理论力学第二章作业a
理论力学习题答案
理论力学习题答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 静力学公理和物体的受力分析一、是非判断题在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ∨ ) 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( × ) 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × ) 力的可传性只适用于刚体,不适用于变形体。
( ∨ ) 两点受力的构件都是二力杆。
( × ) 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × ) 力的平行四边形法则只适用于刚体。
( × ) 凡矢量都可以应用平行四边形法则合成。
( ∨ ) 只要物体平衡,都能应用加减平衡力系公理。
( × ) 凡是平衡力系,它的作用效果都等于零。
( × ) 合力总是比分力大。
( × ) 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( × )若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ∨ )当软绳受两个等值反向的压力时,可以平衡。
( × )静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ∨ )静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( ∨ )凡是两端用铰链连接的直杆都是二力杆。
( × )如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。
( × )图3二、填空题力对物体的作用效应一般分为 外 效应和 内 效应。
对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。
理论力学第二章
第2章 力系的等效与简化2-1试求图示中力F 对O 点的矩。
解:(a )l F F M F M F M M y O y O x O O ⋅==+=αsin )()()()(F (b )l F M O ⋅=αsin )(F(c ))(sin cos )()()(312l l Fl F F M F M M y O x O O +--=+=ααF (d )2221sin )()()()(l l F F M F M F M M y O y O x O O +==+=αF2-2 图示正方体的边长a =0.5m ,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。
解:)(2)()(j i k i Fr F M +-⨯+=⨯=Fa A O m kN )(36.35)(2⋅+--=+--=k j i k j i Fam kN 36.35)(⋅-=F x M2-3 曲拐手柄如图所示,已知作用于手柄上的力F =100N ,AB =100mm ,BC =400mm ,CD =200mm ,α = 30°。
试求力F 对x 、y 、z 轴之矩。
解:)cos cos sin (sin )4.03.0()(2k j i k j F r F M αααα--⨯-=⨯=F D Ak j i αααα22sin 30sin 40)sin 4.03.0(cos 100--+-=力F 对x 、y 、z 轴之矩为:m N 3.43)2.03.0(350)sin 4.03.0(cos 100)(⋅-=+-=+-=ααF x M m N 10sin 40)(2⋅-=-=αF y Mm N 5.7sin 30)(2⋅-=-=αF z M2—4 正三棱柱的底面为等腰三角形,已知OA=OB =a ,在平面ABED 内沿对角线AE 有一个力F , 图中θ =30°,试求此力对各坐标轴之矩。
习题2-1图A r A习题2-2图(a )习题2-3图(a)ABr 解:)sin 45sin cos 45cos cos ()(k j i i F r F M θθθ+︒+︒-⨯=⨯=F a A O )45sin cos sin (k j ︒+-=θθaF 力F 对x 、y 、z 轴之矩为:0)(=F x M230sin )(aF aF M y -=︒-==F Fa aF M z 4645sin 30cos )(=︒︒=F2-5 如图所示,试求力F 对A 点之矩及对x 、y 、z 轴之矩。
理论力学练习-2
第二章平面汇交力系与平面力偶系判断题:1.因为构成力偶的两个力满足F=F′,所以力偶的合力等于零。
()答案:×2.因为构成力偶的两个力满足F=F′,所以力偶在某轴上的投影不为零。
()答案:×3.力偶对其作用面内任一点之矩都等于力偶矩。
()答案:√4.力F在x轴方向的分力为零,则力F对坐标原点的力矩为零。
()答案:×5.力矩为零时表示力作用线通过矩心或力为零。
()答案:√6.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()答案:√7.一个力在任意轴上投影的大小一定小于或等于该力的模,而沿该轴的分力的大小则可能大于该力的模。
()答案:√8.力矩与力偶矩的单位相同,常用的单位为牛·米,千牛·米等。
()答案:√9.只要两个力大小相等、方向相反,该两力就组成一力偶。
()答案:×10.同一个平面内的两个力偶,只要它们的力偶矩相等,这两个力偶就一定等效。
()答案:√11.只要平面力偶的力偶矩保持不变,可将力偶的力和臂作相应的改变,而不影响其对刚体的效应。
()答案:√12.作用在刚体上的一个力,可以从原来的作用位置平行移动到该刚体内任意指定点,但必须附加一个力偶,附加力偶的矩等于原力对指定点的矩。
()答案:√13.某一平面力系,如其力多边形不封闭,则该力系一定有合力,合力作用线与简化中心的位置无关。
()答案:√14.平面任意力系,只要主矢R≠0,最后必可简化为一合力。
()答案:√15.平面力系向某点简化之主矢为零,主矩不为零。
则此力系可合成为一个合力偶,且此力系向任一点简化之主矩与简化中心的位置无关。
()答案:√16.若平面力系对一点的主矩为零,则此力系不可能合成为一个合力。
()答案:×17.当平面力系的主矢为零时,其主矩一定与简化中心的位置无关。
()答案:√18.在平面任意力系中,若其力多边形自行闭合,则力系平衡。
理论力学第二章习题答案
理论力学第二章习题答案理论力学是物理学中研究物体运动规律和相互作用的分支学科,它以牛顿运动定律为基础,通过数学方法来描述物体的运动和力的作用。
本章习题答案将帮助学生更好地理解和掌握理论力学的基本概念和计算方法。
习题1:考虑一个质量为m的物体在重力作用下自由下落。
忽略空气阻力,求物体下落过程中的速度和位移。
答案:物体自由下落时,受到的力只有重力,大小为mg,方向向下。
根据牛顿第二定律,F=ma,可以得到加速度a=g。
物体的速度v随时间t变化,可以使用公式v=gt计算。
物体的位移s随时间变化,可以使用公式s=1/2gt^2计算。
习题2:一个质量为m的物体在水平面上以初速度v0开始运动,受到一个大小为k的恒定摩擦力作用。
求物体停止前所经过的距离。
答案:物体在水平面上运动时,受到的摩擦力与物体的位移成正比,即F=-kx。
根据牛顿第二定律,F=ma,可以得到加速度a=-k/m。
物体的位移x随时间t变化,可以使用公式x=v0t - 1/2(k/m)t^2计算。
当物体速度减至0时,物体停止,此时t=2v0/k,代入公式得到x=2v0^2/k。
习题3:一个质量为m的物体在斜面上,斜面与水平面的夹角为θ。
物体受到一个向上的拉力F,使得物体沿斜面匀速上升。
求拉力F的大小。
答案:物体沿斜面匀速上升时,拉力F与重力分量mgsinθ和摩擦力μmgcosθ平衡。
根据平衡条件,F=mgsinθ + μmgcosθ。
如果摩擦系数为μ,可以进一步简化为F=mg(sinθ + μcosθ)。
习题4:考虑一个质量为m的物体在竖直平面内做圆周运动,圆心位于物体的正下方。
物体的运动由一个弹簧连接到圆心,弹簧的劲度系数为k。
求物体在圆周运动中的角速度。
答案:物体在圆周运动中,受到弹簧力和重力的作用。
根据牛顿第二定律,向心力Fc=mv^2/r=ma,其中r为圆的半径。
由于物体做圆周运动,向心力由弹簧力和重力的垂直分量提供。
因此,Fc=kx - mgcosθ,其中x为弹簧的伸长量,θ为物体与竖直方向的夹角。
理论力学第二次作业
本次作业是本门课程本学期的第2次作业,注释如下:一、单项选择题(只有一个选项正确,共15道小题)1. 平面任意力系有个独立的平衡方程。
(A)1(B) 2(C) 3(D) 4正确答案:C解答参考:2. 平面平行力系有个独立的平衡方程。
(A) 1(B) 2(C) 3(D) 4正确答案:B解答参考:3.图示结构是()。
(A) 静定(B) 一次超静定(C) 二次超静定(D)三次超静定正确答案:B解答参考:4.图示为两个相互啮合的齿轮。
作用在齿轮A上的切向力平移到齿轮B的中心。
(A) 不可以(B) 可以(C) 不能确定正确答案:A解答参考:5.图示桁架中杆件内力等于零,即所谓“零杆”为。
(A) BC, AC(B) BC, AC, AD(C) BC(D) AC[前面作业中已经做正确] [正确]正确答案:A解答参考:6.沿正立方体的前侧面作用一力,则该力。
(A) 对轴x、y、z之矩均相等(B) 对轴x、y、z之矩均不相等(C) 对轴x、y、之矩相等(D) 对轴y、z之矩相等你选择的答案: [前面作业中已经做正确] [正确]正确答案:D解答参考:7.空间力对点之矩是。
(A) 代数量(B) 滑动矢量(C) 定位矢量(D)自由矢量正确答案:C解答参考:8. 力对轴之矩是。
(A) 代数量(B) 滑动矢量(C) 定位矢量(D) 自由矢量你选择的答案: [前面作业中已经做正确] [正确]正确答案:A解答参考:9.空间力偶矩矢是。
(A) 代数量(B) 滑动矢量(C) 定位矢量(D) 自由矢量正确答案:D解答参考:10. 空间任意力系有个独立的平衡方程。
(A) 3(B) 4(C) 5(D)6你选择的答案: [前面作业中已经做正确] [正确]正确答案:D解答参考:11. 空间汇交力系有个独立的平衡方程。
(A) 3(B) 4(C) 5(D) 6正确答案:A解答参考:12. 空间力偶系有个独立的平衡方程。
(A) 3(B) 4(C) 5(D) 6正确答案:A解答参考:13. 空间平行力系有个独立的平衡方程。
理论力学练习册及答案(南华版)
动系固连摇杆CB上,定系固连机架。
由速度合成定理 作速度平行四边形。
B点速度为:
由加速度合成定理 作加速度图。
取 方向投影,得:
B点加速度为:
7-4.半径为R的半圆形凸轮以匀速V0沿水平线向右平动,带动顶杆AB沿铅直方向运动,当OA与铅直线夹角为300时,求此时杆AB的速度和加速度。
解:动点取杆OA上A点,动系固连杆O1C上,定系固连机架。
由速度合成定理 作速度平行四边形。
由加速度合成定理 作加速度图。
取 方向投影,得:
再取动点杆O1C上C点,动系固连套筒B上,定系固连机架。
由速度合成定理 作速度平行四边形。
由加速度合成定理:
作加速度图。
取 方向投影,得:
取 方向投影,得:
第八章 刚体平面运动
分别取节点A、B为研究对象,受力如图
对于节点A: ,
(压)
对于节点B: , (压)
2-11.计算桁架中1、2、3杆的受力。
解:取I-I剖面右边部分为研究对象,受力如图。
,
(拉)
,
(压)
研究节点B: ,
(压)
第三章 空间力系
3-1.图示正立方体,各边长为a,四个力F1、F2、F3、F4大小皆等于F,如图所示,作用的相应的边上。求此力系简化的最终结果,并在图中画出。
8-7.四杆机构中,曲柄OA以匀角速度ω0=25 rad/s绕O轴转动,OA=50 cm,AB=100 cm,O1B= cm。求∠OAB=900时,B点的加速度,摇臂O1B的角速度和角加速度。
8-8.图示机构中,设当OA与水平线成450角的瞬时,曲柄OA有反时针方向的匀角速度ω=25 rad/s,连杆AB水平,扇形板BD铅垂。求扇形板绕定轴D转动的角加速度ε。
理论力学作业答案
解:力系对O点的主矩在轴上的投影为
M Ox M x F F2 cos a .100 F3 sin .300 51.8 N .m M Oy M y F F1 .200 F2 sin a .100 36.64 N .m M Oz M z F F2 cos a .200 F3 cos .300 103.6 N .m
FCy
P1
FDx
解得: FCy 4550 N
P
3、研究杆ABC
FCy
C
M F F
y
C
0
M A 6FAx 3FBx 0 0
B
FCx
FBy
FAy FBy FCy P3 0
x
0
FBx
FAx FBx FCx 0
MA P3 FAy
A
解得: FBx 22800, FBy 17850
M M FAx tan , FAy , M A M a a
3-9(b)
已知:q, M, a,. 不计梁自重,求支座A、B、C约束反力。 FNC FBy FBx
解:BC段梁受力分析如图,平面任意力系平衡方程为
F F
解得:
FNC
x y
0 FBx FNC sin 0 0 FBy qa FNC cos 0
解得: FAx 0, FAy 1 F M , FNB 1 3F M 2 a 2 a
3-5(b)
已知:F, M, q, a, 求支座A、B约束反力。
q
M
解:梁受力分析如 图,平面任意力系 平衡方程为
FAx
《理论力学》第二章作业答案
xyPTF22036O152-⋅图[习题2-3]动学家估计,食肉动物上颚的作用力P 可达800N ,如图2-15示。
试问此时肌肉作用于下巴的力T 、F 是多少? 解:解:0=∑xF036cos 22cos 00=-F T22cos 36cos F T =0=∑yF036sin 22sin 00=-+P F T 80036sin 22sin 22cos 36cos 000=+F F )(651.87436sin 22tan 36cos 80000N F =+=)(179.76322cos 36cos 651.87422cos 36cos 000N F T ===182-⋅图B[习题2-6] 三铰拱受铅垂力P F 作用,如图2-18所示。
如拱的重量不计,求A 、B 处支座反力。
解:0=∑x F0cos 45cos 0=-θB A R RB A R l l l R 22)23()2(222+=B A R R 10121=B A R R 51=0=∑yF0sin 45sin 0=-+P B A F R R θP B A F R l l l R =++22)23()2(2321P B A F R R =+10321的受力图轮A P B B F R R =+⨯1035121P B F R =104P P B F F R 791.0410≈=31623.0101)23()2(2cos 22≈=+=l l l θ0565.71≈θ P P P A F P F R 354.04241051≈=⨯=方向如图所示。
[习题2-10] 如图2-22所示,一履带式起重机,起吊重量kN F P 100=,在图示位置平衡。
如不计吊臂AB 自重及滑轮半径和摩擦,求吊臂AB 及揽绳AC 所受的力。
解:轮A 的受力图如图所示。
0=∑x F030cos 20cos 45cos 000=--P AC AB F T R的受力图轮A 603.869397.07071.0=-AC AB T R AC AB T R 3289.1476.122+=0=∑yF030sin 20sin 45sin 000=---P P AC AB F F T R010*******.07071.0=---AC AB T R 1503420.07071.0=-AC AB T R1503420.0)3289.1476.122(7071.0=-+⨯AC AC T T 1503420.09397.06023.86=-+AC AC T T 3977.635977.0=AC T )(069.106kN T AC ≈)(432.263069.1063289.1476.1223289.1476.122kN T R AC AB =⨯+=+=解法二:用如图所示的坐标系。
理论力学第二章静力学作业
1、图示平面力系,已知:F1=8kN,F2=3kN,M=10kN·m,R=2m,θ=120º。
试求:(1)力系向O点简化的结果;(2)力系的最后简化结果,并示于图上。
2、结构如图,自重不计,已知:F P=4kN,AD=DB,DE段绳处于水平。
试求:A、B处的约束力。
3、图示多跨梁,自重不计。
已知:M、F P、q、L。
试求支座A、B的约束反力及销钉C 对AC梁的作用力。
kN⋅,F =2kN 4、图示多跨梁由AC和CD铰接而成,自重不计。
已知:q =10kN/m,M=40m作用在AB中点,且θ=450,L=2m。
试求支座A、B、D的约束力。
5、图式机构,AB=BC,BD=BE,不计各杆自重,D、E两点用原长为L=0.5m,弹簧常数k=1/6(kN/m)的弹簧连接,设在B处作用一水平力F,已知:F=20N,L1=0.4m,L2=0.6m。
求机构处于平衡时杆AB 与水平面的夹角θ。
6、在图所示机构中,曲柄OA 上作用一力偶,其力偶矩大小为M ,另在滑块D 上作用水平F ,机构尺寸如图所示,各秆重量不计。
求当机构平衡时,力F 与力偶短M 的关系。
7、在如图所示物块中,已知斜面的倾角为θ,接触面间的摩擦角为ϕ f 。
试问:(1)拉力F r 与水平面间的夹角β 等于多大时拉动物块最省力; (2)此时所需拉力F r 的大小为多少?8、两长度相同的均质杆AB ,CD 的重力大小分别为P = 100 N ,P 1 = 200 N ,在点B 用铰链连接,如图所示。
杆BC 的C 点与水平面之间的静滑动摩擦因数f s = 0.3。
已知:θ = 60º,试问:(1)系统能否平衡?并加以证明。
(2)若系统能够平衡,求C 点摩擦力的大小和方向。
理论力学第二章习题答案
理论力学第二章习题答案理论力学第二章习题答案理论力学是物理学的基础学科之一,它研究物体的运动规律以及力的作用原理。
在理论力学的学习过程中,习题是检验学生理解和掌握程度的重要方式之一。
下面将为大家提供理论力学第二章的习题答案,希望对大家的学习有所帮助。
1. 一个质点在匀速直线运动中,它的加速度是多少?答:在匀速直线运动中,速度保持不变,所以加速度为0。
2. 一个质点的速度随时间的变化规律为v=3t+2,求它在t=2s时的速度。
答:将t=2s代入速度变化规律中,得到v=3*2+2=8m/s。
3. 一个质点做匀加速直线运动,它的初速度为2m/s,加速度为3m/s²,求它在t=4s时的位移。
答:根据匀加速直线运动的位移公式s=vt+1/2at²,将初速度v=2m/s,时间t=4s,加速度a=3m/s²代入,得到s=2*4+1/2*3*4²=8+24=32m。
4. 一个质点做匀加速直线运动,它的初速度为4m/s,位移为20m,加速度为2m/s²,求它的末速度。
答:根据匀加速直线运动的末速度公式v²=u²+2as,将初速度u=4m/s,位移s=20m,加速度a=2m/s²代入,得到v²=4²+2*2*20=16+80=96,所以末速度v=√96≈9.8m/s。
5. 一个质点做直线运动,它的速度随时间的变化规律为v=2t²+3t,求它在t=3s时的加速度。
答:加速度是速度对时间的导数,所以将速度变化规律v=2t²+3t对时间t求导,得到加速度a=dv/dt=4t+3。
将t=3s代入,得到a=4*3+3=15m/s²。
6. 一个质点做直线运动,它的速度随时间的变化规律为v=5t²+2t,求它在t=2s 时的加速度。
答:同样地,将速度变化规律v=5t²+2t对时间t求导,得到加速度a=dv/dt=10t+2。
理论力学(周衍柏 第二版)第2章习题解答
2.8 一光滑球 A 与另一静止的光滑球 B 发生斜碰。如两者均为完全弹性体,且两球的质量相
等,则两球碰撞后的速度互相垂直,试证明之。 2.9 一光滑小球与另一相同的静止小球相碰撞。在碰撞前,第一小球运动的方向与碰撞时两
球的联心线成α 角。求碰撞后第一小球偏过的角度 β 以及在各种α 值下 β 角的最大值。设 恢复系数 e 为已知。 2.10 质量为 m2 的光滑球用一不可伸长的绳系于固定点 A 。另一质量为 m1 的球以与绳成θ 角的速度 v1 与 m2 正碰。试求 m1 与 m2 碰后开始运动的速度 v1′ 及 v2′ 。设恢复系数 e 为已知。
离是一致的(因为两次运动水平方向上均以 v水平 = v0cosα 作匀速直线运动,运动 的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次
机枪后退的速度为
M ′ u − (M + M ′)2 − M 2 μg
Mபைடு நூலகம்
2mM
2.16 雨滴落下时,其质量的增加率与雨滴的表面积成正比例,求雨滴速度与时间的关系。
2.17 设用某种液体燃料发动的火箭,喷气速度为 2074 米/秒,单位时间内所消耗的燃料为
原始火箭总质量的 1 。如重力加速度 g 的值可以认为是常数,则利用此种火箭发射人造太 60
zc
=
∫ zdm ∫ dm
=
−
3 4
(a + b)2 (2a + b)
2.3 解 建立如题 2.3.1 图所示的直角坐标,原来W人 与共同作一个斜抛运动。 y v0
α
O
x
4
当达到最高点人把物体水皮抛出后,人的速度改变,设为 vx ,此人即以 vx 的速 度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距
理论力学题库第二章
理论力学题库一一第二章一、填空题1.对于一个有“个质点构成的质点系,质量分别为加〕,加2,加3,…叫,…加“,位置矢量分别为,“,£, •”,----- ,则质心c的位矢为________________ 。
2.质点系动量守恒的条件是______________________________ 。
3.质点系机械能守恒的条件是__________________________ ,4.质点系动量矩守恒的条件是____________________________________ o5.质点组______ 对_______ 的微商等于作用在质点组上外力的矢量和,此即质点组的定理。
&质心运动定理的表达式是 _______________________________ o7.平面汇交力系平衡的充分必要条件是合力为零。
8.各质点对质心角动量对时间的微商等于处力对质心的力矩之和。
9.质点组的角动量等于质心角动量与各质点对质心角动量之和。
10•质点组动能的澈分的数学表达式为:£耳” •心+£戸件叭2 t.i /・1 /・1表述为质点组动能的微分等于一力和力所作的元功之和。
11・质点组动能等于质心动能与各质点对质心动能之和。
12.柯尼希定理的数学表达式为:丁二丄〃呢2+£性十2 ,表述为质点组动能等于质心2 /.I动能与各质点对质心动能之和。
13.2-6・质点组质心动能的微分等于、外力在质心系系中的元功之和。
14・包含运动电荷的系统,作用力与反作用力丕二定在同一条直线上。
15・太阳、行星绕质心作圆锥曲线的运动可看成质量为磴质量的行星受太阳(不动)的引力的运动。
16・两粒子完全弹性碰撞,当质量相等时,一个粒子就有可能把所有能量转移给另一个粒子。
17.设木块的质呈为nh,被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。
如果有一质量为叫的子弹以速率v,沿水平方向射入木块,子弹与木块将一起摆至高度为久二佟上竺(2g 〃严h处,则此子弹射入木块前的速率为: E ___________ 。
理论力学作业答案及其他内容
第一章汽车的动力性1概念1汽车的动力性系指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的,所能达到的平均行驶速度。
2汽车的上坡能力是用满载时汽车在良好路面上的最大爬坡度。
3自由半径静力半径滚动半径4轮胎的迟滞损失。
5汽车旋转质量换算系数:1).越低档,系数越大。
2).汽车总质量越大,系数越小。
2填空题1汽车动力性的评价指标是最高车速,加速时间和最大爬坡度。
2汽车的加速时间表示汽车的加速能力,常用起步加速时间,超车加速时间来表示加速能力。
3传动系功率损失可分为机械损失和液力损失两大类。
4汽车的驱动力是驱动汽车的外力,即地面对驱动轮的纵向反作用力。
5汽车的动力性能不只受驱动力的制约,它还受到地面附着条件的限制。
3作业题1试说明轮胎滚动阻力的定义、产生机理和作用形式。
【答】定义:汽车在水平道路上等速行驶时受到道路在行驶方向上的分力为轮胎的滚动阻力产生机理:轮胎在加载变形时所所消耗的能量在卸载恢复时不完全回收,一部分能量消耗在轮胎的内部损失上,产生热量,这种损失叫迟滞损失。
这种迟滞损失表现为一种阻力偶。
当轮胎不滚动时,地面对车轮的法向反作用力的分布是前后对称的;当轮胎滚动时,由于弹性迟滞现象,处于压缩过程的前部点地面法相反作用力大于后部点的地面法相反作用力,使它们的合力F a相对于法向前移一个距离a,它随弹性迟滞损失的增大而增大。
即滚动时产生阻力偶矩,阻碍车轮滚动。
作用形式:2解释汽车加速行驶时质量换算系数的意义。
汽车旋转质量换算系数由哪几部分组成?与哪些因素有关?【答】A.汽车的质量分为平移质量和旋转质量两部分;为了便于加速阻力计算,一般把旋转质量的惯性力偶矩转化为平移质量的惯性力,对于固定传动比的汽车,常以系数δ作为计入旋转质量惯性力偶矩后的汽车旋转质量换算系数。
B.该转换系数主要与飞轮的转动惯量、车轮的转动惯量以及传动系的传动比有关。
3汽车轮胎半径增大,其他参数不变时,对汽车的加速性能和爬坡性能有何影响?说明理由。
理论力学第二章答案
[
]
代入完整保守体系的拉格朗日方程,并化简得
&& θ + sinθ ⋅ cosθ ⋅ ω 2 = 0
2.9 用拉格朗日方程写出习题1.27的运动微分方程 解:体系为自由度为2的完整约束体系,取x,y为广义坐标
m & & T = (x2 + y2) 2
则
V =−
e2 4 πε 0
⋅
1 x2 + y2 1 x2 + y2
ϕ +ϕ ϕ +ϕ m1g sinϕ1 − k cos 1 2 ⋅ (l − 2R) ⋅ sin 1 2 = 0 2 2 m g sinϕ − k cosϕ1 + ϕ2 ⋅ (l − 2R) ⋅ sinϕ1 + ϕ2 = 0 2 2 2 2
o
ϕ1 ϕ2
m2
m1
2.23 质量为m,电荷为q的粒子在轴对称电场 中运动。写出粒子的拉格朗日函数和运动微分方程。 v v v v 解: 由题中 E = E 0 e r ,B = B 0 k 令 ϕ = E 0 ln R v 1 v A = B 0 R eθ 2 v v 在柱坐标系中,有: = 1 mv 2 − q ϕ + q A ⋅ V , L 2 d ∂L ∂L − =0 代入: & dt ∂ q α ∂ qα
o
2.6 用拉格朗日程写出习题1.20的运动微分方程 解:如图,取底面圆心处为坐标原点,建立柱坐标系,质点到 v &v v v & eϕ + ze z & 轴距为R,则: υ = R er + Rϕ & & 由几何关系 R = ( R2 + z ⋅ tan α ), R = z ⋅ tan α
理论力学周衍柏第三版第二章习题答案
第二章习题解答2.1 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。
题2.1.1图有质心公式⎰⎰=dmxdm x c 设均匀扇形薄片密度为ρ,任意取一小面元dS ,drrd dS dm θρρ==又因为θcos r x =所以θθθρθρsin 32adrrd dr rd x dmxdm x c ===⎰⎰⎰⎰⎰⎰对于半圆片的质心,即2πθ=代入,有πππθθa a ax c 3422sin 32sin 32=⋅==2.2 解 建立如图2.2.1图所示的球坐标系题2.2.1图把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。
设均匀球体的密度为ρ。
则)(222z a dz y dv dm -===ρπρπρ由对称性可知,此球帽的质心一定在z 轴上。
代入质心计算公式,即)2()(432b a b a dmzdmz c ++-==⎰⎰2.3 解 建立如题2.3.1图所示的直角坐标,原来人W 与共同作一个斜抛运动。
yO题2.3.1图当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。
由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。
所以我们只要比较人把物抛出后水平距离的变化即可。
第一次运动:从最高点运动到落地,水平距离1st a v s ⋅=cos 01 ① gt v =αsin 0 ② ααcos sin 201gv s =③第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有)(cos )(0u v w Wv v w W x x -+=+α可知道u wW w a v v x ++=cos 0水平距离αααsin )(cos sin 0202uv gW w w gv t v s x ++==跳的距离增加了12s s s -=∆=αsin )(0uv gw W w +2.42.4 解 建立如图2.4.1图所示的水平坐标。
(完整版)理论力学课后答案第二章
解 册究対繼*晦矍*曲:/」平衛ii 殳宦廉,交廉”的钓痕力耳欝珊谊寸c 乃向如I 用 b 陌示.収啪杯爺Cy*血平胡那论鬥式⑴* (?)峡立・解紂佔2…已暂 F 兰5 am N .棗与撑祎自虫不计匚求 BC'ffK 内力及铁员 的反力。
解该系统曼力如图(訂, 三力匸交于艰0・苴封訥的力 三角膠如图冷人祥得 屉二5OOON 』仏 二疔000 W2-2在铰链A 、B 处有力F i , F 2作用,如图所示。
该机 F i 与F 2的关系。
2-3铰链4杆机构CABD 的CD 边固定, 构在图示位置平衡,不计杆自重。
求力 30T >◎60°检(b)B解⑴柠点掐坐WAS 力如囲 归所示"H3平祈刖论咼节点瓦腿标歴覺力如国 所小*血丫轉理论得2S -F^ ccs 30fr -f ; cosW )0 =0^=-^=—^— = 1.553^F 、: - 0.644已扣两伦备車P A ^P L •处于T册状态,杆電不比求I )若片=丹=巴 角e -?2)若 P A - 300 B = 0血=?ffi 八5两轮受力分别 如图示■对A 辂育SX = 0* F 刚 cEjedO* — F\g oos$ = 0SY 二 0a F sx tin60T - F 屈 sinfl - P A = tj对 B 轮育 SX ■ 0, Fn ooa? - F,\&8^3(/ = 0 IV = 0. F rw sinff 下 F 斶 anJO* - P n =(1) 四牛封程嬴立求AL 爾<3-30*(2) 把拧-0\F A - 300 M 代入方社,联立解筹P fl = 100 N2-5如图2-10所示,刚架上作用力F 。
试分别计算力F解 M A (F) = -FbcoseM s [F) - -Fb cos0 + FosinB二F(osiii0-bcos0)2-6已知梁AB 上作用1力偶,力偶矩为M ,梁长为I ,梁重不计。
理论力学第二章课后习题答案
理论力学第二章课后习题答案·12·理论力系第2章平面汇交力系与平面力偶系一、是非题(恰当的在括号内踢“√”、错误的踢“×”)1.力在两同向平行轴上投影一定相等,两平行相等的力在同一轴上的投影一定相等。
2.用解析法求平面呈报力系的合力时,若挑选出相同的直角坐标轴,其税金的合力一定相同。
(√)3.在平面汇交力系的平衡方程中,两个投影轴一定要互相垂直。
(×)4.在维持力偶矩大小、转为维持不变的条件下,可以将例如图2.18(a)右图d处为平面力偶m移至例如图2.18(b)所示e处,而不改变整个结构的受力状态。
(×)(a)图2.185.如图2.19所示四连杆机构在力偶m1m2的作用下系统能保持平衡。
6.例如图2.20右图皮带传动,若仅就是包角发生变化,而其他条件均维持维持不变时,并使拎轮旋转的力矩不能发生改变。
(√图2.19图2.201.平面呈报力系的均衡的充要条件就是利用它们可以解言的约束反力。
2.三个力汇交于一点,但不共面,这三个力3.例如图2.21右图,杆ab蔡国用数等,在五个力促进作用下处在平衡状态。
则促进作用于点b的四个力的合力fr=f,方向沿4.如图2.22所示结构中,力p对点o的矩为plsin。
5.平面呈报力系中作力多边形的矢量规则为:各分力的矢量沿着环绕着力多边形边界的某一方向首尾相接,而合力矢量沿力多边形半封闭边的方向,由第一个分力的起点指向最后一个分力的终第面汇交力系与平面力偶图2.21图2.226.在直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小但在非直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小不相等。
1.例如图2.23右图的各图为平面呈报力系所作的力多边形,下面观点恰当的就是(c)。
(a)图(a)和图(b)就是平衡力系则(b)图(b)和图(c)就是平衡力系则(c)图(a)和图(c)就是平衡力系则(d)图(c)和图(d)就是平衡力系则f2f2f1(a)(b)(c)2.关于某一个力、分力与投影下面说法正确的是(b)。
《理论力学》第二章-力系的简化试题及答案
第2章 力系的等效简化2-1 一钢结构节点,在沿OC 、OB 、OA 的方向受到三个力的作用,已知F 1=1kN ,F 2=2kN ,F 3=2kN 。
试求此力系的合力。
解答 此平面汇交力学简化为一合力,合力大小可由几何法,即力的多边形进行计算。
作力的多边形如图(a ),由图可得合力大小kN F R 1=,水平向右。
2-2 计算图中1F 、2F 、3F 三个力的合力。
已知1F =2kN ,2F =1kN ,3F =3kN 。
解答 用解析法计算此空间汇交力系的合力。
kN F F F F ix Rx 424.26.0126.0222221=´´+=´´+=S =kN F F F iy Ry 566.08.018.022222=´´=´´=S =kN F F F F iz Rz 707.313222223=´+=´+=S =kN F F F F Rz Ry Rx R 465.4222=++=合力方向的三个方向余弦值为830.0cos ,1267.0cos ,5428.0cos ======RRz R Ry R Rx F FF F F F g b a2-3已知 N F N F N F N F 24,1,32,624321====,F 5=7N 。
求五个力合成的结果(提示:不必开根号,可使计算简化)。
解答 用解析法计算此空间汇交力系的合力。
N F F F F F ix Rx 0.460cos 45cos 537550043=´´++-=S =N F F F F F iy Ry 0.460sin 45cos 547550042=´´+-=S =N F F F F F iz Rz 0.445sin 7625041=´++-=S =N F F F F Rz Ry Rx R 93.634222==++=合力方向角:4454),(),(),(¢°=Ð=Ð=Ðz F y F x F R R R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 平面汇交力系与平面力偶系
一、判断题
1. 两个力F 1、F 2在同一轴上的投影相等,则这两个力大小一定相等。
( )
2. 两个力F 1、F 2大小相等,则它们在同一轴上的投影大小相同。
( )
3. 力在某投影轴方向的分力总是与该力在该轴上的投影大小相同。
( )
4. 平面汇交力系的平衡方程中,选择的两个投影轴不一定要满足垂直关系。
( )
5.力偶各力在其作用平面上任意轴上投影的代数和都等于零。
( )
6. 因为构成力偶的两个力满足F =-F ′,所以力偶的合力等于零。
( )
7.在图7中圆轮在力偶矩为M 的力矩和力F 的共同作用下保持平衡,则说明一个力偶可由一适合的力平衡。
( )
二、填空题
1.平面汇交力系平衡的几何条件是 ;平衡的解析条件是 。
2.平面内两个力偶等效的条件是 ;力偶系的平衡条件是 。
3. 如图所示,AB 杆自重不计,在5个已知力作用下处于平衡,则作用于B 点的四个力的合力F R ′的大小F R ′
= ,方向沿 。
4. 作用于刚体上的四个力如图所示,则:
1)图a 中四个力的关系为 ,其矢量表达式为 。
2)图b 中四个力的关系为 ,其矢量表达式为 。
3)图c 中四个力的关系为 ,其矢量表达式为 。
三、选择题
1.一刚体受到两个作用在同一直线上、方向相反
的力F 1和F 2作用,它们之间的大小关系是F 1=2 F 2
,则
W
题7图
题10图
a b c 题11图
该两力的合力矢R 可表示为( )
A . R = F 1 - F 2 B. R = F 2 - F 1 C. R = F 1 + F 2 D. R = F 2
2. 某力F 在某轴上的投影的绝对值等于该力的大小,则该力在另一任意与之共面的轴上的投影为:( )
A. 一定等于零;
B. 不一定等于零;
C. 一定不等于零;
D. 仍等于该力的大小。
四、计算题
1. 图示四个平面共点力作用于物体的O 点。
已知F 1=F 2=200KN , F 3=300KN ,F 4=400KN 力1F 水平向右。
用解析法求它们的合力的大小和方向。
2. 简易起重装置如图所示,如A 、B 、C 三处均可简化为光滑铰链连接,各杆和滑轮的自重可以不计,忽略滑轮的大小;起吊重量2KN G 。
求直杆AB ,AC 所受力的大小,并
1
4
3. 梁AB 的支座如图所示,在梁的中点作用一力P=20KN ,力与梁的轴线成 45角。
如梁的重量略去不计,试求梁的支座反力。
4. 一力偶矩为M 的力偶作用在直角曲杆ADB 上。
如果这曲杆用不同方式支承如图a 和b ,不计杆重,求每种支承情况下支座A ,B 对杆的约束反力。
5. 图示多轴钻床在水平工作台上钻孔时,每个钻头的切削刀刃作用于工件的力在水平面内构成一力偶。
已知切削力力偶矩大小分别为m 10kN m m m 321⋅===,求工件受到的合力偶的力偶矩。
若工件在A ,B 两处用螺栓固定,mm L 200=,求螺栓所受的水平力。
6.在图示机构中,曲柄OA 上作用一力偶,其力偶矩为M ;另在滑块D 上作用水平力F 。
机构尺寸如图所示,各杆重量不计。
求当机构平衡时,力F 与力偶矩M 的关系。
A B C D O M θ l l F θ a。