《图形与几何》课件1
合集下载
新人教版数学六年级下册总复习《图形与几何》课件(知识点全面)
这些计算公式是怎样推导出来的?它们之间有什么联系?
长方形和正方形是用面积单 位量出来的。
平行四边形转化成长方形。
两个完全相同的三角形或梯形 都可以拼成平行四边形。
利用割补、转化的方 法来推导图形的面积 公式。
长方形的面积是研究其它图形面积的基础。
9.三角形三边的关系
4cm
7cm
13cm
三角形其中两条线段的和大于第三条线段时,这样的三条 线段才能组成一个三角形。
30cm
上升的水的体积就是马铃薯的体积。
在方格纸上分别画出从不同方向看到左边立体图形 的形状图。
正面
左面
上面
连一连。
一个蓄水池(如下图),长10米,宽4米,深2米。 (1)蓄水池占地面积有多大?
10×4 = 40(平方米) 答:占地面积是40平方米。 (2)在蓄水池的底面和四周抹上水泥,抹水泥的面积有多大? 10×4 +(4×2+2×10)×2= 96(平方米)
三角形
锐角三角形 直角三角形
等腰三角形
(三个角都是 (有一个角是直角) 不等边三角形 (两条边相等)
锐角) 钝角三角形
(三条边都 等边三角形 不相等) (三条边都相等)
(有一个角是钝角)
1.平面图形的分类
四边形的分类
平行四边形 长方形
正方形
四边形 梯形
等腰梯形 直角梯形
2.直线、射线和线段
名称
相同点
比例尺 1∶20000
2.辨认方向
在平面图中确定方位,通常是上北、下南、左西、右东。
北
西北
东北
西
东
西南
南
东南
3.根据方向和距离,确定物体位置的一般步骤。
小学数学六年级上册优质课件第3课时 图形与几何
与 方 向 (二)
根用定据方某平向个面和点示距的意离位图 确 置,(长(以12度)确)确根代定定据表平观方的面测向实图点和际上、距距某方离离个向两点标个的和条具图件体上,位单才置位可
描述简单路线图 起点、方向、距离、终点
以题为例,解决问题
1.如图,一个公园是圆形布局,半径长1km,圆心处设立了 一座纪念碑。公园有四个门,每两个相邻的门之间有一条直 的水泥路,长约1.41km。 【教科书P111 第4题】 (1)这个公园的围墙有多长?
3.14×1×2= 6.28(km) 答:这个公园的围墙长6.28 km。
如图,一个公园是圆形布局,半径长1km,圆心处设立了一 座纪念碑。公园有四个门,每两个相邻的门之间有一条直 的水泥路,长约1.41km。 【教科书P111 第4题】 (2)北门在南门的什么方向?距离南门多远?
2×1=2(km) 答:北门在南门的正北方,距南门2km。
强化练习,巩固应用
1.(1)说一说小动物们居住的位置。
【教科书P115 练习二十三 第14题】
1. (1)说一说小动物们居住的位置。
【教科书P115 练习二十三 第14题】
45°
1. (1)说一说小动物们居住的位置。
【教科书P115 练习二十三 第14题】
45°
【教科书P115 练习二十三 第14题】
怎样确定位置?
既要明确方向,又要明确距离。
如图,一个公园是圆形布局,半径长1km,圆心处设立了一 座纪念碑。公园有四个门,每两个相邻的门之间有一条直 的水泥路,长约1.41km。 【教科书P111 第4题】 (3)如果公园里有一个半径为0.2km的圆形小湖, 这个公园的陆地面积是多少平方千米?
3.14×12-3.14×0.22 =3.14×1-3.14×0.04 =3.14-0.1256=3.0144(km2) 答:这个公园的陆地面积是3.0144平方千米。
人教版小学六年级数学下册第六单元2《图形与几何》PPT课件
旋转 45°
放大
旋转 45°
旋转 45°
放大
二 巩固练习
1. ⑤号图形是③号长方形放大后的图形,它 是按( 3 )∶( 1 )放大的。
二 巩固练习
2.
二 巩固练习
3.
二 巩固练习
二 巩固练习
二 巩固练习
人教版小学六年级数学下册
第六单元 整理和复习 2. 图形与几何
第5课时 图形与位置
一 复习导入
一 复习导入
平面图形的测量
周长 面积
一 复习导入
周长
围成一个图形所有边长 的总和,叫做这个图形 的周长。
一 复习导入
常见的周长公式
图形
长方形
正方形
周长 (长+宽)×2 边长×4
圆
2πr
一 复习导入
面积
物体的表面或 围成的平面图 形的大小。
一 复习导入
常见的面积公式
图 形
正方形
长方形
平行四 边形
立体图形的表面积和体积
表面积
一个立体图形所有面的 面积的总和,叫做它的 表面积。正方体的表面 积是它6个面的面积和。 用平方单位表示。
一 复习导入
立体图形的表面积和体积
体积
一个立体图形所占空间的 大小叫做它的体积。正方 体的体积用底面积×高。 用立方单位表示。
一 复习导入
二 巩固练习
1.在一个长60㎝、宽32㎝、高22㎝的长方体 箱子里,最多可以装多少个棱长为4㎝的 正方体物品?
沿长的方向一行能摆60÷4=15(个) 沿宽的方向一行能摆32÷4=8(个) 沿高的方向一行能摆22÷4≈5(个) (去尾法) 15×8×5=600(个) 答:最多能装600个棱长为4㎝的正方体物品。
《图形与几何》教学课件ppt(共13张PPT)
北师大年夜 版五年级下册总温习
图形与多少 何
第一页,共13页。
回忆 与交换
1.对于 长方体跟 正方体,你都学会了哪些常识 ? 2.下面哪个平面开展 图折叠后所围成的图形是正方体?说 一说你是怎样 揣摸 。
①
②
③
④
第二页,共13页。
回忆 与交换
3.距离 阐明1cm3,1dm3,1m3各有多大年夜 ,1L,1mL的 谁大年夜 概 有多少 。
〔1〕0.3×0.18×0.2=0.0108〔m3〕
0.0108×1.5=0.0162〔m3〕
〔2〕40× 0.0162 =0.648〔m3〕 0.648×365=〔m3〕
第十三页,共13页。
的意义
体积:10×6×5=300(cm3 )
长、宽、高。
把下面的长方体、正方体与对应的开展 图连起来。
表面积:2×(10×6+6×5正+1方0×5体)=的280(cm2有) 8个顶点;6个面都是相等的正方形;1 2条棱的长
相交于同一顶点的三条棱的长度分别叫作长方体的长、宽、高。
长方体 特征 度都相等。 长方体、正方体的体积=底面积×高,用字母表示为V=Sh。
6.一块正方体石料的棱长为6dm。这块石料的体积是多少 破 方分米?假如1dm3石料的品质 是2.7kg,这块石料的品质 是 多少 千克?
体积:6×6×6=216〔dm3 〕 品质 :216×2.7=583.2〔kg〕 7.有一排长方体的储物柜,共占地0.84m2,储物柜高0.75m。 这排储物柜的体积是多少 破 方米?
面积
正方体的表 正方体的棱长和=棱长×1 2
面积
第五页,共13页。
回忆 与交换
长方体 (二)
长方体、正 方体的体积 计算公式
图形与多少 何
第一页,共13页。
回忆 与交换
1.对于 长方体跟 正方体,你都学会了哪些常识 ? 2.下面哪个平面开展 图折叠后所围成的图形是正方体?说 一说你是怎样 揣摸 。
①
②
③
④
第二页,共13页。
回忆 与交换
3.距离 阐明1cm3,1dm3,1m3各有多大年夜 ,1L,1mL的 谁大年夜 概 有多少 。
〔1〕0.3×0.18×0.2=0.0108〔m3〕
0.0108×1.5=0.0162〔m3〕
〔2〕40× 0.0162 =0.648〔m3〕 0.648×365=〔m3〕
第十三页,共13页。
的意义
体积:10×6×5=300(cm3 )
长、宽、高。
把下面的长方体、正方体与对应的开展 图连起来。
表面积:2×(10×6+6×5正+1方0×5体)=的280(cm2有) 8个顶点;6个面都是相等的正方形;1 2条棱的长
相交于同一顶点的三条棱的长度分别叫作长方体的长、宽、高。
长方体 特征 度都相等。 长方体、正方体的体积=底面积×高,用字母表示为V=Sh。
6.一块正方体石料的棱长为6dm。这块石料的体积是多少 破 方分米?假如1dm3石料的品质 是2.7kg,这块石料的品质 是 多少 千克?
体积:6×6×6=216〔dm3 〕 品质 :216×2.7=583.2〔kg〕 7.有一排长方体的储物柜,共占地0.84m2,储物柜高0.75m。 这排储物柜的体积是多少 破 方米?
面积
正方体的表 正方体的棱长和=棱长×1 2
面积
第五页,共13页。
回忆 与交换
长方体 (二)
长方体、正 方体的体积 计算公式
图形与几何课件ppt
• 图形种类:介绍圆形、正方形 、长方形、三角形等基本图形 的形状、大小、颜色等基本属 性
• 图形分类:根据图形的形状、 大小、颜色等属性对图形进行 分类和命名
图形表示
总结词:掌握图形的 基本表示方法和符号 语言
详细描述
• 符号语言:介绍图 形表示中常用的符 号语言,如点、线 、面、角等
• 图形表示方法:描 述如何用符号语言 来表示图形的形状 、大小、位置等几 何特征
06
总结与展望
课件内容
01
02
03
04
05
直线、射线、 线段
理解直线、射线、线段的 定义和性质,掌握它们的 表示方法。
角的概念
理解角的概念,掌握角的 度量方法和表示方法。
相交线与平行 线
理解相交线与平行线的概 念,掌握它们的性质和应 用。
三角形
四边形
理解三角形的概念,掌握 三角形的性质和应用。
理解四边形的概念,掌握 四边形的性质和应用。
作学习能力。
组织有效的教学活动
示范与讲解
通过示范和讲解,让学生了解图形与几何的基本概念和技能,以及如何应用这些概念和技 能解决问题。
实践活动
组织学生进行实践活动,如测量、绘图等,让学生在实践中学习和掌握图形与几何的知识 。
互动与讨论
组织学生进行互动和讨论,鼓励学生互相学习和交流,加深对图形与几何知识的理解和掌 握。
引入新的教学方法
可以引入一些新的教学方法,如项目制学习、合作学习 等,以更好地激发学生的学习兴趣和主动性。
拓展知识面
在未来的教学中,可以适当地拓展知识面,引入一些更 深入的内容,如几何定理的证明、图形的组合等。
THANKS
谢谢您的观看
人教版四年级数学下册总复习第2课时《图形与几何》授课课件
1.观察物体
小试牛刀
连一连。
2.三角形的特性 小试牛刀
1.填一填
(1)由( 3 )条线段( 围 )成的图形(每相邻两条线段的端点 相连)叫做三角形。
(2)三角形有( 3 )条边,( 3 )个顶点,( 3 )个角。
(3)从三角形的一个( 顶点)到它的对边作一条( 垂线), (顶点 )和( 垂足)之间的线段叫做三角形的高,这条对 边叫做三角形的( 底 )。
角形的内角和是( B )。
A.90°
B.180°
C.360°
4.画一画。 (1)画出下面三角形指定底边上的高。
(2)以平行四边形中的一个钝角为顶角画一个等腰三角形。
5.如图,AB=AD,∠1=60°,求∠2的度数。 ∠2=360°-90°-90°-60°-60°=60°
6.解决问题。 (1)吴大伯家有一块等腰三角形的菜地,周围全部
想一想吧!!
6.以虚线为对称轴,画出下面各图形的对 称图形。
7.想一想,如何求出下面图形的周长?
利用平移法。 2.6+5.8+2.6+5.8=16.8(m)
10 总复习
《图形与几何(1)》 观察物体和图形运动
练习
1.填空。 (1)先仔细观察再填空。
①从前面看到的形状是 ②从上面看到的形状是
的是图( C )。 的是图( A )。
B.上面
C.左面
(3)下面的图形中,对称轴最多的是( C )。
3.动手操作。 (1)在下面的方格图中画出左图从前面、上面和左面看到的
图形。
(2)画出轴对称图形的另一半(以虚线为对称轴)。
=3.56
=49.79
(3)将梯形先向右平移6格,再向下平移5格,分别画出 平移后的图形。
《图形与几何》人教版小学数学五年级下册PPT课件
700 dm3=
m0.37
1 L=
d1m0030
560 mL=
L 0.56
考点回顾
13.一块长方形铁皮(如右图),从四个角落各切掉一个边长为 5 cm 的正方形 ,然后做成盒子。这个盒子用了多少铁皮?它的容积有多少?
表面积: 30×25-5×5×4=750-100 = 650(cm2)
容积: (30-5×2)×(25-5×2)×5 = 1500(cm3)=1500(mL)
授课人:XXX
考点回顾
填写下表。
名称
图形及条件
表面积
长方体 正方体
a
h S=2(ab+ah+bh) b
a aa
S=
6a2
体积
V= abh V= a3
巩固练习
1.(1)举例说明 1 cm3、1 dm3、1 m3各有多大,1 L、1 mL的水大约有多少?
请同学们们举例说明。
(2)1 m3= 1000 dm3 81 cm3= 81mL 2.3 dm3= 23c0m0 3
考点回顾
14. 一只长方体的玻璃缸,长8dm、宽6dm、高4cm,水深2.8dm。如果投 入一块棱长为4dm的正方体铁块(如右图),缸里的水溢出多少升?
8×6×2.8+4×4×4 -8×6×4 = 6.4( dm3 )= 6.4(L) 答:缸里的水溢出 6.4 L。
考点回顾
15.用 4 个 摆一摆。 (1)如果从左侧看到的形状是 放的?
考点回顾
下面 3 个几何体都是由棱长 1 cm 的小正方体摆成的。
①
②
③
考点回顾
(1)下面的图形是聪聪从上面看到的,它们分别是从哪个图形的上面看到的? 将序号写在括号中。
《图形与几何》课件
(3,2)
(5,3)
(8,1)
2 在方格图上标出点A,B,C,D,它们的位置
是(1,1), (5,1),(5,4),(1,4),
并把它们A→B→ C→ D→ A按的顺序连接起
来。 (1)说一说这是一个什么图形。
(2)如果每个小方格的边长表示1厘米,你能算出这个图形的周长吗?
(1)长方形 (2)(4+3)×2=14(厘米)
3 星期日妈妈带妙想到外婆家玩。 (1)她们乘坐的3路公交车沿途有哪些建筑物?分别在什么位置? 百货大厦(3,3) 广播大厦(5,4)
● ●
(2)下午她们又到位置时(9,9)的景点去玩。你知道妙想去的是什 么地方吗?
●
儿童乐园
(3)游玩结束后她们乘公交车回家,沿途有哪些建筑物?在什么位置? 电视塔(3,8)
60° 90° 105° 120一估,并量出下面两个角的度数,说说你是怎么量的。
1 ∠1= 70 °
2 ∠2= 110 °
用方向和距离描述路线。 方向与位置
用数对确定位置。
1 小朋友在体育课上学习太极拳,你能发现有哪几个小朋友的姿势与大多数同学的姿势不一样?请分别 用数对说出他们的位置。
《图形与几何》
线与角
线段、直线、射线 线 相交与垂直
平移与平行 旋转与角,认识平角、周角
角
角的度量单位、量角
画角
1 在下图中,分别找出两组互相平行和互相垂直的线段。
2 画一个长3厘米、宽1厘米的长方形。
3厘米
1厘米
3 量一量下面各角的度数。
4 选择合适的方法画出下列各角,并说一说它们分别是哪一种角。
●
4 小兔、小熊和小猫先去果园摘自己喜欢的水果,再去动物乐园聚餐。说一说它们的最近行走路线。
最新人教版三年级数学下册《图形与几何(1)》精品课件
1.小红从家向 西南 走 60 米到书店,再
向 西 走 70 米到敬老院。
知 识 点 3 描述简单的行走路线
例 看下面的示意图,并描述行走路线。
邮局
学校
小红家
60米
50米
70米 30米 60米
敬老院 书店 30米
小明家
小刚家
2.小刚从书店向 西 走 70 米到敬老院,
再向 西北 走 50 米到邮局。
义务教育人教版三年级下册
9
总复习
第4课时 图形与几何(1)
优 翼
一 复习导入
位置 与方向
回我同地们忆整学应一理们该下与,掌,复这握关习节哪于“课些“位我知位置们识置与一?与方起方向来向”系”的统 有关知识。 西北 北 东北
会辨认8个方向:
西
东
西南 南 东南
会描述简单的行走路线
知 识 点 1 在生活中辨认8个方向 在生活中我们可以怎么辨认方向?
北 东
南
本课 小 结
通过本节课的学习你有什么收获和体会?你 还有什么困惑?
?
总结收获
说一说,你这节课有什么收获。
课后反思
2、老师引导学生归纳本课知识重点。 1、和同桌说说你今天学习有什么收获?
课后作业
1. 从课后习题中选取; 2. 完成练习册本课时的习题.
今天同学们觉得整堂课表现 的 怎 么 样 ?如果 你 觉 得自 己 表 现 的 很 好, 就 自 己 鼓 鼓 掌 吧!
知 识 点 2 地图上的方向 例 按方位说一说,小清家的周围有什么?
1.小清家的东
面有 医院 。
知 识 点 2 地图上的方向 例 按方位说一说,小清家的周围有什么?
2.小清家的北
北师大版五年级上册数学 图形与几何(课件)(共56张PPT)
250×84=21000(m2) 21000平方米=2.1公顷 14.7÷2.1=7(吨) 答:今年平均每公顷收小麦7吨。
小试牛刀
3.估计下面图形的面积。(每个小方格的边长表示1cm)
面积约为 cm² 面积约为 cm²
小试牛刀
4.我们学过哪些面积单位?它们的进率是多少呢?
平方千米 公顷 平方米 平方分米 平方厘米
100 10000 100 100
小试牛刀
1.填一填
《鸡兔同笼》复习课
30000m2=( 3 )公顷 6km2=( 600 )公顷 0.64km2=( 640000 )m2 4800000m2=( 4.8 )km2
小试牛刀
2.在横线上填上合适的面积单位(m2、公顷、km2)。
圆明园占地面 奥林匹克森林公园 故宫占地面积约 积约350公顷。 占地面积约6.8 km2。 720000 m2 。
长方形的面积:6×5=30(cm2) 梯形的面积:(5+10)×(12-6)÷2=45(cm2) 组合图形的面积:30+45=75(cm2)
小试牛刀
1.计算下面组合图形的面积,你有几种方法?
方法1:长方形+梯形 方法2:三角形+长方形
三角形的面积:(12-6)×(10-5)÷2=15(cm²) 长方形的面积:12×5=60(cm²) 组合图形的面积:15+60=75(cm²)
五年级数学·上 新课标[北师]
五年级上册总复习·图形与几何
图形与几何之轴对称与平移
单元复习
找找生活中的轴对称? 图生形活沿中着像一蝴条蝶直、线天对安折门后城,楼两这边
样完,全左重右合两,边这一样样的,图就形是叫对做称轴的对。 称图形。
一、轴对称图形
轴对称图形的特征:
小试牛刀
3.估计下面图形的面积。(每个小方格的边长表示1cm)
面积约为 cm² 面积约为 cm²
小试牛刀
4.我们学过哪些面积单位?它们的进率是多少呢?
平方千米 公顷 平方米 平方分米 平方厘米
100 10000 100 100
小试牛刀
1.填一填
《鸡兔同笼》复习课
30000m2=( 3 )公顷 6km2=( 600 )公顷 0.64km2=( 640000 )m2 4800000m2=( 4.8 )km2
小试牛刀
2.在横线上填上合适的面积单位(m2、公顷、km2)。
圆明园占地面 奥林匹克森林公园 故宫占地面积约 积约350公顷。 占地面积约6.8 km2。 720000 m2 。
长方形的面积:6×5=30(cm2) 梯形的面积:(5+10)×(12-6)÷2=45(cm2) 组合图形的面积:30+45=75(cm2)
小试牛刀
1.计算下面组合图形的面积,你有几种方法?
方法1:长方形+梯形 方法2:三角形+长方形
三角形的面积:(12-6)×(10-5)÷2=15(cm²) 长方形的面积:12×5=60(cm²) 组合图形的面积:15+60=75(cm²)
五年级数学·上 新课标[北师]
五年级上册总复习·图形与几何
图形与几何之轴对称与平移
单元复习
找找生活中的轴对称? 图生形活沿中着像一蝴条蝶直、线天对安折门后城,楼两这边
样完,全左重右合两,边这一样样的,图就形是叫对做称轴的对。 称图形。
一、轴对称图形
轴对称图形的特征:
新人教版初中数学《几何图形》优秀课件1
解:过点 C 作 CD⊥x 轴于点 D,则∠CAD+∠ACD=90°.∵∠ OBA + ∠OAB = 90 ° , ∠ OAB + ∠CAD = 90 ° , ∴ ∠ OAB = ∠ACD , ∠ OBA = ∠CAD , 又 AB = AC , ∴ △ AOB ≌ △ CDA(ASA).∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3, ∴C(3,1).∵点 C(3,1)在抛物线 y=21x2+bx-2 上,可得 b=- 12,∴抛物线的解析式为 y=21x2-12x-2
•
4.概括文章的主要内容。通篇阅读, 分出层 次,梳 理情节 ,全盘 把握, 根据题 干要求 找出事 件的中 心内容 ,用自 己的语 言简洁 概括。 如可概 括为“我” 见到菜 农后发 生的几 件事及 对他态 度的变 化,由 此表达 了对菜 农的敬 佩之情 。
2.如图所示,在平面直角坐标系xOy中,顶点 为M的抛物线y=ax2+bx(a>0)经过点A和x轴正 半轴上的点B,AO=OB=2,∠AOB=120°.求 这条抛物线的解析式.
解:∵AO=OB=2,∠AOB=120°,∴点 B 的坐标为(2,0), 点 A 的坐标为(-1, 3).∵抛物线 y=ax2+bx(a>0)经过点
∴该二
次函数的解析式为 y=-32x2+43x+2
上,若∠AEF=90°,且EF交正方形外角的平分线CF于点 F. (1)图甲中,若点E是边BC的中点,我们可以构造两个三角 形全等来证明AE=EF,请叙述你的一个构造方案,并指 出是哪两个三角形全等(不要求证明); (2)如图乙,若点E在线段BC上滑动(不与点B,C重合). ①AE=EF是否总成立?请给出证明; ②在如图乙所示的直角坐标系中,当点E滑动到某处时, 点F恰好落在抛物线y=-x2+x+1上,求此时点F的坐标 .
新人教版六年级下册数学教学课件-6.5图形与几何1图形认识与测量
相同点 都 是 直 的
不同点
没有端点,不可测量
有一个端点,不可测 量
有两个端点,可以测 量
课件PPT
探索新知
2. 在同一个平面内,两条直线可 能有哪几种位置关系?
位置关系 平行 类型 交点 无 互相垂直 一个 图例
相交
不垂直相交
一个
同一平面内,两条直线要么平行,要么相交。
课件PPT
探索新知
3. 我们学了哪些角?在放大镜下看 角,它的大小会变化吗?
课件PPT
情境导入
1. 同学们,小学阶段我们学过了哪些图形?
直线、线段、射线、长方形、三角形……
2. 我们学过这么多图形,如果把这些图形按 是否占有空间分成两大类,你觉得可以怎样 分?
分成:平面图形和立体图形
课件PPT
探索新知
1. 直线、线段和射线有什么特征? 它们之间有什么联系和区别?
图形
名称 直线 射线 线段
课件PPT
探索新知
三角形按边分可分为哪几类?
三角形
等腰三角形
等边三角形
课件PPT
探索新知
在一个三角形中,任意两边之和 与第三边的长度有什么关系?
三角形中,任意两边之和大于第三边。
在一个三角形中,最多有几个直角?最多有 几个钝角?为什么?
因为三角形的内角和是180°,所以一个三角形 中最多有一个直角,最多也只有一个钝角。
高
腰
下底
只有一组对边平行
课件PPT
探索新知
在下表内适当的空格内填上“√”,再说一说几 种图形之间的联系和区别。
四边形 正方形 长方形 平 行 四边形 梯形
两组对边 只有一组 两组对边 有四个 四边相等 分别相等 对边平行 分别平行 直角
人教版《图形与几何》PPT1(共27张PPT)
二、温故知新
分别求出下面长方体、正方体的表面积和体积(单位:cm)
7.5×4×4+42×2=152(cm2) 4×4×7.5=120(cm3)
1.52×6=13.5(cm2) 1.53=3.375(cm3)
二、温故知新
体积与容积的区别与联系
异同点
体积
容积
区别
意义
不同
测量 方法 不同
单位 名称 不同
图形③:3×3×3-11=16(个)
从正面看 第1课时 图形与几何
现在你能画出这个物体的立体图形了吗? 顺次连接点A、点B′、点D′、点C′,即可得到旋转后的图形。
(1)举例说明1cm3、1dm3、1m3各有多大,1L、1mL的水大约有多少。
从左面看 从上面看
从物体外部测量长、宽、高。
说一说你是怎样旋转并画出的。
旋根正据方转从 体中一的心个体方积是向=棱唯看长一到×的不棱平长动面×的图棱形点长摆,。出用的字立母体表图示形是不V一=a定3。相同。 容你能积摆单出位这:个L物和体m的L;计立体量图固形体吗时?用体积单位。 S长=方体的体积=长×宽×高,用字母表示是V=abh;
第一单元学习了观察物体。
在现图分人别形民A在求②B教你出:的下育能4垂面×出画长4线×版方出上4体社-这1、找0五正=个5到方年4物体(级点的个体下B表)的的面册积立对和体应体积图点(单形B位′,:了cm使)吗A?B′= m如果³、要d把m①³、、②c、m③³。分别继续补搭成一个大正方体,每个图形至少还需要多少个小正方体?
联系
物体所占空间的 大小,叫做物体 的体积。
从物体外部测量 长、宽、高。
一个容器所能容纳物体的体积, 叫做这个容器的容积。
从容器里面测量长、宽、高。
人教版小学四年级上册数学《图形与几何》精品课件
(2)只有一组对边平行。
D( )
(3)两组对边分别平行。
C( )
巩固提升
3.画一个和右边大小、形状相同的梯形,再 在里面画一条线段,把它分成一个平行四 边形和一个三角形。
课堂小结
这节课你们都学会了哪些知识?
同学之间交流一下本节的学到了什么知识。
师生共同进行课堂小结
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
旧知回顾
2.利用下面的平行线画一个长方形和正方形。
旧知回顾
平行四边形
两组对边分别平行的四边形,叫做平行四边形。
高
高
底
底
平行四边形具有不稳定性。
旧知回顾
梯形
只有一组对边平行的四边形叫做梯形。
上底
腰高
腰
下底
等腰梯形
直角梯形
旧 知 回 顾 四边形之间的关系
平行四边形 长方形
正方形
梯形 四边形
巩固提升
9 总复习
第 3 课时 图形与几何
旧知回顾
角的定义
线段、直线、射线
角的度量
空间与 角 角的分类 图形
平行与垂直
角的画法
平行四边形
平行四边 形和梯形
梯形
旧 知 回 顾 线段、直线、射线
名称 形状 线段 直的 射线 直的 直线 直的
端点 2 1 0
延伸 不能 一端 两端
图示
A
B
l
ห้องสมุดไป่ตู้
A
B
旧知回顾
角的定义
锐角 < 直角 < 钝角 < 平角 < 周角
旧知回顾
1.下面的角各是哪一种角?
( 钝角 )
( 锐角 ) ( 直角 )
人教版初中数学《几何图形》_课件-完美版
知2-练
2 (中考·宁波)如果一个多面体的一个面是多边形, 其余各面是有一个公共顶点的三角形,那么这个多 面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它 们各有12条棱.下列棱柱中和九棱锥的棱数相等的是 ( B) A.五棱柱 B.六棱柱 C.七棱柱 D.八棱柱
【 获 奖 课 件 ppt】人 教版初 中数学 《几何 图形》 _课件 -完美版 1-课件 分析下 载
第四章 几何图形初步
4.1 几何图形
第1课时 认识几何图形
1 课堂讲解 u 几何图形
u 立体图形
u 平面图形
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
从城市宏伟的建筑到乡村简朴的住宅,从四通八 达的立交桥到街头巷尾的交通标志,从古老的剪纸艺 术到现代的城市雕塑,从自然界形态各异的动物到北 京的申奥标志(如图)……图形世界是多姿多彩的!
知识点 1 几何图形
下列图形 中有你认 识的几何 图形吗? 请指出来.
知1-导
Байду номын сангаас 知1-导
图中有: 球、棱锥、圆柱、长方体、三角形、长方形(矩形)、 线段、点······ 这些都是几何图形 几何图形指:从实物中抽象出来的各种图形. 几何图形可分为立体图形和平面图形两类.
知1-讲
1.几何图形:从形形色色的物体外形中得出的长方体、 圆柱、长方形、圆、三角形等都是几何图形.
知2-讲
总结
本题采用定义法识别图形: (1)柱体的基本特征:两个底面互相平行且完全相同,
当侧面是曲面图形时是圆柱,当侧面是平面图形 时是棱柱; (2)锥体的基本特征:一个底面一个“尖”,当侧面是 曲面图形时是圆锥,当侧面是三角形时是棱锥.
【 获 奖 课 件 ppt】人 教版初 中数学 《几何 图形》 _课件 -完美版 1-课件 分析下 载
2 (中考·宁波)如果一个多面体的一个面是多边形, 其余各面是有一个公共顶点的三角形,那么这个多 面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它 们各有12条棱.下列棱柱中和九棱锥的棱数相等的是 ( B) A.五棱柱 B.六棱柱 C.七棱柱 D.八棱柱
【 获 奖 课 件 ppt】人 教版初 中数学 《几何 图形》 _课件 -完美版 1-课件 分析下 载
第四章 几何图形初步
4.1 几何图形
第1课时 认识几何图形
1 课堂讲解 u 几何图形
u 立体图形
u 平面图形
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
从城市宏伟的建筑到乡村简朴的住宅,从四通八 达的立交桥到街头巷尾的交通标志,从古老的剪纸艺 术到现代的城市雕塑,从自然界形态各异的动物到北 京的申奥标志(如图)……图形世界是多姿多彩的!
知识点 1 几何图形
下列图形 中有你认 识的几何 图形吗? 请指出来.
知1-导
Байду номын сангаас 知1-导
图中有: 球、棱锥、圆柱、长方体、三角形、长方形(矩形)、 线段、点······ 这些都是几何图形 几何图形指:从实物中抽象出来的各种图形. 几何图形可分为立体图形和平面图形两类.
知1-讲
1.几何图形:从形形色色的物体外形中得出的长方体、 圆柱、长方形、圆、三角形等都是几何图形.
知2-讲
总结
本题采用定义法识别图形: (1)柱体的基本特征:两个底面互相平行且完全相同,
当侧面是曲面图形时是圆柱,当侧面是平面图形 时是棱柱; (2)锥体的基本特征:一个底面一个“尖”,当侧面是 曲面图形时是圆锥,当侧面是三角形时是棱锥.
【 获 奖 课 件 ppt】人 教版初 中数学 《几何 图形》 _课件 -完美版 1-课件 分析下 载
《直线、射线、线段》几何图形初步PPT(第1课时)
基本事实
两点确定一条直线
直线、 射线、 线段
表示方法
用一个小写字母表示 用两个大写字母表示
联系与区别
射线OA与射线AO 是不同的两条射线
课后作业
见《学练优》本课时练习
解:(1)
ab
O
c
A (2) C
BD
当堂练习
1. 在同一平面内有三个点A,B,C,过其中任意两
个点做直线,可以画出的直线的条数是
( C)
A. 1 B. 2 C. 1或3 2. 下列表示方法正确的是
D. 无法确定 (C)
A. 线段L
B. 直线ab
3. 下C.列直语线句m准确规范的D是. 射线Oa
( B)
二、观察下图,说一说点和直线有哪些位置关系.
P
O
l
如图:点 O 在直线 l 上(直线 l 经过点 O), 点 P 在直线 l 外(直线 l 不经过点P )
三、 如图,直线a与直线b有什么位置关系?
a 交点
O b
直线 a 和 b 相交于点O
当两条不同的直线有一个公共点时,我们就称这两条直线相交, 这个公共点叫做它们的交点.
讲授新课
一 直线
合作探究 问题1 过一点O可以画几条直线?过两点A,B可以画几条
直线?
·O
·A
·B
结论:经过两点有一条直线,并且只有一条直线. 简述为:两点确定一条直线.
练一练 如果你想将一根木条固定在墙上并使其不能转动,
至少需要几个钉子?你知道这样做的依据是什么吗?
应用举例: 两点确定一条直线可以用来说明生活中的现象
①用一个小写字母表示,如直线m; ②用两个大写字母表示,注:这两个大写字母可交换顺序.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.从A地到B地有三条路(如下图),走哪条 路最近?
A
B
答:走中间的那条路最近,因为两点之间线 段最短。
例3 下面是幸福村的平面示意图。(每格边长表示实
际距离500m。) (行)
北
8
工厂
7
6
山 冬冬家 溪
种植园
5
河
路
4
3
养殖场
1 排灌站 村长家
(列)
0 1 2 3 4 5 6 7 8 9 10
课堂活动 1.用同样大小的正方体照下面的模型搭一搭,从前 面、右面、上面看一看,再连一连。
前面
右面
上面
2.一圆锥形小麦堆的底面周长为15.7m,高1.5m。如果 每立方米小麦的质量为700kg,这堆小麦的质量约为多 少千克?
底面半径:15.7÷3.14÷2=2.5(m)
底面积:3.14×2.52=19.625 ( m2 )
你能用字母表示下面图形的体积计算公式吗?
h ab
a aa
h or
V= abh
V= a3
V= πr2h
h or
1 πr2h V= 3
例 时代广场有一个圆柱形水池,底面直径5m,深0.8m。
(1)如果要在水池的底面和内壁贴上瓷砖,贴瓷砖 的面积是多少平方米?
(2)每平方米瓷砖25.5元,购买瓷砖需要多少元?
圆形花坛,再怎么走,才能到达活动场?
(2)排球场在圆形花坛的什么方向?羽毛球场、
教学楼呢?
答:(1)淘气走到圆形花坛后向北走到综合楼在向
西走,能到达活动场。
(2)排球场在圆形花坛的东南方向,羽毛球场在
圆形花坛的西南方向,教学楼在圆形花坛的正南。
100海里 北 P
3.搜救船发现以本船为中心在某 海域失事的船只尸的位置如图, 请用学过的知识,报告船只的 位置。
(3)每立方米水重1吨,这个水池最多能装多少吨
水?
解决这些问题要用
到哪些知识?请独
立解决后再交流。
(1)如果要在水池的底面和内壁贴上瓷砖,贴瓷砖 的面积是多少平方米?
S=πr2+2πrh =3.14×2.5×2.5+2×3.14×2.5×0.8
=25.905≈26(平方米)
答:如果要在水池的底面和内壁贴上瓷砖,贴瓷砖 的面积是25.905平方米。
体积:
1 3
×19.625×1.5
=9.8125
(
m3
)
质量:9.8125×700 =6868.75 ( kg )
答:这堆小麦的质量约为6868.75千克。
12cm
3.要包装100个圆柱形易拉罐的侧面,至少共需 要多少平方分米的广告纸? 6cm
底面周长:3.14×6=18.84(cm) 一个易拉罐侧面积:18.84×12 =226.08(cm2) 100个易拉罐侧面积:226.08×100 =22608(cm2)
(3)将图形乙放大,使放大后的图形每边的 长是原来的2倍。放大后的图形的面积是多少?
甲
丙
A丁
1cm 乙 乙2
1cm S=(4×6)÷2 =12(平方厘米)
2.
.
活动场
.
学生餐厅
光明小学示意图 北
综.合楼
东
.
圆形花坛
. 东大门
. 羽毛球场教学楼.
. 排球场
(1)淘气从光明小学的东大门进入校园,走到
东
船只的位置在东偏北30度200海里位置。
你认识哪些立体图形?这些图形各有什么特征?
长方体和正方 体都有6个面。
正方体的棱 长都相等。
长方体 正方体 圆柱 圆锥 球
你会计算哪些立体图形的表面积和体积?
长方体的表 面积可以这 样计算……
圆柱的表面 积……
怎样计算圆柱和 圆锥的体积呢?
长方体、正方体、 圆柱的体积都可 以用V=sh计算。
(1)说一说。
学校、工厂、村长家、种植园分别在村委会 的哪个方向?村委会分别在学校、工厂、村 长家、种植园的哪个方向?
学校、工厂、村长家、种植园分别在村委会 的正东方向、正北方向、东南方向、东北方 向。村委会分别在学校、工厂、村长家、种 植园的正西方向、正南方向、西北方向、西 南方向。
(2)议一议。
例4(1)看图说一说下图图案的设计过程。
(2)在下图中选1~2个图形,设计图案,并交流 设计方法。
课堂活动
1.把下面的圆向右平移,使平移后的圆与原来的圆组 成一个轴对称图形,再画出一条对成轴。
按要求在方格纸上画图形。
(1)图形甲向下平移6格得到图形乙。
(2)图形甲向右平移9格得到图形丙,图形 丙再绕A点顺时针旋转90°得到图形丁。
平面图形
我们学习了哪些平面图形?这些图形各有哪些 特征?它们之间有什么联系?
我们学习了 线段、射线、 直线、角。
正方形4条边 相等,4个角 都是直角。
我们还学习 了三角形、 四边形、圆。
正方形是特殊的长 方形,长方形是特 殊的平行四边形。
例1 三角形、四边形可以怎样分类?
三角形可以 按角分,分
为……
(2)每平方米瓷砖25.5元,购买瓷砖需要多少元?
25.5×26 =663(元) 答:购买瓷砖需要663元。
(3)每立方米水重1吨,这个水池最多能装多少吨 水?
V=πr2h =3.14×2.5×2.5×0.8 =3.14×2.5×2.5×0.8 =15.7(立方米)
15.7×1=15.7(吨)
答:这个水池最多能装15.7吨水。
C= 4a
a
a S=
b
ha
C=(a+b)×2 S= ah
a2
1
h a S= 2 ah
b ha
S= 21(a+b)h
S= ab
r C= 2πr
S= πr2
例2 量一量,并算出图形的面积。
4
5 S=5×4 =20
计算这个图形 的面积需要知 道哪些条件?
课堂活动
1.先在下面方格纸中画1个平行四边形,再画一 个和它面积相等的三角形。
从村委会到种 植园怎么走呢?
从村委会向东 走1500米,再 向北走1500米
是种植园。
(3)填一填。 ① 学校的位置表示为(8,3)。 ② 村委会的位置表示为( 5 , 3 )。 ③ 工厂的位置表示为( 5 , 7 )。
④ 种植园的位置表示为( 8 , 6 )。
(4)算一算。 ①学校到养殖场的实际距离是多少千米? 6×500=3000(米)=3(千米) ②幸福村的实际面积大约是多少? 53×500=26500(平方米)
也可以按边分。
四边形怎样分呢?
四边形可以按边分。
议一议 你会计算哪些平面图形的周长和面积?这些图 形的面积计算公式是怎样得到的?
我会计算 圆的周长。
三角形的面积计算
公式是
S=
1 2
ah。
根据平行四边形的 面积计算公式可以 推导出三角形的面
积计算公式。
你能用字母表示下面图形的周长和面积计算
公式吗?