组的解是,则a b 的值为 1 .【分析】将方程组的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可求a b的值.【解答】解:∵关于x、y的二元一次方程组的解是,∴,解得a=﹣1,b=2,∴a b=(﹣1)2=1.故答案为1.【点评】此题主要考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.也考查了解二元一次方程组.17.(3分)(2017•包头)如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB= 20 度.【分析】根据圆周角定理即可得到结论.【解答】解:∵∠BAC=BOC,∠ACB=AOB,∵∠BOC=2∠AOB,∴∠ACB=BAC=20°.故答案为:20.【点评】此题主要考查了圆周角定理的应用,熟记圆周角定理是解题关键.18.(3分)(2017•包头)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.【分析】接AF,由矩形的性质得出∠B=∠C=90°,CD=AB=2,BC=AD=3,证出AB=FC,BF=CE,由SAS证明△ABF≌△FCE,得出∠BAF=∠CFE,AF=FE,证△AEF是等腰直角三角形,得出∠AEF=45°,即可得出答案.【解答】解:连接AF,如图所示:∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵FC=2BF,∴BF=1,FC=2,∴AB=FC,∵E是CD的中点,∴CE=CD=1,∴BF=CE,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴∠BAF=∠CFE,AF=FE,∵∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣90°=90°,∴△AEF是等腰直角三角形,∴∠AEF=45°,∴ocs∠AEF=;故答案为:.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、三角函数等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.19.(3分)(2017•包头)如图,一次函数y=x﹣1的图象与反比例函数y=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为(0,2).【分析】利用方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【解答】解:由,解得或,∴A(2,1),B(1,0),设C(0,m),∵BC=AC,∴AC2=BC2,即4+(m﹣1)2=1+m2,∴m=2,故答案为(0,2).【点评】本题考查反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是学会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题,属于中考常考题型.20.(3分)(2017•包头)如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN.下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④若点D是AB的中点,则S△ABC =2S△ABE.其中正确的结论是①②④.(填写所有正确结论的序号)【分析】①根据SAS证明△ACD≌△ABE;②先证明△ACN≌△ABM,得△AMN也是等腰三角形,且顶角与△ABC的顶角相等,所以△ABC∽△AMN;③由AN=AM,可得△AMN为等腰三角形;④根据三角形的中线将三角形面积平分得:S△ACD =2S△ACN,S△ABE=2S△ABM,则S△ABC=2S△ACD=2S△ABE.【解答】解:①在△ACD和△ABE中,∵,∴△ACD≌△ABE(SAS),所以①正确;②∵△ACD≌△ABE,∴CD=BE,∠NCA=∠MBA,又∵M,N分别为BE,CD的中点,∴CN=BM,在△ACN和△ABM中,∵,∴△ACN≌△ABM,∴AN=AM,∠CAN∠BAM,∴∠BAC=∠MAN,∵AB=AC,∴∠ACB=∠ABC,∴∠ABC∠AMN,∴△ABC ∽△AMN , 所以②正确; ③∵AN=AM ,∴△AMN 为等腰三角形, 所以③不正确; ④∵△ACN ≌△ABM , ∴S △ACN =S △ABM ,∵点M 、N 分别是BE 、CD 的中点, ∴S △ACD =2S △ACN ,S △ABE =2S △ABM , ∴S △ACD =S △ABE , ∵D 是AB 的中点, ∴S △ABC =2S △ACD =2S △ABE , 所以④正确;本题正确的结论有:①②④; 故答案为:①②④.【点评】本题考查了三角形全等的性质和判定、等腰三角形的性质和判定、三角形中线的性质、三角形相似的性质和判定,熟练掌握三角形全等的性质和判定及三角形中线平分面积的性质是关键;此类选择题比较麻烦,类似四个证明题,所以要认真审题,并做出正确的判断.三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤. 21.(8分)(2017•包头)有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率; (2)求两次抽取的卡片上的数字之和为非负数的概率.【分析】(1)画出树状图列出所有等可能结果,再找到数字之积为负数的结果数,根据概率公式可得;(2)根据(1)中树状图列出数字之和为非负数的结果数,再根据概率公式求解可得. 【解答】解:(1)画树状图如下:由树状图可知,共有9种等可能结果,其中数字之积为负数的有4种结果,∴两次抽取的卡片上的数字之积为负数的概率为;(2)在(1)种所列9种等可能结果中,数字之和为非负数的有6种,∴两次抽取的卡片上的数字之和为非负数的概率为=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2017•包头)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)【分析】(1)首先证明∠CAD=30°,易知AD=2CD即可解决问题;(2)首先证明四边形AEDF是菱形,求出ED即可解决问题;【解答】解:(1)∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠CAB=30°,在Rt△ACD中,∵∠ACD=90°,∠CAD=30°,∴AD=2CD=6.(2)∵DE∥BA交AC于点E,DF∥CA交AB于点F,∴四边形AEDF是平行四边形,∵∠EAD=∠ADF=∠DAF,∴AF=DF,∴四边形AEDF是菱形,∴AE=DE=DF=AF,在Rt△CED中,∵∠CDE=∠B=30°,∴DE==2,∴四边形AEDF的周长为8.【点评】本题考查菱形的判定和性质、平行线的性质、直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(10分)(2017•包头)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?【分析】(1)由矩形的一边长为x、周长为16得出另一边长为8﹣x,根据矩形的面积公式可得答案;(2)由设计费为24000元得出矩形面积为12平方米,据此列出方程,解之求得x的值,从而得出答案;(3)将函数解析式配方成顶点式,可得函数的最值情况.【解答】解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷200=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S=16,最大值∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.【点评】本题主要考查二次函数的应用与一元二次方程的应用,根据矩形的面积公式得出函数解析式,并熟练掌握二次函数的性质是解题的关键.24.(10分)(2017•包头)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求tan∠OBC的值及DP的长.【分析】(1)直接根据题意得出△AED∽△CEB,进而利用切线的性质的出答案;(2)利用已知得出EC,DE的长,再利用勾股定理得出CF的长,t即可得出an∠OBC的值,再利用全等三角形的判定与性质得出DP的长.【解答】(1)证明:连接AD,∵∠A=∠BCD,∠AED=∠CEB,∴△AED∽△CEB,∴=,∴AE•EB=CE•ED;(2)解:∵⊙O的半径为3,∴OA=OB=OC=3,∵OE=2BE,∴OE=2,BE=1,AE=5,∵=,∴设CE=9x,DE=5x,∵AE•EB=CE•ED,∴5×1=9x•5x,解得:x1=,x2=﹣(不合题意舍去)∴CE=9x=3,DE=5x=,过点C作CF⊥AB于F,∵OC=CE=3,∴OF=EF=OE=1,∴BF=2,在Rt△OCF中,∵∠CFO=90°,∴CF2+OF2=OC2,∴CF=2,在Rt△CFB中,∵∠CFB=90°,∴tan∠OBC===,∵CF⊥AB于F,∴∠CFB=90°,∵BP是⊙O的切线,AB是⊙O的直径,∴∠EBP=90°,∴∠CFB=∠EBP,在△CFE和△PBE中,∴△CFE≌△PBE(ASA),∴EP=CE=3,∴DP=EP﹣ED=3﹣=.【点评】此题主要考查了全等三角形的判定与性质以及相似三角形的判定与性质,正确得出EP的长是解题关键.25.(12分)(2017•包头)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',【分析】只要证明△CDD′是等边三角形即可解决问题;②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;(2)由△A′DF∽△A′D′C,可得=,推出DF=,同理可得△CDE∽△CB′A′,由=,求出DE,即可解决问题;=•AC•CF=•AF•CD,把问题转化为求AF (3)如图③中,作FG⊥CB′于G,由S△ACF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;【解答】解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°,∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=3.②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=30°,在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2,∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴=,∴=,∴DF=,同理可得△CDE∽△CB′A′,∴=,∴=,∴ED=,∴EF=ED+DF=.(3)如图③中,作FG⊥CB′于G.,∵四边形A′B′CD′是矩形,∴GF=CD′=CD=3,∵S=•EF•DC=•CE•FG,△CEF∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°,∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴=,∴AC2=AD•AF,∴AF=,∵S=•AC•CF=•AF•CD,△ACF∴AC•CF=AF•CD=.【点评】本题考查矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理、面积法等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,属于中考压轴题.26.(12分)(2017•包头)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点 M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值.【分析】(1)根据抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,可得抛物线的解析式;(2)①过点E作EE'⊥x轴于E',则EE'∥OC,根据平行线分线段成比例定理,可得BE'=4OE',设点E的坐标为(x,y),则OE'=x,BE'=4x,根据OB=2,可得x=,再根据直线BC的解析式为y=x﹣3,即可得到E(,﹣),把E的坐标代入直线y=﹣x+n,可得n的值;②根据F(﹣2,0),A(﹣1,0),可得AF=1,再根据点D的坐标为(1,﹣3),点C的坐标为(0,﹣3),可得CD∥x轴,CD=1,再根据∠AFG=∠CDG,∠FAG=∠DCG,即可判定△AGF≌△CGD;(3)根据轴对称的性质得出OH=1=M'N,进而判定四边形OM'NH是平行四边形,再根据四边形OM'NH的面积为,求得OP=,再根据点M的坐标为(﹣,),得到PM'=,Rt △OPM'中,运用勾股定理可得OM'=,最后根据OM'×d=,即可得到d=.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,∴,解得,∴该抛物线的解析式y=x2﹣x﹣3;(2)①如图,过点E作EE'⊥x轴于E',则EE'∥OC,∴=,∵BE=4EC,∴BE'=4OE',设点E的坐标为(x,y),则OE'=x,BE'=4x,∵B(2,0),∴OB=2,即x+4x=2,∴x=,∵抛物线y=x2﹣x﹣3与y轴交于点C,∴C(0,﹣3),设直线BC的解析式为y=kx+b',∵B(2,0),C(0,﹣3),∴,解得,∴直线BC的解析式为y=x﹣3,当x=时,y=﹣,∴E(,﹣),把E的坐标代入直线y=﹣x+n,可得﹣+n=﹣,解得n=﹣2;②△AGF与△CGD全等.理由如下:∵直线EF的解析式为y=﹣x﹣2,∴当y=0时,x=﹣2,∴F(﹣2,0),OF=2,∵A(﹣1,0),∴OA=1,∴AF=2﹣1=1,由解得,,∵点D在第四象限,∴点D的坐标为(1,﹣3),∵点C的坐标为(0,﹣3),∴CD∥x轴,CD=1,∴∠AFG=∠CDG,∠FAG=∠DCG,∴△AGF≌△CGD;(3)∵抛物线的对称轴为x=﹣=,直线y=m(m>0)与该抛物线的交点为M,N,∴点M、N关于直线x=对称,设N(t,m),则M(1﹣t,m),∵点 M关于y轴的对称点为点M',∴M'(t﹣1,m),∴点M'在直线y=m上,∴M'N∥x轴,∴M'N=t﹣(t﹣1)=1,∵H(1,0),∴OH=1=M'N,∴四边形OM'NH是平行四边形,设直线y=m与y轴交于点P,∵四边形OM'NH的面积为,∴OH×OP=1×m=,即m=,∴OP=,当x2﹣x﹣3=时,解得x1=﹣,x2=,∴点M的坐标为(﹣,),∴M'(,),即PM'=,∴Rt△OPM'中,OM'==,∵四边形OM'NH的面积为,∴OM'×d=,∴d=.【点评】本题属于二次函数综合题,主要考查了待定系数法求二次函数解析式、轴对称的性质、平行线分线段成比例定理、全等三角形的判定以及平行四边形的判定与性质的综合应用,解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.。

包头近三年中考数学题目含答案详解

包头近三年中考数学题目含答案详解

2017年内蒙古包头市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算(12)﹣1所得结果是( ) A .﹣2 B .−12 C .12D .2 2.(3分)a 2=1,b 是2的相反数,则a +b 的值为( )A .﹣3B .﹣1C .﹣1或﹣3D .1或﹣33.(3分)一组数据5,7,8,10,12,12,44的众数是( )A .10B .12C .14D .444.(3分)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .5.(3分)下列说法中正确的是( )A .8的立方根是±2B .√8是一个最简二次根式C .函数y=1x−1的自变量x 的取值范围是x >1 D .在平面直角坐标系中,点P (2,3)与点Q (﹣2,3)关于y 轴对称6.(3分)若等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形的底边长为( )A .2cmB .4cmC .6cmD .8cm7.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为( )A .14B .13C .512D .128.(3分)若关于x 的不等式x ﹣a 2<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定9.(3分)如图,在△ABC 中,AB=AC ,∠ABC=45°,以AB 为直径的⊙O 交BC 于点D ,若BC=4√2,则图中阴影部分的面积为( )A .π+1B .π+2C .2π+2D .4π+1 10.(3分)已知下列命题:①若a b >1,则a >b ;②若a +b=0,则|a |=|b |;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个11.(3分)已知一次函数y 1=4x ,二次函数y 2=2x 2+2,在实数范围内,对于x 的同一个值,这两个函数所对应的函数值为y 1与y 2,则下列关系正确的是( )A .y 1>y 2B .y 1≥y 2C .y 1<y 2D .y 1≤y 212.(3分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为()A .32B .43C .53D .85二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.(3分)2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为 .14.(3分)化简:a 2−1a ÷(1a ﹣1)a= .15.(3分)某班有50名学生,平均身高为166cm ,其中20名女生的平均身高为163cm ,则30名男生的平均身高为 cm .16.(3分)若关于x 、y 的二元一次方程组{x +y =32x −ay =5的解是{x =b y =1,则a b 的值为 .17.(3分)如图,点A 、B 、C 为⊙O 上的三个点,∠BOC=2∠AOB ,∠BAC=40°,则∠ACB= 度.18.(3分)如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC=2BF ,连接AE ,EF .若AB=2,AD=3,则cos ∠AEF 的值是 .19.(3分)如图,一次函数y=x ﹣1的图象与反比例函数y=2x的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC=BC ,则点C 的坐标为 .20.(3分)如图,在△ABC 与△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE ,且点D 在AB 上,点E 与点C 在AB 的两侧,连接BE ,CD ,点M 、N 分别是BE 、CD 的中点,连接MN ,AM ,AN .下列结论:①△ACD ≌△ABE ;②△ABC ∽△AMN ;③△AMN 是等边三角形;④若点D 是AB 的中点,则S △ABC =2S △ABE .其中正确的结论是 .(填写所有正确结论的序号)三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.(8分)有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.22.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)23.(10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗为什么(3)当x是多少米时,设计费最多最多是多少元24.(10分)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AEEB=CEED;(2)若⊙O的半径为3,OE=2BE,CEDE =95,求tan∠OBC的值及DP的长.25.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求ACCF的值.26.(12分)如图,在平面直角坐标系中,已知抛物线y=32x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点 M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为53.求点H到OM'的距离d的值.2017年内蒙古包头市中考数学试卷2016年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分。

内蒙古呼和浩特市2017年中考数学真题试题(含解析)

内蒙古呼和浩特市2017年中考数学真题试题(含解析)

内蒙古呼和浩特市2017年中考数学真题试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我市冬季里某一天的最低气温是10C -︒,最高气温是5C ︒,这一天的温差为( ) A .5C -︒ B .5C ︒ C .10C ︒ D .15C ︒【答案】D 【解析】试题分析:5﹣(﹣10),=5+10,=15℃.故选D . 考点:有理数的减法.2.中国的陆地面积为29600000km ,将这个数用科学记数法可表示为( ) A .720.9610km ⨯ B .4296010km ⨯ C .629.610km ⨯D .529.610km ⨯【答案】C 【解析】试题分析:9600000=9.6×106.故选C 考点:科学记数法—表示较大的数.3.如图中序号(1)(2)(3)(4)对应的四个三角形,都是ABC ∆这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是( )A .(1)B .(2)C .(3)D .(4)【答案】A 【解析】考点:轴对称图形.4.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是( )A .2010年至2014年间工业生产总值逐年增加B .2014年的工业生产总值比前一年增加了40亿元C .2012年与2013年每一年与前一年比,其增长额相同D .从2011年至2014年,每一年与前一年比,2014年的增长率最大 【答案】D 【解析】考点:折线统计图.5.关于x 的一元二次方程22(2)10x a a x a +-+-=的两个实数根互为相反数,则a 的值为( ) A .2 B .0 C .1 D .2或0【答案】B 【解析】试题分析:设方程的两根为x 1,x 2,根据题意得x 1+x 2=0,所以a 2﹣2a=0,解得a=0或a=2, 当a=2时,方程化为x 2+1=0,△=﹣4<0,故a=2舍去,所以a 的值为0. 故选B .考点:根与系数的关系.6.一次函数y kx b =+满足0kb >,且y 随x 的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】考点:一次函数图象与系数的关系. 7.如图,CD 是O 的直径,弦AB CD ⊥,垂足为M ,若12AB =,:5:8OM MD =,则O 的周长为( )A .26πB .13πC .965πD .5【答案】B 【解析】试题分析:连接OA ,∵CD 为⊙O 的直径,弦AB ⊥CD ,∴AM=12AB=6,∵OM :MD=5:8,∴设OM=5x ,DM=8x , ∴OA=OD=13x ,∴AM=12x=6,∴x=12,∴OA=12×13,∴⊙O 的周长=2OA•π=13π,故选B .考点:垂径定理.8.下列运算正确的是( )A .222222(2)2()3a b a b a b +--+=+ B .212111a aa a a +--=--C .32()(1)mm m m a a a -÷=-D .2651(21)(31)x x x x --=--【答案】C 【解析】故选C .考点:1.分式的加减法;2.整式的混合运算;3.因式分解﹣十字相乘法.9.如图,四边形ABCD 是边长为1的正方形,E ,F 为BD 所在直线上的两点,若AE =,135EAF ∠=︒,则以下结论正确的是( )A .1DE =B .1tan 3AFO ∠=C .2AF =D .四边形AFCE 的面积为94【答案】C 【解析】试题分析:∵四边形ABCD 是正方形,∴AB=CB=CD=AD=1,AC ⊥BD ,∠ADO=∠ABO=45°,∴OD=OB=OA=2,∠ABF=∠ADE=135°,在Rt △AEO 中,2==,∴ ,故A 错误; ∵∠EAF=135°,∠BAD=90°,∴∠BAF+∠DAE=45°,∵∠ADO=∠DAE+∠AE D=45°,∴∠BAF=∠AED ,∴△ABF ∽△EDA ,∴BF ABDA DE = ,∴1BF = ,∴,在Rt △AOF 中,2==,故C 正确;考点:1.正方形的性质;2.解直角三角形.10.函数21||x y x +=的大致图象是( )A .B .C .D .【答案】B 【解析】试题分析:①∵|x|为分母,∴|x|≠0,即|x|>0,∴A 错误;②∵x 2+1>0,|x|>0,∴y=21x x+ >0,∴D 错误;③∵当直线经过(0,0)和(1,32 )时,直线解析式为y=32x ,当y=32x=21x x +时, ,∴y=32x 与y=21x x +有交点,∴C 错误;④∵当直线经过(0,0)和(1,1)时,直线解析式为y=x ,当y=x=21x x +时,x 无解,∴y=x 与y=21x x+没有有交点,∴B 正确;故选B考点:函数的图象.第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上) 11.有意义的x 的取值范围为 . 【答案】x <12【解析】试题分析:由题意得:1﹣2x >0,解得:x <12; 考点:1.二次根式有意义的条件;2.分式有意义的条件.12.如图,//AB CD ,AE 平分CAB ∠交CD 于点E ,若48C ∠=︒,则AED ∠为 .【答案】114° 【解析】考点:1.平行线的性质;2.角平分线的定义.13.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为 .【答案】()π 【解析】试题分析:由三视图可知,几何体是由圆柱体和圆锥体构成,故该几何体的表面积为:20×10π+π×52+π×5=()π考点:由三视图判断几何体. 14.下面三个命题: ①若,x a y b =⎧⎨=⎩是方程组||2,23x x y =⎧⎨-=⎩的解,则1a b +=或0a b +=;②函数2241y x x =-++通过配方可化为22(1)3y x =--+; ③最小角等于50︒的三角形是锐角三角形. 其中正确命题的序号为 . 【答案】②③ 【解析】考点:命题与定理.15.如图,在ABCD 中,30B ∠=︒,AB AC =,O 是两条对角线的交点,过点O 作AC 的垂线分别交边AD ,BC 于点E ,F ,点M 是边AB 的一个三等分点,则AOE ∆与BMF∆的面积比为.【答案】3:4.【解析】作MH⊥BC于H,∵∠B=30°,∴MH=12BM=m,∴S△BMF=12BF•MH=12×m×m=m2,∴234SS==△AOE△BMF.考点:1.相似三角形的判定与性质;2.平行四边形的性质.16.我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计.用计算机随机产生m个有序对(,)x y (x ,y 是实数,且01x ≤≤,01y ≤≤),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部,如果统计出这些点中到原点的距离小于或等于1的点有n 个,则据此可估计π的值为 .(用含m ,n 的式子表示) 【答案】4nm【解析】试题分析:根据题意,点的分布如图所示:则有14=1nmπ ,∴π=4n m .考点:1.利用频率估计概率;2.规律型:点的坐标.三、解答题 (本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 17.(1)计算:3|2)22-+; (2)先化简,再求值:2222441242x x x x x x x --+÷++-,其中65x =-. 【答案】(1)原式1;(2)32x ,﹣54. 【解析】当x=﹣65 时,原式=﹣54.考点:1.分式的化简求值;2.实数的运算.18.如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD CE=;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点.当ABC∆的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.【答案(1)证明见解析;(2)四边形DEMN是正方形.【解析】(2)四边形DEMN是正方形,理由:∵E、D分别是AB、AC的中点,∴AE=12AB,AD=12AC,ED是△ABC的中位线,∴ED∥BC,ED=12 BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN=12BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC 与△CEB 中,BE CD CE BD BC CB =⎧⎪=⎨⎪=⎩,∴△BDC ≌△CEB ,∴∠BCE=∠CBD ,∴OB=OC ,∵△ABC 的重心到顶点A 的距离与底边长相等,∴O 到BC 的距离=12BC ,∴BD ⊥CE , ∴四边形DEMN 是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.19.为了解某个某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x (单位:C ︒)进行调查,并将所得的数据按照1216x ≤<,1620x ≤<,2024x ≤<,2428x ≤<,2832x ≤<分成五组,得到如图频率分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24C ︒的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.【答案】(1)这30天最高气温的平均数为20.4℃;中位数为22℃;(2)该地这个季度中最高气温超过(1)中平均数的天数为48天;(3)这两天都在气温最高一组内的概率为25. 【解析】数的天数;(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,据此可得这两天都在气温最高一组内的概率.试题解析:(1)这30天最高气温的平均数为:148186221026230430⨯+⨯+⨯+⨯+⨯=20.4℃; ∵中位数落在第三组内,∴中位数为22℃;(2)∵30天中,最高气温超过(1)中平均数的天数为16天,∴该地这个季度中最高气温超过(1)中平均数的天数为1630×90=48(天); (3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种, 故这两天都在气温最高一组内的概率为615 =25. 考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.加权平均数;5.中位数.20.某专卖店有A ,B 两种商品.已知在打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;A ,B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1960元,计算打了多少折?【答案】打了八折.【解析】980019609800- =0.8. 答:打了八折.考点:二元一次方程组的应用.21.已知关于x 的不等式21122m mx x ->-. (1)当1m =时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】(1)x <2;(2)当m ≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2.【解析】考点:不等式的解集.22.如图,地面上小山的两侧有A ,B 两地,为了测量A ,B 两地的距离,让一热气球从小山西侧A 地出发沿与AB 成30︒角的方向,以每分钟40m 的速度直线飞行,10分钟后到达C 处,此时热气球上的人测得CB 与AB 成70︒角,请你用测得的数据求A ,B 两地的距离AB 长.(结果用含非特殊角的三角函数和根式表示即可)【答案】A ,B 两地的距离AB 长为200【解析】试题分析:过点C 作CM ⊥AB 交AB 延长线于点M ,通过解直角△ACM 得到AM 的长度,通过解直角△BCM 得到BM 的长度,则AB=AM ﹣BM .试题解析:过点C 作CM ⊥AB 交AB 延长线于点M ,由题意得:AC=40×10=400(米).在直角△ACM 中,∵∠A =30°,∴CM=12 AC=200米, 米. 在直角△BCM 中,∵tan20°=BM CM,∴BM=200tan20°,∴AB=AM ﹣,因此A ,B 两地的距离AB 长为200﹣tan20°)米.考点:解直角三角形的应用.23.已知反比例函数21k y x--=(k 为常数).(1)若点111()2P y -和点221(,)2P y -是该反比例函数图象上的两点,试利用反比例函数的性质比较1y 和2y 的大小;(2)设点(,)P m n (0m >)是其图象上的一点,过点P 作PM x ⊥轴于点M ,若tan 2POM ∠=,PO =O 为坐标原点),求k 的值,并直接写出不等式210k kx x++>的解集.【答案】(1)y 1>y 2;(2)k=±1,①当k=﹣1时,解集为x 或0<x ;②当k=1时,则解集为:x >0.【解析】试题解析:(1)∵﹣k 2﹣1<0,∴反比例函数21k y x --=在每一个象限內y 随x 的增大而增大,∵﹣12 <12<0,∴y 1>y 2;考点:1.反比例函数图象上点的坐标特征;2.解直角三角形.24.如图,点A ,B ,C ,D 是直径为AB 的O 上的四个点,C 是劣弧BD 的中点,AC与BD 交于点E .(1)求证:2DC CE AC =⋅;(2)若2AE =,1EC =,求证:AOD ∆是正三角形;(3)在(2)的条件下,过点C 作O 的切线,交AB 的延长线于点H ,求ACH ∆的面积.【答案】(1)证明见解析;(2)证明见解析;(3)△ACH . 【解析】 试题分析:(1)由圆周角定理得出∠DAC=∠CDB ,证明△ACD ∽△DCE ,得出对应边成比例,即可得出结论;(2)求出连接OC 、OD ,如图所示:证出,由圆周角定理得出∠ACB=90°,由勾股定理得出OCD 、△OBC 是正三角形,得出∠COD=∠BOC=∠OBC=60°,求出∠AOD=60°,即可得出结论;(3)由切线的性质得出OC ⊥CH ,求出∠H=30°,证出∠H=∠BAC ,得出AC=CH=3,求出AH 和高,由三角形面积公式即可得出答案.(3)∵CH 是⊙O 的切线,∴OC ⊥CH ,∵∠COH=60°,∴∠H=30°,∵∠BAC=90°﹣60°=30°,∴∠H=∠BAC ,∴AC=CH=3,∵,AH 上的高为BC•sin60°=32 ,∴△ACH 的面积=12 ×32=4.考点:圆的综合题.25.在平面直角坐标系xOy 中,抛物线2y ax bx c =++与y 轴交于点C ,其顶点记为M ,自变量1x =-和5x =对应的函数值相等.若点M 在直线l :1216y x =-+上,点(3,4)-在抛物线上.(1)求该抛物线的解析式;(2)设2y ax bx c =++对称轴右侧x 轴上方的图象上任一点为P ,在x 轴上有一点7(,0)2A -,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出相应的P 点横坐标x 的取值范围;(3)直线l 与抛物线另一点记为B ,Q 为线段BM 上一动点(点Q 不与M 重合).设Q 点坐标为(,)t n ,过Q 作QH ⊥x 轴于点H ,将以点Q ,H ,O ,C 为顶点的四边形的面积S 表示为t 的函数,标出自变量t 的取值范围,并求出S 可能取得的最大值.【答案】(1)抛物线的解析式为y=4x 2﹣16x+8;(2)当x=247时,∠PCO=∠ACO ,当<x <247时,∠PCO <∠ACO ,当247<x <4时,∠PCO >∠ACO ;(3)祥见解析. 【解析】试题分析:(1)根据已知条件得到抛物线的对称轴为x=2.设抛物线的解析式为y=a (x ﹣2)2﹣8.将(3,﹣4)代入得抛物线的解析式为y=4(x ﹣2)2﹣8,即可得到结论;∴OD=OA=72,∵P 点的横坐标是x ,∴P 点的纵坐标为4x 2﹣16x+8, ∵PH ∥OD ,∴△CHP ∽△COD ,∴CH PH OC OD = ,∴x=247, 过C 作CE ∥x 轴交抛物线与E ,则CE=4,设抛物线与x 轴交于F ,B ,则B ( ,0),∴y=ax 2+bx+c 对称轴右侧x 轴上方的图象上任一点为P ,∴当x =247时,∠PCO=∠ACO ,当x <247时,∠PCO <∠ACO , 当247<x <4时,∠PCO >∠ACO ; (3)解方程组212164168y x y x x =-+⎧⎨=-+⎩,解得:128x y =-⎧⎨=⎩ ,∴D (﹣1,28),∵43<t<2,∴此时S=16为最大值.考点:二次函数综合题.。

2017年中考数学内蒙古包头市中考数学试卷含解析

2017年中考数学内蒙古包头市中考数学试卷含解析

内蒙古包头市2017年中考数学试卷
一、选择题:本大题共12个小题,每小,3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
/I Y1
1.计算
-所得结果是()
D. 2
1
A. - 2
B. ------
2
【答案】D.
【解析】
I 1 V1 1
试题分析:一二〒二2,故选D.
考点:负艳数指数肆.
2.若a2 = b b是2的相反数,则a+b的值为()
A.・3
B.・1
C.・1或・3
D. 1或・3
【答案】C.
【解析】试题分析:是2的相反数,/.o=± 1, b=-2f①当=一1"= 一寸'必辰一3;②当4=1,。

二・2 时,04-2)=-1.
故选C・
考点:有理数的乘方;相反数:有理数的加法;分类讨论.
3.一组数据5, 7, 8, 10, 12, 12, 44 的众数是()
A. 10
B. 12
C. 14
D. 44
【答案】B.
【解析】
试题分析:这组数据中12出现了2次,次数最多,..・众数为12,故选B.
考点:众数.
4.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是(。

包头2017年内蒙古中考数学真题卷含答案解析

包头2017年内蒙古中考数学真题卷含答案解析

2017年初中升学考试试卷数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算112-⎛⎫ ⎪⎝⎭所得结果是( ) A .-2 B .12-C . 12D .2 2. 21,a b =是2 的相反数,则a b +的值为( )A . -3B . -1C .-1或-3D .1或-33.一组数据5,7,8,10,12,12,44的众数是 ( )A . 10B .12C . 14D . 144. 将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B . C. D .5.下列说法中正确的是 ( )A .8的立方根是2±B 8是一个最简二次根式C. 函数11y x =-的自变量x 的取值范围是1x > D .在平面直角坐标系中,点()2,3P 与点()2,3Q -关于y 轴对称6. 若等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形的底边长为( )A . 2cmB . 4cm C. 6cm D .8cm7. 在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为( ) A .14 B .13 C. 512 D .128.若关于x 的不等式12a x -<的解集为1x <,则关于x 的一元二次方程210x ax ++=根的情况是 ( ) A .有两个相等的实数根 B .有两个不相等的实数根 C.无实数根 D .无法确定9. 如图,在ABC ∆中,0,45AB AC ABC =∠=,以AB 为直径的O e 交BC 于点D ,若42BC =,则图中阴影部分的面积为( )A .1π+B .2π+ C. 22π+ D .41π+10. 已知下列命题:①若1a b>,则a b >; ②若0a b +=,则a b =;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是( )A . 1个B . 2个 C. 3个 D .4个11. 已知一次函数14y x =,二次函数2222y x =+,在实数范围内,对于x 的同一个值,这两个函数所对应的函数值为1y 与2y ,则下列关系正确的是( )A . 12y y >B .12y y ≥ C. 12y y < D .12y y ≤12. 如图,在Rt ABC ∆中,090,ACB CD AB ∠=⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F ,若3,5AC AB ==,则CE 的长为( )A . 32B . 43 C. 53 D .85第Ⅱ卷(共90分)二、填空题:本大题共有8小题,每小题2分,共16分,将答案填在答题纸上13.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为 .14.化简:22111a a a a -⎛⎫+-= ⎪⎝⎭g . 15.某班有50名学生,平均身高为166cm ,其中20名女生的平均身高为163cm ,则30名男生的平均身高为 cm .16.若关于x y 、的二元一次方程组325x y x ay +=⎧⎨-=⎩的解是1x b y =⎧⎨=⎩,则b a 的值为 . 17.如图,点A B C 、、为O e 上的三个点,02,40BOC AOB BAC ∠=∠∠=,则ACB ∠=________度.18.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且2FC BF =,连接,AE EF .若2,3AB AD ==,则cos AEF ∠的值是__________.19.如图,一次函数1y x =-的图象与反比例函数2y x=的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC BC =,则点C 的坐标为__________.20.如图,在ABC ∆与ADE ∆中,,,AB AC AD AE BAC DAE ==∠=∠,且点D 在AB 上,点E 与点C 在AB 的两侧,连接,BE CD ,点,M N 分别是BE CD 、的中点,连接,,MN AM AN .下列结论:①ACD ABE ∆≅∆;②ABC AMN ∆∆:;③AMN ∆是等边三角形;④若点D 是AB 的中点,则2ACD ABE S S ∆∆=.其中正确的结论是__________.(填写所有正确结论的序号)三、解答题 :本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.有三张正面分别标有数字-3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,取回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.22.如图,在ABC ∆中,0090,30,C B AD ∠=∠=是ABC ∆的角平分线,//DE BA 交AC 于点E ,//DF CA 交AB 于点F ,已知3CD =.(1)求AD 的长;(2)求四边形AEDF 的周长;(注意:本题中的计算过程和结果均保留根号)23.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元,设矩形一边长为x ,面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x 是多少米时,设计费最多?最多是多少元?24.如图,AB 是O e 的直径,弦CD 与AB 交于点E ,过点B 的切线BP 与CD 的延长线交于点P ,连接,OC CB .(1)求证:AE EB CE ED =g g ;(2)若O e 的半径为3,92,5CE OE BE DE ==,求tan OBC ∠的值及DP 的长. 25.如图,在矩形ABCD 中,3,4AB BC ==,将矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A B C D '''',B C '与AD 交于点E ,AD 的延长线与A D ''交于点F .(1)如图①,当060α=时,连接DD ',求DD '和A F '的长;(2)如图②,当矩形A B C D ''''的顶点A '落在CD 的延长线上时,求EF 的长;(3)如图③,当AE EF =时,连接,AC CF ,求AC CF g 的值.26.如图,在平面直角坐标系中,已知抛物线232y x bx c =++与x 轴交于()()1,0,2,0A B -两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)直线y x n =-+与该抛物线在第四象限内交于点D ,与线段BC 交于点E ,与x 轴交于点F ,且4BE EC =.①求n 的值;②连接,AC CD ,线段AC 与线段DF 交于点G ,AGF ∆与CGD ∆是否全等?请说明理由;(3)直线()0y m m =>与该抛物线的交点为,M N (点M 在点N 的左侧),点 M 关于y 轴的对称点为点M ',点H 的坐标为()1,0.若四边形OM NH '的面积为53.求点H 到OM '的距离d 的值.。

2017内蒙古包头中考数学解析版

2017内蒙古包头中考数学解析版

2017年内蒙古包头市中考数学试卷满分:120分 版本:人教版一、选择题(每小题3分,共12小题,合计36分)1. (2017内蒙古包头)计算112-⎛⎫⎪⎝⎭所得结果是( )A .-2B .12-C . 12D .2 答案:D ,解析:负整数指数幂,任何不等于零的数的p -(p 为正整数)次幂,等于这个数的p 次幂的倒数.∴1111==2212-⎛⎫⎪⎝⎭⎛⎫⎪⎝⎭. 2. (2017内蒙古包头)21,a b =是2 的相反数,则a b +的值为( ) A . -3 B . -1 C .-1或-3 D .1或-3答案:C ,解析:平方根及相反数的概念.平方根,又叫二次方根,其中属于非负数的平方根称之为算术平方根。

一个正数有两个实平方根,它们互为相反数;0只有一个平方根,就是0本身;负数没有平方根。

21122,;a a b b ±-===是的相反数,,∴1 3.=a b --+或 3. (2017内蒙古包头)一组数据5,7,8,10,12,12,44的众数是 ( ) A . 10 B .12 C . 14 D . 14答案:B ,解析:众数的基本概念, 一组数据中出现次数最多的数据叫做这组数据的众数.这组数据中出现最多的数据是12.4. (2017内蒙古包头)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .答案:C ,解析:由正方体展开图的规律可知C 项错误,有一个面是重叠的. 5. (2017内蒙古包头)下列说法中正确的是 ( )A .8的立方根是2± B是一个最简二次根式C . 函数11y x =-的自变量x 的取值范围是1x > D .在平面直角坐标系中,点()2,3P 与点()2,3Q -关于y 轴对称答案:D ,解析:如果一个数的立方等于a ,那么这个数叫a 的立方根,也称为三次方根,也就是说,如果3x a =,那么x 叫做a 的立方根. 8的立方根是2,A 错;满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2),所以B 错;函数11y x =-的自变量x 的取值范围是1x ≠,因为10x -≠所以C 错;在平面直角坐标系中,点(),P a b 关于y 轴对称点()',P a b -,所以D 对.6. (2017内蒙古包头)若等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形的底边长为( )A . 2cmB . 4cmC . 6cmD .8cm答案:A ,解析:考点等腰三角形的性质及三角形的三边关系.(1)若底边长为2cm ,则腰长为(102)24cm -÷=,4+2>4符合三角形三边关系,所以该等腰三角形的底边长为2cm ;(2)若腰长为2cm ,则底边长为10226cm -⨯=,2+2<6不符合三角形三边关系,所以该等腰三角形的底边长为6cm 舍去.7. (2017内蒙古包头)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为( ) A .14 B .13 C . 512 D .12答案:A ,解析:概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率. kp n = (n 为该事件所有等可能出现的结果数,k 为事件包含的结果数).设红球的个数为x 个,415+4+3p x ==蓝球得=3x ,315+4+34p ==红球.8. (2017内蒙古包头)若关于x 的不等式12ax -<的解集为1x <,则关于x 的一元二次方程210x ax ++=根的情况是 ( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定 答案:C ,解析:考点一元一次不等式的解法及一元二次方程判别式.由12ax -<的解集为1x <,得1+2a x <,即1+=12a,得=0a ,代入210x ax ++=,得210x +=,由判别式2=4b ac ∆-<0,选C.9. (2017内蒙古包头) 如图,在ABC ∆中,0,45AB AC ABC =∠=,以AB 为直径的O e 交BC 于点D,若BC = )A .1π+B .2π+C . 22π+D .41π+答案:B ,解析:考点圆中阴影部分规则图形面积的求解.连接线段OD ,采用分割法,把阴影部分分成两部分,即=14BOD S S S ∆+阴影圆.由已知ABC ∆中,0,45AB AC ABC =∠=,BC =ABC ∆是等腰直角三角形,由勾股定理求得O e 的直径为4,则OA =OB =OD =2,2=111222 2.424BOD S S S ππ∆+=⨯⨯+⨯=+阴影圆10. (2017内蒙古包头)已知下列命题: ①若1ab>,则a b >; ②若0a b +=,则a b =; ③等边三角形的三个内角都相等; ④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是( ) A . 1个 B . 2个 C . 3个 D .4个答案:A ,解析:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

2017年内蒙古包头市中考数学试卷 (2)

2017年内蒙古包头市中考数学试卷 (2)

2017年内蒙古包头市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算()﹣1所得结果是()A.﹣2 B.C.D.22.(3分)a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣33.(3分)一组数据5,7,8,10,12,12,44的众数是()A.10 B.12 C.14 D.444.(3分)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.5.(3分)下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称6.(3分)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm7.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.B.C.D.8.(3分)若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定9.(3分)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1 B.π+2 C.2π+2 D.4π+110.(3分)已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个 B.2个 C.3个 D.4个11.(3分)已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y212.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.(3分)2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为.14.(3分)化简:÷(﹣1)•a=.15.(3分)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为cm.16.(3分)若关于x、y的二元一次方程组的解是,则a b的值为.17.(3分)如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.18.(3分)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.19.(3分)如图,一次函数y=x﹣1的图象与反比例函数y=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为.20.(3分)如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD 的中点,连接MN,AM,AN.下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④若点D是AB的中点,则S=2S△ABE.△ABC其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.(8分)有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.22.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)23.(10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?24.(10分)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP 与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求tan∠OBC的值及DP的长.25.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于A (﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M 关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值.2017年内蒙古包头市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•包头)计算()﹣1所得结果是()A.﹣2 B.C.D.2【分析】根据负整数指数幂的运算法则计算即可.【解答】解:()﹣1==2,故选:D.【点评】本题考查的是负整数指数幂的运算,掌握a﹣p=是解题的关键.2.(3分)(2017•包头)a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣3【分析】分别求出a b的值,分为两种情况:①当a=﹣1,b=﹣2时,②当a=1,b=﹣2时,分别代入求出即可.【解答】解:∵a2=1,b是2的相反数,∴a=±1,b=﹣2,①当=﹣1,b=﹣2时,a+b=﹣3;②当a=1,b=﹣2时,a+b=﹣1.故选C.【点评】本题考查了有理数的乘方,相反数,求代数式的值等知识点,关键是求出a b的值,注意有两种情况啊.3.(3分)(2017•包头)一组数据5,7,8,10,12,12,44的众数是()A.10 B.12 C.14 D.44【分析】根据众数的定义即可得.【解答】解:这组数据中12出现了2次,次数最多,∴众数为12,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.4.(3分)(2017•包头)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.【分析】由平面图形的折叠及无盖正方体的展开图就可以求出结论.【解答】解:由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.【点评】本题考查了正方体的平面展开图,解答时熟悉四棱柱的特征及无盖正方体展开图的各种情形是关键.5.(3分)(2017•包头)下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称【分析】根据开立方,最简二次根式的定义,分母不能为零,关于原点对称的点的坐标,可得答案.【解答】解:A、8的立方根是2,故A不符合题意;B、不是最简二次根式,故B不符合题意;C、函数y=的自变量x的取值范围是x≠1,故C不符合题意;D、在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称,故D 符合题意;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6.(3分)(2017•包头)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.7.(3分)(2017•包头)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.B.C.D.【分析】设红球有x个,根据摸出一个球是蓝球的概率是,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【解答】解:∵在一个不透明的口袋里有红、黄、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有5个黄球,4个蓝球,随机摸出一个蓝球的概率是,设红球有x个,∴=,解得:x=3∴随机摸出一个红球的概率是:=.故选A.【点评】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.8.(3分)(2017•包头)若关于x的不等式x﹣<1的解集为x<1,则关于x 的一元二次方程x2+ax+1=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定【分析】先解不等式,再利用不等式的解集得到1+=1,则a=0,然后计算判别式的值,最后根据判别式的意义判断方程根的情况.【解答】解:解不等式x﹣<1得x<1+,而不等式x﹣<1的解集为x<1,所以1+=1,解得a=0,又因为△=a2﹣4=﹣4,所以关于x的一元二次方程x2+ax+1=0没有实数根.故选C.【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c=0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.(3分)(2017•包头)如图,在△ABC 中,AB=AC ,∠ABC=45°,以AB 为直径的⊙O 交BC 于点D ,若BC=4,则图中阴影部分的面积为( )A .π+1B .π+2C .2π+2D .4π+1【分析】连接DO 、AD ,求出圆的半径,求出∠BOD 和∠DOA 的度数,再分别求出△BOD 和扇形DOA 的面积即可.【解答】解:连接OD 、AD ,∵在△ABC 中,AB=AC ,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC 是Rt △BAC ,∵BC=4,∴AC=AB=4,∵AB 为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB ,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S △BOD +S 扇形DOA =+=π+2.故选B .【点评】本题考查了扇形的面积计算,解直角三角形等知识点,能求出扇形DOA 的面积和△DOB的面积是解此题的关键.10.(3分)(2017•包头)已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个 B.2个 C.3个 D.4个【分析】根据不等式的性质、等边三角形的性质和判定、等腰三角形的性质和判定、相反数逐个判断即可.【解答】解:∵当b<0时,如果>1,那么a<b,∴①错误;∵若a+b=0,则|a|=|b|正确,但是若|a|=|b|,则a+b=0错误,∴②错误;∵等边三角形的三个内角都相等,正确,逆命题也正确,∴③正确;∵底角相等的两个等腰三角形不一定全等,∴④错误;其中原命题与逆命题均为真命题的个数是1个,故选A.【点评】本题考查了不等式的性质、等边三角形的性质和判定、等腰三角形的性质和判定、相反数、命题与定理等知识点,能熟记知识点的内容是解此题的关键.11.(3分)(2017•包头)已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2【分析】首先判断直线y=4x与抛物线y=2x2+2只有一个交点,如图所示,利用图象法即可解决问题.【解答】解:由消去y得到:x2﹣2x+1=0,∵△=0,∴直线y=4x与抛物线y=2x2+2只有一个交点,如图所示,观察图象可知:y1≤y2,故选D.【点评】本题考查一次函数与二次函数的应用,解题的关键是判断出直线与抛物线只有一个交点,学会利用图象法解决问题.12.(3分)(2017•包头)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.(3分)(2017•包头)2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为3×1012.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:3万亿=3×1012,故答案为:3×1012.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)(2017•包头)化简:÷(﹣1)•a=﹣a﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=••a=﹣(a+1)=﹣a﹣1,故答案为:﹣a﹣1【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(3分)(2017•包头)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为168cm.【分析】根据平均数的公式求解即可.用50名身高的总和减去20名女生身高的和除以30即可.【解答】解:设男生的平均身高为x,根据题意有:=166,解可得x=168(cm).故答案为168.【点评】本题考查的是样本平均数的求法及运用,即平均数公式:=.16.(3分)(2017•包头)若关于x、y的二元一次方程组的解是,则a b的值为1.【分析】将方程组的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可求a b的值.【解答】解:∵关于x、y的二元一次方程组的解是,∴,解得a=﹣1,b=2,∴a b=(﹣1)2=1.故答案为1.【点评】此题主要考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.也考查了解二元一次方程组.17.(3分)(2017•包头)如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=20度.【分析】根据圆周角定理即可得到结论.【解答】解:∵∠BAC=BOC,∠ACB=AOB,∵∠BOC=2∠AOB,∴∠ACB=BAC=20°.故答案为:20.【点评】此题主要考查了圆周角定理的应用,熟记圆周角定理是解题关键.18.(3分)(2017•包头)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.【分析】接AF,由矩形的性质得出∠B=∠C=90°,CD=AB=2,BC=AD=3,证出AB=FC,BF=CE,由SAS证明△ABF≌△FCE,得出∠BAF=∠CFE,AF=FE,证△AEF是等腰直角三角形,得出∠AEF=45°,即可得出答案.【解答】解:连接AF,如图所示:∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵FC=2BF,∴BF=1,FC=2,∴AB=FC,∵E是CD的中点,∴CE=CD=1,∴BF=CE,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴∠BAF=∠CFE,AF=FE,∵∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣90°=90°,∴△AEF是等腰直角三角形,∴∠AEF=45°,∴ocs∠AEF=;故答案为:.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、三角函数等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.19.(3分)(2017•包头)如图,一次函数y=x﹣1的图象与反比例函数y=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为(0,2).【分析】利用方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【解答】解:由,解得或,∴A(2,1),B(1,0),设C(0,m),∵BC=AC,∴AC2=BC2,即4+(m﹣1)2=1+m2,∴m=2,故答案为(0,2).【点评】本题考查反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是学会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题,属于中考常考题型.20.(3分)(2017•包头)如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN.下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④=2S△ABE.若点D是AB的中点,则S△ABC其中正确的结论是①②④.(填写所有正确结论的序号)【分析】①根据SAS证明△ACD≌△ABE;②先证明△ACN≌△ABM,得△AMN也是等腰三角形,且顶角与△ABC的顶角相等,所以△ABC∽△AMN;③由AN=AM,可得△AMN为等腰三角形;④根据三角形的中线将三角形面积平分得:S=2S△ACN,S△ABE=2S△ABM,则S△△ACD=2S△ACD=2S△ABE.ABC【解答】解:①在△ACD和△ABE中,∵,∴△ACD≌△ABE(SAS),所以①正确;②∵△ACD≌△ABE,∴CD=BE,∠NCA=∠MBA,又∵M,N分别为BE,CD的中点,∴CN=BM,在△ACN和△ABM中,∵,∴△ACN≌△ABM,∴AN=AM,∠CAN∠BAM,∴∠BAC=∠MAN,∵AB=AC,∴∠ACB=∠ABC,∴∠ABC∠AMN,∴△ABC∽△AMN,所以②正确;③∵AN=AM,∴△AMN为等腰三角形,所以③不正确;④∵△ACN≌△ABM,=S△ABM,∴S△ACN∵点M、N分别是BE、CD的中点,=2S△ACN,S△ABE=2S△ABM,∴S△ACD∴S=S△ABE,△ACD∵D是AB的中点,=2S△ACD=2S△ABE,∴S△ABC所以④正确;本题正确的结论有:①②④;故答案为:①②④.【点评】本题考查了三角形全等的性质和判定、等腰三角形的性质和判定、三角形中线的性质、三角形相似的性质和判定,熟练掌握三角形全等的性质和判定及三角形中线平分面积的性质是关键;此类选择题比较麻烦,类似四个证明题,所以要认真审题,并做出正确的判断.三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.(8分)(2017•包头)有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.【分析】(1)画出树状图列出所有等可能结果,再找到数字之积为负数的结果数,根据概率公式可得;(2)根据(1)中树状图列出数字之和为非负数的结果数,再根据概率公式求解可得.【解答】解:(1)画树状图如下:由树状图可知,共有9种等可能结果,其中数字之积为负数的有4种结果,∴两次抽取的卡片上的数字之积为负数的概率为;(2)在(1)种所列9种等可能结果中,数字之和为非负数的有6种,∴两次抽取的卡片上的数字之和为非负数的概率为=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2017•包头)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC 的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)【分析】(1)首先证明∠CAD=30°,易知AD=2CD即可解决问题;(2)首先证明四边形AEDF是菱形,求出ED即可解决问题;【解答】解:(1)∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠CAB=30°,在Rt△ACD中,∵∠ACD=90°,∠CAD=30°,∴AD=2CD=6.(2)∵DE∥BA交AC于点E,DF∥CA交AB于点F,∴四边形AEDF是平行四边形,∵∠EAD=∠ADF=∠DAF,∴AF=DF,∴四边形AEDF是菱形,∴AE=DE=DF=AF,在Rt△CED中,∵∠CDE=∠B=30°,∴DE==2,∴四边形AEDF的周长为8.【点评】本题考查菱形的判定和性质、平行线的性质、直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(10分)(2017•包头)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?【分析】(1)由矩形的一边长为x、周长为16得出另一边长为8﹣x,根据矩形的面积公式可得答案;(2)由设计费为24000元得出矩形面积为12平方米,据此列出方程,解之求得x的值,从而得出答案;(3)将函数解析式配方成顶点式,可得函数的最值情况.【解答】解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷200=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,=16,∴当x=4时,S最大值∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.【点评】本题主要考查二次函数的应用与一元二次方程的应用,根据矩形的面积公式得出函数解析式,并熟练掌握二次函数的性质是解题的关键.24.(10分)(2017•包头)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求tan∠OBC的值及DP的长.【分析】(1)直接根据题意得出△AED∽△CEB,进而利用切线的性质的出答案;(2)利用已知得出EC,DE的长,再利用勾股定理得出CF的长,t即可得出an ∠OBC的值,再利用全等三角形的判定与性质得出DP的长.【解答】(1)证明:连接AD,∵∠A=∠BCD,∠AED=∠CEB,∴△AED∽△CEB,∴=,∴AE•EB=CE•ED;(2)解:∵⊙O的半径为3,∴OA=OB=OC=3,∵OE=2BE,∴OE=2,BE=1,AE=5,∵=,∴设CE=9x,DE=5x,∵AE•EB=CE•ED,∴5×1=9x•5x,解得:x1=,x2=﹣(不合题意舍去)∴CE=9x=3,DE=5x=,过点C作CF⊥AB于F,∵OC=CE=3,∴OF=EF=OE=1,∴BF=2,在Rt△OCF中,∵∠CFO=90°,∴CF2+OF2=OC2,∴CF=2,在Rt△CFB中,∵∠CFB=90°,∴tan∠OBC===,∵CF⊥AB于F,∴∠CFB=90°,∵BP是⊙O的切线,AB是⊙O的直径,∴∠EBP=90°,∴∠CFB=∠EBP,在△CFE和△PBE中,∴△CFE≌△PBE(ASA),∴EP=CE=3,∴DP=EP﹣ED=3﹣=.【点评】此题主要考查了全等三角形的判定与性质以及相似三角形的判定与性质,正确得出EP的长是解题关键.25.(12分)(2017•包头)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD 绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.【分析】(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;(2)由△A′DF∽△A′D′C,可得=,推出DF=,同理可得△CDE∽△CB′A′,由=,求出DE,即可解决问题;=•AC•CF=•AF•CD,把问题转化为(3)如图③中,作FG⊥CB′于G,由S△ACF求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;【解答】解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°,∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=3.②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=30°,在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2,∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴=,∴=,∴DF=,同理可得△CDE∽△CB′A′,∴=,∴=,∴ED=,∴EF=ED+DF=.(3)如图③中,作FG⊥CB′于G.,∵四边形A′B′CD′是矩形,∴GF=CD′=CD=3,=•EF•DC=•CE•FG,∵S△CEF∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°,∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴=,∴AC2=AD•AF,∴AF=,∵S=•AC•CF=•AF•CD,△ACF∴AC•CF=AF•CD=.【点评】本题考查矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理、面积法等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,属于中考压轴题.26.(12分)(2017•包头)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c 与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M 关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值.【分析】(1)根据抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,可得抛物线的解析式;(2)①过点E作EE'⊥x轴于E',则EE'∥OC,根据平行线分线段成比例定理,可得BE'=4OE',设点E的坐标为(x,y),则OE'=x,BE'=4x,根据OB=2,可得x=,再根据直线BC的解析式为y=x﹣3,即可得到E(,﹣),把E的坐标代入直线y=﹣x+n,可得n的值;②根据F(﹣2,0),A(﹣1,0),可得AF=1,再根据点D的坐标为(1,﹣3),点C的坐标为(0,﹣3),可得CD∥x轴,CD=1,再根据∠AFG=∠CDG,∠FAG=∠DCG,即可判定△AGF≌△CGD;(3)根据轴对称的性质得出OH=1=M'N,进而判定四边形OM'NH是平行四边形,再根据四边形OM'NH的面积为,求得OP=,再根据点M的坐标为(﹣,),得到PM'=,Rt△OPM'中,运用勾股定理可得OM'=,最后根据OM'×d=,即可得到d=.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,∴,解得,∴该抛物线的解析式y=x2﹣x﹣3;(2)①如图,过点E作EE'⊥x轴于E',则EE'∥OC,∴=,∵BE=4EC,∴BE'=4OE',设点E的坐标为(x,y),则OE'=x,BE'=4x,∵B(2,0),∴OB=2,即x+4x=2,∴x=,∵抛物线y=x2﹣x﹣3与y轴交于点C,∴C(0,﹣3),设直线BC的解析式为y=kx+b',∵B(2,0),C(0,﹣3),∴,解得,∴直线BC的解析式为y=x﹣3,当x=时,y=﹣,∴E(,﹣),把E的坐标代入直线y=﹣x+n,可得﹣+n=﹣,解得n=﹣2;②△AGF与△CGD全等.理由如下:∵直线EF的解析式为y=﹣x﹣2,∴当y=0时,x=﹣2,∴F(﹣2,0),OF=2,∵A(﹣1,0),∴OA=1,∴AF=2﹣1=1,由解得,,∵点D在第四象限,∴点D的坐标为(1,﹣3),∵点C的坐标为(0,﹣3),∴CD∥x轴,CD=1,∴∠AFG=∠CDG,∠FAG=∠DCG,∴△AGF≌△CGD;(3)∵抛物线的对称轴为x=﹣=,直线y=m(m>0)与该抛物线的交点为M,N,∴点M、N关于直线x=对称,设N(t,m),则M(1﹣t,m),∵点M关于y轴的对称点为点M',∴M'(t﹣1,m),∴点M'在直线y=m上,∴M'N∥x轴,∴M'N=t﹣(t﹣1)=1,∵H(1,0),∴OH=1=M'N,∴四边形OM'NH是平行四边形,设直线y=m与y轴交于点P,∵四边形OM'NH的面积为,∴OH×OP=1×m=,即m=,∴OP=,当x2﹣x﹣3=时,解得x1=﹣,x2=,∴点M的坐标为(﹣,),∴M'(,),即PM'=,∴Rt△OPM'中,OM'==,∵四边形OM'NH的面积为,∴OM'×d=,∴d=.【点评】本题属于二次函数综合题,主要考查了待定系数法求二次函数解析式、轴对称的性质、平行线分线段成比例定理、全等三角形的判定以及平行四边形的判定与性质的综合应用,解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.2017年黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣7的倒数是()A.7 B.﹣7 C.D.﹣。

2017内蒙古包头中考数学解析版

2017内蒙古包头中考数学解析版

2017年内蒙古包头市中考数学试卷满分:120分 版本:人教版一、选择题(每小题3分,共12小题,合计36分)1. (2017内蒙古包头)计算112-⎛⎫⎪⎝⎭所得结果是( )A .-2B .12-C . 12D .2 答案:D ,解析:负整数指数幂,任何不等于零的数的p -(p 为正整数)次幂,等于这个数的p 次幂的倒数.∴1111==2212-⎛⎫⎪⎝⎭⎛⎫⎪⎝⎭. 2. (2017内蒙古包头)21,a b =是2 的相反数,则a b +的值为( ) A . -3 B . -1 C .-1或-3 D .1或-3答案:C ,解析:平方根及相反数的概念.平方根,又叫二次方根,其中属于非负数的平方根称之为算术平方根。

一个正数有两个实平方根,它们互为相反数;0只有一个平方根,就是0本身;负数没有平方根。

21122,;a a b b ±-===是的相反数,,∴1 3.=a b --+或 3. (2017内蒙古包头)一组数据5,7,8,10,12,12,44的众数是 ( ) A . 10 B .12 C . 14 D . 14答案:B ,解析:众数的基本概念, 一组数据中出现次数最多的数据叫做这组数据的众数.这组数据中出现最多的数据是12.4. (2017内蒙古包头)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .答案:C ,解析:由正方体展开图的规律可知C 项错误,有一个面是重叠的. 5. (2017内蒙古包头)下列说法中正确的是 ( )A .8的立方根是2±B .8是一个最简二次根式C . 函数11y x =-的自变量x 的取值范围是1x >D .在平面直角坐标系中,点()2,3P 与点()2,3Q -关于y 轴对称答案:D ,解析:如果一个数的立方等于a ,那么这个数叫a 的立方根,也称为三次方根,也就是说,如果3x a =,那么x 叫做a 的立方根. 8的立方根是2,A 错;满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.8=22 ,所以B 错;函数11y x =-的自变量x 的取值范围是1x ≠,因为10x -≠所以C 错;在平面直角坐标系中,点(),P a b 关于y 轴对称点()',P a b -,所以D 对.6. (2017内蒙古包头)若等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形的底边长为( ) A . 2cm B . 4cm C . 6cm D .8cm答案:A ,解析:考点等腰三角形的性质及三角形的三边关系.(1)若底边长为2cm ,则腰长为(102)24cm -÷=,4+2>4符合三角形三边关系,所以该等腰三角形的底边长为2cm ;(2)若腰长为2cm ,则底边长为10226cm -⨯=,2+2<6不符合三角形三边关系,所以该等腰三角形的底边长为6cm 舍去. 7. (2017内蒙古包头)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为( ) A .14 B .13 C . 512 D .12答案:A ,解析:概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率. kp n = (n 为该事件所有等可能出现的结果数,k 为事件包含的结果数).设红球的个数为x 个,415+4+3p x ==蓝球得=3x ,315+4+34p ==红球.8. (2017内蒙古包头)若关于x 的不等式12a x -<的解集为1x <,则关于x 的一元二次方程210x ax ++=根的情况是 ( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定 答案:C ,解析:考点一元一次不等式的解法及一元二次方程判别式.由12a x -<的解集为1x <,得1+2ax <,即1+=12a,得=0a ,代入210x ax ++=,得210x +=,由判别式2=4b ac ∆-<0,选C. 9. (2017内蒙古包头) 如图,在ABC ∆中,0,45AB AC ABC =∠=,以AB 为直径的O 交BC 于点D ,若42BC =,则图中阴影部分的面积为( )A .1π+B .2π+C . 22π+D .41π+答案:B ,解析:考点圆中阴影部分规则图形面积的求解.连接线段OD ,采用分割法,把阴影部分分成两部分,即=14BOD S S S ∆+阴影圆.由已知ABC ∆中,0,45AB AC ABC =∠=,42BC =,得ABC ∆是等腰直角三角形,由勾股定理求得O 的直径为4,则OA =OB =OD =2,2=111222 2.424BOD S S S ππ∆+=⨯⨯+⨯=+阴影圆 10. (2017内蒙古包头)已知下列命题: ①若1ab>,则a b >; ②若0a b +=,则a b =; ③等边三角形的三个内角都相等; ④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是( ) A . 1个 B . 2个 C . 3个 D .4个答案:A ,解析:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

2017年包头高中招生考试数学试卷

2017年包头高中招生考试数学试卷

包头市2017年初中升学考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题:本大题共有12小题,每小题3分,共36分.1.计算所得结果是()A.-2B.-C.D.22.若a2=1,b是2的相反数,则a+b的值为()A.-3B.-1C.-1或-3D.1或-33.一组数据5,7,8,10,12,12,44的众数是()A.10B.12C.14D.444.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()5.下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(-2,3)关于y轴对称6.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cmB.4cmC.6cmD.8cm7.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.`B.C.D.8.若关于x的不等式x-<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定9.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的☉O交BC于点D.若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+110.已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个11.已知一次函数y1=4x,二次函数y2=2x2+2.在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y212.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB 于点F.若AC=3,AB=5,则CE的长为()A. B. C. D.第Ⅱ卷(非选择题,共84分)二、填空题:本大题共有8小题,每小题3分,共24分.13.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元.将3万亿用科学记数法表示为.14.化简:÷·a=.15.某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为cm.16.若关于x、y的二元一次方程组的解是则a b的值为.17.如图,点A、B、C为☉O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.18.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.19.如图,一次函数y=x-1的图象与反比例函数y=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上.若AC=BC,则点C的坐标为.20.如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C 在AB的两侧,连接BE,CD.点M、N分别是BE、CD的中点,连接MN,AM,AN.下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④若点D是AB的中点,则S△ACD=2S△ADE.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分.解答应写出文字说明、计算过程或推理过程.21.(本小题满分8分)有三张正面分别标有数字-3,1,3的不透明卡片,它们除数字外都相同.现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.22.(本小题满分8分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元,设矩形一边长为x米,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?24.(本小题满分10分)如图,AB是☉O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE·EB=CE·ED;(2)若☉O的半径为3,OE=2BE,=,求tan∠OBC的值及DP的长.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'CD',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC·CF的值.26.(本小题满分12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于A(-1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=-x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为,求点H到OM'的距离d的值.答案全解全析:一、选择题1.D根据a-1=可得,原式==2.故选D.2.C若a2=1,则a=±1;若b是2的相反数,则b=-2,∴a+b=-1或-3.3.B12在这组数据中出现了2次,其余各数只出现1次,故众数是12.4.C根据正方体表面展开图的特点知C不可能,故选C.5.D8的立方根是2,故选项A错误;=2,故选项B错误;函数y=的自变量x的取值范围是x≠1,故选项C错误,故选D.6.A当腰长为2cm时,底边长为6cm,但是2+2=4<6,即两边之和小于第三边,不合题意;当底边长为2cm时,腰长为4cm,符合题意,故选A.7.A设有红球x个,根据题意得=,解得x=3,则随机摸出一个红球的概率是=.8.C解不等式得x<+1,根据题意得+1=1,解得a=0.所以方程可化为x2+1=0,所以Δ=-4<0,所以一元二次方程无实数根.9.B连接AD,OD,∵AB是直径,AB=AC,∴AD⊥BC,BD=CD,∴OD是△ABC的中位线,易知∠CAB=90°,由BC=4可得AB=AC=4,∴OB=2.∴S阴影=S△OBD+S扇形=×2×2+π×22=2+π.OAD10.A①中,当b<0时,由>1得a<b,故原命题为假命题;②中,原命题为真命题,逆命题为“若|a|=|b|,则a+b=0”,当a=b=2时,满足|a|=|b|,但a+b≠0,故为假命题;③中,原命题为真命题,逆命题为“三个内角都相等的三角形为等边三角形”,是真命题;④中,原命题为假命题.故只有命题③的原命题与逆命题都是真命题.故选A.11.D y2-y1=2x2-4x+2=2(x-1)2,无论x取何值,(x-1)2≥0,∴y2≥y1,故选D.12.A过F作FG⊥AB于点G,∵AF平分∠CAB,∠ACB=90°,∴FC=FG.易证△ACF≌△AGF,∴AC=AG.∵∠5+∠6=90°,∠B+∠6=90°,∴∠5=∠B.∵∠3=∠1+∠5,∠4=∠2+∠B,∠1=∠2,∴∠3=∠4,∴CE=CF.∵AC=3,AB=5,∴BC=4.在Rt△BFG中,设CF=x(x>0),则FG=x,BF=4-x.BG=AB-AG=5-3=2.由BF2=FG2+BG2,得(4-x)2=x2+22,解得x=,∴CE=CF=.选A.二、填空题13.答案3×1012解析∵1亿=108,3万=3×104,∴3万亿=3×104×108=3×1012.14.答案-a-1解析原式=÷·a=··=-(a+1)=-a-1.15.答案168解析设男生的平均身高为x cm.根据题意得166×50=20×163+30x,解得x=168.即30名男生的平均身高为168cm.16.答案1解析把代入方程组得解得∴a b=(-1)2=1.17.答案20解析∵∠BAC=40°,∴∠BOC=80°.∵∠BOC=2∠AOB,∴∠AOB=∠BOC=40°,∴∠ACB=∠AOB=20°.18.答案解析连接AF.∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°.∵点E是CD的中点,AB=2,∴CE=1.∵FC=2BF,BC=3,∴BF=1,FC=2.易证△ABF≌△FCE,∴AF=EF,∠AFB=∠FEC,∵∠FEC+∠EFC=90°,∴∠AFB+∠EFC=90°,∴∠AFE=90°.∴△AEF是等腰直角三角形,∴cos∠AEF=cos45°=.19.答案(0,2)解析过点A向y轴引垂线,垂足为D.由解得或∵A在第一象限,∴A(2,1).在y=x-1中,令y=0,得x=1.∴B(1,0).在Rt△OBC中,CB2=OC2+OB2,在Rt△CAD中,CA2=CD2+AD2,设C(0,m),∵CB=CA,∴m2+12=(m-1)2+22,解得m=2.∴C(0,2).20.答案①②④解析∵AB=AC,∠CAB=∠DAE,AD=AE,∴△ACD≌△ABE,∴①正确;由△ACD≌△ABE得CD=BE,∠ACD=∠ABE,又∵点M、N分别是BE、CD的中点,∴CN=BM,∴△ACN≌△ABM,∴AN=AM,∠CAN=∠BAM,∴∠CAN+∠BAN=∠BAM+∠BAN,即∠BAC=∠MAN,又∵=,∴△ABC∽△AMN,∴②正确;∵AN=AM,∴△AMN是等腰三角形,由已知条件不能得出△AMN 是等边三角形,∴③错误;若点D是AB的中点,则S△ABE=2S△ADE,又∵△ACD≌△ABE,∴S△ABE=S△ACD,∴S△ACD=2S△ADE,∴④正确.三、解答题21.解析(1)列表:(4分)或画树状图:(4分)共有9种等可能的结果,其中两次抽取的卡片上的数字之积为负数的结果有4种,∴两次抽取的卡片上的数字之积为负数的概率P=.(6分)(2)∵两次抽取的卡片上的数字之和为非负数的结果有6种,∴两次抽取的卡片上的数字之和为非负数的概率P==.(8分)22.解析(1)在△ABC中,∵∠C=90°,∠B=30°,∴∠BAC=60°.∵AD是△ABC的角平分线,∴∠CAD=∠BAD=∠BAC=30°.在Rt△ACD中,∵∠CAD=30°,CD=3,∴AD=6.(4分)(2)∵DE∥BA,DF∥CA,∴四边形AEDF为平行四边形,∠BAD=∠EDA.又∵∠CAD=∠BAD,∴∠CAD=∠EDA,∴AE=DE,∴四边形AEDF为菱形.∵DE∥BA,∴∠CDE=∠B=30°.在Rt△CDE中,cos∠CDE=,∴ED==2.∴四边形AEDF的周长为4ED=4×2=8.(8分)23.解析(1)∵矩形的周长为16米,一边长为x米,∴其邻边长为(8-x)米.∴S=x(8-x)=-x2+8x.其中,0<x<8.(3分)(2)能.理由如下:∵设计费为每平方米2000元,∴当设计费为24000元时,面积为24000÷2000=12(平方米),令-x2+8x=12,解得x1=2,x2=6.∴设计费能达到24000元.(6分)(3)∵S=-x2+8x=-(x-4)2+16,∴当x=4时,S取得最大值,且S max=16.16×2000=32000(元).∴当x是4米时,设计费最多,最多是32000元.(10分) 24.解析(1)证明:连接AD,如图.∵∠A=∠BCD,∠AED=∠CEB,∴△AED∽△CEB.∴=.∴AE·EB=CE·ED.(3分)(2)∵☉O的半径为3,∴OA=OB=OC=3.∵OE=2BE,∴OE=2,BE=1,∴AE=5.∵=,∴可设CE=9x,DE=5x(x>0).∵AE·EB=CE·ED,∴5×1=9x·5x,∴x=.∴CE=3,DE=.(5分)过点C作CF⊥AB于点F,∵OC=CE=3,∴OF=EF=OE=1.∴BF=2.在Rt△OCF中,∵∠CFO=90°,∴CF2+OF2=OC2.∴CF=2.在Rt△CFB中,∵∠CFB=90°,∴tan∠OBC===.(8分)∵CF⊥AB,∴∠CFB=90°.∵BP是☉O的切线,AB是☉O的直径,∴∠EBP=90°,∴∠CFB=∠EBP.又∵EF=BE=1,∠CEF=∠PEB,∴△CEF≌△PEB.∴EP=CE=3.∴DP=EP-ED=3-=.(10分)25.解析(1)∵矩形ABCD绕点C按顺时针方向旋转α角得到矩形A'B'CD',∴A'D'=AD=B'C=BC=4,CD'=CD=A'B'=AB=3,∠A'D'C=∠ADC=90°.∵α=60°,∴∠DCD'=60°.∴△CDD'是等边三角形,∴DD'=CD=3.(2分)如图,连接CF.在Rt△CDF和Rt△CD'F中,∴Rt△CDF≌Rt△CD'F.∴∠DCF=∠D'CF=∠DCD'=30°.在Rt△CD'F中,tan∠D'CF==,∴FD'=.∴A'F=A'D'-FD'=4-.(4分)(2)在Rt△A'CD'中,∵∠D'=90°,∴A'C2=A'D'2+CD'2.∴A'C=5,A'D=2.∵∠DA'F=∠D'A'C,∠A'DF=∠D',∴△A'DF∽△A'D'C.∴=,∴=.∴DF=.同理,可证△CDE∽△CB'A',∴=.∴=.∴ED=.∴EF=ED+DF=.(8分)(3)如图,过点F作FG⊥CE于点G.∵四边形A'B'CD'是矩形,∴GF=CD'=CD=3.∵S△ECF=EF·CD=CE·GF,∴EF=CE.又∵AE=EF,∴AE=EC=EF,∴∠EAC=∠ECA,∠ECF=∠EFC.∴2∠ECA+2∠ECF=180°.∴∠ACF=90°,∴∠ADC=∠ACF=90°.又∵∠CAD=∠FAC,∴△CAD∽△FAC.∴=.∴AC2=AD·AF.在Rt△ABC中,AC==5.∴AF==.∵S△ACF=AC·CF=AF·CD,∴AC·CF=AF·CD=.(12分)26.解析(1)∵抛物线y=x2+bx+c与x轴交于A(-1,0),B(2,0)两点,∴解得∴该抛物线的解析式为y=x2-x-3.(3分)(2)①过点E作EE'⊥x轴于点E',则E'E∥OC.∴=.∵BE=4EC,∴BE'=4OE'.设点E的坐标为(x,y),则OE'=x,BE'=4x.∵点B的坐标为(2,0),∴OB=2.∴x+4x=2,∴x=.∵抛物线y=x2-x-3与y轴交于点C,∴当x=0时,y=-3,∴C(0,-3).设直线BC的解析式为y=kx+b1(k≠0),则解得∴直线BC的解析式为y=x-3.∵当x=时,y=-,∴E.∵点E在直线y=-x+n上,∴-+n=-,∴n=-2.(6分)②全等.由①知直线EF的解析式为y=-x-2,当y=0时,x=-2,∴F(-2,0),∴OF=2.∵A(-1,0),∴OA=1.∴AF=1.由解得∵点D在第四象限,∴点D的坐标为(1,-3).∵点C的坐标为(0,-3),∴CD∥x轴,CD=1.∴∠AFG=∠CDG,∠FAG=∠DCG.又∵CD=AF=1,∴△AGF≌△CGD.(8分)(3)易知抛物线的对称轴是直线x=.∵直线y=m与该抛物线交于M、N两点,∴点M、N关于直线x=对称,设N(t,m),则M(1-t,m).∵点M与点M'关于y轴对称,∴M'(t-1,m).∴点M'在直线y=m上,∴M'N∥x轴,M'N=t-(t-1)=1.∵H(1,0),∴OH=1.∴OH=M'N.∴四边形OM'NH是平行四边形.设直线y=m与y轴交于点P,∵S四边形OM'NH=,∴OH·OP=OH·m=,∴m=.令x2-x-3=,解得x1=-,x2=.∴点M的坐标为.∴M'.∴OP=,PM'=.在Rt△OPM'中,∵∠OPM'=90°,∴OM'==.∵S四边形OM'NH=,∴OM'·d=,∴d=.(12分)注:各题的其他解法或证法可参照该评分标准给分.。

内蒙古包头市2017年中考数学真题试题

内蒙古包头市2017年中考数学真题试题

2017年初中升学考试试卷 数学注意事项:1. 答题前,考生务必将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写在答题卡上,并在答题卡背面上方填涂座位号,同时检查条形码粘贴是否正确。

2. 选择题使用2B 铅笔涂在答题卡对应题目的位置上;非选择题用0.5毫米黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

3. 考试结束后,教师将试题卷、答题卡、草稿纸一并收回。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算112-⎛⎫ ⎪⎝⎭所得结果是( ) A .-2 B .12-C . 12D .2 2. 21,a b =是2 的相反数,则a b +的值为( )A . -3B . -1C .-1或-3D .1或-33.一组数据5,7,8,10,12,12,44的众数是 ( )A . 10B .12C . 14D . 144. 将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B . C. D .5.下列说法中正确的是 ( )A .8的立方根是2±B 8C. 函数11y x =-的自变量x 的取值范围是1x > D .在平面直角坐标系中,点()2,3P 与点()2,3Q -关于y 轴对称6. 若等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形的底边长为( )A . 2cmB . 4cm C. 6cm D .8cm7. 在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为( ) A .14 B .13 C. 512 D .128.若关于x 的不等式12a x -<的解集为1x <,则关于x 的一元二次方程210x ax ++=根的情况是 ( )A .有两个相等的实数根B .有两个不相等的实数根 C.无实数根 D .无法确定9. 如图,在ABC ∆中,0,45AB AC ABC =∠=,以AB 为直径的O 交BC 于点D ,若42BC =,则图中阴影部分的面积为( )A .1π+B .2π+ C. 22π+ D .41π+10. 已知下列命题:①若1a b>,则a b >; ②若0a b +=,则a b =;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是( )A . 1个B . 2个 C. 3个 D .4个11. 已知一次函数14y x =,二次函数2222y x =+,在实数范围内,对于x 的同一个值,这两个函数所对应的函数值为1y 与2y ,则下列关系正确的是( )A . 12y y >B .12y y ≥ C. 12y y < D .12y y ≤12. 如图,在Rt ABC ∆中,090,ACB CD AB ∠=⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F ,若3,5AC AB ==,则CE 的长为( )A . 32B . 43 C. 53 D .85第Ⅱ卷(共90分)二、填空题:本大题共有8小题,每小题2分,共16分,将答案填在答题纸上13.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为 .14.化简:22111a a a a -⎛⎫+-= ⎪⎝⎭. 15.某班有50名学生,平均身高为166cm ,其中20名女生的平均身高为163cm ,则30名男生的平均身高为 cm .16.若关于x y 、的二元一次方程组325x y x ay +=⎧⎨-=⎩的解是1x b y =⎧⎨=⎩,则b a 的值为 . 17.如图,点A B C 、、为O 上的三个点,02,40BOC AOB BAC ∠=∠∠=,则ACB ∠=________度.18.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且2FC BF =,连接,AE EF .若2,3AB AD ==,则cos AEF ∠的值是__________.19.如图,一次函数1y x =-的图象与反比例函数2y x=的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC BC =,则点C 的坐标为__________.20.如图,在ABC ∆与ADE ∆中,,,AB AC AD AE BAC DAE ==∠=∠,且点D 在AB 上,点E 与点C 在AB 的两侧,连接,BE CD ,点,M N 分别是BE CD 、的中点,连接,,MN AM AN .下列结论:①ACD ABE ∆≅∆;②ABCAMN ∆∆;③AMN ∆是等边三角形;④若点D 是AB 的中点,则2ACD ABE S S ∆∆=.其中正确的结论是__________.(填写所有正确结论的序号)三、解答题 :本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.有三张正面分别标有数字-3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,取回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.22.如图,在ABC ∆中,0090,30,C B AD ∠=∠=是ABC ∆的角平分线,//DE BA 交AC 于点E ,//DF CA 交AB 于点F ,已知3CD =.(1)求AD 的长;(2)求四边形AEDF 的周长;(注意:本题中的计算过程和结果均保留根号)23.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元,设矩形一边长为x ,面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x 是多少米时,设计费最多?最多是多少元?24.如图,AB 是O 的直径,弦CD 与AB 交于点E ,过点B 的切线BP 与CD 的延长线交于点P ,连接,OC CB .(1)求证:AE EB CE ED =;(2)若O 的半径为3,92,5CE OE BE DE ==,求tan OBC ∠的值及DP 的长. 25.如图,在矩形ABCD 中,3,4AB BC ==,将矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A B C D '''',B C '与AD 交于点E ,AD 的延长线与A D ''交于点F .(1)如图①,当060α=时,连接DD ',求DD '和A F '的长;(2)如图②,当矩形A B C D ''''的顶点A '落在CD 的延长线上时,求EF 的长;(3)如图③,当AE EF =时,连接,AC CF ,求AC CF 的值.26.如图,在平面直角坐标系中,已知抛物线232y x bx c =++与x 轴交于()()1,0,2,0A B -两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)直线y x n =-+与该抛物线在第四象限内交于点D ,与线段BC 交于点E ,与x 轴交于点F ,且4BE EC =.①求n 的值;②连接,AC CD ,线段AC 与线段DF 交于点G ,AGF ∆与CGD ∆是否全等?请说明理由; (3)直线()0y m m =>与该抛物线的交点为,M N (点M 在点N 的左侧),点 M 关于y 轴的对称点为点M ',点H 的坐标为()1,0.若四边形OM NH '的面积为53.求点H 到OM '的距离d 的值.。

2017年内蒙古包头市中考数学试卷及解析答案word版

2017年内蒙古包头市中考数学试卷及解析答案word版

2017年内蒙古包头市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算()﹣1所得结果是()A.﹣2 B.C.D.22.(3分)a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣33.(3分)一组数据5,7,8,10,12,12,44的众数是()A.10 B.12 C.14 D.444.(3分)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.5.(3分)下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称6.(3分)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm7.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()8.(3分)若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定9.(3分)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1 B.π+2 C.2π+2 D.4π+110.(3分)已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个 B.2个 C.3个 D.4个11.(3分)已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y212.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.(3分)2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为.14.(3分)化简:÷(﹣1)•a=.15.(3分)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为cm.16.(3分)若关于x、y的二元一次方程组的解是,则a b的值为.17.(3分)如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.18.(3分)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.19.(3分)如图,一次函数y=x﹣1的图象与反比例函数y=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为.20.(3分)如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN.下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④=2S△ABE.若点D是AB的中点,则S△ABC其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.(8分)有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.22.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)23.(10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?24.(10分)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP 与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求tan∠OBC的值及DP的长.25.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于A (﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M 关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值.2017年内蒙古包头市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算()﹣1所得结果是()A.﹣2 B.C.D.2【解答】解:()﹣1==2,故选:D.2.(3分)a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣3【解答】解:∵a2=1,b是2的相反数,∴a=±1,b=﹣2,①当a=﹣1,b=﹣2时,a+b=﹣3;②当a=1,b=﹣2时,a+b=﹣1.故选C.3.(3分)一组数据5,7,8,10,12,12,44的众数是()A.10 B.12 C.14 D.44【解答】解:这组数据中12出现了2次,次数最多,∴众数为12,故选:B.4.(3分)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.【解答】解:由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.5.(3分)下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称【解答】解:A、8的立方根是2,故A不符合题意;B、不是最简二次根式,故B不符合题意;C、函数y=的自变量x的取值范围是x≠1,故C不符合题意;D、在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称,故D 符合题意;故选:D.6.(3分)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.7.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.B.C.D.【解答】解:∵在一个不透明的口袋里有红、黄、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有5个黄球,4个蓝球,随机摸出一个蓝球的概率是,设红球有x个,∴=,解得:x=3∴随机摸出一个红球的概率是:=.故选A.8.(3分)若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定【解答】解:解不等式x﹣<1得x<1+,而不等式x﹣<1的解集为x<1,所以1+=1,解得a=0,又因为△=a2﹣4=﹣4,所以关于x的一元二次方程x2+ax+1=0没有实数根.故选C.9.(3分)如图,在△ABC 中,AB=AC ,∠ABC=45°,以AB 为直径的⊙O 交BC于点D ,若BC=4,则图中阴影部分的面积为( )A .π+1B .π+2C .2π+2D .4π+1【解答】解:连接OD 、AD , ∵在△ABC 中,AB=AC ,∠ABC=45°, ∴∠C=45°, ∴∠BAC=90°, ∴△ABC 是Rt △BAC , ∵BC=4,∴AC=AB=4, ∵AB 为直径,∴∠ADB=90°,BO=DO=2, ∵OD=OB ,∠B=45°, ∴∠B=∠BDO=45°, ∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S △BOD +S 扇形DOA =+=π+2.故选B .10.(3分)已知下列命题: ①若>1,则a >b ; ②若a +b=0,则|a |=|b |;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵当b<0时,如果>1,那么a<b,∴①错误;∵若a+b=0,则|a|=|b|正确,但是若|a|=|b|,则a+b=0错误,∴②错误;∵等边三角形的三个内角都相等,正确,逆命题也正确,∴③正确;∵底角相等的两个等腰三角形不一定全等,∴④错误;其中原命题与逆命题均为真命题的个数是1个,故选A.11.(3分)已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2【解答】解:由消去y得到:x2﹣2x+1=0,∵△=0,∴直线y=4x与抛物线y=2x2+2只有一个交点,如图所示,观察图象可知:y1≤y2,故选D.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.(3分)2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为3×1012.【解答】解:3万亿=3×1012,故答案为:3×1012.14.(3分)化简:÷(﹣1)•a=﹣a﹣1.【解答】解:原式=••a=﹣(a+1)=﹣a﹣1,故答案为:﹣a﹣115.(3分)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为168cm.【解答】解:设男生的平均身高为x,根据题意有:=166,解可得x=168(cm).故答案为168.16.(3分)若关于x、y的二元一次方程组的解是,则a b的值为1.【解答】解:∵关于x、y的二元一次方程组的解是,∴,解得a=﹣1,b=2,∴a b=(﹣1)2=1.故答案为1.17.(3分)如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=20度.【解答】解:∵∠BAC=BOC,∠ACB=AOB,∵∠BOC=2∠AOB,∴∠ACB=BAC=20°.故答案为:20.18.(3分)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.【解答】解:连接AF,如图所示:∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵FC=2BF,∴BF=1,FC=2,∴AB=FC,∵E是CD的中点,∴CE=CD=1,∴BF=CE,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴∠BAF=∠CFE,AF=FE,∵∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣90°=90°,∴△AEF是等腰直角三角形,∴∠AEF=45°,∴cos∠AEF=;故答案为:.19.(3分)如图,一次函数y=x﹣1的图象与反比例函数y=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为(0,2).【解答】解:由,解得或,∴A(2,1),B(1,0),设C(0,m),∵BC=AC,∴AC2=BC2,即4+(m﹣1)2=1+m2,∴m=2,故答案为(0,2).20.(3分)如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD 的中点,连接MN,AM,AN.下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④=2S△ABE.若点D是AB的中点,则S△ABC其中正确的结论是①②④.(填写所有正确结论的序号)【解答】解:①在△ACD和△ABE中,∵,∴△ACD≌△ABE(SAS),所以①正确;②∵△ACD≌△ABE,∴CD=BE,∠NCA=∠MBA,又∵M,N分别为BE,CD的中点,∴CN=BM,在△ACN和△ABM中,∵,∴△ACN≌△ABM,∴AN=AM,∠CAN∠BAM,∴∠BAC=∠MAN,∵AB=AC,∴∠ACB=∠ABC,∴∠ABC=∠AMN,∴△ABC∽△AMN,所以②正确;③∵AN=AM,∴△AMN为等腰三角形,所以③不正确;④∵△ACN≌△ABM,=S△ABM,∴S△ACN∵点M、N分别是BE、CD的中点,∴S=2S△ACN,S△ABE=2S△ABM,△ACD∴S=S△ABE,△ACD∵D是AB的中点,=2S△ACD=2S△ABE,∴S△ABC所以④正确;本题正确的结论有:①②④;故答案为:①②④.三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.(8分)有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.【解答】解:(1)画树状图如下:由树状图可知,共有9种等可能结果,其中数字之积为负数的有4种结果,∴两次抽取的卡片上的数字之积为负数的概率为;(2)在(1)种所列9种等可能结果中,数字之和为非负数的有6种,∴两次抽取的卡片上的数字之和为非负数的概率为=.22.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)【解答】解:(1)∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠CAB=30°,在Rt△ACD中,∵∠ACD=90°,∠CAD=30°,∴AD=2CD=6.(2)∵DE∥BA交AC于点E,DF∥CA交AB于点F,∴四边形AEDF是平行四边形,∵∠EAD=∠ADF=∠DAF,∴AF=DF,∴四边形AEDF是菱形,∴AE=DE=DF=AF,在Rt△CED中,∵∠CDE=∠B=30°,∴DE==2,∴四边形AEDF的周长为8.23.(10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?【解答】解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷2000=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,=16,∴当x=4时,S最大值∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.24.(10分)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP 与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求tan∠OBC的值及DP的长.【解答】(1)证明:连接AD,∵∠A=∠BCD,∠AED=∠CEB,∴△AED∽△CEB,∴=,∴AE•EB=CE•ED;(2)解:∵⊙O的半径为3,∴OA=OB=OC=3,∵OE=2BE,∴OE=2,BE=1,AE=5,∵=,∴设CE=9x,DE=5x,∵AE•EB=CE•ED,∴5×1=9x•5x,解得:x1=,x2=﹣(不合题意舍去)∴CE=9x=3,DE=5x=,过点C作CF⊥AB于F,∵OC=CE=3,∴OF=EF=OE=1,∴BF=2,在Rt△OCF中,∵∠CFO=90°,∴CF2+OF2=OC2,∴CF=2,在Rt△CFB中,∵∠CFB=90°,∴tan∠OBC===,∵CF⊥AB于F,∴∠CFB=90°,∵BP是⊙O的切线,AB是⊙O的直径,∴∠EBP=90°,∴∠CFB=∠EBP,在△CFE和△PBE中,∴△CFE≌△PBE(ASA),∴EP=CE=3,∴DP=EP﹣ED=3﹣=.25.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.【解答】解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°,∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=3.②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=30°,在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2,∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴=,∴=,∴DF=,同理可得△CDE∽△CB′A′,∴=,∴=,∴ED=,∴EF=ED+DF=.(3)如图③中,作FG⊥CB′于G.,∵四边形A′B′CD′是矩形,∴GF=CD′=CD=3,=•EF•DC=•CE•FG,∵S△CEF∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°,∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴=,∴AC2=AD•AF,∴AF=,=•AC•CF=•AF•CD,∵S△ACF∴AC•CF=AF•CD=.26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于A (﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M 关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,∴,解得,∴该抛物线的解析式y=x2﹣x﹣3;(2)①如图,过点E作EE'⊥x轴于E',则EE'∥OC,∴=,∵BE=4EC,∴BE'=4OE',设点E的坐标为(x,y),则OE'=x,BE'=4x,∵B(2,0),∴OB=2,即x+4x=2,∴x=,∵抛物线y=x2﹣x﹣3与y轴交于点C,∴C(0,﹣3),设直线BC的解析式为y=kx+b',∵B(2,0),C(0,﹣3),∴,解得,∴直线BC的解析式为y=x﹣3,当x=时,y=﹣,∴E(,﹣),把E的坐标代入直线y=﹣x+n,可得﹣+n=﹣,解得n=﹣2;②△AGF与△CGD全等.理由如下:∵直线EF的解析式为y=﹣x﹣2,∴当y=0时,x=﹣2,∴F(﹣2,0),OF=2,∵A(﹣1,0),∴OA=1,∴AF=2﹣1=1,由解得,,∵点D在第四象限,∴点D的坐标为(1,﹣3),∵点C的坐标为(0,﹣3),∴CD∥x轴,CD=1,∴∠AFG=∠CDG,∠FAG=∠DCG,∴△AGF≌△CGD;(3)∵抛物线的对称轴为x=﹣=,直线y=m(m>0)与该抛物线的交点为M,N,∴点M、N关于直线x=对称,设N(t,m),则M(1﹣t,m),∵点M关于y轴的对称点为点M',∴M'(t﹣1,m),∴点M'在直线y=m上,∴M'N∥x轴,∴M'N=t﹣(t﹣1)=1,∵H(1,0),∴OH=1=M'N,∴四边形OM'NH是平行四边形,设直线y=m与y轴交于点P,∵四边形OM'NH的面积为,∴OH×OP=1×m=,即m=,∴OP=,当x2﹣x﹣3=时,解得x1=﹣,x2=,∴点M的坐标为(﹣,),∴M'(,),即PM'=,∴Rt△OPM'中,OM'==,∵四边形OM'NH的面积为,∴OM'×d=,∴d=.赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa BE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。

2017内蒙古包头中考数学解析版

2017内蒙古包头中考数学解析版

2017年内蒙古包头市中考数学试卷满分:120分 版本:人教版一、选择题(每小题3分,共12小题,合计36分)1. (2017内蒙古包头)计算112-⎛⎫⎪⎝⎭所得结果是( )A .-2B .12-C . 12D .2答案:D ,解析:负整数指数幂,任何不等于零的数的p -(p 为正整数)次幂,等于这个数的p 次幂的倒数.∴1111==2212-⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭.2. (2017内蒙古包头)21,a b =是2 的相反数,则a b +的值为( ) A . -3 B . -1 C .-1或-3 D .1或-3答案:C ,解析:平方根及相反数的概念.平方根,又叫二次方根,其中属于非负数的平方根称之为算术平方根。

一个正数有两个实平方根,它们互为相反数;0只有一个平方根,就是0本身;负数没有平方根。

21122,;aa b b ±-===是的相反数,,∴1 3.=a b --+或 3. (2017内蒙古包头)一组数据5,7,8,10,12,12,44的众数是 ( ) A . 10 B .12 C . 14 D . 14答案:B ,解析:众数的基本概念, 一组数据中出现次数最多的数据叫做这组数据的众数.这组数据中出现最多的数据是12.4. (2017内蒙古包头)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .答案:C ,解析:由正方体展开图的规律可知C 项错误,有一个面是重叠的. 5. (2017内蒙古包头)下列说法中正确的是 ( )A .8的立方根是2±B .8是一个最简二次根式C . 函数11y x =-的自变量x 的取值范围是1x >D .在平面直角坐标系中,点()2,3P 与点()2,3Q -关于y 轴对称答案:D ,解析:如果一个数的立方等于a ,那么这个数叫a 的立方根,也称为三次方根,也就是说,如果3x a =,那么x 叫做a 的立方根. 8的立方根是2,A 错;满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.8=22,所以B 错;函数11y x =-的自变量x 的取值范围是1x ≠,因为10x -≠所以C 错;在平面直角坐标系中,点(),P a b 关于y 轴对称点()',P a b -,所以D 对.6. (2017内蒙古包头)若等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形的底边长为( ) A . 2cm B . 4cm C . 6cm D .8c m答案:A ,解析:考点等腰三角形的性质及三角形的三边关系.(1)若底边长为2cm ,则腰长为(102)24cm -÷=,4+2>4符合三角形三边关系,所以该等腰三角形的底边长为2cm ;(2)若腰长为2cm ,则底边长为10226cm -⨯=,2+2<6不符合三角形三边关系,所以该等腰三角形的底边长为6cm 舍去. 7. (2017内蒙古包头)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为( )A .14B .13C .512D .12答案:A ,解析:概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率. k p n = (n为该事件所有等可能出现的结果数,k 为事件包含的结果数).设红球的个数为x 个,415+4+3px==蓝球得=3x ,315+4+34p ==红球.8. (2017内蒙古包头)若关于x 的不等式12a x -<的解集为1x <,则关于x 的一元二次方程210x a x ++=根的情况是 ( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定 答案:C ,解析:考点一元一次不等式的解法及一元二次方程判别式.由12a x -<的解集为1x <,得1+2a x <,即1+=12a ,得=0a ,代入210x a x ++=,得210x +=,由判别式2=4b a c ∆-<0,选C.9. (2017内蒙古包头) 如图,在A B C ∆中,0,45A B A C A B C =∠=,以A B 为直径的O 交B C 于点D ,若42B C =,则图中阴影部分的面积为( )A .1π+B .2π+C . 22π+D .41π+答案:B ,解析:考点圆中阴影部分规则图形面积的求解.连接线段OD ,采用分割法,把阴影部分分成两部分,即=14B O DSS S ∆+阴影圆.由已知A B C ∆中,0,45A B A C A B C =∠=,42B C =,得A B C ∆是等腰直角三角形,由勾股定理求得O 的直径为4,则OA =OB =OD =2,2=111222 2.424B O D S S S ππ∆+=⨯⨯+⨯=+阴影圆10. (2017内蒙古包头)已知下列命题: ①若1a b>,则a b >;②若0a b +=,则a b =; ③等边三角形的三个内角都相等; ④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是( ) A . 1个 B . 2个 C . 3个 D .4个答案:A ,解析:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算()﹣1所得结果是()A.﹣2 B. C.D.22.(3分)a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣33.(3分)一组数据5,7,8,10,12,12,44的众数是()A.10 B.12 C.14 D.444.(3分)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.5.(3分)下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称6.(3分)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm7.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.B.C.D.8.(3分)若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定9.(3分)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1 B.π+2 C.2π+2 D.4π+110.(3分)已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个11.(3分)已知一次函数y1=4x,二次函数y2=2x2+2,在实数围,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y212.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.(3分)2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为.14.(3分)化简:÷(﹣1)•a=.15.(3分)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为cm.16.(3分)若关于x、y的二元一次方程组的解是,则a b的值为.17.(3分)如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.18.(3分)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.19.(3分)如图,一次函数y=x﹣1的图象与反比例函数y=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为.20.(3分)如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN.下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④若点D是AB的中点,则S△ABC=2S△ABE.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.(8分)有三正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三卡片中随机地抽取一,放回卡片洗匀后,再从三卡片中随机地抽取一.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.22.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)23.(10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?24.(10分)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求tan∠OBC的值及DP的长.25.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限交于点D,与线段BC交于点E,与x 轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值.2017年市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•)计算()﹣1所得结果是()A.﹣2 B. C.D.2【考点】6F:负整数指数幂.【分析】根据负整数指数幂的运算法则计算即可.【解答】解:()﹣1==2,故选:D.【点评】本题考查的是负整数指数幂的运算,掌握a﹣p=是解题的关键.2.(3分)(2017•)a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣3【考点】1E:有理数的乘方;14:相反数;19:有理数的加法.【专题】32 :分类讨论.【分析】分别求出a b的值,分为两种情况:①当a=﹣1,b=﹣2时,②当a=1,b=﹣2时,分别代入求出即可.【解答】解:∵a2=1,b是2的相反数,∴a=±1,b=﹣2,①当=﹣1,b=﹣2时,a+b=﹣3;②当a=1,b=﹣2时,a+b=﹣1.故选C.【点评】本题考查了有理数的乘方,相反数,求代数式的值等知识点,关键是求出a b的值,注意有两种情况啊.3.(3分)(2017•)一组数据5,7,8,10,12,12,44的众数是()A.10 B.12 C.14 D.44【考点】W5:众数.【分析】根据众数的定义即可得.【解答】解:这组数据中12出现了2次,次数最多,∴众数为12,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.4.(3分)(2017•)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.【考点】I6:几何体的展开图.【分析】由平面图形的折叠及无盖正方体的展开图就可以求出结论.【解答】解:由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.【点评】本题考查了正方体的平面展开图,解答时熟悉四棱柱的特征及无盖正方体展开图的各种情形是关键.5.(3分)(2017•)下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称【考点】74:最简二次根式;24:立方根;E4:函数自变量的取值围;P5:关于x轴、y轴对称的点的坐标.【分析】根据开立方,最简二次根式的定义,分母不能为零,关于原点对称的点的坐标,可得答案.【解答】解:A、8的立方根是2,故A不符合题意;B、不是最简二次根式,故B不符合题意;C、函数y=的自变量x的取值围是x≠1,故C不符合题意;D、在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称,故D 符合题意;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6.(3分)(2017•)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.7.(3分)(2017•)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】设红球有x个,根据摸出一个球是蓝球的概率是,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【解答】解:∵在一个不透明的口袋里有红、黄、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有5个黄球,4个蓝球,随机摸出一个蓝球的概率是,设红球有x个,∴=,解得:x=3∴随机摸出一个红球的概率是:=.故选A.【点评】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.8.(3分)(2017•)若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定【考点】AA:根的判别式;C3:不等式的解集.【专题】11 :计算题.【分析】先解不等式,再利用不等式的解集得到1+=1,则a=0,然后计算判别式的值,最后根据判别式的意义判断方程根的情况.【解答】解:解不等式x﹣<1得x<1+,而不等式x﹣<1的解集为x<1,所以1+=1,解得a=0,又因为△=a2﹣4=﹣4,所以关于x的一元二次方程x2+ax+1=0没有实数根.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.(3分)(2017•)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1 B.π+2 C.2π+2 D.4π+1【考点】MO:扇形面积的计算;KH:等腰三角形的性质;M5:圆周角定理.【分析】连接DO、AD,求出圆的半径,求出∠BOD和∠DOA的度数,再分别求出△BOD和扇形DOA的面积即可.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S+S扇形DOA=+=π+2.△BOD故选B.【点评】本题考查了扇形的面积计算,解直角三角形等知识点,能求出扇形DOA 的面积和△DOB的面积是解此题的关键.10.(3分)(2017•)已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据不等式的性质、等边三角形的性质和判定、等腰三角形的性质和判定、相反数逐个判断即可.【解答】解:∵当b<0时,如果>1,那么a<b,∴①错误;∵若a+b=0,则|a|=|b|正确,但是若|a|=|b|,则a+b=0错误,∴②错误;∵等边三角形的三个角都相等,正确,逆命题也正确,∴③正确;∵底角相等的两个等腰三角形不一定全等,∴④错误;其中原命题与逆命题均为真命题的个数是1个,故选A.【点评】本题考查了不等式的性质、等边三角形的性质和判定、等腰三角形的性质和判定、相反数、命题与定理等知识点,能熟记知识点的容是解此题的关键.11.(3分)(2017•)已知一次函数y1=4x,二次函数y2=2x2+2,在实数围,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2【考点】HC:二次函数与不等式(组).【分析】首先判断直线y=4x与抛物线y=2x2+2只有一个交点,如图所示,利用图象法即可解决问题.【解答】解:由消去y得到:x2﹣2x+1=0,∵△=0,∴直线y=4x与抛物线y=2x2+2只有一个交点,如图所示,观察图象可知:y1≤y2,故选D.【点评】本题考查一次函数与二次函数的应用,解题的关键是判断出直线与抛物线只有一个交点,学会利用图象法解决问题.12.(3分)(2017•)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【考点】KQ:勾股定理;KF:角平分线的性质.【分析】根据三角形的角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上13.(3分)(2017•)2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为3×1012.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:3万亿=3×1012,故答案为:3×1012.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)(2017•)化简:÷(﹣1)•a=﹣a﹣1.【考点】6C:分式的混合运算.【专题】11 :计算题;513:分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=••a=﹣(a+1)=﹣a﹣1,故答案为:﹣a﹣1【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(3分)(2017•)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为168cm.【考点】W2:加权平均数.【分析】根据平均数的公式求解即可.用50名身高的总和减去20名女生身高的和除以30即可.【解答】解:设男生的平均身高为x,根据题意有:=166,解可得x=168(cm).故答案为168.【点评】本题考查的是样本平均数的求法及运用,即平均数公式:=.16.(3分)(2017•)若关于x、y的二元一次方程组的解是,则a b的值为1.【考点】97:二元一次方程组的解.【分析】将方程组的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可求a b的值.【解答】解:∵关于x、y的二元一次方程组的解是,∴,解得a=﹣1,b=2,∴a b=(﹣1)2=1.故答案为1.【点评】此题主要考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.也考查了解二元一次方程组.17.(3分)(2017•)如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=20度.【考点】M5:圆周角定理.【分析】根据圆周角定理即可得到结论.【解答】解:∵∠BAC=BOC,∠ACB=AOB,∵∠BOC=2∠AOB,∴∠ACB=BAC=20°.故答案为:20.【点评】此题主要考查了圆周角定理的应用,熟记圆周角定理是解题关键.18.(3分)(2017•)如图,在矩形ABCD中,点E是CD的中点,点F是BC 上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.【考点】LB:矩形的性质;T7:解直角三角形.【分析】接AF,由矩形的性质得出∠B=∠C=90°,CD=AB=2,BC=AD=3,证出AB=FC,BF=CE,由SAS证明△ABF≌△FCE,得出∠BAF=∠CFE,AF=FE,证△AEF是等腰直角三角形,得出∠AEF=45°,即可得出答案.【解答】解:连接AF,如图所示:∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵FC=2BF,∴BF=1,FC=2,∴AB=FC,∵E是CD的中点,∴CE=CD=1,∴BF=CE,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴∠BAF=∠CFE,AF=FE,∵∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣90°=90°,∴△AEF是等腰直角三角形,∴∠AEF=45°,∴ocs∠AEF=;故答案为:.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、三角函数等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.19.(3分)(2017•)如图,一次函数y=x﹣1的图象与反比例函数y=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为(0,2).【考点】G8:反比例函数与一次函数的交点问题.【分析】利用方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【解答】解:由,解得或,∴A(2,1),B(1,0),设C(0,m),∵BC=AC,∴AC2=BC2,即4+(m﹣1)2=1+m2,∴m=2,故答案为(0,2).【点评】本题考查反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是学会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题,属于中考常考题型.20.(3分)(2017•)如图,在△ABC 与△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE ,且点D 在AB 上,点E 与点C 在AB 的两侧,连接BE ,CD ,点M 、N 分别是BE 、CD 的中点,连接MN ,AM ,AN .下列结论:①△ACD ≌△ABE ;②△ABC ∽△AMN ;③△AMN 是等边三角形;④若点D 是AB 的中点,则S △ABC =2S △ABE . 其中正确的结论是 ①②④ .(填写所有正确结论的序号)【考点】S9:相似三角形的判定与性质;KD :全等三角形的判定与性质;KM :等边三角形的判定与性质.【分析】①根据SAS 证明△ACD ≌△ABE ;②先证明△ACN ≌△ABM ,得△AMN 也是等腰三角形,且顶角与△ABC 的顶角相等,所以△ABC ∽△AMN ;③由AN=AM ,可得△AMN 为等腰三角形;④根据三角形的中线将三角形面积平分得:S △ACD =2S △ACN ,S △ABE =2S △ABM ,则S △ABC =2S △ACD =2S △ABE .【解答】解:①在△ACD 和△ABE 中,∵,∴△ACD≌△ABE(SAS),所以①正确;②∵△ACD≌△ABE,∴CD=BE,∠NCA=∠MBA,又∵M,N分别为BE,CD的中点,∴CN=BM,在△ACN和△ABM中,∵,∴△ACN≌△ABM,∴AN=AM,∠CAN∠BAM,∴∠BAC=∠MAN,∵AB=AC,∴∠ACB=∠ABC,∴∠ABC∠AMN,∴△ABC∽△AMN,所以②正确;③∵AN=AM ,∴△AMN 为等腰三角形,所以③不正确;④∵△ACN ≌△ABM ,∴S △ACN =S △ABM ,∵点M 、N 分别是BE 、CD 的中点,∴S △ACD =2S △ACN ,S △ABE =2S △ABM ,∴S △ACD =S △ABE ,∵D 是AB 的中点,∴S △ABC =2S △ACD =2S △ABE ,所以④正确;本题正确的结论有:①②④;故答案为:①②④.【点评】本题考查了三角形全等的性质和判定、等腰三角形的性质和判定、三角形中线的性质、三角形相似的性质和判定,熟练掌握三角形全等的性质和判定及三角形中线平分面积的性质是关键;此类选择题比较麻烦,类似四个证明题,所以要认真审题,并做出正确的判断.三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.(8分)(2017•)有三正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三卡片中随机地抽取一,放回卡片洗匀后,再从三卡片中随机地抽取一.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.【考点】X6:列表法与树状图法.【分析】(1)画出树状图列出所有等可能结果,再找到数字之积为负数的结果数,根据概率公式可得;(2)根据(1)中树状图列出数字之和为非负数的结果数,再根据概率公式求解可得.【解答】解:(1)画树状图如下:由树状图可知,共有9种等可能结果,其中数字之积为负数的有4种结果,∴两次抽取的卡片上的数字之积为负数的概率为;(2)在(1)种所列9种等可能结果中,数字之和为非负数的有6种,∴两次抽取的卡片上的数字之和为非负数的概率为=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2017•)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC 的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.(1)求AD的长;(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)【考点】LA:菱形的判定与性质;JA:平行线的性质;KO:含30度角的直角三角形.【分析】(1)首先证明∠CAD=30°,易知AD=2CD即可解决问题;(2)首先证明四边形AEDF是菱形,求出ED即可解决问题;【解答】解:(1)∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠CAB=30°,在Rt△ACD中,∵∠ACD=90°,∠CAD=30°,∴AD=2CD=6.(2)∵DE∥BA交AC于点E,DF∥CA交AB于点F,∴四边形AEDF是平行四边形,∵∠EAD=∠ADF=∠DAF,∴AF=DF,∴四边形AEDF是菱形,∴AE=DE=DF=AF,在Rt△CED中,∵∠CDE=∠B=30°,∴DE==2,∴四边形AEDF的周长为8.【点评】本题考查菱形的判定和性质、平行线的性质、直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(10分)(2017•)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)由矩形的一边长为x、周长为16得出另一边长为8﹣x,根据矩形的面积公式可得答案;(2)由设计费为24000元得出矩形面积为12平方米,据此列出方程,解之求得x的值,从而得出答案;(3)将函数解析式配方成顶点式,可得函数的最值情况.【解答】解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷200=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.【点评】本题主要考查二次函数的应用与一元二次方程的应用,根据矩形的面积公式得出函数解析式,并熟练掌握二次函数的性质是解题的关键.24.(10分)(2017•)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求tan∠OBC的值及DP的长.【考点】S9:相似三角形的判定与性质;MC:切线的性质;T7:解直角三角形.【分析】(1)直接根据题意得出△AED∽△CEB,进而利用切线的性质的出答案;(2)利用已知得出EC,DE的长,再利用勾股定理得出CF的长,t即可得出an ∠OBC的值,再利用全等三角形的判定与性质得出DP的长.【解答】(1)证明:连接AD,∵∠A=∠BCD,∠AED=∠CEB,∴△AED∽△CEB,∴=,∴AE•EB=CE•ED;(2)解:∵⊙O的半径为3,∴OA=OB=OC=3,∵OE=2BE,∴OE=2,BE=1,AE=5,∵=,∴设CE=9x,DE=5x,∵AE•EB=CE•ED,∴5×1=9x•5x,解得:x1=,x2=﹣(不合题意舍去)∴CE=9x=3,DE=5x=,过点C作CF⊥AB于F,∵OC=CE=3,∴OF=EF=OE=1,∴BF=2,在Rt△OCF中,∵∠CFO=90°,∴CF2+OF2=OC2,∴CF=2,在Rt△CFB中,∵∠CFB=90°,∴tan∠OBC===,∵CF⊥AB于F,∴∠CFB=90°,∵BP是⊙O的切线,AB是⊙O的直径,∴∠EBP=90°,∴∠CFB=∠EBP,在△CFE和△PBE中,∴△CFE≌△PBE(ASA),∴EP=CE=3,∴DP=EP﹣ED=3﹣=.【点评】此题主要考查了全等三角形的判定与性质以及相似三角形的判定与性质,正确得出EP的长是解题关键.25.(12分)(2017•)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD 绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.【考点】SO:相似形综合题.【分析】(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;(2)由△A′DF∽△A′D′C,可得=,推出DF=,同理可得△CDE∽△CB′A′,由=,求出DE,即可解决问题;(3)如图③中,作FG⊥CB′于G,由S△ACF=•AC•CF=•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;【解答】解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°,∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=3.②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=30°,在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4.(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2,∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴=,∴=,∴DF=,同理可得△CDE∽△CB′A′,∴=,∴=,∴ED=,∴EF=ED+DF=.(3)如图③中,作FG⊥CB′于G.,∵四边形A′B′CD′是矩形,∴GF=CD′=CD=3,=•EF•DC=•CE•FG,∵S△CEF∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°,∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴=,∴AC2=AD•A F,∴AF=,∵S=•AC•CF=•AF•CD,△ACF∴AC•CF=AF•CD=.【点评】本题考查矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理、面积法等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,属于中考压轴题.26.(12分)(2017•)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c 与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限交于点D,与线段BC交于点E,与x 轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)根据抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,可得抛物线的解析式;(2)①过点E作EE'⊥x轴于E',则EE'∥OC,根据平行线分线段成比例定理,可得BE'=4OE',设点E的坐标为(x,y),则OE'=x,BE'=4x,根据OB=2,可得x=,再根据直线BC的解析式为y=x﹣3,即可得到E(,﹣),把E的坐标代入直线y=﹣x+n,可得n的值;②根据F(﹣2,0),A(﹣1,0),可得AF=1,再根据点D的坐标为(1,﹣3),点C的坐标为(0,﹣3),可得CD∥x轴,CD=1,再根据∠AFG=∠CDG,∠FAG=∠DCG,即可判定△AGF≌△CGD;(3)根据轴对称的性质得出OH=1=M'N,进而判定四边形OM'NH是平行四边形,再根据四边形OM'NH的面积为,求得OP=,再根据点M的坐标为(﹣,),得到PM'=,Rt△OPM'中,运用勾股定理可得OM'=,最后根据OM'×d=,即可得到d=.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,∴,解得,∴该抛物线的解析式y=x2﹣x﹣3;(2)①如图,过点E作EE'⊥x轴于E',则EE'∥OC,∴=,∵BE=4EC,∴BE'=4OE',。

相关文档
最新文档