模式识别实验一.pdf

合集下载

模式识别大作业

模式识别大作业

模式识别大作业1.最近邻/k近邻法一.基本概念:最近邻法:对于未知样本x,比较x与N个已知类别的样本之间的欧式距离,并决策x与距离它最近的样本同类。

K近邻法:取未知样本x的k个近邻,看这k个近邻中多数属于哪一类,就把x归为哪一类。

K取奇数,为了是避免k1=k2的情况。

二.问题分析:要判别x属于哪一类,关键要求得与x最近的k个样本(当k=1时,即是最近邻法),然后判别这k个样本的多数属于哪一类。

可采用欧式距离公式求得两个样本间的距离s=sqrt((x1-x2)^2+(y1-y2)^2)三.算法分析:该算法中任取每类样本的一半作为训练样本,其余作为测试样本。

例如iris中取每类样本的25组作为训练样本,剩余25组作为测试样本,依次求得与一测试样本x距离最近的k 个样本,并判断k个样本多数属于哪一类,则x就属于哪类。

测试10次,取10次分类正确率的平均值来检验算法的性能。

四.MATLAB代码:最近邻算实现对Iris分类clc;totalsum=0;for ii=1:10data=load('iris.txt');data1=data(1:50,1:4);%任取Iris-setosa数据的25组rbow1=randperm(50);trainsample1=data1(rbow1(:,1:25),1:4);rbow1(:,26:50)=sort(rbow1(:,26:50));%剩余的25组按行下标大小顺序排列testsample1=data1(rbow1(:,26:50),1:4);data2=data(51:100,1:4);%任取Iris-versicolor数据的25组rbow2=randperm(50);trainsample2=data2(rbow2(:,1:25),1:4);rbow2(:,26:50)=sort(rbow2(:,26:50));testsample2=data2(rbow2(:,26:50),1:4);data3=data(101:150,1:4);%任取Iris-virginica数据的25组rbow3=randperm(50);trainsample3=data3(rbow3(:,1:25),1:4);rbow3(:,26:50)=sort(rbow3(:,26:50));testsample3=data3(rbow3(:,26:50),1:4);trainsample=cat(1,trainsample1,trainsample2,trainsample3);%包含75组数据的样本集testsample=cat(1,testsample1,testsample2,testsample3);newchar=zeros(1,75);sum=0;[i,j]=size(trainsample);%i=60,j=4[u,v]=size(testsample);%u=90,v=4for x=1:ufor y=1:iresult=sqrt((testsample(x,1)-trainsample(y,1))^2+(testsample(x,2) -trainsample(y,2))^2+(testsample(x,3)-trainsample(y,3))^2+(testsa mple(x,4)-trainsample(y,4))^2); %欧式距离newchar(1,y)=result;end;[new,Ind]=sort(newchar);class1=0;class2=0;class3=0;if Ind(1,1)<=25class1=class1+1;elseif Ind(1,1)>25&&Ind(1,1)<=50class2=class2+1;elseclass3=class3+1;endif class1>class2&&class1>class3m=1;ty='Iris-setosa';elseif class2>class1&&class2>class3m=2;ty='Iris-versicolor';elseif class3>class1&&class3>class2m=3;ty='Iris-virginica';elsem=0;ty='none';endif x<=25&&m>0disp(sprintf('第%d组数据分类后为%s类',rbow1(:,x+25),ty));elseif x<=25&&m==0disp(sprintf('第%d组数据分类后为%s类',rbow1(:,x+25),'none'));endif x>25&&x<=50&&m>0disp(sprintf('第%d组数据分类后为%s类',50+rbow2(:,x),ty));elseif x>25&&x<=50&&m==0disp(sprintf('第%d组数据分类后为%s类',50+rbow2(:,x),'none'));endif x>50&&x<=75&&m>0disp(sprintf('第%d组数据分类后为%s类',100+rbow3(:,x-25),ty));elseif x>50&&x<=75&&m==0disp(sprintf('第%d组数据分类后为%s类',100+rbow3(:,x-25),'none'));endif (x<=25&&m==1)||(x>25&&x<=50&&m==2)||(x>50&&x<=75&&m==3)sum=sum+1;endenddisp(sprintf('第%d次分类识别率为%4.2f',ii,sum/75));totalsum=totalsum+(sum/75);enddisp(sprintf('10次分类平均识别率为%4.2f',totalsum/10));测试结果:第3组数据分类后为Iris-setosa类第5组数据分类后为Iris-setosa类第6组数据分类后为Iris-setosa类第7组数据分类后为Iris-setosa类第10组数据分类后为Iris-setosa类第11组数据分类后为Iris-setosa类第12组数据分类后为Iris-setosa类第14组数据分类后为Iris-setosa类第16组数据分类后为Iris-setosa类第18组数据分类后为Iris-setosa类第19组数据分类后为Iris-setosa类第20组数据分类后为Iris-setosa类第23组数据分类后为Iris-setosa类第24组数据分类后为Iris-setosa类第26组数据分类后为Iris-setosa类第28组数据分类后为Iris-setosa类第30组数据分类后为Iris-setosa类第31组数据分类后为Iris-setosa类第34组数据分类后为Iris-setosa类第37组数据分类后为Iris-setosa类第39组数据分类后为Iris-setosa类第41组数据分类后为Iris-setosa类第44组数据分类后为Iris-setosa类第45组数据分类后为Iris-setosa类第49组数据分类后为Iris-setosa类第53组数据分类后为Iris-versicolor类第54组数据分类后为Iris-versicolor类第55组数据分类后为Iris-versicolor类第57组数据分类后为Iris-versicolor类第58组数据分类后为Iris-versicolor类第59组数据分类后为Iris-versicolor类第60组数据分类后为Iris-versicolor类第61组数据分类后为Iris-versicolor类第62组数据分类后为Iris-versicolor类第68组数据分类后为Iris-versicolor类第70组数据分类后为Iris-versicolor类第71组数据分类后为Iris-virginica类第74组数据分类后为Iris-versicolor类第75组数据分类后为Iris-versicolor类第77组数据分类后为Iris-versicolor类第79组数据分类后为Iris-versicolor类第80组数据分类后为Iris-versicolor类第84组数据分类后为Iris-virginica类第85组数据分类后为Iris-versicolor类第92组数据分类后为Iris-versicolor类第95组数据分类后为Iris-versicolor类第97组数据分类后为Iris-versicolor类第98组数据分类后为Iris-versicolor类第99组数据分类后为Iris-versicolor类第102组数据分类后为Iris-virginica类第103组数据分类后为Iris-virginica类第105组数据分类后为Iris-virginica类第106组数据分类后为Iris-virginica类第107组数据分类后为Iris-versicolor类第108组数据分类后为Iris-virginica类第114组数据分类后为Iris-virginica类第118组数据分类后为Iris-virginica类第119组数据分类后为Iris-virginica类第124组数据分类后为Iris-virginica类第125组数据分类后为Iris-virginica类第126组数据分类后为Iris-virginica类第127组数据分类后为Iris-virginica类第128组数据分类后为Iris-virginica类第129组数据分类后为Iris-virginica类第130组数据分类后为Iris-virginica类第133组数据分类后为Iris-virginica类第135组数据分类后为Iris-virginica类第137组数据分类后为Iris-virginica类第142组数据分类后为Iris-virginica类第144组数据分类后为Iris-virginica类第148组数据分类后为Iris-virginica类第149组数据分类后为Iris-virginica类第150组数据分类后为Iris-virginica类k近邻法对wine分类:clc;otalsum=0;for ii=1:10 %循环测试10次data=load('wine.txt');%导入wine数据data1=data(1:59,1:13);%任取第一类数据的30组rbow1=randperm(59);trainsample1=data1(sort(rbow1(:,1:30)),1:13);rbow1(:,31:59)=sort(rbow1(:,31:59)); %剩余的29组按行下标大小顺序排列testsample1=data1(rbow1(:,31:59),1:13);data2=data(60:130,1:13);%任取第二类数据的35组rbow2=randperm(71);trainsample2=data2(sort(rbow2(:,1:35)),1:13);rbow2(:,36:71)=sort(rbow2(:,36:71));testsample2=data2(rbow2(:,36:71),1:13);data3=data(131:178,1:13);%任取第三类数据的24组rbow3=randperm(48);trainsample3=data3(sort(rbow3(:,1:24)),1:13);rbow3(:,25:48)=sort(rbow3(:,25:48));testsample3=data3(rbow3(:,25:48),1:13);train_sample=cat(1,trainsample1,trainsample2,trainsample3);%包含89组数据的样本集test_sample=cat(1,testsample1,testsample2,testsample3);k=19;%19近邻法newchar=zeros(1,89);sum=0;[i,j]=size(train_sample);%i=89,j=13[u,v]=size(test_sample);%u=89,v=13for x=1:ufor y=1:iresult=sqrt((test_sample(x,1)-train_sample(y,1))^2+(test_sample(x ,2)-train_sample(y,2))^2+(test_sample(x,3)-train_sample(y,3))^2+( test_sample(x,4)-train_sample(y,4))^2+(test_sample(x,5)-train_sam ple(y,5))^2+(test_sample(x,6)-train_sample(y,6))^2+(test_sample(x ,7)-train_sample(y,7))^2+(test_sample(x,8)-train_sample(y,8))^2+( test_sample(x,9)-train_sample(y,9))^2+(test_sample(x,10)-train_sa mple(y,10))^2+(test_sample(x,11)-train_sample(y,11))^2+(test_samp le(x,12)-train_sample(y,12))^2+(test_sample(x,13)-train_sample(y, 13))^2); %欧式距离newchar(1,y)=result;end;[new,Ind]=sort(newchar);class1=0;class 2=0;class 3=0;for n=1:kif Ind(1,n)<=30class 1= class 1+1;elseif Ind(1,n)>30&&Ind(1,n)<=65class 2= class 2+1;elseclass 3= class3+1;endendif class 1>= class 2&& class1>= class3m=1;elseif class2>= class1&& class2>= class3m=2;elseif class3>= class1&& class3>= class2m=3;endif x<=29disp(sprintf('第%d组数据分类后为第%d类',rbow1(:,30+x),m));elseif x>29&&x<=65disp(sprintf('第%d组数据分类后为第%d类',59+rbow2(:,x+6),m));elseif x>65&&x<=89disp(sprintf('第%d组数据分类后为第%d类',130+rbow3(:,x-41),m));endif (x<=29&&m==1)||(x>29&&x<=65&&m==2)||(x>65&&x<=89&&m==3) sum=sum+1;endenddisp(sprintf('第%d次分类识别率为%4.2f',ii,sum/89));totalsum=totalsum+(sum/89);enddisp(sprintf('10次分类平均识别率为%4.2f',totalsum/10));第2组数据分类后为第1类第4组数据分类后为第1类第5组数据分类后为第3类第6组数据分类后为第1类第8组数据分类后为第1类第10组数据分类后为第1类第11组数据分类后为第1类第14组数据分类后为第1类第16组数据分类后为第1类第19组数据分类后为第1类第20组数据分类后为第3类第21组数据分类后为第3类第22组数据分类后为第3类第26组数据分类后为第3类第27组数据分类后为第1类第28组数据分类后为第1类第30组数据分类后为第1类第33组数据分类后为第1类第36组数据分类后为第1类第37组数据分类后为第1类第43组数据分类后为第1类第44组数据分类后为第3类第45组数据分类后为第1类第46组数据分类后为第1类第49组数据分类后为第1类第54组数据分类后为第1类第56组数据分类后为第1类第57组数据分类后为第1类第60组数据分类后为第2类第61组数据分类后为第3类第63组数据分类后为第3类第65组数据分类后为第2类第66组数据分类后为第3类第67组数据分类后为第2类第71组数据分类后为第1类第72组数据分类后为第2类第74组数据分类后为第1类第76组数据分类后为第2类第77组数据分类后为第2类第79组数据分类后为第3类第81组数据分类后为第2类第82组数据分类后为第3类第83组数据分类后为第3类第84组数据分类后为第2类第86组数据分类后为第2类第87组数据分类后为第2类第88组数据分类后为第2类第93组数据分类后为第2类第96组数据分类后为第1类第98组数据分类后为第2类第99组数据分类后为第3类第102组数据分类后为第2类第104组数据分类后为第2类第105组数据分类后为第3类第106组数据分类后为第2类第110组数据分类后为第3类第113组数据分类后为第3类第114组数据分类后为第2类第115组数据分类后为第2类第116组数据分类后为第2类第118组数据分类后为第2类第122组数据分类后为第2类第123组数据分类后为第2类第124组数据分类后为第2类第133组数据分类后为第3类第134组数据分类后为第3类第135组数据分类后为第2类第136组数据分类后为第3类第140组数据分类后为第3类第142组数据分类后为第3类第144组数据分类后为第2类第145组数据分类后为第1类第146组数据分类后为第3类第148组数据分类后为第3类第149组数据分类后为第2类第152组数据分类后为第2类第157组数据分类后为第2类第159组数据分类后为第3类第161组数据分类后为第2类第162组数据分类后为第3类第163组数据分类后为第3类第164组数据分类后为第3类第165组数据分类后为第3类第167组数据分类后为第3类第168组数据分类后为第3类第173组数据分类后为第3类第174组数据分类后为第3类2.Fisher线性判别法Fisher 线性判别是统计模式识别的基本方法之一。

模式识别实验报告

模式识别实验报告

. ..学院:班级:姓名:学号:2012年3月实验一 Bayes 分类器的设计一、 实验目的:1. 对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识;2. 理解二类分类器的设计原理。

二、 实验条件:1. PC 微机一台和MATLAB 软件。

三、 实验原理:最小风险贝叶斯决策可按下列步骤进行:1. 在已知)(i P ω,)|(i X P ω,c i ,,1 =及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==c j jj i i i P X P P X P X P 1)()|()()|()|(ωωωωω c j ,,1 =2. 利用计算出的后验概率及决策表,按下式计算出采取i α决策的条件风险: ∑==c j j j i i X P X R 1)|(),()|(ωωαλα a i ,,1 =3. 对2中得到的a 个条件风险值)|(X R i α(a i ,,1 =)进行比较,找出使条件风险最小的决策k α,即:)|(min )|(,,1X R X R k c i k αα ==, 则k α就是最小风险贝叶斯决策。

四、 实验内容:(以下例为模板,自己输入实验数据)假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为: 正常状态:)(1ωP =0.9;异常状态:)(2ωP =0.1。

现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531-2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532)|(1ωx P )|(2ωx P 类条件概率分布正态分布分别为(-2,0.25)(2,4)。

模式识别习题集答案解析

模式识别习题集答案解析

模式识别习题集答案解析1、PCA和LDA的区别?PCA是⼀种⽆监督的映射⽅法,LDA是⼀种有监督的映射⽅法。

PCA只是将整组数据映射到最⽅便表⽰这组数据的坐标轴上,映射时没有利⽤任何数据部的分类信息。

因此,虽然做了PCA后,整组数据在表⽰上更加⽅便(降低了维数并将信息损失降到了最低),但在分类上也许会变得更加困难;LDA在增加了分类信息之后,将输⼊映射到了另外⼀个坐标轴上,有了这样⼀个映射,数据之间就变得更易区分了(在低纬上就可以区分,减少了很⼤的运算量),它的⽬标是使得类别的点距离越近越好,类别间的点越远越好。

2、最⼤似然估计和贝叶斯⽅法的区别?p(x|X)是概率密度函数,X是给定的训练样本的集合,在哪种情况下,贝叶斯估计接近最⼤似然估计?最⼤似然估计把待估的参数看做是确定性的量,只是其取值未知。

利⽤已知的样本结果,反推最有可能(最⼤概率)导致这样结果的参数值(模型已知,参数未知)。

贝叶斯估计则是把待估计的参数看成是符合某种先验概率分布的随机变量。

对样本进⾏观测的过程,把先验概率密度转化为后验概率密度,利⽤样本的信息修正了对参数的初始估计值。

当训练样本数量趋于⽆穷的时候,贝叶斯⽅法将接近最⼤似然估计。

如果有⾮常多的训练样本,使得p(x|X)形成⼀个⾮常显著的尖峰,⽽先验概率p(x)⼜是均匀分布,此时两者的本质是相同的。

3、为什么模拟退⽕能够逃脱局部极⼩值?在解空间随机搜索,遇到较优解就接受,遇到较差解就按⼀定的概率决定是否接受,这个概率随时间的变化⽽降低。

实际上模拟退⽕算法也是贪⼼算法,只不过它在这个基础上增加了随机因素。

这个随机因素就是:以⼀定的概率来接受⼀个⽐单前解要差的解。

通过这个随机因素使得算法有可能跳出这个局部最优解。

4、最⼩错误率和最⼩贝叶斯风险之间的关系?基于最⼩风险的贝叶斯决策就是基于最⼩错误率的贝叶斯决策,换⾔之,可以把基于最⼩错误率决策看做是基于最⼩风险决策的⼀个特例,基于最⼩风险决策本质上就是对基于最⼩错误率公式的加权处理。

模式识别习题及答案

模式识别习题及答案

模式识别习题及答案第⼀章绪论1.什么是模式具体事物所具有的信息。

模式所指的不是事物本⾝,⽽是我们从事物中获得的___信息__。

2.模式识别的定义让计算机来判断事物。

3.模式识别系统主要由哪些部分组成数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。

第⼆章贝叶斯决策理论1.最⼩错误率贝叶斯决策过程答:已知先验概率,类条件概率。

利⽤贝叶斯公式得到后验概率。

根据后验概率⼤⼩进⾏决策分析。

2.最⼩错误率贝叶斯分类器设计过程答:根据训练数据求出先验概率类条件概率分布利⽤贝叶斯公式得到后验概率如果输⼊待测样本X ,计算X 的后验概率根据后验概率⼤⼩进⾏分类决策分析。

3.最⼩错误率贝叶斯决策规则有哪⼏种常⽤的表⽰形式答:4.贝叶斯决策为什么称为最⼩错误率贝叶斯决策答:最⼩错误率Bayes 决策使得每个观测值下的条件错误率最⼩因⽽保证了(平均)错误率最⼩。

Bayes 决策是最优决策:即,能使决策错误率最⼩。

5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利⽤这个概率进⾏决策。

6.利⽤乘法法则和全概率公式证明贝叶斯公式答:∑====m j Aj p Aj B p B p A p A B p B p B A p AB p 1)()|()()()|()()|()(所以推出贝叶斯公式7.朴素贝叶斯⽅法的条件独⽴假设是(P(x| ωi) =P(x1, x2, …, xn | ωi)= P(x1| ωi) P(x2| ωi)… P(xn| ωi))8.怎样利⽤朴素贝叶斯⽅法获得各个属性的类条件概率分布答:假设各属性独⽴,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi)后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值⽅差,最后得到类条件概率分布。

模式识别 张学工

模式识别 张学工

代入正态分布公式,可得
1 ˆ ˆi ) 0 P ( | x , ) i k i i ( xk k 1 N
Xuegong Zhang, Tsinghua University
13
张学工《模式识别》教学课件

ˆi
P(
k 1 N k 1
N
i
ˆ i ) xk | xk ,
J e 反映了用 c 个聚类中心代表 c 个样本子集所带来的总的误差平方和。
J e 是样本集 Y 与类别集 的函数。
C 均值算法的目标:最小化 J e
Xuegong Zhang, Tsinghua University
——最小方差划分
19
张学工《模式识别》教学课件
另一种角度来看 C 均值方法: 用 c 个码本来代表整个样本集,使这种表示带来的总体误差最小。 ---- 向量量化 Vector Quantisation 算法研究:
张学工《模式识别》教学课件
问题:
如何选择投影方向? ----- 方差最大的准则有时并不一定最有利于聚类。
Xuegong Zhang, Tsinghua University
5
张学工《模式识别》教学课件
参数化方法
以上介绍方法均属非参数方法,在对数据分布没有先验知识的情况下采用。 如果已知(或可假设)数据分布的概率密度函数的形式,则可采用参数化方法。
18
张学工《模式识别》教学课件
9.4.1
C 均值算法(k 均值,C-means or k-means)
误差平方和聚类准则
Je
i 1
c
y

y mi
2
Ji
i 1

《模式识别》实验报告K-L变换特征提取

《模式识别》实验报告K-L变换特征提取

《模式识别》实验报告K-L变换特征提取基于K-L 变换的iris 数据分类⼀、实验原理K-L 变换是⼀种基于⽬标统计特性的最佳正交变换。

它具有⼀些优良的性质:即变换后产⽣的新的分量正交或者不相关;以部分新的分量表⽰原⽮量均⽅误差最⼩;变换后的⽮量更趋确定,能量更集中。

这⼀⽅法的⽬的是寻找任意统计分布的数据集合之主要分量的⼦集。

设n 维⽮量12,,,Tn x x x =x ,其均值⽮量E=µx ,协⽅差阵()T x E=--C x u)(x u ,此协⽅差阵为对称正定阵,则经过正交分解克表⽰为x =TC U ΛU ,其中12,,,[]n diag λλλ=Λ,12,,,n u u u =U 为对应特征值的特征向量组成的变换阵,且满⾜1T-=UU。

变换阵TU 为旋转矩阵,再此变换阵下x 变换为()T -=x u y U ,在新的正交基空间中,相应的协⽅差阵12[,,,]xn diag λλλ==x U C U C。

通过略去对应于若⼲较⼩特征值的特征向量来给y 降维然后进⾏处理。

通常情况下特征值幅度差别很⼤,忽略⼀些较⼩的值并不会引起⼤的误差。

对经过K-L 变换后的特征向量按最⼩错误率bayes 决策和BP 神经⽹络⽅法进⾏分类。

⼆、实验步骤(1)计算样本向量的均值E =µx 和协⽅差阵()T xE ??=--C x u)(x u5.8433 3.0573 3.7580 1.1993??=µ,0.68570.0424 1.27430.51630.04240.189980.32970.12161.27430.3297 3.1163 1.29560.51630.12161.29560.5810x----=--C (2)计算协⽅差阵xC 的特征值和特征向量,则4.2282 , 0.24267 , 0.07821 , 0.023835[]diag =Λ-0.3614 -0.6566 0.5820 0.3155 0.0845 -0.7302 -0.5979 -0.3197 -0.8567 0.1734 -0.0762 -0.4798 -0.3583 0.0755 -0.5458 0.7537??=U从上⾯的计算可以看到协⽅差阵特征值0.023835和0.07821相对于0.24267和4.2282很⼩,并经计算个特征值对误差影响所占⽐重分别为92.462%、5.3066%、1.7103%和0.52122%,因此可以去掉k=1~2个最⼩的特征值,得到新的变换阵12,,,newn k u u u -=U。

西交大模式识别实验报告

西交大模式识别实验报告

模式识别实验报告姓名:班级:学号:提交日期:实验一线性分类器的设计一、实验目的:掌握模式识别的基本概念,理解线性分类器的算法原理。

二、实验要求(1)学习和掌握线性分类器的算法原理;(2)在MATLAB 环境下编程实现三种线性分类器并能对提供的数据进行分类;(3)对实现的线性分类器性能进行简单的评估(例如算法使用条件,算法效率及复杂度等)。

三、算法原理介绍(1)判别函数:是指由x 的各个分量的线性组合而成的函数:0g(x)w ::t x w w w =+权向量阈值权若样本有c 类,则存在c 个判别函数,对具有0g(x)w t x w =+形式的判别函数的一个两类线性分类器来说,要求实现以下判定规则:12(x)0,y (x)0,y i i g g ωω>∈⎧⎨<∈⎩方程g(x)=0定义了一个判定面,它把两个类的点分开来,这个平面被称为超平面,如下图所示。

(2)广义线性判别函数线性判别函数g(x)又可写成以下形式:01(x)w di i i g w x ==+∑其中系数wi 是权向量w 的分量。

通过加入另外的项(w 的各对分量之间的乘积),得到二次判别函数:因为,不失一般性,可以假设。

这样,二次判别函数拥有更多的系数来产生复杂的分隔面。

此时g(x)=0定义的分隔面是一个二阶曲面。

若继续加入更高次的项,就可以得到多项式判别函数,这可看作对某一判别函数g(x)做级数展开,然后取其截尾逼近,此时广义线性判别函数可写成:或:这里y通常被成为“增广特征向量”(augmented feature vector),类似的,a被称为“增广权向量”,分别可写成:这个从d维x空间到d+1维y空间的映射虽然在数学上几乎没有变化,但十分有用。

虽然增加了一个常量,但在x空间上的所有样本间距离在变换后保持不变,得到的y向量都在d维的自空间中,也就是x空间本身。

通过这种映射,可以将寻找权向量w和权阈值w0的问题简化为寻找一个简单的权向量a。

模式识别实验【范本模板】

模式识别实验【范本模板】

《模式识别》实验报告班级:电子信息科学与技术13级02 班姓名:学号:指导老师:成绩:通信与信息工程学院二〇一六年实验一 最大最小距离算法一、实验内容1. 熟悉最大最小距离算法,并能够用程序写出。

2. 利用最大最小距离算法寻找到聚类中心,并将模式样本划分到各聚类中心对应的类别中.二、实验原理N 个待分类的模式样本{}N X X X , 21,,分别分类到聚类中心{}N Z Z Z , 21,对应的类别之中.最大最小距离算法描述:(1)任选一个模式样本作为第一聚类中心1Z 。

(2)选择离1Z 距离最远的模式样本作为第二聚类中心2Z 。

(3)逐个计算每个模式样本与已确定的所有聚类中心之间的距离,并选出其中的最小距离.(4)在所有最小距离中选出一个最大的距离,如果该最大值达到了21Z Z -的一定分数比值以上,则将产生最大距离的那个模式样本定义为新增的聚类中心,并返回上一步.否则,聚类中心的计算步骤结束。

这里的21Z Z -的一定分数比值就是阈值T ,即有:1021<<-=θθZ Z T(5)重复步骤(3)和步骤(4),直到没有新的聚类中心出现为止。

在这个过程中,当有k 个聚类中心{}N Z Z Z , 21,时,分别计算每个模式样本与所有聚类中心距离中的最小距离值,寻找到N 个最小距离中的最大距离并进行判别,结果大于阈值T 是,1+k Z 存在,并取为产生最大值的相应模式向量;否则,停止寻找聚类中心。

(6)寻找聚类中心的运算结束后,将模式样本{}N i X i ,2,1, =按最近距离划分到相应的聚类中心所代表的类别之中。

三、实验结果及分析该实验的问题是书上课后习题2。

1,以下利用的matlab 中的元胞存储10个二维模式样本X {1}=[0;0];X{2}=[1;1];X {3}=[2;2];X{4}=[3;7];X{5}=[3;6]; X{6}=[4;6];X{7}=[5;7];X{8}=[6;3];X{9}=[7;3];X{10}=[7;4];利用最大最小距离算法,matlab 运行可以求得从matlab 运行结果可以看出,聚类中心为971,,X X X ,以1X 为聚类中心的点有321,,X X X ,以7X 为聚类中心的点有7654,,,X X X X ,以9X 为聚类中心的有1098,,X X X 。

模式识别实验指导书2014版

模式识别实验指导书2014版
priorp(i)=cell2mat(sta(i,k))/100; end %估算类条件概率参数 cpmean=zeros(c,n); cpcov=zeros(n,n,c); for i=1:c
cpmean(i,:)=mean(meas(strmatch(char(sta(i,1)),species,'exact'),:));
4 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
− −
5 6
⎟⎟⎠⎞, ⎜⎜⎝⎛
− −
6 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
5 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
5 4
⎟⎟⎠⎞,
⎜⎜⎝⎛
4 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
5 6
⎟⎟⎠⎞,
⎜⎜⎝⎛
6 5
⎟⎟⎠⎞⎭⎬⎫
,计算样本协方
差矩阵,求解数据第一主成分,并重建原始数据。
(2)使用 Matlab 中进行主成分分析的相关函数,实现上述要求。
有 c 个不同的水平,表示 c 个不同的类。
表 1-1 fit 方法支持的参数名与参数值列表
参数名
参数值
说明
'normal'
正态分布(默认)
核密度估计(通过‘KSWidth’参数设置核密度估计的窗宽
'kernel'
(默认情况下自动选取窗宽;通过‘KSSupport’参数设置
‘Distribution’ 'mvmn'
信息与电气工程学院专业实验中心 二〇一四年八月
《模式识别》实验一 贝叶斯分类器设计
一、实验意义及目的
掌握贝叶斯判别原理,能够利用 Matlab 编制程序实现贝叶斯分类器设计,熟悉基于 Matlab 的 算法处理函数,并能够利用算法解决简单问题。

模式识别实验指导书2015

模式识别实验指导书2015

6
深圳大学研究生课程“模式识别理论与方法”实验指导书(4th Edition 裴继红编)
(c) 用(b)中设计的分类器对测试点进行分类: (1, 2,1) , (5,3, 2) , (0, 0, 0) , (1, 0, 0) , 并且利用式(45)求出各个测试点与各个类别均值之间的 Mahalanobis 距离。 (d) 如果 P ( w1 ) 0.8, P ( w2 ) P ( w3 ) 0.1 ,再进行(b)和(c)实验。 (e) 分析实验结果。 表格 1
深圳大学研究生课程:模式识别理论与方法
课程作业实验指导
(4th Edition) (分数:5%10=50%) (共 10 题)
实验参考教材:
a) 《Pattern Classification》by Richard O.Duda, Peter E.Hart, David G.Stork, 2nd Edition Wiley-Interscience, 2000. (机械工业出版社,2004 年, 影印版)。 b) 《模式分类》Richard O.Duda, Peter E.Hart, David G.Stork 著;李宏东, 姚天翔等译;机械工业出版社和中信出版社出版,2003 年。(上面 a 的 中文翻译版) c) 《模式识别(英文第四版)》Sergios Theodoridis, Konstantinos Koutroumbas 著;机械工业出版社,2009 年,影印版。 d) 《神经网络与机器学习(原书第三版)》Simon Haykin 著;申富 饶等译,机械工业出版社,2013 年。
裴继红 编
2015 年 2 月 深圳大学 信息工程学院
深圳大学研究生课程“模式识别理论与方法”实验指导书(4th Edition 裴继红编)

模式识别大作业

模式识别大作业

模式识别大作业共同空间模式及其几种改进方法的研究1 综述脑-机接口(brain -computer interface,BCI)系统通过记录大脑活动提供一种不依赖肌肉的大脑直接控制外部设备的方法,这为那些具有严重神经肌肉损伤(如肌肉萎缩性侧索硬化、脑瘫、脑干中风等)患者提供了与外界交流、控制外界设备的新方式。

在各种监控大脑活动的方法中,脑电图(electroencephalogram, EEG)以其较高的时间分辨率、简单的设备及信号采样要求,优于脑磁图(magnetoencephalogram, EMG)、功能核磁共振成像( functional magnetic resonance imaging, fMRI),而作为一种理想的 BCI 控制信号被广泛研究[1]。

图1.1 脑机接口系统模型共同空间模式(common spatial patterns CSP)是如图1.1所示脑机接口工作流程中特征提取的一种重要算法。

使用脑机接口控制设备要求从复杂的高维EEG信号中提取相关的、稳定的信号。

空间滤波是特征提取的关键步骤。

CSP是近些年计算空间滤波器最常用的方法之一,能够很好地判别任在两种不同的精神状态下的脑电信号[2]。

对脑机接口后面的工作有重要意义。

但在实际应用中,由于脑机接口系统会出现如眼动、肌动和仪器震动等噪声,而CSP对于噪声较为敏感,因此在近些年人们不断研究出许多提高CSP稳定性的改进方法。

本文对CSP的工作原理和几种改进CSP方法进行讨论,并用MATLAB仿真实验测试几种方法在BCI竞赛数据库上的分类准确率。

2 经典共同空间模式CSP 算法的目标是创建公共空间滤波器,最大化第一类方差,最小化另一类方差,采用同时对角化两类任务协方差矩阵的方式,区别出两种任务的最大化公共空间特征[3]。

定义一个N x T的矩阵E来表示原始EEG信号数据段,其中N表示电极数目即空间导联数目,T表示每个通道的采样点数目。

模式识别-人脸识别

模式识别-人脸识别

基于BP神经网络和k-近邻综合决策法的人脸识别matlab实现高海南31100380111 人脸识别原理人脸识别是目前模式识别领域中被广泛研究的热门课题,它在安全领域以及经济领域都有极其广泛的应用前景。

人脸识别就是采集人脸图像进行分析和处理, 从人脸图像中获取有效的识别信息, 用来进行人脸及身份鉴别的一门技术。

本文在MATLAB环境下,取ORL人脸数据库的部分人脸样本集,基于PCA方法提取人脸特征,形成特征脸空间,然后将每个人脸样本投影到该空间得到一投影系数向量,该投影系数向量在一个低维空间表述了一个人脸样本,这样就得到了训练样本集。

同时将另一部分ORL人脸数据库的人脸作同样处理得到测试样本集。

然后基于BP 神经网络算法和k-近邻算法进行综合决策对待识别的人脸进行分类。

该方法的识别率比单独的BP神经网络算法和k-近邻法有一定的提高。

1.1 ORL人脸数据库简介实验时人脸图像取自英国剑桥大学的ORL人脸数据库,ORL数据库由40个人组成,每个人有10幅不同的图像,每幅图像是一个92×112像素、256级的灰度图,他们是在不同时间、光照略有变化、不同表情以及不同脸部细节下获取的。

如图1所示。

图1 ORL人脸数据库1.2 基于PCA 的人脸图像的特征提取PCA 法是模式识别中的一种行之有效的特征提取方法。

在人脸识别研究中, 可以将该方法用于人脸图像的特征提取。

一个m ×n 的二维脸部图片将其按列首位相连,可以看成是m ×n 的一个一维向量。

ORL 人脸数据库中每张人脸图片大小是92×112,它可以看成是一个10304维的向量,也可以看成是一个10304维空间中一点。

图片映射到这个巨大的空间后,由于人脸的构造相对来说比较接近,因此可以用一个相应的低维子空间来表示。

我们把这个子空间叫做“脸空间”。

PCA 的主要思想就是找到能够最好地说明图片在图片空间中的分布情况的那些向量,这些向量能够定义“脸空间”。

模式识别实验报告 实验一 BAYES分类器设计

模式识别实验报告 实验一 BAYES分类器设计

P (i X )
P ( X i ) P (i )
P( X ) P( )
j 1 i i
c
j=1,…,x
(2)利用计算出的后验概率及决策表,按下面的公式计算出采取 ai ,i=1,…,a 的条件风 险
R (a i X ) (a i , j ) P ( j X ) ,i=1,2,…,a
1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -5 正常细胞 异常细胞 后验概率分布曲线
后验概率
-4
-3
-2
-1 0 1 细胞的观察值
2
3
4
5
图 1 基于最小错误率的贝叶斯判决

最小风险贝叶斯决策 风险判决曲线如图 2 所示,其中带*的绿色曲线代表异常细胞的条件风险曲线;另一条
光滑的蓝色曲线为判为正常细胞的条件风险曲线。 根据贝叶斯最小风险判决准则, 判决结果 见曲线下方,其中“上三角”代表判决为正常细胞, “圆圈“代表异常细胞。 各细胞分类结果: 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 其中,0 为判成正常细胞,1 为判成异常细胞
实验一 Bayes 分类器设计
【实验目的】
对模式识别有一个初步的理解, 能够根据自己的设计对贝叶斯决策理论算法有一个深刻 地认识,理解二类分类器的设计原理。
【实验原理】
最小风险贝叶斯决策可按下列步骤进行: (1)在已知 P (i ) , P ( X i ) ,i=1,…,c 及给出待识别的 X 的情况下,根据贝叶斯公 式计算出后验概率:
4 0
请重新设计程序, 完成基于最小风险的贝叶斯分类器, 画出相应的条件风险的分布曲线和分 类结果,并比较两个结果。

模式识别_清华答案

模式识别_清华答案
j =1,...,c
先验概率和类条件概率相联系的形式,即 如果p(x|wi )P (wi ) = max p(x|wj )P (wj ),则x ∈ wi 。
j =1,...,c
• 2.6 对两类问题,证明最小风险贝叶斯决策规则可表示为,若 p(x|w1 ) (λ12 − λ22 )P (w2 ) > , p(x|w2 ) (λ21 − λ11 )P (w1 ) 则x ∈ w1 ,反之则属于w2 。 解 :计算条件风险
第二章 贝叶斯决策理论
• 2.11 xj (j = 1, 2, ..., n)为n个独立随机变量,有E [xj |wi ] = ijη ,var[xj |wi ] = i2 j 2 σ 2 ,计算在λ11 = λ22 = 0 及λ12 = λ21 = 1的情况下,由贝叶斯决策引 起的错误率。(中心极限定理) 解 : 在0 − 1损失下,最小风险贝叶斯决策与最小错误率贝叶斯决策等 价。 • 2.12 写出离散形式的贝叶斯公式。 解: P (wi |x) = P (x|wi )P (x) P (x|wi )P (wi )
– II –
第一章 绪论
第一章

绪论
–1–
第二章 贝叶斯决策理论
第二章
示?
贝叶斯决策理论
• 2.1 如果只知道各类的先验概率,最小错误率贝叶斯决策规则应如何表 解 : 设一个有C 类,每一类的先验概率为P (wi ),i = 1, ..., C 。此时最小错 误率贝叶斯决策规则为:如果i∗ = max P (wi ),则x ∈ wi 。
2
R(α1 |x) =
j =1
λ1j P (wj |x)
= λ11 P (w1 |x) + λ12 P (w2 |x)

模式识别导论本(一)

模式识别导论本(一)
模式识别导论 课程对象: C方向和导航方向的专业选修课。 成绩评定: 1,作 业 2,实 习 3,期末考试 20分 20分 60分
主要章节: 第一章 概论(2)
第八章人工神 经网络在模式 第三章判别函数与确定性分类器(6) 第四章 聚类分析(4) 识别中的应用 (4) 第五章模式特征分析与选取(4) 第八章人工神经网络在 实习(4) 模式识别中的应用(4) 第二章贝叶斯决策理论(6)
马属于畜牧业。
② 分类的客观性:科学性 判断分类必须有客观标准,因此分类是追求客观性的, 但主观性也很难避免,这就是分类的复杂性。
模式识别导论
四.特征的生成
1.低层特征: ①无序尺度:有明确的数量和数值,比如通过仪器可直接量测:长度、 重量、时间等。其度量结果就是特征量化值。 ②有序尺度:有先后、好坏的次序关系,如酒分为上,中,下三个等 级。
人民邮电出版社
罗耀光 盛立东 Richard R. Duda
• Pattern Classification
模式识别导论
中南海
故宫
如何让计算机自动分析不同地物类?
模式识别导论
体重 成年人
未成年人
×× × × ××
身高
计算机如何自动来进行判别?
模式识别导论
计 算 机 如 何 自 动 分 析 对 话 ?
Geoffrey Hinton Yoshua Bengio
Yann LeCun
模式识别导论
§1-2 模式识别系统
监督模式识别
• 信息的获取:是通过传感器,将光或声音等信息转化为电信息。 信息可以是二维的图象如文字,图象等;可以是一维的波形如声
波,心电图,脑电图;也可以是物理量与逻辑值。
• 预处理:包括A\D,二值化,图像的平滑,变换,增强,恢复,滤 波等, 主要指图象处理。

模式识别实验报告_3

模式识别实验报告_3

模式识别实验报告_3第⼀次实验实验⽬的:1.学习使⽤ENVI2.会⽤MATLAB读⼊遥感数据并进⾏处理实验内容:⼀学习使⽤ENVI1.使⽤ENVI打开遥感图像(任选3个波段合成假彩⾊图像,保存写⼊报告)2.会查看图像的头⽂件(保存或者copy⾄报告)3.会看地物的光谱曲线(保存或者copy⾄报告)4.进⾏数据信息统计(保存或者copy⾄报告)5.设置ROI,对每类地物⾃⼰添加标记数据,并保存为ROI⽂件和图像⽂件(CMap贴到报告中)。

6.使⽤⾃⼰设置的ROI进⾏图像分类(ENVI中的两种有监督分类算法)(分类算法名称和分类结果写⼊报告)⼆MATLAB处理遥感数据(提交代码和结果)7.⽤MATLAB读⼊遥感数据(zy3和DC两个数据)8.⽤MATLAB读⼊遥感图像中ROI中的数据(包括数据和标签)9.把图像数据m*n*L(其中m表⽰⾏数,n表⽰列数,L表⽰波段数),重新排列为N*L的⼆维矩阵(其中N=m*n),其中N表⽰所有的数据点数量m*n。

(提⽰,⽤reshape函数,可以help查看这个函数的⽤法)10.计算每⼀类数据的均值(平均光谱),并把所有类别的平均光谱画出来(plot)(类似下⾯的效果)。

11.画出zy3数据中“农作物类别”的数据点(⾃⼰ROI标记的这个类别的点)在每个波段的直⽅图(matlab函数:nbins=50;hist(Xi,nbins),其中Xi表⽰这类数据在第i波段的数值)。

计算出这个类别数据的协⽅差矩阵,并画出(figure,imagesc(C),colorbar)。

1.打开遥感图像如下:2.查看图像头⽂件过程如下:3.地物的光谱曲线如下:4.数据信息统计如下:(注:由于保存的txt⽂件中的数据信息过长,所以采⽤截图的⽅式只显⽰了出⼀部分数据信息)5.设置ROI,对每类地物⾃⼰添加标记数据,CMap如下:6.使⽤⾃⼰设置的ROI进⾏图像分类(使⽤⽀持向量机算法和最⼩距离算法),⽀持向量机算法分类结果如下:最⼩距离算法分类结果如下:对⽐两种算法的分类结果可以看出⽀持分量机算法分类结果⽐最⼩距离算法分类结果好⼀些。

模式识别 张学工

模式识别 张学工
未定参数准则函数张学工模式识别教学课件xuegongzhangtsinghuauniversity次优分类器相对于贝叶斯分类器当正态分布且各类协方差相同时可为最优分类器张学工模式识别教学课件xuegongzhangtsinghuauniversity42一些基本概念张学工模式识别教学课件xuegongzhangtsinghuauniversity43fisher线性判别fisherdiscriminantanalysisfda出发点
T 把不等式 yi 0 变为
T y i bi 0 , i 1, , N
于是不等式组变为方程组
Y b
b b1 , b2 , , bN
T
ˆ ,方程个数多于未知数个数,为矛盾方程组,误差 e Y b ,可求 通常 N d
最小二乘近似解。 MSE 准则
g 0 ( x) P(1 | x) P( 2 | x)
2 T * 即 使 e y g 0 ( x) p ( x)dx 极小。


2
Xuegong Zhang, Tsinghua University
19
张学工《模式识别》教学课件
MSE 准则函数的梯度下降算法
J s ( ) 2Y T (Y b)
即:使两类之间尽可能分开,各类内部尽可能聚集。
Xuegong Zhang, Tsinghua University 7
张学工《模式识别》教学课件
代入 y w x ,可得
T
wT S b w J F ( w) T w Sww
w* : max J F ( w)
w
T 求解:令分母 w S w w c 0 ,最大化分子。
8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%计算三类训练数据的协方差矩阵 var_w1 = cov(data_train_w1(:,:)); var_w2 = cov(data_train_w2(:,:)); var_w3 = cov(data_train_w3(:,:));
%导入iris数据集
%---------抽取训练数据----------% %各组训练数据个数 NUM_train = 30; %在各组中随机抽取NUM_train个训练样本 %随机打乱各组数据顺序 temp_w1= randperm(50); temp_w2= randperm(50); temp_w3= randperm(50); %取随机打乱顺序后的前NUM_train个数据作为训练样本,并存储 %第5列数据代表其所属分类 for i=1:NUM_train
Ci Ei
x i
x
T i
, Ei x 表示对类别属于i 的模式作数学期望运算。
因此判别函数可表示为 Ji (x) P(x | i )P(i ) 对判别函数取自然对数
J
i
(
x)
1 2
(
x
i
)
Ci1
(
x
i
)
ln
P(i
)
1 2
ln
Ci
n ln(2 ) 2
(5)
在样本维数相同的情况下,上式中的最后一项为常数,与样本所属类别无关, 所以可以将其从判别函数中去掉,不会改变分类结果。判别函数化简为
一、实验目的 1. 掌握统计判别问题的含义,理解贝叶斯判别原理。 2. 编写两类正态分布模式的贝叶斯分类程序。 3. 观察各种因素对分类错误概率的影响。
二、实验原理 模式识别的分类问题是根据识别对象特征的观察值将其分到某个类别中去,
统计决策理论是处理模式分类问题的基本理论之一。贝叶斯判别原理是统计模式 识别中的一个基本方法。 (1)贝叶斯判别原理
data_train_w1(i,:) = iris_w1(temp_w1(i),:); data_train_w2(i,:) = iris_w2(temp_w2(i),:); data_train_w3(i,:) = iris_w3(temp_w3(i),:); end %选择非训练样本作为测试样本,并存储 %第5列数据代表其所属分类 for i=(NUM_train+1):50 data_test_w1(i-NUM_train,:) = iris_w1(temp_w1(i),:); data_test_w2(i-NUM_train,:) = iris_w2(temp_w2(i),:); data_test_w3(i-NUM_train,:) = iris_w3(temp_w3(i),:); end
实验所使用的 IRIS 鸢尾花数据中各类数据服从正态分布,则概率密度函数为
P(x | i )
1
n
(2 ) 2
Ci
1 2
exp[
1 2
(
x
i
)T
Ci1
(
x
i
)]
i 1, 2
(4)
其中,特征向量 x [x1, x2,
, xn ] 是 n 维列向量,i 1, 2,
,
n

n
维均值
向 量 , Ci 是 n n 协 方 差 矩 阵 ; Ci 为 矩 阵 Ci 的 行 列 式 。 且 i Ei x ,
p(x | i ) 称似然函数,将其代入(2)式中
p(x | 1)P(1) p(x | 2 )P(2 ) 则 x 1
(3)
p(x | 1)P(1) p(x | 2 )P(2 ) 则 x 2
(2)样本正态分布的贝叶斯分类器
对于具有多个特征参数的样本(本实验的 IRIS 数据为 n=4 维)。假设本
个 4 维行特征向量。
close all; clear all; clc; %---------数据导入----------% iris_dataset = load('iris_dataset.txt'); %分别存储3类数据 iris_w1 = iris_dataset(1:50,:); iris_w2 = iris_dataset(51:100,:); iris_w3 = iris_dataset(101:150,:);
贝叶斯分类又称为最大后验概率(MAP)分类,其基本原理如下:
两种类别标号分别为1 ,2
a) 分类所使用的特征为 n 维特征向量 x [x1 x2
xn ]
b) 两类先验概率值分别为 P 1 , P 2
c) 两类条件概率密度函数分别为 p x | 1 , p x | 2
对于两类别 i ,i 1, 2分类问题,已知先验概率 P(i ) 及条件概率密度函数
p x | i ,可以得出某样本属于各类别的概率,即后验概率。
P(i
|
x)
p
x
| iPΒιβλιοθήκη xP(i)
,
i
1,
2
(1)
后验概率代表了 x 是属于1 类的概率,x 来自i* 类的概率大则判别 x 属于第
i* 类,即
P(1 | x) P(2 | x) 则 x 1
(2)
P(1 | x) P(2 | x) 则 x 2
Ji
(x)
1 2
(x
i
) Ci1(x
i
)
ln
P(i
)
1 2
ln
Ci
(6)
然后根据(1)中所述最大后验准则判断样本所属类别。
三、实验过程 实验数据: IRIS 数据集 实验假设: 各类数据服从正态分布 实验方法: 最大后验概率 实验环境: MATLAB 2010b
(1)数据导入 导入 iris_dataset.txt 文件中数据,并将三类数据分别存储,每个数据都为一
(3)分类器训练 计算各类训练数据的均值矢量和协方差矩阵。
%---------分类器训练----------% %计算三类训练数据的均值向量 avr_w1 = mean(data_train_w1(:,:)); avr_w2 = mean(data_train_w2(:,:)); avr_w3 = mean(data_train_w3(:,:));
%导入iris数据集
(2)抽取训练数据 设置每组训练数据个数 NUM_train,从每类 50 个数据中随机抽取 NUM_train
个向量作为训练数据并存储,剩余数据作为测试样本存储。
%---------数据导入----------% iris_dataset = load('iris_dataset.txt'); %分别存储3类数据 iris_w1 = iris_dataset(1:50,:); iris_w2 = iris_dataset(51:100,:); iris_w3 = iris_dataset(101:150,:);
相关文档
最新文档