函数图像变换及应用

合集下载

函数图像变换及应用

函数图像变换及应用

上节课知识检测一、基本内容1.利用描点法作函数图像其基本步骤是列表、描点、连线,具体为:2、会画基本函数图像(一次(两点想x 取0,,y 取0(或X 取1))、反比例(三点(x 取1/2、1,2)对称轴、对称中心)、二次(对称轴\顶点\开口)、幂(四点x 取0,1/2,1,2对称)、指数(三点x 取-1,0,1)、对数(三点Y-1,0,1)、对勾(两部分相等时X 值点)、三角(x 取五点;对称轴、对称中心))3.掌握画图像的基本方法:(1)描点法(2)图像变换法.平移、伸缩、翻折 (3)讨论分段法(1)平移变换:y =f (x ) ――――――――――→a >0,右移a 个单位a <0,左移|a |个单位 y =f (x -a ); y =f (x ) ―――――――――→b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b . (2)伸缩变换:y =f (x )10111ωωωω<<>−−−−−−−−→,伸原的倍,短原的长为来缩为来 y =f (ωx );y =f (x ) ――――――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A 倍 y =Af (x ). (3)对称变换:y =f (x )―――――――――→关于x 轴对称 y =-f (x ); y =f (x )――――――→关于y 轴对称 y =f (-x ); y =f (x )――――――――→关于原点对称 y =-f (-x ). (4)翻折变换:y =f (x )―――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图像翻折到左边去y =f (|x |);y =f (x )―――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.二、易错点1.在解决函数图像的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则,写出每一次的变换所得图像对应的解析式,这样才能避免出错.2.明确一个函数的图像关于y 轴对称与两个函数的图像关于y 轴对称的不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三、基本考点及例题 考点一 作图像画函数图像的一般方法1、直接法.(1)描点法 (2)经验法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;2、图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3、分段函数:分别作出每段区间的图像,注意:分段函数是一种特殊的函数,自变量在不同范围内取值时,对应的解析式不同,但无论分段函数共有几段,它始终是一个函数,而不是多个函数。

高考数学中的函数图像变换及其应用

高考数学中的函数图像变换及其应用

高考数学中的函数图像变换及其应用高考数学作为广大学生面临的一大挑战,其中数学分值占比不容忽视,其中函数图像变换的相关知识成为了考生备考重点之一。

本文将介绍这些知识,并探讨其相关应用。

一、函数图像的平移平移是函数图像变换中最基本的一种,它是通过改变函数图像与坐标轴的相对位置来实现的。

其中,平移的方向与距离是决定平移效果的两个重要因素。

对于一般的函数y=f(x),将它的图像向右平移a个单位长度的方法如下:设新函数为y=f(x-a),则各个点的实际位置为(x+a,y),根据平移的原理,需要将这些点在坐标系中向左平移a个单位长度即可实现。

类似地,将函数图像向左平移a个单位长度的方法就是y=f(x+a),而将其上移或下移b个单位长度的方法分别为y=f(x)+b 和y=f(x)-b。

函数图像的平移主要应用于研究函数图像的周期性,以及改变其输出值区间、控制其渐进线等方面。

二、函数图像的伸缩伸缩也是函数图像变换中常用的一种方法,它是通过改变函数图像沿x、y轴的长度比例来实现的。

对于一般的函数y=f(x),将其图像沿x轴方向压缩k倍的方法如下:设新函数为y=f(kx),则每个点的实际位置为(x/k,y),因此只需将这些点在坐标系中沿x轴方向伸缩k倍即可。

类似地,函数图像沿y轴方向压缩k倍的方法为y=kf(x),而沿x、y轴方向伸缩k倍的方法分别为y=f(x/k)和y=kf(kx)。

函数图像的伸缩主要应用于研究函数图像的单调性、极值、导数等性质,以及折线图、曲线图的绘制等方面。

三、函数图像的旋转旋转是函数图像变换中相对复杂的一种,它是通过改变函数图像与坐标轴的相对位置和形状来实现的。

对于一般的函数y=f(x),将其图像沿原点逆时针旋转α角的方法如下:设新函数为y=f(xcosα+ysinα),则原函数中每个点的坐标(x,y)将变为(xcosα+ysinα,-xsinα+ycosα),按照旋转的原理,需要将这些点在坐标系中沿逆时针方向旋转α角度即可实现。

函数的图像变换及应用

函数的图像变换及应用

函数的图像变换及应用一、 图像变换 1.平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;(2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到.2.对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1()y f x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到.3.翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;(2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. 4.伸缩变换:(1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;(2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到.考点一 图像画法 1、 函数112-+=x x y 图象的对称中心为 2、 若函数)(x f y =的图像过点(1,1),则)4(x f -的图像一定经过 3、 若函数)2(log 2+=x y 的图像与)(x f y =的图像关于1=x 对称,求出)(x f4、函数y=ax 2+ bx 与y= ||log b ax (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是5、 把曲线cos 210y x y +-=沿x 轴方向向右平移2π个单位,再沿y 轴方向向下平移一个单位,则得到的曲线方程是6、 函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是7、 函数x xx xe e y e e--+=-的图像大致为( ).8、函数y =lncos x (-2π<x <)2π的图象是9、已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是ABCDAD二、图像在方程中的应用1、 关于x 的方程243x x a x -+-= ,恰有三个不等实根,则a 的值是 2、 关于x 的方程243x x mx -+=,有四个不等实根,则m 的取值范围是 3、 已知函数()f x 对一切实数x 满足(1)(1)f x f x +=-,若方程()0f x =有且仅有三个实根,则这三个实根之和为4、 已知函数()f x 满足(2)()f x f x += ,且[]1,1x ∈-时,()f x x =,则方程4()log f x x =的根的个数是 三、 图像在不等式中的应用1、 不等式2log 0a x x -<在1(0,)2x ∈时恒成立,则实数a 的取值范围是 2、 已知0a >且1a ≠,2()xf x x a =-,当(1,1)x ∈-时,均有1()2f x <,则实数a 的取值范围是练习题:1、 实数m 在什么范围,方程221x x m --=有四个互不相同的实数根2、 若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( ).A .[-1,1+22]B .[1-22,1+22]C .[1-22,3]D .[1-2,3]3、 设x 1,x 2,x 3分别是方程x +2x =1,x +2x =2,x +3x =2的根,则x 1,x 2,x 3的大小顺序为________4、已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=。

三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。

②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。

y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。

③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。

函数的图像和变换

函数的图像和变换

函数的图像和变换函数是数学中非常重要的概念,它描述了一种映射关系,将一个集合的元素映射到另一个集合的元素上。

在数学函数的图像和变换中,我们将探讨不同类型的函数以及它们在平面直角坐标系中的图像和变换。

一、常见的函数类型1. 线性函数:线性函数是最简单的函数类型,它的表达式可以写为y=ax+b,其中a和b为常数。

线性函数的图像是一条直线,斜率a决定了直线的斜率方向和倾斜程度,常数b决定了直线与y 轴的交点。

2. 幂函数:幂函数是由形如y=x^n的表达式定义的函数,其中n为常数。

当n为正数时,幂函数的图像呈现递增或递减的曲线,曲线的陡峭程度取决于n的大小。

当n为负数时,曲线则在x轴正方向和y轴正方向之间交替。

3. 指数函数:指数函数由形如y=a^x的表达式定义,其中a为常数且大于0且不等于1。

指数函数的图像是一条通过点(0,1)的递增曲线,沿着x轴正方向迅速上升。

4. 对数函数:对数函数是指满足y=log_a(x)的函数,其中a为正实数且不等于1。

对数函数的图像是一条递增曲线,曲线的陡峭程度由底数a的大小决定。

5. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等。

这些函数的图像是关于坐标轴对称的波动曲线。

二、函数的图像变换函数的图像可以通过一系列变换实现形状、位置或大小的改变。

以下是常见的函数图像变换:1. 平移:通过在函数表达式中加上常数c,可以使得函数图像沿着x轴或y轴平移。

例如,对于线性函数y=x+1,如果我们在函数表达式中加上常数1,则函数图像整体上移1个单位。

2. 反转:通过对函数表达式中的x或y取相反数,可以使函数图像在x轴或y轴方向上发生反转。

例如,对于线性函数y=x,如果我们将函数表达式中的x替换为-x,则函数图像将在y轴上对称。

3. 缩放:通过在函数表达式中乘以常数d,可以实现函数图像的缩放。

如果d大于1,则函数图像会在坐标轴方向上拉伸;如果d介于0和1之间,则会在坐标轴方向上收缩。

高三数学专题教案函数图像的变换及应用_

高三数学专题教案函数图像的变换及应用_

芯衣州星海市涌泉学校2021届高三数学专题教案:函数图像的变换及应用一.知识梳理复习函数图像的变换:(1)、奇偶函数图象的对称性;(2)、假设f(x)满足f(a+x)=f(b -x)那么f(x)的图象以2a b x+=为对称轴;特例:假设f(a+x)=f(a -x)那么f(x)的图象关于x=a 对称。

(3)、假设f(x)满足f(a+x)=-f(b -x)那么f(x)的图象以(,0)2a b +为对称中心;特例:假设f(a+x)=-f(a -x)那么f(x)的图象以点〔a,0〕为对称中心。

(4)、假设f(x)满足f(a+x)+f(b-x)=c 那么f(x)的图象关于点(,)22a b c +中心对称。

二.例题讲解例1、求函数y=f 〔1-x 〕与函数y=f 〔x-1〕的图象对称轴方程?〔1〕.对于定义在R 上的函数)(x f ,有下述命题: ①假设)(x f 是奇函数,那么)1(-x f 的图像关于点)0,1(A 对称;②假设对R x ∈,恒有)1()1(-=+x f x f ,那么)(x f 的图像关于直线1=x 对称; ③假设函数)1(-x f 的图像关于直线1=x 对称,那么)(x f 为偶函数; ④函数)1(x f +与函数)1(x f -的图像关于直线1=x 对称.其中正确命题的序号为______________________.例2、设f(x)=x+1,求f(x+1)关于直线x=2对称的曲线的解析式。

例3、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。

例3、设定义域为R 的函数⎩⎨⎧=≠-=1,01,||1|lg |)(x x x x f ,那么关于x 的方程0)()(2=++c x bf x f有7个不同实数解的充要条件是〔〕(A)0<b 且0>c(B)0>b 且0<c (C)0<b 且0=c (D)0≥b 且0=c 例4.函数)(x f 的图像与函数21++=x x y 的图像关于点)1,0(A 对称. 〔1〕求)(x f 的解析式;〔2〕假设xa x f x g +=)()(且)(x g 在区间]2,0(上为减函数,求正数a 的取值范围. 例5、函数4(1)|1|()2(1)x x f x x ⎧≠⎪-=⎨⎪=⎩〔1〕作出函数()y f x =的大致图像. 〔2〕〔考虑题〕假设关于x 的方程2()()0f x bf x c ++=有三个不同的实数解123x x x 、、,求222123x x x ++的值.三、课后习题:1、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。

函数图象的变换

函数图象的变换
2.掌握函数作图的两种基本方法:(1) 描点法;(2)图象变换法,包括平移变 换、对称变换、伸缩变换.
3.合理处理识图题与用图题
(1)识图
对于给定函数的图象,要能从图象的 左右、上下分布范围、变化趋势、对 称性等方面研究函数的定义域、值域、 单调性、奇偶性、周期性,注意图象 与函数解析式中参数的关系.
从图象的左右分布,分析函数的定义域;从 图象的上下分布,分析函数的值域;从图象 的最高点、最低点,分析函数的最值;从图 象的对称性,分析函数的奇偶性;从图象的 走向趋势,分析函数的单调性、周期性等.
2.已知x1是方程xlg x=2008的根,x2是方程 x10x=2008的根,则x1x2等于( )
正确的一组是( C )
A. (4) (1) (2) (3) C. (1) (4) (2) (3)
B. (1) (4) (3) (2) D. (3) (4) (2) (1)
例2 设a<b,函数 y=(x-a)2(x-b)的图象可能是
( C)
解析 当x>b时,y>0,x<b时,y≤0.故选C.
(1)函数y=
8.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,
f(x)=x,且在[-1,3]内,关于x的方程
f(x)=kx+k+1
( 1 ,0)
3 (k∈R,k≠-1)有四个根,则k的取值范围是
.
三、解答题 10.已知g(x)=x(2-x)(0≤x<1),g(1)=0,若函数
y=f(x)(x∈R)是以2为周期的奇函数,且在[0,1] 上f(x)=g(x),作出函数y=f(x)(-2≤x≤2)的图象 并 求其表达式. 解 ①x∈[0,1)时,f(x)=g(x)=x(2-x); ②∵f(x)为奇函数,当x=1时, f(1)=g(1)=0,∴f(-1)=0=f(1), ③若x∈(-1,0],则-x∈[0,1), ∴g(-x)=-x(2+x), 又∵f(-x)=g(-x)且f(x)为奇函数, ∴f(-x)=-f(x)=-x(2+x),

函数图像的变换规律

函数图像的变换规律

函数图像的变换规律函数图像的变换是数学中的重要概念,它描述了函数在坐标平面上的图像如何发生移动、伸缩和翻转等变化。

这些变换规律不仅在数学中有广泛应用,也在物理、经济等其他领域有着重要的意义。

本文将从平移、伸缩和翻转三个方面介绍函数图像的变换规律,并通过实例加以说明。

一、平移变换平移变换是指函数图像在坐标平面上沿着横轴或纵轴方向移动的操作。

对于一般的函数y=f(x),如果将x坐标增加或减少一个常数a,那么对应的函数图像将向左平移a个单位;类似地,如果将y坐标增加或减少一个常数b,函数图像将向上或向下平移b个单位。

例如,考虑函数y=x^2的图像。

如果将x坐标增加2个单位,那么函数图像将向左平移2个单位;如果将y坐标减少3个单位,函数图像将向下平移3个单位。

这种平移变换可以用以下公式描述:平移后的函数图像:y=f(x-a)或y-a=f(x)二、伸缩变换伸缩变换是指函数图像在坐标平面上沿着横轴或纵轴方向发生扩张或压缩的操作。

对于一般的函数y=f(x),如果将x坐标乘以一个常数m,那么对应的函数图像将在横轴方向上缩放为原来的1/m倍;类似地,如果将y坐标乘以一个常数n,函数图像将在纵轴方向上缩放为原来的1/n倍。

例如,考虑函数y=sin(x)的图像。

如果将x坐标乘以2,那么函数图像在横轴方向上缩放为原来的1/2倍;如果将y坐标乘以3,函数图像在纵轴方向上扩张为原来的3倍。

这种伸缩变换可以用以下公式描述:伸缩后的函数图像:y=f(mx)或y=1/n*f(x)三、翻转变换翻转变换是指函数图像在坐标平面上关于某一直线对称的操作。

对于一般的函数y=f(x),如果将x关于直线x=a进行对称,那么对应的函数图像将在直线x=a处翻转;类似地,如果将y关于直线y=b进行对称,函数图像将在直线y=b处翻转。

例如,考虑函数y=1/x的图像。

如果将x关于直线x=1进行对称,那么函数图像将在直线x=1处翻转;如果将y关于直线y=2进行对称,函数图像将在直线y=2处翻转。

函数的图像及其变换

函数的图像及其变换

的图像可由y=f(x)的图像向上平移b个单位 而得到.总之, 对于平移变换,记忆口诀为:左加右减,上加下减.
(2)对称变换 y=f(-x)与y=f(x)的图像关于 y轴 y=-f(x)与y=f(x)的图像关于 x轴 对称; 对称; 对称;
y=-f(-x)与y=f(x)的图像关于 原点
y=|f(x)|的图像可将y=f(x)的图像在x轴下方的部分
AD,当点C落在X轴上时,h′=CF,显然AD=CF,即 当“中心点”M位于最高处时,“最高点”与X轴的距离 相等,选项B不符,故选A.
【答案】 A
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
► 探究点3 判断、证明函数的单调性 题型三:函数图象的应用及对称问题 3. 已知f(x)=| x2 -4x+3|. (1)求f(x)的单调区间; (2)求m的取值范围, 使方程f(x)=mx有4个不同实根.
方法二 y=f(x-1)与y=f(1-x)的图像分别由y=f(x) 与y=f(-x)的图像同时向右平移一个单位而得,又y=f(x) 与y=f(-x)的图像关于y轴对称. ∴y=f(x-1)与y=f(1-x)的图像关于直线x=1对 称.
【答案】 (1)g(x)=-ln(x-1) (2)D
变式
(1)已知函数 f(2x+1)是奇函数, 则函数 y=f(2x) )
【解析】 如图所示,不妨设正三角形ABC的边长 为a,记“中心点”M与X轴的距离为h,记“最高点”与 X轴的距离为h′.由图可知,当三段弧的中点落在X轴上 时,h最小,此时h=MD;当点A、B、C落在X轴上时, h最大,h=MC,故“中心点”M的位置先低后高,呈周 期性变化,排除选项C与D.当点D落在X轴上时,h′=

函数图像的变换

函数图像的变换

函数图像的变换函数图像的变换1、平移变换函数y = f(x)的图像向右平移a个单位得到函数y = f(x - a)的图像;向上平移b个单位得到函数y =f(x)+ b 的图像 ;左平移a个单位得到函数y = f(x + a)的图像;向下平移b个单位得到函数y =f(x)- b 的图像(a ,b&gt;0)。

2、伸缩变换函数 y = f(x)的图像上的点保持横坐标不变纵坐标变为原来的k倍(01时,伸)得到函数 y = k f(x)的图像;函数 y = f(x)的图像上的点保持纵坐标不变横坐标变为原来的1/k倍(01时,缩)得到函数y = f(k x)的图像(k&gt;0,且 k &ne;1)。

3、对称变换(1)函数y = f(x)的图象关于y轴对称的图像为 y =f(-x);关于x轴对称的图像为y =-f(x);关于原点对称的图像为y =-f(-x)。

(2)函数y = f(x)的图象关于x=a对称的图像为y =f(2a-x);关于y=b对称的图像为y =2b-f(x);关于点(a,b)中心对称的图像为y =2b-f(2a-x)。

(3)绝对值问题①函数 y =f(x)x轴及其上方的图像保持不变,把下f(bx)=f(2a -bx)成立,则函数 f(x)的图像关于x=a对称;(b&ne;0)(3)若函数 f(x)满足:对任意的实数x,都有f(a + x)=-f(a -x)成立,则函数 f(x)的图像关于点(a,0)对称;(4)若函数 f(x)满足:对任意的实数x,都有f(bx)=-f(2a -bx)成立,则函数 f(x)的图像关于(a,0)对称;(b&ne;0)(5)若函数 f(x)满足:对任意的实数x,都有f(a + x)=2b -f(a -x)成立,则函数 f(x)的图像关于点(a,b)对称;(6)若函数 f(x)满足:对任意的实数x,都有f(x)=2b -f(2a -x)成立,则函数 f(x)的图像关于(a,b)对称。

函数图像的变换技巧例题和知识点总结

函数图像的变换技巧例题和知识点总结

函数图像的变换技巧例题和知识点总结函数图像是研究函数性质的重要工具,通过对函数图像进行变换,可以更直观地理解函数的特点和规律。

下面我们将介绍一些常见的函数图像变换技巧,并通过例题来加深理解。

一、平移变换1、水平平移对于函数\(y = f(x)\),将其图像向左平移\(h\)个单位,得到\(y = f(x + h)\);向右平移\(h\)个单位,得到\(y = f(x h)\)。

例如,函数\(y = x^2\)的图像向左平移\(2\)个单位,得到\(y=(x + 2)^2\)的图像;向右平移\(3\)个单位,得到\(y =(x 3)^2\)的图像。

例题:将函数\(y = 2x + 1\)的图像向左平移\(3\)个单位,求平移后的函数表达式。

解:将\(x\)替换为\(x + 3\),得到平移后的函数为\(y = 2(x+ 3) + 1 = 2x + 7\)2、竖直平移函数\(y = f(x)\)的图像向上平移\(k\)个单位,得到\(y = f(x) + k\);向下平移\(k\)个单位,得到\(y = f(x) k\)。

例如,函数\(y =\sin x\)的图像向上平移\(1\)个单位,得到\(y =\sin x + 1\)的图像;向下平移\(2\)个单位,得到\(y =\sin x 2\)的图像。

例题:将函数\(y =\log_2 x\)的图像向下平移\(2\)个单位,求平移后的函数表达式。

解:平移后的函数为\(y =\log_2 x 2\)二、伸缩变换1、水平伸缩对于函数\(y = f(x)\),将其图像上所有点的横坐标伸长(或缩短)到原来的\(\omega\)倍(\(\omega >0\)),纵坐标不变,得到\(y = f(\frac{1}{\omega}x)\)。

当\(\omega > 1\)时,图像沿\(x\)轴缩短;当\(0 <\omega < 1\)时,图像沿\(x\)轴伸长。

例如,函数\(y =\sin x\)的图像横坐标缩短到原来的\(\frac{1}{2}\),得到\(y =\sin 2x\)的图像;横坐标伸长到原来的\(2\)倍,得到\(y =\sin \frac{1}{2}x\)的图像。

函数图像的变换及其应用.

函数图像的变换及其应用.

函数图像的变换及其应用执教:嘉定区教师进修学院 张桂明教学目标:1.熟练掌握常见函数图像的画法,记住它们的大致形状和准确位置. 2.掌握函数图像的几种类型的变换,能用图像变换法解决一些有关的函数问题.3.通过对函数图像变换与应用问题的探究及解决,提高分析问题和解决问题的能力,体会数形结合的思想方法在解决函数与方程问题中的重要作用并能初步加以应用.教学重点:1.常见函数的图像及其画法.2.函数图像的变换及变换后的对称性、单调性的变化. 教学难点:应用数形结合的思想方法对问题进行分析思考,寻求解题策略. 教学过程: 一、引入课题问题:设定义域为R 的函数⎩⎨⎧=≠-=1,01,||1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是( )(A) 0<b 且0>c (B) 0>b 且0<c (C) 0<b 且0=c (D) 0≥b 且0=c二、知识回顾1.函数图像的作法,你有哪些常用的方法?2.请说出常见函数图像的形状、位置,作出它们的草图.3.你会用哪些函数图像的变换方法来作函数的图像?在这些变换中,如果原来的函数图像具有某种对称性,那么变换后它们的对称性有什么变化?函数的单调性在变换后又有什么变化?4.函数)(x f 的图像关于直线a x =成轴对称图形的充要条件是什么?函数)(x f 的图像关于点),(b a 成中心对称图形的充要条件双是什么?三、问题探究1.若函数3)2(2+++=x a x y ,],[b a x ∈的图像关于直线1=x 对称,则=b ______________.2.已知函数|12|)(-=x x f 的图像与直线a y =有且仅有一个公共点,则实数a 的取值范围是___________________.3.已知函数222)(+=x x x f ,R x ∈.(1)求证:函数)(x f 的图像关于点)21,21(A 对称;(2)不使用计算器,试求)109()108()102()101(f f f f ++++Λ的值.4.讨论方程a x x =+-|3||4|2的实数解的情况.四、方法小结五、练习与作业学生练习与作业1.怎样变换函数x y =的图像,得到函数13+-=x y 的图像,并画出此函数的图像。

高中数学讲义:图像变换在三角函数中的应用

高中数学讲义:图像变换在三角函数中的应用

图像变换在三⻆函数中的应⽤在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x w j =+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。

要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。

一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数)1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位(2)()f x a -:()f x 的图像向右平移a 个单位(3)()f x b +:()f x 的图像向上平移b 个单位(4)()f x b -:()f x 的图像向下平移b 个单位2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩)(2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩)3、函数图象的翻折变换:(1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称)(二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下:①若变换发生在“括号”内部,则属于横坐标的变换②若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =-+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现:(1)加“常数”Û平移变换(2)添“系数”Û放缩变换(3)加“绝对值”Û翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:①横坐标的变换与纵坐标的变换互不影响,无先后要求②横坐标的多次变换中,每次变换只有x 发生相应变化例如:()()21y f x y f x =®=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x ®+。

初中数学函数图像的变换规律与应用实例解析

初中数学函数图像的变换规律与应用实例解析

初中数学函数图像的变换规律与应用实例解析函数图像的变换规律是数学中的重要概念,它描述了通过何种方式对函数的图像进行平移、伸缩和翻转等操作。

这些变换规律不仅有助于我们理解数学中的函数性质,还可以应用于解决实际问题。

本文将详细讨论数学函数图像的变换规律,并通过应用实例进行解析。

首先,我们来讨论函数图像的平移变换规律。

平移是指将函数图像沿水平或垂直方向移动一定距离。

对于一般函数y=f(x),进行平移变换可以得到新函数y=f(x-a)+b。

其中a表示水平平移的距离,当a>0时向右平移,当a<0时向左平移;b表示垂直平移的距离,当b>0时向上平移,当b<0时向下平移。

例如,对于函数y=x^2,我们可以进行水平平移和垂直平移。

如果我们将函数向右平移2个单位,那么新函数可以表示为y=(x-2)^2。

同样地,如果我们将函数向上平移3个单位,那么新函数可以表示为y=x^2+3。

这些平移变换可以帮助我们研究函数的移动特性,并解决与平移相关的实际问题。

其次,我们探讨函数图像的伸缩变换规律。

伸缩是指通过乘以或除以一个常数来改变函数图像的高度或宽度。

对于一般函数y=f(x),进行伸缩变换可以得到新函数y=a*f(bx)。

其中a表示垂直伸缩的倍数,当a>1时函数图像变高,当0<a<1时函数图像变矮;b表示水平伸缩的倍数,当b>1时函数图像变宽,当0<b<1时函数图像变窄。

例如,对于函数y=x^2,我们可以进行垂直伸缩和水平伸缩。

如果我们垂直伸缩这个函数的高度为原来的2倍,那么新函数可以表示为y=2x^2。

同样地,如果我们水平伸缩这个函数的宽度为原来的1/2倍,那么新函数可以表示为y=(1/2)x^2。

这些伸缩变换使我们能够研究函数图像的变化趋势,并解决与伸缩相关的实际问题。

此外,我们还需要了解函数图像的翻转变换规律。

翻转是指通过改变函数的正负号来改变图像的位置。

对于一般函数y=f(x),进行翻转变换可以得到新函数y=-f(x)。

函数图像的变换及应用

函数图像的变换及应用

函数图像的变换及应用函数图像的变换指的是通过对函数图像进行一系列的操作,使得原函数图像在坐标系中发生平移、伸缩、翻折等变化,从而得到新的函数图像。

这些变换可以通过改变函数的参数或者利用一些特定的变换公式来实现。

函数图像的变换有很多种,下面列举几种常见的变换及其应用:1. 平移变换:平移变换是将函数图像在坐标系上沿着横轴或者纵轴方向进行移动。

对于函数y=f(x),平移变换可以表示为y=f(x-a)+b,其中a表示横向平移的距离,b表示纵向平移的距离。

平移变换的应用场景有很多,例如对于温度变化的曲线图,可以通过平移变换来调整图像在时间轴上的位置,实现对曲线的观察和比较。

2. 伸缩变换:伸缩变换是改变函数图像的尺度,使得函数图像的宽度或者高度发生变化。

对于函数y=f(x),伸缩变换可以表示为y=a*f(bx),其中a控制纵向的伸缩比例,b控制横向的伸缩比例。

伸缩变换可以用来调整图像的大小,使得函数曲线更加清晰或者适应特定的分析需求。

3. 翻折变换:翻折变换是将函数图像沿着坐标轴进行翻转。

对于函数y=f(x),翻折变换可以表示为y=-f(x)(沿着x轴翻折)或者y=f(-x)(沿着y轴翻折)。

翻折变换可以用来分析函数的对称性质,例如判断函数是否关于x轴或者y轴对称。

4. 拉伸变换:拉伸变换是通过改变函数图像的形状来实现对函数的变换。

拉伸变换可以是横向拉伸或者纵向拉伸。

对于函数y=f(x),横向拉伸可以表示为y=f(cx),纵向拉伸可以表示为y=c*f(x),其中c是大于1的常数。

拉伸变换可以用来调整图像的形状,使得函数曲线更加符合实际情况或者更容易进行分析。

5. 压缩变换:压缩变换与拉伸变换相反,是通过改变函数图像的形状来实现对函数的变换。

压缩变换可以是横向压缩或者纵向压缩。

对于函数y=f(x),横向压缩可以表示为y=f(x/c),纵向压缩可以表示为y=(1/c)*f(x),其中c是大于1的常数。

压缩变换可以用来调整图像的形状,使得函数曲线更加符合实际情况或者更容易进行分析。

函数图象的变换PPT

函数图象的变换PPT
总结词
水平平移是指函数图像在水平方向上移动一定的距离。
详细描述
水平平移不改变函数的值,只是改变了图像的位置。对于函数y=f(x),若图像向 右平移a个单位,则新的函数为y=f(x-a);若图像向左平移a个单位,则新的函 数为y=f(x+a)。
垂直平移
总结词
垂直平移是指函数图像在垂直方向上移动一定的距离。
函数图象的变换
• 函数图象变换概述 • 平移变换 • 伸缩变换 • 翻折变换 • 旋转变换 • 应用实例
01
函数图象变换概述
函数图象变换的定义
01
函数图象变换是指通过平移、伸 缩、翻转等几何变换操作,改变 函数图象的位置、形状和大小。
02
这些变换操作可以通过代数表达 式或矩阵变换来实现,使得函数 图象在坐标系中按照特定的规则 进行移动、旋转和缩放。
详细描述
当函数图像在y轴方向上伸缩时,其形状和大小会发生变化,但x轴上的比例保持不变。例如,将函数y=f(x)的图 像在y轴方向上放大2倍,得到新的函数y=2f(x)。
斜向伸缩
要点一
总结词
斜向伸缩是指同时沿x轴和y轴方向对函数图像进行放大或 缩小。
要点二
详细描述
当函数图像在x轴和y轴方向上同时伸缩时,其形状和大小 会发生变化,x轴和y轴上的比例都会改变。例如,将函数 y=f(x)的图像在x轴方向上放大2倍,在y轴方向上放大3倍 ,得到新的函数y=3f(2x)。
逆时针旋转
总结词
当函数图像按照逆时针方向旋转时,其形状和大小也不会发生变化,同样只是位置发生 了移动。
详细描述
与顺时针旋转相反,当函数图像按照逆时针方向旋转一定的角度时,每个点的坐标同样 会发生变化,但方向是远离原点。同样地,这种变化也可以用三角函数的性质来描述。

函数图像的变换课件

函数图像的变换课件

向右平移
总结词
图像沿x轴正方向移动
数学表达式
y=f(x-a)
详细描述
对于函数y=f(x),若图像向右平移a个单位,则新的函数 解析式为y=f(x-a)。
举例
函数y=cos(x)的图像向右平移π/2个单位后,得到新的函 数y=cos(x-π/2),其图像与原图像相比沿x轴正方向移动 了π/2个单位。
双向伸缩
总结词
同时改变x轴和y轴的长度。
详细描述
当函数图像在x轴和y轴方向上都发生伸缩时,x轴和y轴的长度都会发生变化。这 种变换可以通过将函数中的x和y都替换为其倍数来实现,例如将f(2x)/3替换为 f(x)会使x轴压缩为原来的一半,同时y轴拉伸为原来的三倍。
04
函数图像的旋转变换
逆时针旋转
关于y轴对称
总结词
函数图像关于y轴对称时,图像在y轴两侧对称分布,x值 不变,y值相反。
详细描述
当一个函数图像关于y轴对称时,图像在y轴两侧呈现出 对称分布的特点。这意味着对于任意一个点$(x, y)$在图 像上,关于y轴对称的点$(x, -y)$也在图像上。这种对称 变换不会改变x值,只是将y值取反。例如,函数$f(x) = x^3$的图像关于y轴对称,因为$f(-y) = (-y)^3 = -y^3 = -f(y)$。
任意角度旋转
总结词
任意角度旋转是指将函数图像按照任意角度进行旋转。
详细描述
任意角度旋转函数图像是指将图像上的每个点都按照任意指定的角度进行旋转。这种旋转可以通过参数方程或极 坐标系来实现,其中参数方程为$x = x cos theta - y sin theta$,$y = x sin theta + y cos theta$,极坐标系 下的表示为$x = r cos theta$,$y = r sin theta$。

高中数学中的函数图像与变换在实际问题中的应用案例

高中数学中的函数图像与变换在实际问题中的应用案例

高中数学中的函数图像与变换在实际问题中的应用案例引言:函数图像与变换是高中数学中的重要内容,它不仅是数学学科的基础,也是应用数学的重要工具。

本文将通过一些实际问题的案例,探讨函数图像与变换在实际问题中的应用。

一、电子商务中的函数图像与变换如今,电子商务已经成为人们生活中不可或缺的一部分。

在电子商务中,函数图像与变换被广泛应用于市场分析和销售策略的制定中。

举例来说,某电商平台希望通过优惠券的发放来提高销售额。

为了确定优惠券的金额,平台需要分析商品价格与销售量之间的关系。

这就需要建立一个函数模型来描述二者之间的关系。

通过观察和分析历史数据,可以得到一个函数图像,进而进行变换和拟合,得到一个能够准确描述二者关系的函数模型。

基于该模型,电商平台可以制定合理的优惠券策略,从而提高销售额。

二、交通规划中的函数图像与变换交通规划是城市发展的重要组成部分,而函数图像与变换在交通规划中的应用也是不可忽视的。

以地铁规划为例,地铁线路的设计需要考虑人流量和交通拥堵情况。

通过收集和分析人流量和交通数据,可以建立一个函数模型来描述人流量与交通拥堵之间的关系。

通过函数图像的观察和变换,可以找到最佳的地铁线路设计方案,以最大程度地缓解交通拥堵,提高出行效率。

三、金融投资中的函数图像与变换金融投资是现代社会中的重要活动,而函数图像与变换在金融投资中的应用也是十分广泛的。

举例来说,某投资公司希望通过建立一个函数模型来预测股票价格的变化趋势,以指导投资决策。

通过收集和分析历史股票价格数据,可以建立一个函数模型来描述股票价格与时间的关系。

通过观察和变换函数图像,可以预测未来股票价格的走势,从而制定相应的投资策略。

四、医学研究中的函数图像与变换医学研究是保障人类健康的重要领域,而函数图像与变换在医学研究中的应用也是不可或缺的。

举例来说,医学研究人员希望通过建立一个函数模型来描述某种疾病的发展趋势,以便提前进行预防和治疗。

通过收集和分析大量的病例数据,可以建立一个函数模型来描述疾病的发展与时间的关系。

24 函数的图像变换与应用

24 函数的图像变换与应用

第24讲 函数)s i n (ϕω+=x A y 的图象与应用【考纲要求】1. 理解表达式)sin(ϕω+=x A y ,理解ϕωϕω+x A 、、、含义。

2、会利用平移、伸缩变换方法作函数)sin(ϕω+=x A y 的图象【知识梳理】1、sin()y A x ωϕ=+ [))0,0,,0(>>+∞∈ωA x 表示一个振动量时,振幅为___________,周期为__________,频率为__________,相位为__________,初相为____________.2、图象的变换相位变换:ϕ对R x x y ∈+=),sin(ϕ的图象的影响。

函数)sin ϕ+=x y (,x R ∈(其中0≠ϕ)的图象,可以看作是正弦曲线y=sinx 上所有的点____(当ϕ>0时)或_____(当ϕ<0时)平行移动 个单位长度而得到。

周期变换:)0>ωω(对)sin(ϕω+=x y 的图象的影响。

函数R x x y ∈+=),sin(ϕω(其中ω>0且1ω≠)的图象,可以看作是把)sin(ϕ+=x y 上所有点的横坐标_____(当ω>1时)或_____(当0<ω<1时)到原来的____ 倍(纵坐标不变)而得到。

振幅变换:A (0>A )对)sin(ϕω+=x A y 的图象的影响。

函数)sin(ϕω+=x A y R x ∈的图象,可以看作是把)sin(ϕω+=x y 上所有点的纵坐标_____(当A>1)或______(当0<A<1)到原来的____倍(横坐标不变)而得到.【考点突破】1、若函数y= )32sin(3π-x 表示一个振动量:(1)求这个振动的振幅、周期、初相;(2)说明它与的图之间的关系sin y x =2、要得到函数)34sin(π-=x y 的图象,只需将函数x y 4sin =的图象 ( ) A 向左平移12π个单位 B 向右平移12π个单位 C.向左平移3π个单位 D 向右平移3π个单位 3、如图,某地一天从6~14时的温度变化曲线近似满足函数y =Asin(ωx +ϕ)+b (1) 求这一天6~14时的最大温差;(2) 写出这段曲线的函数解析式.【当堂检测】1、为了得到函数)3sin(π+=x y 的图象,只需把函数x y sin =的图象上所有的点( ) A.向左平移3π个单位 B.向右平移3π个单位 C.向上平移3π个单位 D.向下平移3π个单位 2、为了得到函数x x y 3cos 3sin +=的图象,可将函数x y 3cos 2=的图象( )A.向右平移12π个单位 B.向右平移4π个单位 C.向左平移12π个单位 D.向左平移4π个单位 12sin()36y x π=-3.函数说明这个函数的图象可由正弦曲线经过怎样的变换得到的.4、函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的解析式___________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上节课知识检测一、基本内容1.利用描点法作函数图像其基本步骤是列表、描点、连线,具体为:2、会画基本函数图像(一次(两点想x 取0,,y 取0(或X 取1))、反比例(三点(x 取1/2、1,2)对称轴、对称中心)、二次(对称轴\顶点\开口)、幂(四点x 取0,1/2,1,2对称)、指数(三点x 取-1,0,1)、对数(三点Y-1,0,1)、对勾(两部分相等时X 值点)、三角(x 取五点;对称轴、对称中心))3.掌握画图像的基本方法:(1)描点法(2)图像变换法.平移、伸缩、翻折 (3)讨论分段法(1)平移变换:y =f (x ) ――――――――――→a >0,右移a 个单位a <0,左移|a |个单位 y =f (x -a ); y =f (x ) ―――――――――→b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b . (2)伸缩变换:y =f (x )10111ωωωω<<>−−−−−−−−→,伸原的倍,短原的长为来缩为来 y =f (ωx );y =f (x ) ――――――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A 倍 y =Af (x ). (3)对称变换:y =f (x )―――――――――→关于x 轴对称 y =-f (x ); y =f (x )――――――→关于y 轴对称 y =f (-x ); y =f (x )――――――――→关于原点对称 y =-f (-x ). (4)翻折变换:y =f (x )―――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图像翻折到左边去y =f (|x |);y =f (x )―――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.二、易错点1.在解决函数图像的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则,写出每一次的变换所得图像对应的解析式,这样才能避免出错.2.明确一个函数的图像关于y 轴对称与两个函数的图像关于y 轴对称的不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三、基本考点及例题 考点一 作图像画函数图像的一般方法1、直接法.(1)描点法 (2)经验法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;2、图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3、分段函数:分别作出每段区间的图像,注意:分段函数是一种特殊的函数,自变量在不同范围内取值时,对应的解析式不同,但无论分段函数共有几段,它始终是一个函数,而不是多个函数。

典例1-1】分别画出下列函数的图像: (1)y =2x ; (2)1()2xy = ; 训练1-1-1】分别画出下列函数的图像: 1)y =x 2-2x -1. ; (2)y =lg x 典例1-2】、分别画出下列函数的图像: (1)y =2x +2; (2)y =x 2-2|x |-1. (3)y =⎩⎪⎨⎪⎧x 2,x <0,2x -1,x ≥0解:(1)将y =2x 的图像向左平移2个单位.图像如图(2).y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0.图像如图(3).作出函数的图象训练1-2-1】 分别画出下列函数的图像 (1)1()2xy =-3 (2)y =|lg x | 解:(12法1:变换---先作)f(x)=lg x法2:y =⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.图像如图1.考点二图像变换的语言理解典例2-1】.为了得到函数y =2x -3-1的图像,只需把函数y =2x 的图像上所有的点( ) A .向右平移3个单位长度,再向下平移1个单位长度 B .向左平移3个单位长度,再向下平移1个单位长度 C .向右平移3个单位长度,再向上平移1个单位长度 D .向左平移3个单位长度,再向上平移1个单位长度训练2-1-1】.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=________.解析 与y =e x 图象关于y 轴对称的函数为y =e -x ,依题意,f (x )图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象可由y =e -x 的图象向左平移一个单位得到.∴f (x )=e -(x +1)=e -x -1. 答案 e -x -1考点三识图辨图常用的方法1、识图(1)定量计算法:通过图像上确定的点(能确定坐标的点),坐标适合函数式,代入列等式(方程),定量的计算来分析解决问题;(2)定性分析法:图像的上升(或下降)的趋势,对称关系等,通过对问题进行定性(单调性、奇偶性等)的分析,从而得出利用这一特征分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题.2、辨图(1)作出函数图像,对照选择(2)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;或利用函数特殊点的正负、大小验证典例3-1】.如图,函数f (x )的图像是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝ ⎛⎭⎪⎫1f (3)的值等于________.解析:∵由图像知f (3)=1, ∴1f (3)=1.∴f ⎝⎛⎭⎫1f (3)=f (1)=2.答案:2训练3-1-1】、已知指数函数)10()(≠>=a a a x f x且的图象经过点(3,π),求)1(),0(f f ,)3(-f 的值。

训练3-1-2】、若函数1()3x f x a-=+恒过定点P ,试求点P 的坐标。

解:将指数函数)10(≠>=a a a y x且的图象沿x 轴右移一个单位,再沿y 轴上移3个单位即可得到1()3x f x a-=+的图象,因为x y a =的图象恒过(0,1),故相应的1()3x f x a -=+恒过定点(1,4)。

训练3-1-2】.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在如图所示给定的直角坐标系内画出f (x )的图像; (2)写出f (x )的单调递增区间;(3)由图像指出当x 取什么值时f (x )有最值. 10.解:(1)函数f (x )的图像如图所示. (2)由图像可知,函数f (x )的单调递增区间为 [-1,0],[2,5]. (3)由图像知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.训练3-1-3】. (2014·福建卷)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )典例3-1-4】.(2014·山东卷)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1. 答案 D训练3-2-1】 (2014·佛山一模)函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则y =f (x +1)的图像大致是( )解析:选B 作出f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1的图像,如图.再把f (x )的图像向左平移一个单位, 可得到y =f (x +1)的图像.故选B.训练3-2-2】(2012·湖北高考)已知定义在区间[0,2]上的函数y =f (x )的图像如图所示,则y =-f (2-x )的图像为( )(2)法一:由y =f (x )的图像知f (x )=⎩⎨⎧x (0≤x ≤1),1(1<x ≤2).当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎪⎨⎪⎧1(0≤x ≤1),2-x (1<x ≤2),故y =-f (2-x )=⎩⎪⎨⎪⎧-1(0≤x ≤1),x -2(1<x ≤2).法二:当x =0时,-f (2-x )=-f (2)=-1;当x =1时,-f (2-x )=-f (1)=- 1.观察各选项,可知应选B.[训练3-2-3] (2013·福建高考)函数f (x )=ln(x 2+1)的图像大致是( )[解析] (1)f (x )=ln(x 2+1),x ∈R , 当x =0时,f (0)=ln 1=0, 即f (x )过点(0,0),排除B ,D.∵f (-x )=ln [(-x )2+1]=ln(x 2+1)=f (x ), ∴f (x )是偶函数,其图像关于y 轴对称,故选A. 考点四函数图像的应用函数图像是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来图像的应用常见的命题角度有:(1)确定方程根的个数; (2)求参数的取值范围; (3)求不等式的解集.应用 一 确定方程根的个数典例4-1】.(2014·日照一模)已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________.解析:方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图像,由图像知零点的个数为5.答案:5训练4-1-1】(2013年高考湖南(文))函数f(x)=㏑x 的图像与函数g(x)=x 2-4x+4的图像的交点个数为______( )A .0B .1C .2D .3画图像【答案】C训练4-1-2】(2011高考)函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A.3B.2C.1D.0 画图,二次最低点在对数之下【答案】B应用二 求参数的取值范围思路:1、先给参数一定值(如0))画出图像,再根据参数移动,确定参数(或相关式子)的范围2、含参数方程问题可转化两函数交点(公共点问题)典例4-2-1】、 若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于________.讨论,画图,答案:1训练4-2-1-1】.若log a 23<1, 则a 的取值范围是 分析:a >1, 画图log a 23<0,满足;0< a <1,画图y=1,y= log a x,x=23时a =23;分析a 变化时满足的条件0<a<23故0<a<23或a >1训练4-2-1-2】.(2015·福建卷)若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解析 由题意f (x )的图象如图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2.答案 (1,2]典例4-2-2】.已知函数f (x )=2x ,x ∈R .当m 取何值时方程|f (x )-2|=m 有一个解?两个解?解:令F (x )=|f (x )-2|=|2x -2|, G (x )=m ,画出F (x )的图像如图所示.由图像看出,当m =0或m ≥2时,函数F (x )与G (x )的图像只有一个交点,原方程有一个解;当0<m <2时,函数F (x )与G (x )的图像有两个交点, 原方程有两个解.训练4-2-2-1】 (2015·洛阳模拟)若函数f (x )=⎩⎨⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析 当x >0时,由f (x )=ln x =0,得x =1. 因为函数f (x )有两个不同的零点,则当x ≤0时, 函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x , 因为0<2x ≤20=1,所以0<a ≤1, 所以实数a 的取值范围是0<a ≤1. 答案 (0,1]训练4-2-2-2】.(2015·山东卷)设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a取值范围是( ) A.⎣⎢⎡⎦⎥⎤23,1 B.[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞D.[1,+∞)解析 当a =2时,f (a )=f (2)=22=4>1,f (f (a ))=2f (a ),∴a =2满足题意,排除A ,B 选项;当a =23时,f (a )=f ⎝ ⎛⎭⎪⎫23=3×23-1=1,f (f (a ))=2f (a ),∴a =23满足题意,排除D 选项,故答案为C. 答案 C典例4-2-3】(2010全国卷1理数)(15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 . 解:交点---方程根---分参---画图,训练4-2-3-1】.已知函数f (x )=⎩⎨⎧2,x >m ,x 2+4x +2,x ≤m 的图象与直线y =x 恰有三个公共点,则实数m 的取值范围是( )A .(-∞,-1]B .[-1,2)C .[-1,2]D .[2,+∞)解析 法一 特值法,令m =2,排除C ,D ,令m =0,排除A ,故选B. 法二 令x 2+4x +2=x ,解得x =-1或x =-2,所以三个解必须为-1,-2和2,所以有-1≤m <2.故选B.答案 B 训练4-2-3-2】.【2012高考真题天津理14】已知函数112--=x x y 的图象与函数2-=kx y 的图象恰有两个交点,则实数k 的取值范围是_________.讨论去绝对值并画图,直线过定点(0,-2),注:动直线要么过定点,要么平行【答案】10<<k 或41<<k训练4-2-3-3】.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R.若函数y =f (x )-c 的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1]解析:选B ∵a ⊗b =⎩⎪⎨⎪⎧ a ,a -b ≤1,b ,a -b >1, ∴函数f (x )=(x 2-2)⊗(x -1)=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2.结合图像可知,当c ∈(-2,-1]∪(1,2]时,函数f (x )与y =c 的图像有两个公共点, ∴c 的取值范围是(-2,-1]∪(1,2].应用三 求不等式的解集典例4-3】、求不等式)10(1472≠>>--a a a a x x 且中x 的取值范围。

相关文档
最新文档