概率统计大题题型总结(理)学生版

合集下载

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。

2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。

本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。

一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。

尤其是古典概率和条件概率的计算,需要学生熟练掌握。

对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。

2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。

对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。

3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。

对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。

对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。

4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。

二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。

2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。

3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。

4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。

三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。

对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。

下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。

一、概率题型1、古典概型古典概型是概率中最基础的题型之一。

它的特点是试验结果有限且等可能。

例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。

答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。

然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。

2、几何概型几何概型与古典概型不同,它的试验结果是无限的。

常见的有长度型、面积型、体积型几何概型。

比如,在一个区间内随机取一个数,求满足某个条件的概率。

答题技巧:对于几何概型,关键是要正确确定几何度量。

例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。

然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。

3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。

题目中通常会给出一些条件,让我们计算在这些条件下的概率。

答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。

4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。

答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。

二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。

概率与统计题型归纳总结

概率与统计题型归纳总结

概率与统计题型归纳总结在学习概率与统计的过程中,我们不可避免地要接触到各种各样的题型。

在这些题型中,有的看似简单却需要一定思考,有的则需要我们具备一定的数学基础。

本文将围绕这些题型展开,帮助大家更好地总结归纳概率与统计中的题型。

一、基本概率基本概率是概率学习中最基础的部分,要求我们计算某一事件发生的可能性,其公式为:P(A)=n(A)/n(S)。

其中,P(A)表示事件A发生的概率,n(A)表示事件A出现的次数,n(S)表示总体出现的次数。

二、条件概率条件概率是建立在基本概率之上的,要求我们在已知某一事件发生的情况下,计算其他事件发生的概率。

其公式为:P(A|B)=P(B∩A)/P(B)。

其中,P(A|B)表示在B发生的前提下,A发生的概率,P(B∩A)表示A与B同时发生的概率,P(B)表示B发生的概率。

三、贝叶斯定理贝叶斯定理是一种利用先验信息来更新后验概率的方法。

其公式为:P(A|B)=P(B|A)P(A)/P(B)。

其中,P(A)为先验概率,P(B|A)为A发生的情况下,B发生的概率,P(B)为后验概率。

四、独立事件独立事件是指两个或多个事件,其中任意一个事件的发生与其他事件的发生无关。

其公式为:P(A∩B)=P(A)P(B)。

其中,P(A)和P(B)分别表示事件A和事件B各自发生的概率,P(A∩B)表示A和B同时发生的概率。

五、全概率公式全概率公式是用来计算某一事件在多种情况下的概率的公式。

其公式为:P(A)=∑(i=1)^(n)P(A|B_i)P(B_i)。

其中,B_1,B_2...B_n是一组互不相交的事件,且它们包含了所有可能的情况。

P(A)表示事件A的概率,P(A|B_i)表示在B_i发生的前提下,A发生的概率,P(B_i)表示B_i 发生的概率。

六、随机变量随机变量是指某一随机事件在其过程中所反映的变量。

在统计学中,我们常常会用随机变量来描述概率分布。

常见的随机变量有离散随机变量和连续随机变量。

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型解题思路及知识点总结一、解题思路(一)解题思路思维导图(二)常见题型及解题思路1.正确读取统计图表的信息典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A.2.古典概型概率问题 典例2:(全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A.B.C.D.解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6D. 0.45解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得p =0.60.75=0.8,故选A.3.几何概型问题典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12C.23 D.34解:如图所示,画出时间轴:小明到达的时间会随机地落在图中线段AB 中,而当他到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率P=101040+=12.选B.4.类似超几何分布的离散型随机变量分布列问题(古典概型求概率)5.类似二项分布的离散型随机变量分布列问题(频率估计概率,相互独立事件概率计算)典例5(超几何分布与二项分布辨析):某工厂为检验其所生产的产品的质量,从所生产的产品中随机抽取10件进行抽样检验,检测出有两件次品.(1)从这10件产品中随机抽取3件,其中次品件数为X ,求X 分布列和期望;(2)用频率估计概率,若所生产的产品按每箱100件装箱,从一箱产品中随机抽取3件,其中次品件数为Y ,求Y 分布列和期望;(3)用频率估计概率,从所生产的产品中随机抽取3件,其中次品件数为Z ,求Z 分布列和期望.分析:第(1)问中,抽取产品的总体N=10,所含次品件数M=2,都是明确的,所以该随机变量的分布为超几何分布。

概率统计常见题型及方法总结

概率统计常见题型及方法总结

常见大题:1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件iA ”可以导致B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因i A 的概率问题全概率公式:()()()1B |ni i i P B P A P A ==∑贝叶斯公式:1(|)()()()()ni i i jjj P A B P A P B A P A P BA ==∑||一〔12分〕今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。

先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少? 解 i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=ii A 表示从第i 个口袋中任取一个球为红球, 2分则ba aB P +=)(1, 2分 )()()()()(1111111B A P B P B A P B P A P +=111++++++++=b a ab a b b a a b a a ba a += 2分依次类推 2分ba aA P i +=)( 二〔10分〕袋中装有m 只正品硬币,n 只次品硬币〔次品硬币的两面均印有国徽〕,在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少?、解 记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n mP B P B m n m n==++,()1P A B =,()12r P A B =―—5分()()1()212()()()()12r rrnP B P A B n m n P B A n m n m P B P A B P B P A B m n m n ⨯+===++⨯+⨯++三、〔10分〕一批产品共100件,其中有4件次品,其余皆为正品。

概率统计常见题型及方法总结

概率统计常见题型及方法总结
竽可 88•件的柢卓
常见大题: A 全概率公式和贝叶斯公式问题 呂看做“结果”,有多个“原因或者条件宀”可以 导 致呂这个“结果”发生,考虑结果呂发生的概率, 或者求 在号发生的条件下,源于某个原因宀的概率问 题
全概率公式:
P(B) = f P(AJP(BI4)
/-I
贝叶斯公式:
P(4IB) = P(A)P(3l
Fv (x)二 P{X <x}=

< =£}二①(二
aa
a
② 若 X〜Ng a2\ Y = 士上〜N(0」)
a
P(a<X < b) =
<Y< 匕纬
(7
(7
“b-卩、“ci_ 卩、
=0(― )-0(―)
aቤተ መጻሕፍቲ ባይዱ
a
二、分布函数的性质 F(x) = P{X < x}
离散型
连续型
0 < F(x) < 1 (— oc < x < +x)
(/)求收到模糊信号“X’的概率;
(刃当收到模糊信号时,以译成哪个信号为好?为什么?
解 设发出信号汁(/=04), P(A0 ) = 0.6, p(Aj = 0・4,
收到信号汁(i = 0 丄 X)。由题意知
」 P(B 4J) = 0・2, P(BV I ^) = 0.1 o
(/)由全概率公式得
P(B J = P(Bxl A0)P(A)) + P(BX I A)P(A)
a + b a + b+ \ a + h a + b+ \ a + b
页■内客力
依次类推
竽可 88•件的柢卓 纟分

高中数学概率统计解题技巧

高中数学概率统计解题技巧

高中数学概率统计解题技巧概率统计是高中数学中的一门重要课程,也是考试中常见的题型。

掌握好解题技巧,能够帮助学生提高解题效率,更好地应对考试。

本文将从几个常见的概率统计题型入手,分析其考点和解题方法,帮助学生掌握解题技巧。

一、排列组合题排列组合是概率统计中常见的题型,它要求我们计算某种情况下的可能性。

例如,某班有10个学生,要从中选出3个学生组成一个小组,问有多少种不同的选法?这类题目的关键在于确定组合的方式。

对于上述问题,我们可以使用组合公式C(n,m) = n!/(m!(n-m)!)来计算。

其中,n表示总数,m表示选取的个数。

二、事件概率题事件概率题是概率统计中最基础的一类题型,它要求我们计算某个事件发生的概率。

例如,抛一枚骰子,问出现奇数的概率是多少?解决这类问题的关键在于确定样本空间和事件发生的可能性。

对于上述问题,骰子的样本空间为{1,2,3,4,5,6},而出现奇数的事件为{1,3,5},所以概率为3/6=1/2。

三、条件概率题条件概率题是概率统计中较为复杂的一类题型,它要求我们在给定某个条件下计算事件发生的概率。

例如,某班有30个学生,其中20个是男生,10个是女生。

从中随机选取一个学生,问选到女生的概率是多少?解决这类问题的关键在于确定条件下的样本空间和事件发生的可能性。

对于上述问题,在给定条件下,样本空间为{男生,女生},而选到女生的事件为{女生},所以概率为10/30=1/3。

四、独立事件题独立事件题是概率统计中常见的一类题型,它要求我们计算多个事件同时发生的概率。

例如,某班有30个学生,其中20个是男生,10个是女生。

从中随机选取两个学生,问选到两个女生的概率是多少?解决这类问题的关键在于确定事件的独立性和事件发生的可能性。

对于上述问题,选到第一个女生的概率为10/30=1/3,选到第二个女生的概率为9/29。

由于两个事件是相互独立的,所以选到两个女生的概率为(1/3)*(9/29)=3/29。

2024高考数学概率统计知识点总结与题型分析

2024高考数学概率统计知识点总结与题型分析

2024高考数学概率统计知识点总结与题型分析概率统计作为数学课程的一个重要分支,在高考中占有重要的一席之地。

它是一个与现实生活息息相关的学科,旨在通过收集、整理和分析数据,帮助我们做出正确的判断和决策。

本文对2024高考数学概率统计的知识点进行了总结,并对可能出现的题型进行了分析。

一、基本概念和公式1. 随机事件:指在一次试验中可能发生也可能不发生的事件。

2. 样本空间:指一个试验所有可能结果的集合。

3. 必然事件:指在一次试验中一定会发生的事件。

4. 不可能事件:指在一次试验中一定不会发生的事件。

5. 事件的概率:指随机事件发生的可能性大小。

6. 加法原理:对于两个互不相容的事件A和B,它们的和事件A∪B的概率等于各个事件的概率之和。

P(A∪B) = P(A) + P(B)7. 乘法原理:对于两个相互独立的事件A和B,它们的积事件A∩B的概率等于各个事件的概率之积。

P(A∩B) = P(A) × P(B)二、概率计算1. 事件的概率计算:对于离散型随机事件,概率可通过频率估计和计数原理计算。

对于连续型随机事件,概率可通过定积分计算。

2. 事件的互斥与独立:如果两个事件A和B互斥(即不能同时发生),则它们的和事件A∪B的概率等于各自事件的概率之和。

如果两个事件A和B相互独立(即一个事件的发生不受另一个事件发生与否的影响),则它们的积事件A∩B的概率等于各自事件的概率之积。

三、排列组合与概率计算1. 排列:排列是从n个不同元素中取出m个元素(m≤n),并有顺序地排成一列的方式。

排列的计算公式为:A(n,m) = n! / (n-m)!2. 组合:组合是从n个不同元素中取出m个元素(m≤n),不考虑顺序地组成一个集合的方式。

组合的计算公式为:C(n,m) = n! / [m! × (n-m)!]3. 概率计算中的排列组合:当事件A与某个事件B相关时,在计算A的概率时,需要考虑B 发生的不同排列组合情况。

数学中考统计与概率题型解题方法总结

数学中考统计与概率题型解题方法总结

数学中考统计与概率题型解题方法总结统计与概率是数学中考试中常出现的题型之一,通过掌握一些解题方法和技巧,能够帮助我们更好地应对这类题目。

本文将对中考统计与概率题型的解题方法进行总结,希望对同学们的备考有所帮助。

一、频数统计题频数统计题是统计与概率题型中最为基础和常见的一类题目。

在这类题目中,通常会给出一组数据,要求我们统计某个数值或某个范围内数据出现的次数。

解题方法:1. 仔细读题,理解题意。

确定需要统计的数值或范围,并分析给定数据的特点。

2. 建立频数统计表格。

将给定数据按照一定的顺序排列,并在表格中记录每个数值或范围的出现次数。

3. 统计频数。

根据数据进行计数,并记录在频数统计表格中。

4. 统计完成后,根据题目要求回答相关问题。

举例说明:例如,某题目给出以下一组数据:3, 4, 3, 2, 5, 4, 3, 1, 2, 4。

题目要求统计数据中各个数字出现的次数。

解题步骤:1. 建立频数统计表格如下:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | | | | | |2. 对数据进行计数:数字1出现1次,数字2出现2次,数字3出现3次,数字4出现3次,数字5出现1次。

3. 填入频数统计表格:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | 1 | 2 | 3 | 3 | 1 |4. 统计完成后,根据需要回答相关问题,比如出现次数最多的数字是3,共出现了3次。

二、频率与百分数计算题在统计与概率题型中,频率与百分数计算题目是针对概率进行计算和比较的题目。

通常会给出一组数据,并要求我们计算某个数值或范围的频率或百分数。

解题方法:1. 读题,理解题意。

确定频率或百分数的计算对象,并分析给定数据的特点。

2. 计算频率或百分数。

使用给定数据和统计结果计算所需的频率或百分数。

3. 根据题目要求,回答相关问题或进行比较。

排列组合二项式概率统计总复习摘录(教师或学生通用)

排列组合二项式概率统计总复习摘录(教师或学生通用)
(1)数字1不排在个位和千位
(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择 ,其余2位有四个可供选择 ,由乘法原理: =240
2.特殊位置法
(2)当1在千位时余下三位有 =60,1不在千位时,千位有 种选法,个位有 种,余下的有 ,共有 =192所以总共有192+60=252
解把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题. =20种
例11.个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法.
解把问题转化为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙种的排列问题. =126种
例12从1,2,3,…,1000个自然数中任取10个不连续的自然数,有多少种不同的去法.
排列组合题型总结
排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。
一.直接法
1.特殊元素法
例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个
例16亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?
解设亚洲队队员为a1,a2,…,a5,欧洲队队员为b1,b2,…,b5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为 =252(种)

考研概率统计重点内容及常见题型

考研概率统计重点内容及常见题型

考研概率统计重点内容及常见题型1. 引言1.1 考研概率统计重点内容及常见题型概率统计是考研数学中的一个重要组成部分,涉及许多重要的知识点和常见题型。

在考研数学中,概率统计部分占据着很大的比重,掌握好这部分内容对于考生来说至关重要。

在概率统计的学习中,考生需要掌握的重点内容包括基本概念、随机变量与概率分布、大数定律与中心极限定理、参数估计与假设检验等。

这些知识点是概率统计的基础,也是考试中经常出现的题型。

在备战考研概率统计科目时,考生需要重点把握概率统计的基本概念和常见题型,灵活运用所掌握的知识解决问题。

在练习题目时要多做一些综合性的题目,举一反三,提高解题能力。

谨记考点,做到举一反三,可以更好地应对考试中的各种题型,取得理想的成绩。

2. 正文2.1 基本概念基本概念是概率统计学习的第一步,它是整个学科体系的基础。

我们需要了解什么是随机试验,随机试验是一个具有多种结果且每次实验结果不确定的实验。

接着,我们需要了解样本空间、样本点和事件的概念。

样本空间是所有可能结果的集合,样本点是实验结果的具体值,而事件是样本空间的子集,表示某种结果的集合。

接下来,我们需要了解概率的概念。

概率是描述事件发生可能性的数字表达,通常用P(A)表示事件A发生的概率。

概率的性质包括非负性、规范性和可列可加性。

而在概率的运算中,我们需要了解加法概率、条件概率和乘法概率等概念。

我们还需要了解随机变量的概念。

随机变量是样本空间到实数的映射,它描述了可能的结果和结果的数量。

随机变量分为离散随机变量和连续随机变量,分别对应着有限个和无限个可能结果的情况。

掌握了基本概念,我们才能够更好地理解概率统计学的内容,为后续学习奠定坚实的基础。

基本概念不仅在理论学习中有重要作用,在实际问题中也能够帮助我们更好地分析和解决问题。

加强对基本概念的理解和掌握是非常重要的。

2.2 随机变量与概率分布随机变量与概率分布是概率统计中非常重要的基础概念,对于考研考试来说也是必备的知识点。

考研数学概率与数理统计考试内容总结3篇

考研数学概率与数理统计考试内容总结3篇

考研数学概率与数理统计考试内容总结3篇考研数学概率与数理统计考试内容总结3篇在进行考研的时候,数学的概率与数理统计考试内容一直是考生们十分关注的问题,下面就让小编给大家带来考研数学概率与数理统计考试内容,希望大家喜欢!下面就和小编一起来看看吧。

考研数学概率与数理统计考试内容篇1概率论与数理统计是考研数学一和数学三的必考内容,数学二的考生不考。

这部分的内容相对于高等数学而言算是较简单的部分,与线性代数一样都是考生必须要抓住的地方。

接下来跨考教育数学教研室吴方方老师就为考生归纳总结概率论与数理统计的考点,希望对考生复习有所帮助。

概率统计的考点每年都差不多,没什么大的变化。

从历年的考研真题来看,概率统计这部分的内容考查单一知识点比较少,即使是填空题和选择题都是这样。

大部分的考题都是考查考生的理解能力和综合应用能力,因此要求我们考生要能够灵活地应用所学的知识建立正确的概率模型。

要能够熟练的应用高等数学里的知识来解决我们概率统计上的问题,比如定积分和二重积分是我们同学们要必须掌握的住的知识,其在概率统计中一维和二维随机变量求概率都能用的上。

概率统计第一章的古典概型和几何概型是大部分考生所头疼的,其中古典概型更是让很多同学摸不着头脑,其实古典概型考试大都是以小题形式出现的,它并不是考试的重点,但确实是考试的难点。

而几何概型就是一个事件发生的概率等于这个事件的度量与整个样本空间度量的比,这个度量可以是长度、面积、体积。

相对于古典概型,几何概型是重要的。

接下来,就是随机变量的内容了。

我们主要考的是离散和连续两种随机变量,一维随机变量和二维随机变量主要考点包括:分布函数,概率密度,分布律,联合分布函数,联合概率密度,联合分布律,边缘分布函数,边缘概率密度,边缘分布律,条件分布律,条件概率密度,以及一维和二维随机变量的函数的分布。

其中随机变量函数的分布是考试的重点,一般是与第四章数字特征(期望、方差、协方差以及相关系数)结合来考大题。

高考数学概率统计大题题型总结

高考数学概率统计大题题型总结

高考数学概率统计大题题型总结概率统计是数学的一个重要分支,它是理解和研究大量随机事件发生的概率规律的一门学科。

概率统计在高考中也有重要的地位,尤其是概率统计大题,给考生们带来了很大的难度和挑战。

下面,就从数学考试大题概率统计题型总结入手,详细介绍概率统计大题的结构和解题技巧,让考生们更好地应对数学考试。

一、概率统计大题的分类概率统计大题可以分成三大类:1、事件概率:事件概率是指某一事件发生的机会,也就是指某一事件发生的可能性,它是以概率的形式表示的。

这类题型常常会出现在数学考试中,包括随机事件、全概率公式的求解、条件概率、独立事件及其组合事件等。

2、概率分布:概率分布是指在一定的条件下,随机变量的取值和概率之间的关系,它是概率论的基础。

概率分布的种类很多,比较常见的有二项分布、泊松分布、正态分布、负倾斜分布等,考生们在复习时应该重点了解这些概率分布的性质及其应用。

3、抽样技术:抽样技术是指从总体中抽取一定量的样本,从而推断总体的特征。

抽样技术在数学考试中也有很多应用,比如抽样技术的基本原理、简单随机抽样、系统抽样、分层抽样等。

二、概率统计大题的解题技巧1、了解考题:考生在解答概率统计大题之前,应该充分了解题目的内容,把握题意,明确给出的条件以及要求解的问题,以便找出合适的解题方法。

2、把握关键点:解答概率统计大题也要把握关键点,即找出问题中的关键信息,根据这些关键信息,结合相关的概念和公式,得出正确的结论。

3、注意计算准确性:数学考试要求结果是准确的,因此在计算概率统计大题时,应注意计算的准确性,避免出现因计算错误而导致结果错误的情况。

三、总结概率统计大题在数学考试中扮演着重要的角色,考生要想取得好成绩,就要深入了解概率统计的内容,重点掌握事件概率、概率分布和抽样技术等概率统计的基本概念;同时,要掌握一些有效的解题技巧,以有效的解决高考概率统计大题。

高中概率与统计题型总结

高中概率与统计题型总结

高中概率与统计题型总结高中概率与统计题型总结一、事件与概率1、均匀分布:(1) 概率模型:事件A的概率P(A) = n(A)/n(S),其中,n(A) 为事件A中的元素个数,n(S) 为样本空间中的元素个数;(2) 事件的独立性:当两事件A 和B 互不相关时,满足P(A∩B) = P(A)P(B);2、基本概念:(1) 条件概率:设A,B 为两个事件,若在事件B 发生的条件下,事件A 发生的概率是P(A|B),则称P(A|B) 为A 在B 下发生的条件概率。

(2) 联合概率:设A,B 为两个互斥事件,则联合概率P(A ∪ B) 等于A 和B 发生的概率之和,即P(A ∪ B) = P(A) + P(B)。

(3) 全概率公式:设A1,A2,A3…An 是 n 个互斥事件,则样本空间上任意事件A 发生的概率P(A) = ∑ P(Ai) –∑ P(Ai ∩Aj) + ∑ P(Ai ∩ Aj ∩ Ak) ……(-1)n-1 。

二、抽样与统计1、抽样:(1) 类比抽样:根据调查对象的特征,将调查对象分成若干类,然后从每一类中抽取概率相等且数量相等的样本,这种抽样方法叫作类比抽样;(2) 简单随机抽样:通过抽签形式,从调查对象中随机抽取样本,这种抽样方法叫作简单随机抽样。

2、统计:(1) 中位数:所有观测值按从小到大的顺序排列后,第(n+1)/2 个观测值叫作中位数;(2) 极差:最大观测值减去最小观测值叫作极差;(3) 样本方差:样本中每一个观测值与样本均值的差的平方和的平均数叫作样本方差;(4) 样本标准差:样本方差的平方根叫作样本标准差;(5) 相关系数:两变量之间的线性关系的强度程度叫作相关系数。

概率与统计下的新定义(学生版)--2024年新高考数学突破新定义压轴题

概率与统计下的新定义(学生版)--2024年新高考数学突破新定义压轴题

概率与统计下的新定义【题型归纳目录】题型一:二项式定理新定义题型二:排列组合新定义题型三:概率新定义题型四:统计方法新定义题型五:信息熵问题【方法技巧与总结】解概率与统计下的新定义题,就是要细读定义关键词,理解本质特征,适时转化为“熟悉”问题.总之,解决此类问题,取决于已有知识、技能、数学思想的掌握和基本活动经验的积累,还需要不断的实践和反思,不然就谈不上“自然”的、完整的解题.【典型例题】题型一:二项式定理新定义1(2024·湖南衡阳·二模)莫比乌斯函数在数论中有着广泛的应用.所有大于1的正整数n 都可以被唯一表示为有限个质数的乘积形式:n =p r 11p r 22⋅⋅⋅p r kk (k 为n 的质因数个数,p i 为质数,r i ≥1,i =1,2,⋅⋅⋅,k ),例如:90=2×32×5,对应k =3,p 1=2,p 2=3,p 3=5,r 1=1,r 2=2,r 3=1.现对任意n ∈N *,定义莫比乌斯函数μn =1,n =1-1 k,r 1=r 2=⋅⋅⋅=r k =10,存在r i >1 (1)求μ78 ,μ375 ;(2)若正整数x ,y 互质,证明:μxy =μx μy ;(3)若n >1且μn =1,记n 的所有真因数(除了1和n 以外的因数)依次为a 1,a 2,⋅⋅⋅,a m ,证明:μa 1 +μa 2 +⋅⋅⋅+μa m =-2.2(2024·安徽合肥·一模)“q -数”在量子代数研究中发挥了重要作用.设q 是非零实数,对任意n ∈N *,定义“q -数”(n )q =1+q +⋯+q n -1利用“q -数”可定义“q -阶乘”n !q =(1)q (2)q ⋯(n )q ,且0 !q =1.和“q -组合数”,即对任意k ∈N ,n ∈N *,k ≤n ,n kq =n !qk !q n -k !q(1)计算:532;(2)证明:对于任意k ,n ∈N *,k +1≤n ,n k q =n -1k -1q +q k n -1kq(3)证明:对于任意k ,m ∈N ,n ∈N *,k +1≤n ,n +m +1k +1 q -n k +1 q =∑m i =0q n -k +i n +ikq.3(2024·高三·江苏苏州·阶段练习)甲、乙、丙三人以正四棱锥和正三棱柱为研究对象,设棱长为n ,若甲从其中一个底面边长和高都为2的正四棱锥的5个顶点中随机选取3个点构成三角形,定义随机变量X 的值为其三角形的面积;若乙从正四棱锥(和甲研究的四棱锥一样)的8条棱中任取2条,定义随机变量ξ的值为这两条棱的夹角大小(弧度制);若丙从正三棱柱的9条棱中任取2条,定义随机变量ψ的值为这两条棱的夹角大小(弧度制).(1)比较三种随机变量的数学期望大小;(参考数据arctan 5≈0.3661,arctan 52≈0.2677,arctan22≈0.3918)(2)现单独研究棱长n ,记x +1 ×x +12 ×⋯×x +1n(n ≥2且n ∈N *),其展开式中含x 项的系数为S n ,含x 2项的系数为T n .①若T nS n=an 2+bn +c ,对n =2,3,4成立,求实数a ,b ,c 的值;②对①中的实数a ,b ,c 用数字归纳法证明:对任意n ≥2且n ∈N *,Tn S n=an 2+bn +c 都成立.题型二:排列组合新定义4(2024·高三·北京·阶段练习)设n 为正整数,集合A =α∣α=t 1,t 2,⋯,t n ,t k ∈0,1 ,k =1,2,⋯,n .对于集合A 中的任意元素α=x 1,x 2,⋯,x n 和β=y 1,y 2,⋯,y n ,定义d α,β =x 1-y 1 +x 2-y 2 +⋯+x n -y n .(1)当n =4时,若α=0,1,0,1 ,β=1,1,0,1 ,直接写出所有使d α,γ =2,d β,γ =3同时成立的A 的元素γ;(2)当n =3时,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,d α,β ≥2.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,d α,β ≥2,写出一个集合B ,使其元素个数最多,并说明理由.5(2024·高三·浙江·开学考试)一般地,n 元有序实数对a 1,a 2,⋯,a n 称为n 维向量.对于两个n 维向量a=a 1,a 2,⋯,a n ,b =b 1,b 2,⋯,b n ,定义:两点间距离d =b 1-a 1 2+b 2-a 2 2+⋯+b n -a n 2,利用n 维向量的运算可以解决许多统计学问题.其中,依据“距离”分类是一种常用的分类方法:计算向量与每个标准点的距离d n ,与哪个标准点的距离d n 最近就归为哪类.某公司对应聘员工的不同方面能力进行测试,得到业务能力分值a 1 、管理能力分值a 2 、计算机能力分值a 3 、沟通能力分值a 4 (分值a i ∈N *,i ∈1,2,3,4 代表要求度,1分最低,5分最高)并形成测试报告.不同岗位的具体要求见下表:岗位业务能力分值a 1管理能力分值a 2计算机能力分值a 3沟通能力分值a 4合计分值会计(1)215412业务员(2)523515后勤(3)235313管理员(4)454417对应聘者的能力报告进行四维距离计算,可得到其最适合的岗位.设四种能力分值分别对应四维向量β =a 1,a 2,a 3,a 4 的四个坐标.(1)将这四个岗位合计分值从小到大排列得到一组数据,直接写出这组数据的第三四分位数;(2)小刚与小明到该公司应聘,已知:只有四个岗位的拟合距离的平方d 2n 均小于20的应聘者才能被招录.(i )小刚测试报告上的四种能力分值为β0=4,3,2,5 ,将这组数据看成四维向量中的一个点,将四种职业1、2、3、4的分值要求看成样本点,分析小刚最适合哪个岗位;(ii )小明已经被该公司招录,其测试报告经公司计算得到四种职业1、2、3、4的推荐率p 分别为1443,1343,943,743p n =d 2n d 21+d 22+d 23+d 24,试求小明的各项能力分值.题型三:概率新定义6(2024·浙江·一模)混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为p 0<p <1 .目前,我们采用K 人混管病毒检测,定义成本函数f X =NK+KX ,这里X 指该组样本N 个人中患病毒的人数.(1)证明:E f X ≥2p ⋅N ;(2)若0<p <10-4,10≤K ≤20.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.7(2024·辽宁·模拟预测)条件概率与条件期望是现代概率体系中的重要概念.近年来,随着人们对随机现象的不断观察和研究,条件概率和条件期望已经被广泛的利用到日常生产生活中.定义:设X ,Y 是离散型随机变量,则X 在给定事件Y =y 条件下的期望为E X Y =y =∑ni =1x i ⋅P X =x i Y =y =∑ni =1x i ⋅P X =x i ,Y =yP Y =y ,其中x 1,x 2,⋯,x n 为X 的所有可能取值集合,P X =x ,Y =y 表示事件“X =x ”与事件“Y =y ”都发生的概率.某射击手进行射击训练,每次射击击中目标的概率均为p (0<p <1),射击进行到击中目标两次时停止.设ξ表示第一次击中目标时的射击次数,η表示第二次击中目标时的射击次数.(1)求P ξ=2,η=5 ,P η=5 ;(2)求E ξη=5 ,E ξη=n n ≥2 .8(2024·福建漳州·一模)在数字通信中,信号是由数字0和1组成的序列,发送每个信号数字之间相互独立.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.(1)记发送信号变量为X,接收信号变量为Y,且满足P X=0=12,P Y=1X=0=13,P Y=0X=1=14,求P Y=0;(2)当发送信号0时,接收为0的概率为34,定义随机变量η的“有效值”为Hη =-ni=1Pη=x ilg Pη=x i(其中x i是η的所有可能的取值,i=1,2,⋅⋅⋅,n),发送信号“000”的接收信号为“y1y2y3”,记ξ为y1,y2,y3三个数字之和,求ξ的“有效值”.(lg3≈0.48,lg2≈0.30)题型四:统计方法新定义9(2024·全国·模拟预测)某校20名学生的数学成绩x i (i =1,2,⋯,20)和知识竞赛成绩y i (i =1,2,⋯,20)如下表:学生编号i 12345678910数学成绩x i 100999693908885838077知识竞赛成绩y i29016022020065709010060270学生编号i 11121314151617181920数学成绩x i 75747270686660503935知识竞赛成绩y i4535405025302015105计算可得数学成绩的平均值是x =75,知识竞赛成绩的平均值是y =90,并且20i =1x i -x 2 =6464,20i =1y i -y2=149450,20i =1x i -x y i -y =21650.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01).(2)设N ∈N *,变量x 和变量y 的一组样本数据为x i ,y i |i =1,2,⋯,N ,其中x i (i =1,2,⋯,N )两两不相同,y i (i =1,2,⋯,N )两两不相同.记x i 在x n |n =1,2,⋯,N 中的排名是第R i 位,y i 在y n |n =1,2,⋯,N 中的排名是第S i 位,i =1,2,⋯,N .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.(i )记d i =R i -S i ,i =1,2,⋯,N .证明:ρ=1-6N N 2-1 Ni =1d 2i .(ii )用(i )的公式求这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”(精确到0.01).(3)比较(1)和(2)(ii )的计算结果,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.r =ni =1x i -x y i -yni =1x i -x 2 ni =1y i -y2;nk =1k 2=n (n +1)(2n +1)6;6464×149450≈31000.10(2024·全国·模拟预测)冰雪运动是深受学生喜爱的一项户外运动,为了研究性别与学生是否喜爱冰雪运动之间的关系,从某高校男、女生中各随机抽取100名进行问卷调查,得到如下列联表m≤40,m∈N.喜爱不喜爱男生80-m20+m女生60+m40-m(1)当m=0时,从样本中不喜爱冰雪运动的学生中,按性别采用分层抽样的方法抽取6人,再从这6人中随机抽取3人调研不喜爱的原因,记这3人中女生的人数为ξ,求ξ的分布列与数学期望.(2)定义K2=A i,j-B i,j2B i,j2≤i≤3,2≤j≤3,i,j∈N,其中A i,j为列联表中第i行第j列的实际数据,B i,j为列联表中第i行与第j列的总频率之积再乘以列联表的总额数得到的理论频数,如A2,2=80-m,B2,2=100 200×140200×200=70.基于小概率值α的检验规则:首先提出零假设H0(变量X,Y相互独立),然后计算K2的值,当K2≥xα时,我们推断H0不成立,即认为X和Y不独立,该推断犯错误的概率不超过α;否则,我们没有充分证据推断H0不成立,可以认为X和Y独立.根据K2的计算公式,求解下面问题:①当m=0时,依据小概率值α=0.005的独立性检验,分析性别与是否喜爱冰雪运动有关?②当m<10时,依据小概率值α=0.1的独立性检验,若认为性别与是否喜爱冰雪运动有关,则至少有多少名男生喜爱冰雪运动?附:α0.10.0250.005xα 2.706 5.0247.87911(2024·高三·北京·期末)在测试中,客观题难度的计算公式为P i=R iN,其中P i为第i题的难度,R i为答对该题的人数,N为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:题号12345考前预估难度P i 0.90.80.70.60.4测试后,随机抽取了20名学生的答题数据进行统计,结果如下:题号12345实测答对人数161614144(1)根据题中数据,估计这240名学生中第5题的实测答对人数;(2)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X,求X的分布列和数学期望;(3)定义统计量S=1n[(P 1-P1)2+(P 2-P2)2+⋯+(P n-P n)2],其中P i 为第i题的实测难度,P i为第i题的预估难度(i=1,2,⋯,n).规定:若S<0.05,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.题型五:信息熵问题12(2024·高三·河北·阶段练习)信息熵是信息论之父香农(Shannon)定义的一个重要概念,香农在1948年发表的论文《通信的数学理论》中指出,任何信息都存在冗余,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式:设随机变量X所有可能的取值为1,2,⋯,n n∈N*,且P(X=i)=p i>0(i=1,2,⋯,n),ni=1p i=1,定义X的信息熵H(X)=-ni=1p ilog2p i.(1)当n=1时,计算H X ;(2)若p i=1ni=1,2,⋯,n,判断并证明当n增大时,H X 的变化趋势;(3)若n=2m m∈N*,随机变量Y所有可能的取值为1,2,⋯,m,且P Y=j=p j+p2m+1-j j=1,2,⋯,m,证明:H X>H Y.13(2024·高三·河北·期末)在信息论中,熵(entropy)是接收的每条消息中包含的信息的平均量,又被称为信息熵、信源熵、平均自信息量.这里,“消息”代表来自分布或数据流中的事件、样本或特征.(熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大)来自信源的另一个特征是样本的概率分布.这里的想法是,比较不可能发生的事情,当它发生了,会提供更多的信息.由于一些其他的原因,把信息(熵)定义为概率分布的对数的相反数是有道理的.事件的概率分布和每个事件的信息量构成了一个随机变量,这个随机变量的均值(即期望)就是这个分布产生的信息量的平均值(即熵).熵的单位通常为比特,但也用Sh、nat、Hart计量,取决于定义用到对数的底.采用概率分布的对数作为信息的量度的原因是其可加性.例如,投掷一次硬币提供了1Sh的信息,而掷m次就为m位.更一般地,你需要用log2n位来表示一个可以取n个值的变量.在1948年,克劳德•艾尔伍德•香农将热力学的熵,引入到信息论,因此它又被称为香农滳.而正是信息熵的发现,使得1871年由英国物理学家詹姆斯•麦克斯韦为了说明违反热力学第二定律的可能性而设想的麦克斯韦妖理论被推翻.设随机变量ξ所有取值为1,2,⋯,n,定义ξ的信息熵H(ξ)=-ni=1P ilog2P i,n i=1P i=1,i=1,2,⋯,n.(1)若n=2,试探索ξ的信息熵关于P1的解析式,并求其最大值;(2)若P1=P2=12n-1,P k+1=2P k(k=2,3,⋯,n),求此时的信息熵.14(2024·安徽合肥·模拟预测)在一个典型的数字通信系统中,由信源发出携带着一定信息量的消息,转换成适合在信道中传输的信号,通过信道传送到接收端.有干扰无记忆信道是实际应用中常见的信道,信道中存在干扰,从而造成传输的信息失真.在有干扰无记忆信道中,信道输入和输出是两个取值x 1,x 2,⋯,x n 的随机变量,分别记作X 和Y .条件概率P Y =x j ∣X =x i ,i ,j =1,2,⋯,n ,描述了输入信号和输出信号之间统计依赖关系,反映了信道的统计特性.随机变量X 的平均信息量定义为:H (X )=-ni =1p X =x i log 2p X =x i .当n =2时,信道疑义度定义为H (Y ∣X )=-2i =12j =1p X =x i ,Y =x j log 2p Y =x j ∣X =x i =-P X =x 1,Y =x 1 log 2p Y =x 1∣X =x 1 +P X =x 1,Y =x 2 log 2p Y =x 2∣X =x 1 +P X =x 2,Y =x 1 log 2p Y =x 1∣X =x 2 +P X =x 2,Y =x 2 log 2p Y =x 2∣X =x 2(1)设有一非均匀的骰子,若其任一面出现的概率与该面上的点数成正比,试求扔一次骰子向上的面出现的点数X 的平均信息量log 23≈1.59,log 25≈2.32,log 27≈2.81 ;(2)设某信道的输入变量X 与输出变量Y 均取值0,1.满足:P X =0 =ω,p Y =1∣X =0 =p Y =0∣X =1 =p (0<ω<1,0<p <1).试回答以下问题:①求P Y =0 的值;②求该信道的信道疑义度H Y ∣X 的最大值.【过关测试】1(2024·高三·全国·专题练习)定义:int x 为不超过x的最大整数部分,如int2.3=2,int-2.3= -3.甲、乙两个学生高二的6次数学测试成绩(测试时间为90分钟,满分100分)如下表所示:高二成绩第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲687477848895乙717582848694进入高三后,由于改进了学习方法,甲、乙这两个学生的数学测试成绩预计有了大的提升.设甲或乙高二的数学测试成绩为x,若10int x+x-int x2≤100,则甲或乙高三的数学测试成绩预计为10int x+x-int x2;若10int x+x-int x2>100,则甲或乙高三的数学测试成绩预计为100.(1)试预测:在将要进行的高三6次数学测试成绩(测试时间为90分钟,满分100分)中,甲、乙两个学生的成绩(填入下列表格内);高三成绩第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲乙(2)记高三任意一次数学测试成绩估计值为t,规定:t∈84,90,记为转换分为3分;t∈91,95,记为转换分为4分;t∈96,100,记为转换分为5分.现从乙的6次数学测试成绩中任意抽取2次,求这2次成绩的转换分之和为8分的概率.2(2024·全国·一模)正态分布与指数分布均是用于描述连续型随机变量的概率分布.对于一个给定的连续型随机变量X,定义其累积分布函数为F(x)=P(X≤x).已知某系统由一个电源和并联的A,B,C三个元件组成,在电源电压正常的情况下,至少一个元件正常工作才可保证系统正常运行,电源及各元件之间工作相互独立.(1)已知电源电压X(单位:V)服从正态分布N(40,4),且X的累积分布函数为F(x),求F(44)-F(38);(2)在数理统计中,指数分布常用于描述事件发生的时间间隔或等待时间.已知随机变量T(单位:天)表示某高稳定性元件的使用寿命,且服从指数分布,其累积分布函数为G t =0,t<0 1-14t,t≥0 .(ⅰ)设t1>t2>0,证明:P(T>t1|T>t2)=P(T>t1-t2);(ⅱ)若第n天元件A发生故障,求第n+1天系统正常运行的概率.附:若随机变量Y服从正态分布N(μ,σ2),则P(|Y-μ|<σ)=0.6827,P(|Y-μ|<2σ)=0.9545,P(|Y-μ| <3σ)=0.9973.3为考查一种新的治疗方案是否优于标准治疗方案,现从一批患者中随机抽取100名患者,均分为两组,分别采用新治疗方案与标准治疗方案治疗,记其中采用新治疗方案与标准治疗方案治疗受益的患者数分别为X 和Y .在治疗过程中,用指标I 衡量患者是否受益:若μ-σ≤I ≤μ+σ,则认为指标I 正常;若I >μ+σ,则认为指标I 偏高;若I <μ-σ,则认为指标I 偏低.若治疗后患者的指标I 正常,则认为患者受益于治疗方案,否则认为患者未受益于治疗方案.根据历史数据,受益于标准治疗方案的患者比例为0.6.(1)求E Y 和D Y ;(2)统计量是关于样本的函数,选取合适的统计量可以有效地反映样本信息.设采用新治疗方案治疗第i 位的患者治疗后指标I 的值为x i ,i =1,2,⋅⋅⋅,50,定义函数:f x i =1,x i >μ+σ0,μ-σ≤x i ≤μ+σ.-1,x i <μ-σ(ⅰ)简述以下统计量所反映的样本信息,并说明理由.①A =f x 1 +f x 2 +⋅⋅⋅+f x 50 ;②B =f x 1 f x 1 +1 +f x 2 f x 2 +1 +⋅⋅⋅+f x 50 f x 50 +12;(ⅱ)为确定新的治疗方案是否优于标准治疗方案,请在(ⅰ)中的统计量中选择一个合适的统计量,并根据统计量的取值作出统计决策.4(2024·高二·四川遂宁·期末)2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分100分),根据调查数据制成如下表格和频率分布直方图,已知评分在80,100的居民有600人.满意度评分40,6090,10080,9060,80满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及所调查的总人数;(2)定义满意度指数η=(满意程度的平均分)/100,若η<0.8,则防疫工作需要进行大调整,否则不需要大调整.根据所学知识判断该区防疫工作是否带要进行大调整?(同一组中的数据用该组区间的中点值为代表) (3)为了解部分居民不满意的原因,从不满意的居民评分在40,50中用分层抽样的方法抽取6名居,50,60民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有一人对防疫工作的评分在40,50内的概率.5(2024·高三·北京·阶段练习)设离散型随机变量X和Y有相同的可能取值,它们的分布列分别为P X=a k=x k,P Y=a k=y k,x k>0,y k>0,k=1,2,⋯,n,nk=1x k=nk=1y k=1.指标D(X‖Y)可用来刻画X和Y的相似程度,其定义为D(X‖Y)=nk=1x kln x ky k.设X~B(n,p),0<p<1.(1)若Y~B(n,q),0<q<1,求D(X‖Y);(2)若n=2,P(Y=k-1)=13,k=1,2,3,求D(X‖Y)的最小值;(3)对任意与X有相同可能取值的随机变量Y,证明:D(X‖Y)≥0,并指出取等号的充要条件6(2024·高三·河南·期末)某国家队要从男子短道速滑1500米的两名种子选手甲、乙中选派一人参加2022年的北京冬季奥运会,他们近期六次训练成绩如下表:次序(i)123456甲(x i秒)142140139138141140乙(y i秒)138142137139143141(1)分别计算甲、乙两人这六次训练的平均成绩x甲,x乙,偏优均差ξ甲,ξ乙;(2)若x i-y i<2i=1,2,3,4,5,6,则称甲、乙这次训练的水平相当,现从这六次训练中随机抽取3次,求有两次甲、乙水平相当的概率.注:若数据x1,x2,⋅⋅⋅,x n中的最优数据为m,定义ξ=1nx1-m2+x2-m2+⋅⋅⋅+x n-m2为偏优均差.本题中的最优数据即最短时间.7(2024·全国·模拟预测)某医科大学科研部门为研究退休人员是否患痴呆症与上网的关系,随机调查了M 市100位退休人员,统计数据如下表所示:患痴呆症不患痴呆症合计上网163248不上网341852合计5050100(1)依据α=0.01的独立性检验,能否认为该市退休人员是否患痴呆症与上网之间有关联?(2)从该市退休人员中任取一位,记事件A 为“此人患痴呆症”,B 为“此人上网”,则A为“此人不患痴呆症”,定义事件A 的强度Y 1=P A 1-P A ,在事件B 发生的条件下A 的强度Y 2=P A B1-P A B.(i )证明:Y1Y 2=P B AP B A ;(ⅱ)利用抽样的样本数据,估计Y 1Y 2的值.附:χ2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d .α0.0500.0100.001x α3.8416.63510.8288(2024·高三·山西朔州·开学考试)某校20名学生的数学成绩x i i =1,2,⋅⋅⋅,20 和知识竞赛成绩y ii =1,2,⋅⋅⋅,20 如下表:学生编号i 12345678910数学成绩x i 100999693908885838077知识竞赛成绩y i 29016022020065709010060270学生编号i 11121314151617181920数学成绩x i 75747270686660503935知识竞赛成绩y i4535405025302015105计算可得数学成绩的平均值是x =75,知识竞赛成绩的平均值是y =90,并且20i =1x i -x 2 =6464,20i =1y i -y2=149450,20i =1x i -x y i -y =21650.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01);(2)设N ∈N *,变量x 和变量y 的一组样本数据为x i ,y i i =1,2,⋅⋅⋅,N ,其中x i i =1,2,⋅⋅⋅,N 两两不相同,y i i =1,2,⋅⋅⋅,N 两两不相同.记x i 在x n n =1,2,⋅⋅⋅,N 中的排名是第R i 位,y i 在y n n =1,2,⋅⋅⋅,N 中的排名是第S i 位,i =1,2,⋅⋅⋅,N .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.(i )记d i =R i -S i ,i =1,2,⋅⋅⋅,N .证明:ρ=1-6N N 2-1 Ni =1d 2i ;(ii )用(i )的公式求得这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”约为0.91,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.r =ni =1x i -x y i -yni =1x i -x 2 ni =1y i -y2;nk =1k 2=n n +1 2n +16;6464×149450≈31000.9(2024·高二·湖北·阶段练习)“难度系数”反映试题的难易程度,难度系数越大,题目得分率越高,难度也就越小,“难度系数”的计算公式为L=1-YW,其中L为难度系数,Y为样本平均失分,W为试卷总分(一般为100分或150分).某校高二年级的老师命制了某专题共5套测试卷(总分150分),用于对该校高二年级480名学生进行每周测试,测试前根据自己对学生的了解,预估了每套试卷的难度系数,如下表所示:试卷序号i12345考前预估难度系数L i0.70.640.60.60.55测试后,随机抽取了50名学生的数据进行统计,结果如下:试卷序号i12345平均分/分10299939387(1)根据试卷2的预估难度系数估计这480名学生第2套试卷的平均分;(2)试卷的预估难度系数和实测难度系数之间会有偏差,设L i 为第i套试卷的实测难度系数,并定义统计量S=1 nL 1-I i2+L 2-L22+⋯+L n-L n2,若S<0.001,则认为试卷的难度系数预估合理,否则认为不合理.以样本平均分估计总体平均分,试检验这5套试卷难度系数的预估是否合理.(3)聪聪与明明是学习上的好伙伴,两人商定以同时解答上述试卷易错题进行“智力竞赛”,规则如下:双方轮换选题,每人每次只选1道题,先正确解答者记1分,否则计0分,先多得2分者为胜方.若在此次竞赛中,聪聪选题时聪聪得分的概率为23,明明选题时聪聪得分的概率为12,各题的结果相互独立,二人约定从0:0计分并由聪聪先选题,求聪聪3:1获胜的概率 .10(2024·高三·四川成都·开学考试)在三维空间中,立方体的坐标可用三维坐标a 1,a 2,a 3 表示,其中a i ∈0,1 1≤i ≤3,i ∈N .而在n 维空间中n ≥2,n ∈N ,以单位长度为边长的“立方体”的项点坐标可表示为n 维坐标a 1,a 2,a 3,⋯⋯,a n ,其中a i ∈0,1 1≤i ≤n ,i ∈N .现有如下定义:在n 维空间中两点间的曼哈顿距离为两点a 1,a 2,a 3,⋯⋯,a n 与b 1,b 2,b 3,⋯⋯,b n 坐标差的绝对值之和,即为a 1-b 1 +a 2-b 2 +a 3-b 3 +⋯⋯+a n -b n .回答下列问题:(1)求出n 维“立方体”的顶点数;(2)在n 维“立方体”中任取两个不同顶点,记随机变量X 为所取两点间的曼哈顿距离①求出X 的分布列与期望;②证明:在n 足够大时,随机变量X 的方差小于0.25n 2.(已知对于正态分布X ∼N μ,σ2 ,P 随X 变化关系可表示为φμ,σx =1σ2π⋅e -x -μ22σ2)11(2024·高二·福建莆田·期末)为了考查一种新疫苗预防某一疾病的效果,研究人员对一地区某种动物进行试验,从该试验群中随机抽查了50只,得到如下的样本数据(单位:只):发病没发病合计接种疫苗81624没接种疫苗17926合计252550(1)能否有95%的把握认为接种该疫苗与预防该疾病有关?(2)从该地区此动物群中任取一只,记A 表示此动物发病,A表示此动物没发病,B 表示此动物接种疫苗,定义事件A 的优势R 1=P A 1-P A ,在事件B 发生的条件下A 的优势R 2=P A B1-P A B.(ⅰ)证明:R 2R 1=P B A P B A;(ⅱ)利用抽样的样本数据,给出P B A ,P B A 的估计值,并给出R2R 1的估计值.附:χ2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d .P χ2≥x 00.0500.0100.001x 03.8416.63510.82812(2024·高一·山东济南·期末)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追湖到17世纪的布莱兹·帕斯卡和皮埃尔·德·费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔·西蒙·拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P AB =P A P B 成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.13(2024·高二·浙江台州·期末)袋中有大小、形状完全相同的2个红球,4个白球.采用放回摸球,从袋中摸出一个球,定义T 变换为:若摸出的球是白球,把函数f x 图象上所有点的横坐标缩短到原来110倍,(纵坐标不变);若摸出的是红球,将函数f x 图象上所有的点向下平移1个单位.函数f x 经过1次T 变换后的函数记为f 1x ,经过2次T 变换后的函数记为f 2x ,⋯,经过n 次T 变换后的函数记为f n x n ∈N * .现对函数f x =lg x 进行连续的T 变换.(1)若第一次摸出的是白球,第二次摸出的是红球,求f 2x ;(2)记X =f 31 ,求随机变量X 的分布列及数学期望.14(2024·高三·上海宝山·阶段练习)已知n为正整数,对于给定的函数y=f x ,定义一个n次多项式g nx 如下:g n x =ni=0C i n f inx i1-xn-i(1)当f x =1时,求g n x ;(2)当f x =x时,求g n x ;(3)当f x =x2时,求g n x .15(2024·高一·辽宁葫芦岛·期末)通信信号利用BEC信道传输,若BEC信道传输成功,则接收端收到的信号与发来的信号完全相同.若BEC信道传输失败,则接收端收不到任何信号.传输技术有两种:一种是传统通信传输技术,采用多个信道各自独立传输信号(以两个信道为例,如图1).另一种是华为公司5G信号现使用的土耳其通讯技术专家Erdal Arikan教授的发明的极化码技术(以两个信道为例,如图2).传输规则如下,信号U2直接从信道2传输;信号U1在传输前先与U2“异或”运算得到信号X1,再从信道1传输.若信道1与信道2均成功输出,则两信号通过“异或”运算进行解码后,传至接收端,若信道1输出失败信道2输出成功,则接收端接收到信道2信号,若信道1输出成功信道2输出失败,则接收端对信号进行自身“异或”运算而解码后,传至接收端.(注:定义“异或”运算:U1⊕U2=X1,X1⊕U1=U2,X1⊕U2=U1,X1⊕X1=U2).假设每个信道传输成功的概率均为p0<p<1.(1)对于传统传输技术,求信号U1和U2中至少有一个传输成功的概率;(2)对于Erdal Arikan教授的极化码技术;①求接收端成功接收信号U1的概率;②若接收端接收到信号U2才算成功完成一次任务,求利用极化码技术成功完成一次任务的概率.。

高中数学概率与统计的常见题型及解题思路

高中数学概率与统计的常见题型及解题思路

高中数学概率与统计的常见题型及解题思路概率与统计是高中数学中的重要内容,也是学生们普遍感到困惑的一部分。

在考试中,概率与统计题型常常出现,因此掌握解题思路和技巧对于学生们来说非常重要。

本文将介绍一些常见的概率与统计题型,并给出相应的解题思路和方法。

一、排列组合类题型排列组合类题型是概率与统计中的基础题型,也是其他题型的基础。

例如:例1:从1、2、3、4、5这5个数字中选取3个数字,组成一个无重复的三位数,求所能组成的三位数的个数。

解析:这是一个典型的排列问题。

我们可以先确定百位上的数字,有5种选择;然后确定十位上的数字,有4种选择;最后确定个位上的数字,有3种选择。

根据乘法原理,所能组成的三位数的个数为5×4×3=60个。

类似的题型还有从n个数字中选取m个数字,求所能组成的m位数的个数等。

二、事件的概率类题型事件的概率类题型是概率与统计中的重点和难点。

例如:例2:一枚硬币抛掷3次,求抛掷结果中至少出现两次正面的概率。

解析:这是一个典型的事件的概率问题。

我们可以列出所有可能的结果:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反。

其中,至少出现两次正面的结果有6种,所以所求的概率为6/8=3/4。

类似的题型还有从一副扑克牌中抽取一张牌,求抽到红桃的概率等。

三、频率与统计量类题型频率与统计量类题型是概率与统计中的实际应用题型。

例如:例3:某班级有60名学生,其中30名男生、30名女生。

从中随机抽取5名学生,求抽到女生人数的概率。

解析:这是一个典型的频率与统计量问题。

我们可以使用组合数的知识来解决。

从30名女生中选取0名女生的组合数为C(30, 0),从30名男生中选取5名男生的组合数为C(30, 5)。

所以所求的概率为C(30, 0) / C(60, 5)。

类似的题型还有某城市每天的降雨量数据,求降雨量超过某个值的概率等。

总结起来,掌握排列组合的基本原理、事件的概率计算方法以及频率与统计量的计算方法是解决概率与统计题型的关键。

高中数学必修二统计概率题型归纳

高中数学必修二统计概率题型归纳

高中数学必修二统计概率题型归纳高中数学中的统计和概率部分是相当重要的,尤其是在解决实际问题时。

本文将为同学们总结一些常见题型和解题技巧,以帮助大家更好地理解和掌握这一部分的知识。

一、统计概率概述统计和概率是描述随机现象的数学工具。

统计主要关注数据的收集、整理和分析,而概率则研究事件发生的可能性大小。

在高中数学中,这两部分知识经常结合在一起,用于解决实际问题。

二、题型归纳1. 平均数、中位数、众数、方差:这些是描述数据分布的重要指标,需要正确理解和运用。

例如,根据平均数求解题,就需要掌握如何根据样本数据来计算平均数。

2. 概率估算:这是一个重要的技巧,通常用于解决某些随机事件发生的可能性。

我们可以使用试验、比例和相关条件等方法来估算概率。

3. 抽样分布:在统计学中,抽样分布是重要的概念,需要了解如何从总体中抽取样本,并如何根据样本数据来估计总体参数。

4. 排列组合问题:这是概率论中的一个重要分支,需要掌握基本的排列组合公式和技巧。

5. 概率计算:包括条件概率、独立事件等,需要运用概率论的基本原理和方法进行计算。

三、解题方法1. 列表法:对于简单的概率问题,可以通过列表法清晰地看出可能的结果。

2. 公式法:对于一些特定的概率问题,可以运用公式法进行计算。

3. 计算机软件:对于更复杂的概率问题,可以利用计算机软件进行数值计算和模拟实验。

四、注意事项1. 理解概念:统计和概率的概念需要准确理解,不能混淆或错误运用。

2. 数据分析:在解决实际问题时,要善于运用数据分析和推理的方法来解决问题。

3. 解题步骤:在解题时,要按照一定的步骤和思路来进行,避免盲目尝试。

总的来说,高中数学中的统计和概率部分需要准确理解和运用,才能更好地解决实际问题。

通过本文的归纳和总结,相信大家能够更好地掌握这一部分的知识,并在考试中取得好成绩。

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解概率与统计作为高考数学中的重要部分,一直是考生们难以逾越的“坎”。

为了帮助广大考生更好地应对高考概率与统计部分的考题,本文将对高考数学2024年概率与统计题目进行全面解析,希望能够为考生们提供帮助和指导。

1. 选择题部分选择题是高考中概率与统计部分的常见题型,也是考生们容易出错的地方。

以下是2024年高考概率与统计选择题的解答:题目一:已知事件A发生的概率为P(A)=0.6,事件B发生的概率为P(B)=0.3,且事件A与事件B相互独立。

求事件A发生且事件B不发生的概率。

解答一:事件A发生且事件B不发生,表示为A发生的概率P(A)乘以B不发生的概率P(B'),即P(A且B')=P(A)×P(B')=0.6×(1-0.3)=0.6×0.7=0.42。

因此,事件A发生且事件B不发生的概率为0.42。

题目二:已知事件C发生的概率为P(C)=0.4,事件D发生的概率为P(D)=0.5,且事件C与事件D相互独立。

求事件C或事件D发生的概率。

解答二:事件C或事件D发生,表示为C发生的概率P(C)加上D发生的概率P(D),即P(C或D)=P(C)+P(D)=0.4+0.5=0.9。

因此,事件C或事件D发生的概率为0.9。

2. 计算题部分计算题是概率与统计部分的重要考察内容,需要考生们掌握一定的计算方法和技巧。

以下是2024年高考概率与统计计算题的解答:题目一:某班有40名学生,其中20名男生、20名女生。

现从该班级随机选取3名学生,求选出的3名学生全为男生的概率。

解答一:选出的3名学生全为男生的概率等于从20名男生中选取3名学生的概率除以从40名学生中选取3名学生的概率。

即P(全为男生)=C(20,3)/C(40,3)=[20×19×18]/[40×39×38]=0.0283。

因此,选出的3名学生全为男生的概率为0.0283。

小学奥数之概率统计题(详细解析)

小学奥数之概率统计题(详细解析)

小学奥数之概率统计题(详细解析)引言随着数字化时代的到来,概率统计已经快速走进了我们的生活。

为了让小学生更好地掌握概率统计知识,我们将为大家详细讲解小学奥数中的概率统计题。

知识点1:基础概念在做概率统计题之前,我们需要了解一些基础概念。

比如:- 随机事件:每一个试验的结果都是可能发生的,但具体结果不确定的事件称为随机事件。

- 样本空间:一个试验的所有可能结果组成的集合称为样本空间。

- 事件:含有样本空间中某些基本事件的子集称为事件。

知识点2:概率计算为了更好地掌握概率统计题,我们需要掌握概率的计算方法。

比如:- 极限定义法:P(A)=limn→∞nA/n,其中P(A)表示事件A发生的概率。

- 相对频率法:P(A)=NA/N,其中P(A)表示事件A发生的概率,NA表示事件A在重复n次实验中出现的次数,N表示实验重复了n次所得到的总次数。

知识点3:概率和统计题概率和统计题是小学奥数中常见的题型。

比如:1. 某班级有30名学生,其中12名男生、18名女生,现从中任意抽取一名学生,求其性别为女生的概率。

答案:P(女生)=18/30=3/52. 有甲、乙、丙三个运动员比赛,他们的成绩分别为11秒、12秒、13秒,请问他们得到第一名、第二名、第三名的概率分别是多少?答案:第一名:甲获胜,概率为1/3;第二名:乙获胜,概率为1/2(甲获胜后,乙获胜的概率为1/2);第三名:丙获胜,概率为1(其他两名获胜的概率为0)。

总结通过本文的讲解,我们可以了解到小学奥数中概率统计题的基础概念、概率的计算方法以及常见的题目类型。

只要我们认真学习和练习,相信很快就能够掌握概率统计的知识,轻松应对各种考试。

高中数学概率与统计问题的题型与方法

高中数学概率与统计问题的题型与方法

高中数学概率与统计问题的题型与方法篇一:高二数学概率与统计问题的题型与方法2第110-113课时概率与统计问题的题型与方法一.备考目标:1.了解典型分布列:0~1分布,二项分布,几何分布。

2.介绍线性型随机变量的期望值、方差的意义,可以根据线性型随机变量的原产列求出来期望值、方差。

3.在实际中经常用期望来比较两个类似事件的水平,当水平相近时,再用方差比较两个类似事件的稳定程度。

4.介绍正态分布的意义,能够利用正态曲线的图像认知正态曲线的性质。

5.了解标准正态分布的意义和性质,掌握正态总体n(?,?2)转化为标准正态总体n (0,1)的公式f(x)??(x??)及其应用。

6.通过生产过程的质量掌控图,介绍假设检验的基本思想。

7.了解相关关系、回归分析、散点图等概念,会求回归直线方程。

8.介绍相关系数的计算公式及其意义,可以用相关系数公式展开排序。

了解相关性检验的方法与步骤,会用相关性检验方法进行检验。

二.考试建议:⑴了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。

⑵介绍线性型随机变量的期望值、方差的意义,可以根据线性型随机变量的原产列求出来期望值、方差。

⑶会用抽机抽样,系统抽样,分层抽样等常用的抽样方法从总体中抽取样本。

⑷会用样本频率分布去估计总体分布。

⑸介绍正态分布的意义及主要性质。

⑹了解假设检验的基本思想。

⑺可以根据样本的特征数估算总体。

⑻了解线性回归的方法。

三.教学过程:(ⅰ)基础知识详析㈠随机事件和统计数据的知识结构:㈡随机事件和统计的内容提要1.主要内容就是线性型随机变量的原产列于、希望与方差,样本方法,总体原产的估算,正态分布和线性回归。

2.随机变量的概率分布(1)离散型随机变量的分布列:两条基本性质①pi?0(i?1,2,?);②p1+p2+?=1。

(2)连续型随机变量概率分布:由频率分布直方图,估计总体分布密度曲线y=f(x);总体原产密度函数的两条基本性质:①f(x)≥0(x∈r);②由曲线y=f(x)与x轴围起面积为1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计概率大题题型总结题型一 频率分布直方图与茎叶图例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率.例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率;1 7 92 0 1 53 0第17题图(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望.变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下:0891258200338312则这组数据的中位数是( )A 、19B 、20C 、21.5D 、23变式2.【2015高考新课标2,理18】(本题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记时间C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.A 地区B 地区4 5 6 7 8 9变式3.(2012辽宁理)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(Ⅰ)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望()E X和方差()D X.变式4 【2014新课标Ⅰ理18】(本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i) 利用该正态分布,求(187.8212.2)P Z <<;(ii) 某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .150若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.题型二抽样问题例【2015高考广东,理17】某工厂36名工人的年龄数据如下表:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的平均值x和方差2s;(3)36名工人中年龄在sx-与sx+之间有多少人?所占的百分比是多少(精确到0.01%)?变式(2009天津卷文)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂(Ⅰ)求从A,B,C区中分别抽取的工厂个数;(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率。

题型三 古典概型 有限等可能事件的概率在一次实验中可能出现的结果有n 个,而且所有结果出现的可能性都相等。

如果事件A 包含的结果有m 个,那么P (A )=nm。

这就是等可能事件的判断方法及其概率的计算公式。

高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。

例题1【2015高考天津,理16】(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;(II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.例2【2015高考安徽,理17】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).变式1【2015高考重庆,理17】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。

(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望变式2 (2013天津理)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4;白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.题型四 几何概型----无线等可能事件发生的概率例1【2015高考湖北,理7】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<变式1【2015高考福建,理13】如图,点A 的坐标为()1,0 ,点C 的坐标为()2,4 ,函数()2f x x = ,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .变式2(2012年高考(北京理))设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A .4π B .22π- C .6π D .44π-题型五 相互独立事件发生概率计算事件A (或B )是否发生对事件B (或A )发生的概率没有影响,则A 、B 叫做相互独立事件,它们同时发生的事件为B A ⋅。

用概率的乘法公式()()()B P A P B A P ⋅=⋅计算。

例1(2013辽宁数学理)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(I)求张同学至少取到1道乙类题的概率;(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X的分布列和数学期望.例2(2013山东理)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X的分布列及数学期望.变式1 (2012年高考(山东理))先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为3 4 ,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.变式2(2012重庆理)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望题型六 n 次独立重复试验的概率 ----二项分布若在n 次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n 次独立重复试验。

若在1 次试验中事件A 发生的概率为P ,则在n 次独立惩处试验中,事件A 恰好发生k 次的概率为()()1n kk kn nP k C P P -=-。

高考结合实际应用问题考查n 次独立重复试验中某事件恰好发生k 次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。

例1【2015高考湖南,理18】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.例2【2014辽宁理18】(本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望()E X 及方差()D X.变式1(2012四川理)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为110和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p的值;(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.题型七 离散型随变量概率分布列 设离散型随机变量的分布列为它有下面性质:①),2,1(0 =≥i P i ②,121=++++ i p p p 即总概率为1;③期望;11 +++=i i P x P x E ξ方差 +-++-=i i P E x P E x D 2121)()(ξξξ 离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 高考常结合应用问题对随机变量概率分布列及其性质的应用进行考查. 例题1 (2010天津理)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响。

相关文档
最新文档