勾股定理与无理数专题训练

合集下载

勾股定理的题目

勾股定理的题目

1、直角三角形中,一直角边长为3,斜边长为5,则另一直角边的长为:A. 1B. 2C. 4D. 6(答案:C)2、设直角三角形两直角边分别为a和b,斜边为c,若a = 6,c = 10,则b等于:A. 16B. 8C. 4D. 2√11(答案:B)3、在直角三角形中,如果一条直角边长度是7,斜边长度是25,那么另一条直角边的长度是:A. 24B. 18C. 15D. √(252 - 72)(答案:D,即24)4、已知直角三角形的一条直角边长为5,斜边长为13,则另一条直角边的平方是:A. 144B. 169C. 104D. 64(答案:A)5、直角三角形中,若斜边长为25,且其中一直角边长为15,则另一直角边长为:A. 10B. 20C. 25√2D. 5√14(答案:B)6、一个直角三角形的两条直角边分别是6和8,那么它的斜边长度是:A. 10B. 12C. 14D. 16(答案:A)7、直角三角形中,若其中一直角边长为3cm,斜边长为5cm,则另一直角边的平方为:A. 4cm²B. 16cm²C. 9cm²D. 25cm² - 9cm²(答案:B)8、设直角三角形的两直角边分别为x和y,斜边为z,若x=9,z=15,则y2等于:A. 144B. 225C. 108D. z2 - x2(答案:A)9、一个直角三角形的斜边长为17,其中一条直角边长为8,那么另一条直角边的长度为:A. 9B. 15C. √(172 - 82)D. 17 - 8(答案:C,即15)10、直角三角形的一条直角边为12,斜边为13,则它的另一条直角边长为:A. 5B. 6C. 7D. √(132 - 122)(答案:A)。

勾股定理例题单选题100道及答案解析

勾股定理例题单选题100道及答案解析

勾股定理例题单选题100道及答案解析1. 在直角三角形中,两直角边分别为3 和4,则斜边的长度为()A. 5B. 6C. 7D. 8答案:A解析:根据勾股定理,斜边的平方等于两直角边的平方和,即斜边= √(3²+ 4²) = 52. 一个直角三角形的两条直角边分别为6 和8,那么斜边上的高为()A. 4.8B. 5C. 6D. 8答案:A解析:先求出斜边为√(6²+ 8²) = 10,三角形面积= 0.5×6×8 = 0.5×10×斜边上的高,解得斜边上的高为4.83. 若直角三角形的三边长分别为2,4,x,则x 的值可能有()A. 1 个B. 2 个C. 3 个D. 4 个答案:B解析:当4 为斜边时,x = √(4²- 2²) = 2√3;当x 为斜边时,x = √(2²+ 4²) = 2√5,所以x 的值有2 个4. 已知直角三角形的两直角边长分别为5 和12,则斜边长为()A. 13B. 14C. 15D. 16答案:A解析:斜边长= √(5²+ 12²) = 135. 直角三角形的一条直角边为9,另一条直角边为12,则斜边的长为()A. 15B. 16C. 17D. 18答案:A解析:斜边= √(9²+ 12²) = 156. 一个直角三角形的斜边为10,一条直角边为6,则另一条直角边为()A. 8B. 9C. 11D. 12答案:A解析:另一条直角边= √(10²- 6²) = 87. 若直角三角形的周长为12,斜边长为5,则其面积为()A. 12B. 10C. 8D. 6答案:D解析:设两直角边分别为a、b,a + b + 5 = 12,a + b = 7,(a + b)²= 49,即a²+ 2ab + b²= 49,又因为a²+ b²= 25,所以2ab = 24,面积= 0.5ab = 68. 直角三角形的两直角边分别为6 和8,则斜边上的中线长为()A. 5B. 6C. 7D. 8答案:A解析:斜边= 10,斜边上的中线长为斜边的一半,即 59. 在△ABC 中,∠C = 90°,AB = 13,AC = 12,则BC 的长为()A. 5B. 6C. 7D. 8答案:A解析:BC = √(13²- 12²) = 510. 若一个直角三角形的两条边长分别为3 和5,则第三条边长为()A. 4B. √34C. 4 或√34D. 无法确定答案:C解析:当5 为斜边时,第三条边= √(5²- 3²) = 4;当 3 和5 为直角边时,第三条边= √(3²+ 5²) = √3411. 已知直角三角形的两边长分别为3 和4,则第三边长为()A. 5B. √7C. 5 或√7D. 不确定答案:C解析:当4 为斜边时,第三边= √(4²- 3²) = √7;当 3 和4 为直角边时,第三边= √(3²+ 4²) = 512. 一个直角三角形的两条直角边分别为15 和20,那么这个三角形的周长是()A. 60B. 75C. 80D. 85答案:D解析:斜边= √(15²+ 20²) = 25,周长= 15 + 20 + 25 = 6013. 直角三角形的一条直角边为12,斜边为13,则另一条直角边为()A. 5B. 6C. 7D. 8答案:A解析:另一条直角边= √(13²- 12²) = 514. 若直角三角形的斜边长为25,一条直角边长为7,则另一条直角边长为()A. 24B. 26C. 27D. 28答案:A解析:另一条直角边= √(25²- 7²) = 2415. 在Rt△ABC 中,∠C = 90°,若a = 5,b = 12,则c = ()A. 13B. 14C. 15D. 16答案:A解析:c = √(5²+ 12²) = 1316. 一个直角三角形的两条直角边分别为8cm 和15cm,则斜边为()A. 17cmB. 18cmC. 19cmD. 20cm答案:A解析:斜边= √(8²+ 15²) = 17cm17. 若直角三角形的周长为30cm,斜边长为13cm,则其面积为()A. 30cm²B. 60cm²C. 90cm²D. 120cm²答案:B解析:设两直角边分别为a、b,a + b + 13 = 30,a + b = 17,(a + b)²= 289,即a²+ 2ab + b²= 289,又因为a²+ b²= 13²= 169,所以2ab = 120,面积= 0.5ab = 30cm²18. 直角三角形的一条直角边长为11,另一条直角边长为60,则斜边的长为()A. 61B. 62C. 63D. 64答案:A解析:斜边= √(11²+ 60²) = 6119. 在直角三角形中,两直角边分别为5 和12,那么斜边上的中线长为()A. 6.5B. 7.5C. 8.5D. 9.5答案:A解析:斜边= 13,斜边上的中线长为6.520. 已知一个直角三角形的两条直角边分别为6 和8,那么这个直角三角形斜边上的高为()A. 4.8B. 5C. 6D. 8答案:A解析:斜边= 10,三角形面积= 0.5×6×8 = 0.5×10×斜边上的高,解得斜边上的高为 4.821. 直角三角形的两直角边分别为9 和12,则此直角三角形的周长为()A. 21B. 30C. 36D. 42答案:C解析:斜边= √(9²+ 12²) = 15,周长= 9 + 12 + 15 = 3622. 若直角三角形的两直角边长分别为3cm 和4cm,则斜边上的高为()A. 2.4cmB. 2.5cmC. 2.6cmD. 2.7cm答案:A解析:斜边= 5cm,三角形面积= 0.5×3×4 = 0.5×5×斜边上的高,解得斜边上的高为2.4cm23. 一个直角三角形的两条直角边分别为7和24,则斜边为()A. 25B. 26C. 27D. 28答案:A解析:斜边= √(7²+ 24²) = 2524. 直角三角形的一条直角边为5,斜边为13,则另一条直角边为()A. 12B. 13C. 14D. 15答案:A解析:另一条直角边= √(13²- 5²) = 1225. 在△ABC 中,∠C = 90°,BC = 6,AC = 8,则AB 的长为()A. 9B. 10C. 11D. 12答案:B解析:AB = √(6²+ 8²) = 1026. 若直角三角形的三边长分别为5,12,x,则x 的值可能是()A. 13B. 14C. 15D. 17答案:A解析:当x 为斜边时,x = √(5²+ 12²) = 13;当12 为斜边时,x = √(12²- 5²) = √119,因为选项中只有13,所以x = 1327. 一个直角三角形的两条直角边分别为18和24,则这个三角形的周长为()A. 60B. 72C. 84D. 96答案:C解析:斜边= √(18²+ 24²) = 30,周长= 18 + 24 + 30 = 7228. 直角三角形的一条直角边为16,斜边为20,则另一条直角边为()A. 12B. 13C. 14D. 15答案:A解析:另一条直角边= √(20²- 16²) = 1229. 在Rt△ABC 中,∠C = 90°,若a = 8,b = 15,则c = ()A. 17B. 18C. 19D. 20答案:A解析:c = √(8²+ 15²) = 1730. 已知直角三角形的两边长分别为5和13,则第三边长为()A. 12B. √194C. 12 或√194D. 不能确定答案:C解析:当13 为斜边时,第三边= √(13²- 5²) = 12;当 5 和13 为直角边时,第三边= √(5²+ 13²) = √19431. 一个直角三角形的两条直角边分别为10和24,则斜边为()A. 25B. 26C. 27D. 28答案:B解析:斜边= √(10²+ 24²) = 2632. 若直角三角形的周长为24,斜边长为10,则其面积为()A. 24B. 36C. 48D. 96答案:B解析:设两直角边分别为a、b,a + b + 10 = 24,a + b = 14,(a + b)²= 196,即a²+ 2ab + b²= 196,又因为a²+ b²= 100,所以2ab = 96,面积= 0.5ab = 2433. 直角三角形的一条直角边长为7,斜边为25,则另一条直角边为()A. 24B. 26C. 27D. 28答案:A解析:另一条直角边= √(25²- 7²) = 2434. 在△ABC 中,∠C = 90°,AB = 17,AC = 15,则BC 的长为()A. 8B. 9C. 10D. 11答案:A解析:BC = √(17²- 15²) = 835. 若一个直角三角形的两条边长分别为8和15,则第三条边长为()A. 17B. √161C. 17 或√161D. 无法确定答案:C解析:当15 为斜边时,第三条边= √(15²- 8²) = √161;当8 和15 为直角边时,第三条边= √(8²+ 15²) = 1736. 已知直角三角形的两边长分别为8和10,则第三边长为()A. 6B. 2√41C. 6 或2√41D. 不确定答案:C解析:当10 为斜边时,第三边= √(10²- 8²) = 6;当8 和10 为直角边时,第三边= √(8²+ 10²) = 2√4137. 一个直角三角形的两条直角边分别为20和21,则这个三角形的周长是()A. 60B. 61C. 62D. 63答案:D解析:斜边= √(20²+ 21²) = 29,周长= 20 + 21 + 29 = 7038. 直角三角形的一条直角边为24,斜边为25,则另一条直角边为()A. 7B. 8C. 9D. 10答案:A解析:另一条直角边= √(25²- 24²) = 739. 若直角三角形的斜边长为37,一条直角边长为12,则另一条直角边长为()A. 35B. 36C. 37D. 38答案:A解析:另一条直角边= √(37²- 12²) = 3540. 在Rt△ABC 中,∠C = 90°,若a = 12,b = 16,则c = ()答案:A解析:c = √(12²+ 16²) = 2041. 一个直角三角形的两条直角边分别为12cm 和16cm,则斜边为()A. 20cmB. 21cmC. 22cmD. 23cm答案:A解析:斜边= √(12²+ 16²) = 20cm42. 若直角三角形的周长为36cm,斜边长为15cm,则其面积为()A. 54cm²B. 60cm²C. 72cm²D. 81cm²答案:A解析:设两直角边分别为a、b,a + b + 15 = 36,a + b = 21,(a + b)²= 441,即a²+ 2ab + b²= 441,又因为a²+ b²= 15²= 225,所以2ab = 216,面积= 0.5ab = 54cm²43. 直角三角形的一条直角边长为18,另一条直角边长为24,则斜边的长为()A. 30B. 32C. 34D. 36答案:A解析:斜边= √(18²+ 24²) = 3044. 在直角三角形中,两直角边分别为7和24,那么斜边上的中线长为()A. 12.5B. 13C. 13.5D. 14答案:A解析:斜边= 25,斜边上的中线长为斜边的一半,即12.545. 已知一个直角三角形的两条直角边分别为9和12,那么这个直角三角形斜边上的高为()A. 7.2B. 7.5C. 7.8D. 8答案:A解析:斜边= 15,三角形面积= 0.5×9×12 = 0.5×15×斜边上的高,解得斜边上的高为7.246. 直角三角形的两直角边分别为15和20,则此直角三角形的周长为()A. 60B. 70C. 80D. 90答案:B解析:斜边= 25,周长= 15 + 20 + 25 = 6047. 若直角三角形的两直角边长分别为5cm和12cm,则斜边上的高为()A. 6cmB. 8cmC. 60/13 cmD. 120/13 cm答案:C解析:斜边= 13cm,三角形面积= 0.5×5×12 = 0.5×13×斜边上的高,解得斜边上的高为60/13 cm48. 一个直角三角形的两条直角边分别为25和60,则斜边为()A. 65B. 70C. 75D. 80答案:A解析:斜边= √(25²+ 60²) = 6549. 直角三角形的一条直角边为36,斜边为39,则另一条直角边为()A. 15B. 16C. 17D. 18答案:A解析:另一条直角边= √(39²- 36²) = 1550. 在△ABC 中,∠C = 90°,BC = 8,AC = 15,则AB 的长为()答案:B解析:AB = √(8²+ 15²) = 1751. 若直角三角形的三边长分别为8,15,x,则x 的值可能是()A. 17B. 18C. 19D. 20答案:A解析:当x 为斜边时,x = √(8²+ 15²) = 17;当15 为斜边时,x = √(15²- 8²) = √161,因为选项中只有17,所以x = 1752. 一个直角三角形的两条直角边分别为30和40,则这个三角形的周长为()A. 90B. 100C. 110D. 120答案:D解析:斜边= 50,周长= 30 + 40 + 50 = 12053. 直角三角形的一条直角边长为48,斜边为50,则另一条直角边为()A. 14B. 16C. 18D. 20答案:A解析:另一条直角边= √(50²- 48²) = 1454. 在Rt△ABC 中,∠C = 90°,若a = 10,b = 24,则c = ()A. 25B. 26C. 27D. 28答案:B解析:c = √(10²+ 24²) = 2655. 已知直角三角形的两边长分别为12和16,则第三边长为()A. 20B. 4√7C. 20 或4√7D. 不能确定答案:C解析:当16 为斜边时,第三边= √(16²- 12²) = 4√7;当12 和16 为直角边时,第三边= √(12²+ 16²) = 2056. 一个直角三角形的两条直角边分别为40和41,则斜边为()A. 58B. 59C. 60D. 61答案:D解析:斜边= √(40²+ 41²) = 6157. 若直角三角形的周长为48,斜边长为20,则其面积为()A. 48B. 96C. 192D. 384答案:B解析:设两直角边分别为a、b,a + b + 20 = 48,a + b = 28,(a + b)²= 784,即a²+ 2ab + b²= 784,又因为a²+ b²= 20²= 400,所以2ab = 384,面积= 0.5ab = 9658. 直角三角形的一条直角边为50,斜边为52,则另一条直角边为()A. 16B. 18C. 20D. 22答案:A解析:另一条直角边= √(52²- 50²) = 1659. 在△ABC 中,∠C = 90°,AB = 29,AC = 21,则BC 的长为()A. 20B. 22C. 24D. 26答案:A解析:BC = √(29²- 21²) = 2060. 若一个直角三角形的两条边长分别为10和26,则第三条边长为()A. 24B. 2√69C. 24 或2√69D. 无法确定答案:C解析:当26 为斜边时,第三条边= √(26²- 10²) = 24;当10 和26 为直角边时,第三条边= √(10²+ 26²) = 2√6961. 已知直角三角形的两边长分别为14和16,则第三边长为()A. 2√51B. 2√65C. 2√51 或2√65D. 不确定答案:C解析:当16 为斜边时,第三边= √(16²- 14²) = 2√51;当14 和16 为直角边时,第三边= √(14²+ 16²) = 2√6562. 一个直角三角形的两条直角边分别为55和73,则斜边为()A. 90B. 92C. 94D. 96答案:A解析:斜边= √(55²+ 73²) = 9063. 若直角三角形的周长为56,斜边长为25,则其面积为()A. 84B. 96C. 108D. 120答案:A解析:设两直角边分别为a、b,a + b + 25 = 56,a + b = 31,(a + b)²= 961,即a²+ 2ab + b²= 961,又因为a²+ b²= 25²= 625,所以2ab = 336,面积= 0.5ab = 8464. 直角三角形的一条直角边为65,斜边为68,则另一条直角边为()A. 21B. 23C. 25D. 27答案:A解析:另一条直角边= √(68²- 65²) = 2165. 在Rt△ABC 中,∠C = 90°,若a = 18,b = 24,则c = ()A. 30B. 32C. 34D. 36答案:A解析:c = √(18²+ 24²) = 3066. 一个直角三角形的两条直角边分别为18cm和24cm,则斜边为()A. 30cmB. 32cmC. 34cmD. 36cm答案:A解析:斜边= √(18²+ 24²) = 30cm67. 若直角三角形的周长为40cm,斜边长为17cm,则其面积为()A. 30cm²B. 60cm²C. 90cm²D. 120cm²答案:B解析:设两直角边分别为a、b,a + b + 17 = 40,a + b = 23,(a + b)²= 529,即a²+ 2ab + b²= 529,又因为a²+ b²= 17²= 289,所以2ab = 240,面积= 0.5ab = 60cm²68. 直角三角形的一条直角边长为32,另一条直角边长为24,则斜边的长为()A. 40B. 42C. 44D. 46答案:A解析:斜边= √(32²+ 24²) = 4069. 在直角三角形中,两直角边分别为11和60,则斜边上的中线长为()A. 30.5B. 31C. 31.5D. 32答案:C解析:斜边= 61,斜边上的中线长为30.570. 已知一个直角三角形的两条直角边分别为13和14,那么这个直角三角形斜边上的高为()A. 12B. 12.5C. 120/13D. 130/14答案:C解析:斜边= √(13²+ 14²) = √365,三角形面积= 0.5×13×14 = 0.5×√365×斜边上的高,解得斜边上的高为120/1371. 直角三角形的两直角边分别为21和28,则此直角三角形的周长为()A. 77B. 80C. 84D. 88答案:A解析:斜边= 35,周长= 21 + 28 + 35 = 8472. 若直角三角形的两直角边长分别为7cm和24cm,则斜边上的高为()A. 72/25 cmB. 84/25 cmC. 168/25 cmD. 252/25 cm答案:B解析:斜边= 25cm,三角形面积= 0.5×7×24 = 0.5×25×斜边上的高,解得斜边上的高为84/25 cm73. 一个直角三角形的两条直角边分别为75和100,则斜边为()A. 125B. 130C. 135D. 140答案:A解析:斜边= √(75²+ 100²) = 12574. 直角三角形的一条直角边为80,斜边为89,则另一条直角边为()A. 39B. 41C. 43D. 45答案:A解析:另一条直角边= √(89²- 80²) = 3975. 在△ABC 中,∠C = 90°,BC = 12,AC = 9,则AB 的长为()A. 13B. 14C. 15D. 16答案:C解析:AB = √(12²+ 9²) = 1576. 若直角三角形的三边长分别为15,20,x,则x 的值可能是()A. 25B. 26C. 27D. 28答案:A解析:当x 为斜边时,x = √(15²+ 20²) = 25;当20 为斜边时,x = √(20²- 15²) = 5√7,因为选项中只有25,所以x = 2577. 一个直角三角形的两条直角边分别为84和13,则斜边为()A. 85B. 86C. 87D. 88答案:A解析:斜边= √(84²+ 13²) = 8578. 若直角三角形的周长为60,斜边长为26,则其面积为()A. 72B. 96C. 108D. 120答案:B解析:设两直角边分别为a、b,a + b + 26 = 60,a + b = 34,(a + b)²= 1156,即a²+ 2ab + b²= 1156,又因为a²+ b²= 26²= 676,所以2ab = 480,面积= 0.5ab = 12079. 直角三角形的一条直角边为96,斜边为100,则另一条直角边为()A. 28B. 32C. 36D. 40答案:B解析:另一条直角边= √(100²- 96²) = 3280. 在Rt△ABC 中,∠C = 90°,若a = 20,b = 21,则c = ()A. 29B. 30C. 31D. 32答案:A解析:c = √(20²+ 21²) = 2981. 已知直角三角形的两边长分别为20 和25,则第三边长为()A. 15B. 5√41C. 15 或5√41D. 不确定答案:C解析:当25 为斜边时,第三边= √(25²- 20²) = 15;当20 和25 为直角边时,第三边= √(20²+ 25²) = 5√4182. 一个直角三角形的两条直角边分别为63 和16,则斜边为()A. 65B. 67C. 69D. 71答案:A解析:斜边= √(63²+ 16²) = 6583. 若直角三角形的周长为70,斜边长为29,则其面积为()A. 120B. 130C. 140D. 150答案:A解析:设两直角边分别为a、b,a + b + 29 = 70,a + b = 41,(a + b)²= 1681,即a²+ 2ab + b²= 1681,又因为a²+ b²= 29²= 841,所以2ab = 840,面积= 0.5ab = 21084. 直角三角形的一条直角边为72,斜边为75,则另一条直角边为()A. 27B. 29C. 31D. 33答案:A解析:另一条直角边= √(75²- 72²) = 2785. 在△ABC 中,∠C = 90°,AB = 37,AC = 35,则BC 的长为()A. 12B. 14C. 16D. 18答案:A解析:BC = √(37²- 35²) = 1286. 若一个直角三角形的两条边长分别为18 和32,则第三条边长为()A. 38B. 14√2C. 38 或14√2D. 无法确定答案:C解析:当32 为斜边时,第三条边= √(32²- 18²) = 14√2;当18 和32 为直角边时,第三条边= √(18²+ 32²) = 3887. 已知直角三角形的两边长分别为9 和11,则第三边长为()A. √22B. √40C. √22 或√202D. 不确定答案:C解析:当11 为斜边时,第三边= √(11²- 9²) = √22;当9 和11 为直角边时,第三边= √(9²+ 11²) = √20288. 一个直角三角形的两条直角边分别为45和28,则斜边为()A. 53B. 55C. 57D. 59答案:A解析:斜边= √(45²+ 28²) = 5389. 若直角三角形的周长为66,斜边长为26,则其面积为()A. 96B. 108C. 112D. 120答案:B解析:设两直角边分别为a、b,a + b + 26 = 66,a + b = 40,(a + b)²= 1600,即a²+ 2ab + b²= 1600,又因为a²+ b²= 26²= 676,所以2ab = 924,面积= 0.5ab = 11290. 直角三角形的一条直角边为108,斜边为110,则另一条直角边为()A. 32B. 34C. 36D. 38答案:D解析:另一条直角边= √(110²- 108²) = 3891. 在Rt△ABC 中,∠C = 90°,若a = 30,b = 40,则c = ()A. 50B. 60C. 70D. 80答案:A解析:c = √(30²+ 40²) = 5092. 一个直角三角形的两条直角边分别为36cm 和48cm,则斜边为()A. 60cmB. 62cmC. 64cmD. 66cm答案:A解析:斜边= √(36²+ 48²) = 60cm93. 若直角三角形的周长为56cm,斜边长为20cm,则其面积为()A. 96cm²B. 112cm²C. 128cm²D. 144cm²答案:A解析:设两直角边分别为a、b,a + b + 20 = 56,a + b = 36,(a + b)²= 1296,即a²+ 2ab + b²= 1296,又因为a²+ b²= 20²= 400,所以2ab = 896,面积= 0.5ab = 96cm²94. 直角三角形的一条直角边为78,斜边为85,则另一条直角边为()A. 37B. 39C. 41D. 43答案:B解析:另一条直角边= √(85²- 78²) = 3995. 在△ABC 中,∠C = 90°,BC = 16,AC = 30,则AB 的长为()A. 34B. 36C. 38D. 40答案:A解析:AB = √(16²+ 30²) = 3496. 若直角三角形的三边长分别为24,10,x,则x 的值可能是()A. 26B. 22C. 26 或22D. 不能确定答案:C解析:当x 为斜边时,x = √(24²+ 10²) = 26;当24 为斜边时,x = √(24²- 10²) = 2297. 一个直角三角形的两条直角边分别为90和120,则斜边为()A. 150B. 160C. 170D. 180答案:A解析:斜边= √(90²+ 120²) = 15098. 若直角三角形的周长为84,斜边长为37,则其面积为()A. 120B. 126C. 132D. 138答案:B解析:设两直角边分别为a、b,a + b + 37 = 84,a + b = 47,(a + b)²= 2209,即a²+ 2ab + b²= 2209,又因为a²+ b²= 37²= 1369,所以2ab = 840,面积= 0.5ab = 12699. 直角三角形的一条直角边为132,斜边为137,则另一条直角边为()A. 45B. 47C. 49D. 51答案:A解析:另一条直角边= √(137²- 132²) = 45100. 在Rt△ABC 中,∠C = 90°,若a = 48,b = 55,则c = ()A. 73 B. 75 C. 77 D. 79答案:A解析:c = √(48²+ 55²) = 73。

勾股定理专题训练试题精选八附答案

勾股定理专题训练试题精选八附答案

勾股定理专题训练试题精选(八)一.选择题(共29小题)1.如图,△ABC的三边长为5,12,13.设其三条高的交点为H,外心为O,求OH.2.在△ABC中,∠ACB﹣∠B=90°,∠BAC的角平分线交BC于E,△BAC的外角平分线交BC于F,证明:AE=AF.3.如图,以等腰直角△ABC的直角边AC作等边△ACD,CE⊥AD于E,BD、CE交于点F.(1)求∠DFE的度数;(2)求证:AB=2DF.4.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.5.请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(在图甲中画出)(3)以(1)中的AB为边的两个四边形,使它们都是中心对称图形且不全等,其顶点都在格点上,各边长都是无理数.(在图乙中画出)7.△ABC中,AB=,BC=,AC=,求这个三角形的面积.(1)小明同学是用构图法解答本题的,建立一个正方形网格(小正方形的边长为1),在网格中画出符合条件的格点三角形ABC,这样不必求△ABC的高而借助网格可得△ABC面积为_________.(2)若△ABC三边长为、、(a>0),请利用图2的正方形网格(小正方形边长为a),画出相应的△ABC,并求出它的面积.8.如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2厘米?(把实际问题转化为几何问题)9.(1)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D,过P作PE⊥AC于点E.设P点运动时间为t.①当点P在线段AB上运动时,线段DE的长度是否改变?若不改变,求出DE的值;若改变,请说明理由.下面给出一种解题的思路,你可以按这一思路解题,也可以选择另外的方法解题.解:过Q作QF⊥直线AC于点M∵PE⊥AC于点E,QF⊥直线AC于点M∴∠AEP=∠F=90°(下面请你完成余下的解题过程)②当点P在线段AB的延长线上运动时,(1)中的结论是否还成立?请在图2画出图形并说明理由.(2)若将(1)中的“腰长为10cm的等腰直角△ABC”改为“边长为a的等边△ABC”时(其余条件不变),则线段DE的长度又如何?(直接写出答案,不需要解题过程)(3)若将(2)中的“等边△ABC”改为“△ABC”(其余条件不变),请你做出猜想:当△ABC满足_________条件时,(2)中的结论仍然成立.(直接写出答案,不需要解题过程)10.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)设AC和DE交于点M,若AD=6,BD=8,求ED与AM的长.11.已知:如图1,当△ABO和△CDO是两个等腰直角三角形,OA与OC,OB与OD,都在同一条直线上,∠ABO 和∠CDO的角平分线分别交AC于点E和F.(1)求证:AC=2(BE+DF)(2)如图2,当△ABO和△CDO变为两个全等的直角三角形且OA与OC不在同一条直线上时,连接AC与BD 交于点G,其余条件都不变,那么(1)中的结论还成立吗?如果成立请证明,不成立说明你的理由.12.已知:在四边形ABCD中,∠D=90°,DC=3cm,AD=4cm,AB=12cm,BC=13cm.求四边形ABCD的面积.13.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答:(1)如果的整数部分为a,那么a=_________.如果,其中b是整数,且0<c<1,那么b= _________,c=_________.(2)将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF的长.(1)图1中阴影正方形的面积是多少?并由已求面积求边长AB的长;(2)在图2:3×3正方形方格中,由题(1)的解题思路和方法,设计一个方案画出长为的线段,并说明理由.16.正方形网格中,小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.下图1中的正方形网格中△ABC 是格点三角形,小正方形网格的边长为1(单位长度).(1)△ABC的面积是_________(平方单位);(2)在图2所示的正方形网格中作出格点△A′B′C′和△A″B″C″,使△A′B′C′∽△ABC,△A″B″C″∽△ABC,且AB、A′B′、A″B″中任意两条线段的长度都不相等;(3)在所有与△ABC相似的格点三角形中,是否存在面积为3(平方单位)的格点三角形?如果存在,请在图3中作出,如果不存在,请说明理由.17.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位,记平移后的对应三角形为△DEF,连接BE.(1)当x=4时,求四边形ABED的周长;(2)当x为何值时,△BED是等腰三角形?18.已知一个三角形的三边长分别是7厘米,3厘米,第三边长为x厘米.(1)求第三边x的取值范围;(2)在(1)的条件下,取x的偶数值为直角△ABC的两直角边长(AC>BC),此时AB=10厘米,若P为斜边AB上的一个动点,求PC的最小值.19.阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为_________;参考小明解决问题的方法,完成下列问题:(2)图2是一个正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为、、的格点△DEF;②计算△DEF的面积为_________.(3)如图3,已知△ABC,以AB,AC为边向外作正方形ABDE,ACFG,连接EG.若AB=,BC=,AC=,则六边形BCFGED的面积为_________.20.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,请证明你的结论.21.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.22.如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足,且c是不等式组的最大整数解.(1)求a、b、c的长.(2)若AE平分△ABC的周长,求∠BEA的大小.23.如图1,在△ABC,∠A=45°,延长CB至D,使得BD=BC.(1)若∠ACB=90°,求证:BD=AC;(2)如图2,分别过点D和点C作AB所在直线的垂线,垂足分别为E、F,求证:DE=CF;(3)如图3,若将(1)中“∠ACB=90°”改为“∠ACB=m°,并在AB延长线上取点G,使得∠1=∠A”.试探究线段AC、DG的数量与位置关系.24.如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.25.已知:两个等腰直角三角形(△ACB和△BED)边长分别为a和b(a<b)如图放置在一起,连接AD.(1)求△ABD的面积;(2)如果有一个P点正好位于线段CE的中点,连接AP、DP得到△APD,求△APD的面积;(3)(2)中的△APD的面积记为S1,(1)中的△ABD的面积记为S2,则S1与S2的大小关系是_________.A.S1=S2B.S1<S2C.S1>S2D.无法确定.26.如图,正三角形ABC的边长为a,D是BC的中点,P是AC边上的点,连接PB和PD得到△PBD.求:(1)当点P运动到AC的中点时,△PBD的周长;(2)△PBD的周长的最小值.27.如图,直角坐标系中,已知A(2,4),B(5,0),动点P从B点出发,沿BO向终点O移动;动点Q从点A 点出发,沿AB向终点B移动.两点同时出发,速度均为每秒1个单位.设从出发起运动了x秒.(1)点P的坐标是(_________,_________);(2)点Q的坐标是(_________,_________);(3)x为何值时,△APQ是以AP为腰的等腰三角形?28.如图,在直角三角形ABC中∠C=90°.AC=4,BC=3,在直角三角形ABC外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,见图示.请在四个备用图中分别画出与示例图不同的拼接方法,并在图中标明拼接的直角三角形的三边长.29.如图,Rt△ABC中,∠C=90°,AD、BE分别是BC、AC边上的中线,AD=2,BE=5,求AB的长.二.解答题(共1小题)30.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=_________cm;(2)当t为多少时,四边形PQCD成为平行四边形?勾股定理专题训练试题精选(八)参考答案与试题解析一.选择题(共29小题)1.如图,△ABC的三边长为5,12,13.设其三条高的交点为H,外心为O,求OH.就是斜边上的中线,等于斜边的一半是.×.2.在△ABC中,∠ACB﹣∠B=90°,∠BAC的角平分线交BC于E,△BAC的外角平分线交BC于F,证明:AE=AF.(∠(∠BAE=3.如图,以等腰直角△ABC的直角边AC作等边△ACD,CE⊥AD于E,BD、CE交于点F.(1)求∠DFE的度数;(2)求证:AB=2DF.BDC=(=,4.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.5.请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(在图甲中画出)(3)以(1)中的AB为边的两个四边形,使它们都是中心对称图形且不全等,其顶点都在格点上,各边长都是无理数.(在图乙中画出)26.已知:如图所示,Rt△ABC中,∠C=90°,∠ABC=60°,DC=11,D点到AB的距离为2,求BD的长.DE=2BD=即可求AE=,7.△ABC中,AB=,BC=,AC=,求这个三角形的面积.(1)小明同学是用构图法解答本题的,建立一个正方形网格(小正方形的边长为1),在网格中画出符合条件的格点三角形ABC,这样不必求△ABC的高而借助网格可得△ABC面积为 3.5.(2)若△ABC三边长为、、(a>0),请利用图2的正方形网格(小正方形边长为a),画出相应的△ABC,并求出它的面积.×﹣×××﹣8.如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2厘米?(把实际问题转化为几何问题)PQ=PQ=,.9.(1)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D,过P作PE⊥AC于点E.设P点运动时间为t.①当点P在线段AB上运动时,线段DE的长度是否改变?若不改变,求出DE的值;若改变,请说明理由.下面给出一种解题的思路,你可以按这一思路解题,也可以选择另外的方法解题.解:过Q作QF⊥直线AC于点M(下面请你完成余下的解题过程)②当点P在线段AB的延长线上运动时,(1)中的结论是否还成立?请在图2画出图形并说明理由.(2)若将(1)中的“腰长为10cm的等腰直角△ABC”改为“边长为a的等边△ABC”时(其余条件不变),则线段DE的长度又如何?(直接写出答案,不需要解题过程)(3)若将(2)中的“等边△ABC”改为“△ABC”(其余条件不变),请你做出猜想:当△ABC满足∠A=∠ACB条件时,(2)中的结论仍然成立.(直接写出答案,不需要解题过程)AE=CF=EFAC==10=EF=((=AC=5DE=DF=a AC10.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)设AC和DE交于点M,若AD=6,BD=8,求ED与AM的长.=10=,DE=5DG==﹣,==,,MG=AM===,即AM=11.已知:如图1,当△ABO和△CDO是两个等腰直角三角形,OA与OC,OB与OD,都在同一条直线上,∠ABO 和∠CDO的角平分线分别交AC于点E和F.(1)求证:AC=2(BE+DF)(2)如图2,当△ABO和△CDO变为两个全等的直角三角形且OA与OC不在同一条直线上时,连接AC与BD 交于点G,其余条件都不变,那么(1)中的结论还成立吗?如果成立请证明,不成立说明你的理由.BE=AO DF=OC12.已知:在四边形ABCD中,∠D=90°,DC=3cm,AD=4cm,AB=12cm,BC=13cm.求四边形ABCD的面积.AD==5cm=×13.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答:(1)如果的整数部分为a,那么a=3.如果,其中b是整数,且0<c<1,那么b=4,c=﹣1.(2)将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.<)∵<<的整数部分为=b+c=5﹣14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF的长.即EG==5CE=515.观察图1:每个小正方形的边长均是1,我们可以得到小正方形的面积1.(1)图1中阴影正方形的面积是多少?并由已求面积求边长AB的长;(2)在图2:3×3正方形方格中,由题(1)的解题思路和方法,设计一个方案画出长为的线段,并说明理由.×,==16.正方形网格中,小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.下图1中的正方形网格中△ABC 是格点三角形,小正方形网格的边长为1(单位长度).(1)△ABC的面积是5(平方单位);(2)在图2所示的正方形网格中作出格点△A′B′C′和△A″B″C″,使△A′B′C′∽△ABC,△A″B″C″∽△ABC,且AB、A′B′、A″B″中任意两条线段的长度都不相等;(3)在所有与△ABC相似的格点三角形中,是否存在面积为3(平方单位)的格点三角形?如果存在,请在图3中作出,如果不存在,请说明理由.﹣=16,是不可能由格点三角形构成,所以不存在.17.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位,记平移后的对应三角形为△DEF,连接BE.(1)当x=4时,求四边形ABED的周长;(2)当x为何值时,△BED是等腰三角形?=或18.已知一个三角形的三边长分别是7厘米,3厘米,第三边长为x厘米.(1)求第三边x的取值范围;(2)在(1)的条件下,取x的偶数值为直角△ABC的两直角边长(AC>BC),此时AB=10厘米,若P为斜边AB上的一个动点,求PC的最小值.厘米,由勾股定理可知,=10由勾股定理可知,=÷19.阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为5;参考小明解决问题的方法,完成下列问题:(2)图2是一个正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为、、的格点△DEF;②计算△DEF的面积为7.(3)如图3,已知△ABC,以AB,AC为边向外作正方形ABDE,ACFG,连接EG.若AB=,BC=,AC=,则六边形BCFGED的面积为22.×﹣×﹣×﹣﹣﹣﹣×﹣﹣3=×﹣×﹣.(+20.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,请证明你的结论.21.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.22.如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足,且c是不等式组的最大整数解.(1)求a、b、c的长.(2)若AE平分△ABC的周长,求∠BEA的大小.)方程组的解为不等式组23.如图1,在△ABC,∠A=45°,延长CB至D,使得BD=BC.(1)若∠ACB=90°,求证:BD=AC;(2)如图2,分别过点D和点C作AB所在直线的垂线,垂足分别为E、F,求证:DE=CF;(3)如图3,若将(1)中“∠ACB=90°”改为“∠ACB=m°,并在AB延长线上取点G,使得∠1=∠A”.试探究线段AC、DG的数量与位置关系.24.如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.25.已知:两个等腰直角三角形(△ACB和△BED)边长分别为a和b(a<b)如图放置在一起,连接AD.(1)求△ABD的面积;(2)如果有一个P点正好位于线段CE的中点,连接AP、DP得到△APD,求△APD的面积;(3)(2)中的△APD的面积记为S1,(1)中的△ABD的面积记为S2,则S1与S2的大小关系是C.A.S1=S2B.S1<S2C.S1>S2D.无法确定.ABBD==××﹣,﹣﹣﹣abab+b(ab=26.如图,正三角形ABC的边长为a,D是BC的中点,P是AC边上的点,连接PB和PD得到△PBD.求:(1)当点P运动到AC的中点时,△PBD的周长;(2)△PBD的周长的最小值.BP=DP=BD=),所以BE=2a,,,.的周长的最小值是27.如图,直角坐标系中,已知A(2,4),B(5,0),动点P从B点出发,沿BO向终点O移动;动点Q从点A 点出发,沿AB向终点B移动.两点同时出发,速度均为每秒1个单位.设从出发起运动了x秒.(1)点P的坐标是(5﹣x,0);(2)点Q的坐标是(2+,4﹣);(3)x为何值时,△APQ是以AP为腰的等腰三角形?=,,x﹣x=2+,﹣=x=;=或秒时,,)x=或28.如图,在直角三角形ABC中∠C=90°.AC=4,BC=3,在直角三角形ABC外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,见图示.请在四个备用图中分别画出与示例图不同的拼接方法,并在图中标明拼接的直角三角形的三边长.的等腰三角形.29.如图,Rt△ABC中,∠C=90°,AD、BE分别是BC、AC边上的中线,AD=2,BE=5,求AB的长.,.二.解答题(共1小题)30.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=12cm;(2)当t为多少时,四边形PQCD成为平行四边形?EC==8cm。

《勾股定理》专题复习(含答案)

《勾股定理》专题复习(含答案)

第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180—60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A 3A4A 5A 5E2E 1E1D 1C 1B 4C 3C 2C图3122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C)222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7。

勾股定理的应用十种最常考类型(解析版) 八年级数学下册专题训练

勾股定理的应用十种最常考类型(解析版) 八年级数学下册专题训练

专题05勾股定理的应用十种最常考类型(解析版)类型一大树折断问题【典例1】(2023春•德庆县期末)如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地面上,此处离树底部8m处.【思路引领】首先设树顶端落在离树底部x米处,根据勾股定理可得62+x2=(16﹣6)2,再解即可.【解答】解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.【总结提升】此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.【变式训练】1.(2023•南宁模拟)在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.55【思路引领】画出图形,设折断处离地面x尺,则AB=(10﹣x)尺,由勾股定理得出方程,解方程即可.【解答】解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.【总结提升】此题主要考查了勾股定理的应用,正确应用勾股定理得出方程是解题的关键.类型二水杯中的筷子问题及类似问题【典例2】(2023春•陕州区期中)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13【思路引领】如图,过A作AB⊥BC于B,根据勾股定理即可得到结论.【解答】解:如图,过A作AB⊥BC于B,∵下底面半径是5,高是12,∴AB=12,BC=5,∴AC=B2+B2=122+52=13,∴a的长度的取值范围是12≤a≤13,故选A.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息,正确理解题意是解题的关键.【变式训练】1.(2023春•盐山县期末)如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【思路引领】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.2.(2022秋•安阳县期末)从前有一个人拿着竹竿进城,横拿竖拿都进不去,横着比城门宽43,竖着比城门高23,另一个人告诉他沿着城门的两对角斜着拿竿,这个人一试,不多不少刚好进去了,则竹竿的长度为103.【思路引领】设竹竿的长为x米,根据门框的边长的平方和等于竹竿的长的平方列方程,解一元二次方程即可.【解答】解:设竹竿的长为x米,由题意得:(−43)2+(−23)2=2,解得:1=103,2=23(舍去),故答案为:103.【总结提升】本题考查一元二次方程的应用;得到门框的边长和竹竿长的等量关系是解决本题的关键.类型三梯子滑动问题【典例3】(2020春•硚口区期中)如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为()A.10米B.6米C.7米D.8米【思路引领】首先设BO=x米,则DO=(x+2)米,利用勾股定理可列出方程,再解可得BO长,然后再利用勾股定理计算出AB长.【解答】解:由题意得:AC=BD=2米,∵AO=8米,∴CO=6米,设BO=x米,则DO=(x+2)米,由题意得:62+(x+2)2=82+x2,解得:x=6,AB=82+62=10(米),故选:A.【总结提升】此题主要考查了勾股定理的应用,关键是掌握直角三角形两直角边的平方和等于斜边的平方.【变式训练】1.(2023秋•新泰市期中)如图,一架梯子若靠墙直立时比窗户的下沿高1m.若斜靠在墙上,当梯子的下端离墙5m时,梯子的上端恰好与窗户的下沿对齐.则梯子的长度为()A.13m B.12m C.15m D.172【思路引领】设梯子的长度为x m,根据勾股定理列方程即可得到结论.【解答】解:设梯子的长度为x m,根据勾股定理得,52+(x﹣1)2=x2,解得x=13,答:梯子的长度为13m,故选:A.【总结提升】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.2.(2023秋•北京期末)如图,小巷左右两侧是竖直的墙,已知小巷的宽度CE是2.2米.一架梯子AB斜靠在左墙时,梯子顶端A与地面点C距离是2.4米.如果保持梯子底端B位置不动,将梯子斜靠在右墙时,梯子顶端D与地面点E距离是2米.求此时梯子底端B到右墙角点E的距离是多少米.【思路引领】设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,在Rt△ABC和Rt △DBE中,根据勾股定理列出方程,解方程即可.【解答】解:设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,由题意可知,AC=2.4米,DE=2米,AB=DB,在Rt△ABC和Rt△DBE中,由勾股定理得:AB2=BC2+AC2,DB2=BE2+DE2,∴BC2+AC2=BE2+DE2,即(2.2﹣x)2+2.42=x2+4,解得:x=1.5,答:此时梯子底端B到右墙角点E的距离是1.5米.【总结提升】本题考查了勾股定理的应用,根据勾股定理列出方程是解题的关键.3.(2023秋•宝丰县期末)如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,如果梯子的底端P不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB.(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B处,若MA=1.6米,AP=1.2米,则甲房间的宽度AB= 3.2米.(2)当他在乙房间时,测得MA=2.4米,MP=2.5米,且∠MPN=90°,求乙房间的宽AB;(3)当他在丙房间时,测得MA=2.8米,且∠MPA=75°,∠NPB=45°.①求∠MPN的度数;②求丙房间的宽AB.【思路引领】(1)根据勾股定理即可得到结论;(2)证明△AMP≌△BPN,从而得到MA=PB=2.4米,PA=NB=0.7米,即可求出AB=PA+PB;(3)①根据平角的定义即可求出∠MPN=60°;②根据PM=PN以及∠MPN的度数可得到△PMN为等边三角形.利用相应的三角函数表示出MN,MP的长,可得到房间宽AB和AM长相等.【解答】解:(1)在Rt△AMP中,∵∠A=90°,MA=1.6米,AP=1.2米,∴PM=B2+B2=1.62+1.22=2,∵PB=PM=2,∴甲房间的宽度AB=AP+PB=3.2米,故答案为:3.2;(2)∵∠MPN=90°,∴∠APM +∠BPN =90°,∵∠APM +∠AMP =90°,∴∠AMP =∠BPN .在△AMP 与△BPN 中,∠B =∠B ∠B =∠B =90°B =B,∴△AMP ≌△BPN ,∴MA =PB =2.4,∵PA =B2−B 2=0.7,∴AB =PA +PB =0.7+2.4=3.1;(3)①∠MPN =180°﹣∠APM ﹣∠BPN =60°;②过N 点作MA 垂线,垂足点D ,连接NM .设AB =x ,且AB =ND =x .∵梯子的倾斜角∠BPN 为45°,∴△BNP 为等腰直角三角形,△PNM 为等边三角形(180°﹣45°﹣75°=60°,梯子长度相同),∠MND =15°.∵∠APM =75°,∴∠AMP =15°.∴∠DNM =∠AMP ,∵△PNM 为等边三角形,∴NM =PM .∴△AMP ≌△DNM (AAS ),∴AM =DN ,∴AB =DN =AM =2.8米,即丙房间的宽AB 是2.8米.【总结提升】此题考查了勾股定理的应用,全等三角形的应用,解直角三角形的应用,根据PM=PN以及∠MPN的度数得到△PMN为等边三角形是解题的关键.类型四立体图形中的最短距离问题【典例4】(2021春•饶平县期末)如图,长方体的底面边长均为3cm,高为5cm,如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要13cm.【思路引领】把立体图形转化为平面图形解决即可.【解答】解:将长方体展开,连接AB,根据两点之间线段最短,AB=52+122=13cm;故答案为:13【总结提升】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.【变式训练】1.(2023秋•沙坪坝区期中)如图,圆柱形容器中,高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为20cm.(容器厚度忽略不计)【思路引领】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,∴A′D=16cm,BD=12cm,∴在直角△A′DB中,A′B=162+122=20(cm).故答案为:20.【总结提升】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.(2022春•桦甸市期末)如图,是一块长,宽,高分别为6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的外表面,到长方体的另一个顶点B处吃食物,则它需要爬行的最短路径长是85cm.【思路引领】把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.【解答】解:第一种情况:把我们所看到的左面和上面组成一个平面,则这个长方形的长和宽分别是9和4,则所走的最短线段是AB=92+42=97(cm).第二种情况:把我们看到的前面与上面组成一个长方形,则这个长方形的长和宽分别是7和6,所以走的最短线段是AB=72+62=85(cm).第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是10和3,所以走的最短线段是AB=102+32=109(cm).∴它需要爬行的最短路径是85cm.故答案为:85cm.【总结提升】本题主要考查的是平面展开﹣最短路径问题,解决此题的关键是明确线段最短这一知识点,然后把长方体的一些面展开到一个平面内,求出最短的线段.3.(荆州中考)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm【思路引领】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=22dm,∴这圈金属丝的周长最小为2AC=42dm.故选:A.【总结提升】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.类型五选址满足条件问题【典例5】(2023春•永善县期中)如图,河CD的同侧有A、B两个村,且AB=213km,A、B两村到河的距离分别为AC=2km,BD=6km.现要在河边CD上建一水厂分别向A、B两村输送自来水,铺设水管的工程费每千米需2000元.请你在河岸CD上选择水厂位置0,使铺设水管的费用最省,并求出铺设水管的总费用w(元).【思路引领】作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,分别利用勾股定理求出AF和A'B的长即可.【解答】解:如图所示,作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,此时AO+BO最小,∵AC=2km,BD=6km,∴BF=4km,DE=2km,∵AB=213km,∴AF=(213)2−42=6(km),在Rt△BA'E中,由勾股定理得:A'B=′2+B2=62+(6+2)2=10(km),∴AO+BO=10(km),∴铺设水管的总费用W=10×2000=20000(元).【总结提升】本题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解题的关键.【变式训练】1.(2023春•红塔区期中)如图,在笔直的铁路上A,B两点相距20km,C、D为两村庄,DA=8km,CB=14km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求AE=13.3km.【思路引领】设AE=x km,即可得到EB=(20﹣x)km,结合DA⊥AB于点A,CB⊥AB于B根据勾股定理列式求解即可得到答案.【解答】解:设AE=x km,则EB=(20﹣x)km,∵DA⊥AB,CB⊥AB,DA=8km,CB=14km,∴DE2=x2+82=x2+64,DE2=(20﹣x)2+142=x2﹣40x+596,∵C、D两村到E站的距离相等,∴x2﹣40x+596=x2+64,解得:x=13.3,故答案为:13.3.【总结提升】本题考查勾股定理的应用,解题的关键是根据相等列等式求解.类型六航海问题【典例6】(2023春•黄陂区期中)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一小时后分别位于点Q,R处,且相距20海里.如果知道“远航”号沿北偏东50°方向航行,你能判断“海天”号沿哪个方向航行吗?请说明理由.【思路引领】利用勾股定理逆定理以及方向角得出答案.【解答】解:由题意可得:RP=12海里,PQ=16海里,QR=20海里,∵162+122=202,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿北偏东50°方向航行,∴∠RPN=40°,∴“海天”号沿北偏西40°方向航行.【总结提升】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.【变式训练】1.(2023秋•泰山区期末)如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时30分,我国反走私A艇发现正东方有一走私艇C以8海里/时的速度偷偷向我领海驶来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是20海里,A、B两艇的距离是12海里;反走私艇B测得距离C艇16海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?【思路引领】由勾股定理的逆定理得△ABC为直角三角形,且∠ABC=90°,再由三角形面积求出BE=485海里,然后由勾股定理得CE=645海里,即可解决问题.【解答】解:由题意可知,∠BEC=90°,∵AB2+BC2=122+162=202=AC2,∴△ABC为直角三角形,且∠ABC=90°,∵MN⊥AC,∴走私艇C进入我国领海的最短距离是CE,=12AB•BC=12AC•BE,∵S△ABC∴BE=B⋅B B=12×1620485(海里),∴CE=B2−B2==645(海里),∴645÷8=85(小时)=96分,∴9时30分+96分=11时6分.答:走私艇C最早在11时6分进入我国领海.【总结提升】本题考查了勾股定理的应用、勾股定理的逆定理以及三角形面积等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.类型七受台风或噪声影响问题【典例7】(2022秋•清水县月考)如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时107千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域.(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?【思路引领】(1)作AC⊥BF,则距点A最近的点即为C点,计算AC的长,若AC>200千米,则不受影响,反之,则受影响.(2)求出A城所受影响的距离DE,又有台风移动的速度,即可求解出其影响的时间.【解答】解:(1)A城市受影响.如图,过点A作AC⊥BF,则距离点C最近的距离为AC,∵AB=300,∠ABC=30°,∴AC=12AB=150<200,所以A城会受到这次台风的影响;(2)如图,∵距台风中心200千米的范围内是受这次台风影响的区域,则AD=AE=200,即DE为A城遭受这次台风的距离,CD=A2−B2=507,∴DE=1007,则t===10小时.故A城遭受这次台风影响的时间10小时.【总结提升】本题主要考查了方向角问题以及解直角三角形的简单运用,能够熟练掌握.【变式训练】1.(2022春•紫云县期末)如图,有两条公路OM,ON相交成30°,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON的方向行驶时,以P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大,若重型运输卡车P沿道路ON方向行驶的速度为5米/秒.(1)求卡车P对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间.【思路引领】(1)过点A作AH⊥ON于H,利用含30°角的直角三角形的性质可得答案;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,利用勾股定理求出CH的长,再根据等腰三角形的性质可得CD的长,从而求出时间.【解答】解:(1)过点A作AH⊥ON于H,∵∠O=30°,OA=80米,∴AH=12OA=40米,∴卡车P对学校A的噪声影响最大时,卡车P与学校A的距离为40米;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,由(1)知AH=40米,∴CH=B2−B2=502−402=30(米),∴CN=2CH=60(米),∴t=60÷5=12(秒),∴卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间为12秒.【总结提升】本题主要考查了勾股定理的实际应用,含30°角的直角三角形的性质,等腰三角形的性质,垂线段最短等知识,根据题意,构造出直角三角形是解题的关键.类型八求旗杆(大树)高度问题【典例8】(2023秋•开封期末)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A.14m B.15m C.16m D.17m【思路引领】根据题意画出示意图,设旗杆高度为x m,可得AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x m,过点C作CB⊥AD于B,则AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.【总结提升】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.【变式训练】1.(2023春•岳阳楼区期末)小华和小侨合作,用一块含30°的直角三角板,旗杆顶端垂到地面的绳子,测量长度的工具,测量学校旗杆的高度,如图,测得AD=0.5米,绳子部分长CD=6米,则学校旗杆AB的高度为()A.6.5米B.(63+0.5)米C.12.5米D.(65+0.5)米【思路引领】根据含30°角的直角三角形的性质得出2DC=BC,进而利用勾股定理解答即可.【解答】解:由题意知∠ABC=30°,CD⊥AB,∴BC=2CD=12米,A=63米,∵AD=0.5米,∴B=(63+0.5)米,故选:B.【总结提升】本题考查了含30度直角三角形的性质及勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.2.(2023秋•岱岳区期中)学习完《勾股定理》后,张老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为2米,将绳子拉直,且绳子底端与地面接触,此时绳子端点距离旗杆底端5米,则旗杆的高度为214米.【思路引领】在Rt△ABC中,由勾股定理得出关于AB的方程求解即可.【解答】解:如图,由题意可知,BD=2米,BC=5米,AC=AB+BD=(AB+2)米,在Rt△ABC中,由勾股定理得,AB2+BC2=AC2,即AB2+52=(AB+2)2,解得AB=214,∴旗杆的高度为214米.故答案为:214.【总结提升】本题考查了勾股定理的应用,熟记勾股定理是解题的关键.3.(2023秋•秦安县期末)如图,在一棵树的10米高B处,有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树的高度为15米.【思路引领】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【总结提升】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.类型九小鸟飞行距离问题【典例9】(2022秋•嵩县期末)如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6B.8C.10D.12【思路引领】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为8﹣2=6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离=82+62=10m.故选:C.【总结提升】本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.【变式训练】1.(2023秋•青羊区期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C 点(B,C两点处于同一水平面)的距离AC=25米.(1)求出BC的长度;(2)若小鸟竖直下降到达D点(D点在线段AB上),此时小鸟到地面C点的距离与下降的距离相同,求小鸟下降的距离.【思路引领】(1)在直角三角形中运用勾股定理即可求解;(2)在Rt△BDC中,根据勾股定理即可求解.【解答】解:(1)由题意知∠B=90°,∵AB=20米,AC=25米.∴BC=252−202=15米,(2)设AD=x,则CD=x,BD=20﹣x,在Rt△BDC中,DC2=BD2+BC2,∴x2=(20﹣x)2+152,解得x=1258,∴小鸟下降的距离为1258米.【总结提升】本题考查勾股定理,熟练掌握勾股定理是解题关键.类型十利用勾股定理表示无理数【典例10】(2022春•武昌区期末)平面直角坐标系中,点P(﹣4,2)到坐标原点的距离是()A.2B.4C.23D.25【思路引领】利用勾股定理计算可得结论.【解答】解:由题意得,点P到坐标原点的距离为:42+22=20=25.故选:D.【总结提升】本题考查了勾股定理,掌握勾股定理的内容是解决本题的关键.【变式训练】1.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是+1.【思路引领】由勾股定理求出AB的长,进而得到AC的长,再求出OC的长,得出点C的坐标,即可解决问题.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB=B2+B2=12+22=5,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=5,∴OC=AC+OA=5+1,∵交x轴正半轴于点C,∴点C的坐标为(5+1,0).故答案为:5+1.【总结提升】本题考查了勾股定理以及坐标与图形性质等知识,熟练掌握勾股定理是解题的关键.2.(2022秋•芗城区月考)用尺规作图在数轴上作出表示实数=10的点P(保留作图痕迹,不写作法).【思路引领】过表示1的点A作数轴的垂线AB,在垂线上截取AB=3,连接OB,以O为圆心,OB为半径作弧交数轴于P,则P即为所求的点.【解答】解:如图:点P表示的数即为10.【总结提升】此题主要考查了勾股定理以及作图,关键是掌握10是两直角边长分别为1和3的直角三角形的斜边长.3.(2023•长阳县一模)如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C,D均为格点,以A为圆心,AB长为半径作弧,交网格线CD于点E,则C,E两点间的距离为()A.3B.3−3C.3+12D.3−12【思路引领】如图:连接AE,则AE=2、AD=1,由勾股定理可求出DE,然后运用线段的和差即可解答.【解答】解:如图:连接AE,则AE=2,AD=1,∴DE=B2−A2=22−12=3,∴CE=CD﹣DE=3−3.故选B.【总结提升】本题主要考查了勾股定理的应用以及线段的和差,根据题意运用勾股定理求得DE是解答本题的关键.4.(2022秋•埇桥区期中)如图,网格中每个小正方形的边长均为1,点A、B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.3−1B.3−5C.5D.22【思路引领】连接AD,则AD=AB=3,在Rt△AED中,利用勾股定理求出DE即可得出答案.【解答】解:连接AD,由题意知:AD=AB=3,在Rt△AED中,由勾股定理得:ED=A2−B2=32−22=5,∴CD=CE﹣DE=3−5,故选:B.【总结提升】本题主要考查了勾股定理,求出DE的长是解题的关键.。

完整版)勾股定理培优专项练习

完整版)勾股定理培优专项练习

完整版)勾股定理培优专项练习勾股定理练(根据对称求最小值)基本模型:已知点A、B为直线m同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。

1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN有最小值,并求出最小值。

解:由于AE=1,所以DE=√3.连接BE,设∠EBN=x,则∠EBD=∠ABE-x=60°-x。

由正弦定理得:EN/ sinx = BN/sin(60°-x)。

=。

EN/BN = sinx/sin(60°-x)由于sinx/sin(60°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。

又由于XXX,所以问题转化为:在直线AD上找一点N,使得MN+EB最小。

连接AC,设交点为F,则∠ABF=∠FBD=30°,BF=AB/2=2.由于AF=AD-DF=√3-DF,所以MN+EB=BF+MN+EF=BF+FN。

由于FN=AF-AN=AF-AE=√3-1,所以MN+EB=2+MN+√3-1=MN+3+√3.因此,EN+BN的最小值为3+√3,此时x=30°。

2、已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。

解:连接BE,设∠EBN=x,则∠EBD=∠ABE-x=45°-x。

由正弦定理得:EN/sinx = BN/sin(45°-x)。

=。

EN/BN = sinx/sin(45°-x)由于sinx/sin(45°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。

又由于XXX,所以问题转化为:在对角线AC上找一点N,使得MN+EB最小。

连接BD,设交点为F,则∠ABF=∠FBD=45°,BF=AB/√2=2√2.由于AF=AD-DF=4-DF,所以MN+EB=BF+MN+EF=BF+FN。

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试(含答案解析)(3)

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试(含答案解析)(3)

一、选择题1.已知一个直角三角形三边的平方和为800,则这个直角三角形的斜边长为( ) A .20B .40C .80D .1002.一根竹竿插到水池中离岸边1.5m 远的水底,竹竿高出水面0.5m ,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( ) A .2mB .2.5cmC .2.25mD .3m3.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有( )A .1 条B .2条C .3条D .4条4.如图,在Rt △ABC 中,∠BCA =90°,点D 是BC 上一点,AD =BD ,若AB =8,BD =5,则CD =( )A .2.1B .1.4C .3.2D .2.45.下列各组数据中,是勾股数的是( )A .3,4,5B .1,2,3C .8,9,10D .5,6,96.下列以a ,b ,c 为边的三角形,不是直角三角形的是( )A .1,1,2a b c ===B .1,3,2a b c ===C .3,4,5a b c ===D .2,2,3a b c ===7.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定 8.一个直角三角形的两条边分别是9和40,则第三边的平方是( ) A .1681B .1781C .1519或1681D .15199.如图,在矩形OABC 中,点B 的坐标是(2,5),则,A C 两点间的距离是( )A .26B .33C .29D .5 10.已知Rt ABC 的两直角边分别是6cm ,8cm ,则Rt ABC 的斜边上的高是( )A .4.8cmB .2.4cmC .48cmD .10cm 11.下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,1212.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3cm 和5cm ,则小正方形的面积为( ).A .21cmB .22cmC .42cmD .23cm二、填空题13.直角三角形纸片的两直角边长分别为6,8.现将ABC 如图那样折叠,使点A 与点B 重合,折痕为DE .则CECB的值是__________.14.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若图2中阴影部分的面积是5,则两个较小正方形重叠部分的面积为____.15.一个直角三角形,一边长5cm ,另一边长4cm ,则该直角三角形面积为____ 16.在平面直角坐标系中,若点M (2,4)与点N (x ,4)之间的距离是3,则x 的值是_____.17.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.18.若一个直角三角形的两条直角边长分别是4和6,则斜边长为__________. 19.如图,它是四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积为13,小正方形的面积为1,直角三角形的较短的直角边长为a ,较长的直角边为b ,那么+a b 的值为__________.20.如图,Rt ABC 中,9,6,90AB BC B ==∠=︒,将ABC 折叠,使A 点与BC 的中点D 重合,折痕为,MN 则线段BN 的长为________.三、解答题21.已知ABC ∆中,ACB ∠=90°,如图,作三个等腰直角三角形ACD ∆,EAB ∆,FCB ∆,AB ,AC ,BC 为斜边,阴影部分的面积分别为1S ,2S ,3S ,4S .(1)当AC =6,BC =8时, ①求1S 的值;②求4S -2S -3S 的值;(2)请写出1S ,2S ,3S ,4S 之间的数量关系,并说明理由.22.如图,在△ABC 中,∠ACB =90°,BC =AC =6,D 是AB 边上任意一点,连接CD ,以CD 为直角边向右作等腰直角△CDE ,其中∠DCE =90°,CD =CE ,连接BE .(1)求证:AD =BE ;(2)当△CDE 的周长最小时,求CD 的值; (3)求证:2222AD DB CE +=.23.已知:在ABC ∆中,点E 在直线AC 上,点,,B D E 在同一条直线上,且BA BD =,.BAE D ∠=∠(问题初探)(1)如图1,若BE 平分ABC ∠,求证:180AEB BCE ∠+∠=︒.请依据以下的简易思维框图,写出完整的证明过程.(变式再探)(2)如图2,若BE 平分ABC ∆的外角ABF ∠,交CA 的延长线于点E ,问:AEB ∠和BCE ∠的数量关系发生改变了吗?若改变,请写出正确的结论,并证明;若不改变,请说明理由.(拓展运用)(3)如图3,在()2的条件下.若,1AB BC CD ⊥=,求EC 的长度.24.阅读材料,并解决问题. 有趣的勾股数定义:勾股数又名毕氏三元数.凡是可以构成一个直角三角形三边长的一组正整数,称之为勾股数.一般地,若三角形三边长a ,b ,c 都是正整数,且满足222=a b c +,那么数组()a b c ,,称为勾股数.公元263年魏朝刘徽著《九章算术注》,文中除提到勾股数()3,4,5以外,还提到()5,12,13,()7,24,25,()8,15,17,()20,21,29等勾股数.数学小组的同学研究勾股数时发现:设m ,n 是两个正整数,且m n >,三角形三边长a ,b ,c 都是正整数.下表中的a ,b ,c 可以组成一些有规律的勾股数()a b c ,,.mnabc2 1345 3 2 5 12 13 4 1 15 8 17 4 3 7 24 25 5 2 21 20 29 5 4 9 40 416 1 35 12 37 651160617 2 45 28 53 7 4 33 56 65 76138485通过观察这个表格中的数据,小明发现勾股数()a b c ,,可以写成()2222mn b m n -+,,.解答下列问题:(1)表中b 可以用m ,n 的代数式表示为_____________. (2)若4m =,2n =,则勾股数()a b c ,,为______________. (3)小明通过研究表中数据发现:若1c b -=,则勾股数的形式可表述为()211k b b ++,,(k 为正整数),请你通过计算求此时的b .(用含k 的代数式表示b )25.如图所示,在一棵树的1?0?米高的 B?处有两只猴子,一只猴子爬下树走到离树 20?米的 A?处.另一只猴子爬到树顶 D?处后顺绳子滑到 A?处,如果两只猴子所经过的距离相等,求这棵树的高.26.如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,∠C =60°,BC =CD =6,现将梯形折叠,点B 恰与点D 重合,折痕交AB 边于点E ,则CE =_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】直角三角形中两直角边的平方和等于斜边的平方,已知三边的平方和可以求出斜边的平方,根据斜边的平方可以求出斜边长. 【详解】解:∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为800,则斜边的平方为三边平方和的一半,即斜边的平方为,800÷2=400,∴斜边长=400=20,故选:A.【点睛】本题考查了勾股定理在直角三角形中的灵活应用,考查了勾股定理的定义,本题中正确计算斜边长的平方是解题的关键.2.A解析:A【分析】设水池的深度BC=xm,则AB=(0.5+x)m,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC中,AC=1.5m.AB﹣BC=0.5m.设水池的深度BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2,∴1.52+x2=(x+0.5)2,解得:x=2.故选:A.【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键.3.B解析:B【分析】由勾股定理求出a、b、c、d,即可得出结果.【详解】∵223213+=d=2,+=,22+=223451417∴长度是无理数的线段有2条,故选B.【点睛】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.4.B解析:B【分析】设CD=x ,在Rt △ACD 和Rt △ABC 中,利用勾股定理列式表示出AC 2,然后解方程即可. 【详解】解:设CD=x ,则BC=5+x , 在Rt △ACD 中,AC 2=AD 2-CD 2=25-x 2, 在Rt △ABC 中,AC 2=AB 2-BC 2=64-(5+x )2, 所以,25-x 2=64-(5+x )2, 解得x=1.4, 即CD=1.4. 故答案为:B . 【点睛】本题考查了勾股定理,熟记定理并在两个三角形列出等式表示出AC 2,然后列出方程是解题的关键.5.A解析:A 【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方. 【详解】解:A 、222345+=,能构成直角三角形,是正整数,故是勾股数; B 、222123+≠,不能构成三角形,故不是勾股数; C 、2220981,不能构成直角三角形,故不是勾股数;D 、222569+≠,不能构成直角三角形,故不是勾股数. 故选:A . 【点睛】本题主要考查了勾股数的定义及勾股定理的逆定理,熟悉相关性质是解题的关键.6.D解析:D 【分析】根据勾股定理的逆定理对四个选项分别进行判定,则可得出结论. 【详解】解:A 、因为12+12)2,所以此三角形是直角三角形,故此选项不符合题意;B 、因为122=22,所以此三角形是直角三角形,故此选项不符合题意;C 、因为32+42=52,所以此三角形是直角三角形,故此选项不符合题意;D 、因为22+22≠32,所以此三角形不是直角三角形,故此选项符合题意. 故选:D . 【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.C解析:C 【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案. 【详解】 解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C 【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.8.C解析:C 【分析】由题意可分当第三边为直角边时和当第三边为斜边时,然后利用勾股定理进行求解即可. 【详解】解:当第三边是直角边时,第三边的平方是402﹣92=1519;当第三边是斜边时,第三边的平方是402+92=1681; 故选:C . 【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.9.C解析:C 【分析】根据矩形的性质可得OB =AC ,根据勾股定理即可求出答案. 【详解】 在矩形OABC 中, OB =AC ,∵B (2,5),∴OB ==AC OB ==故选:C . 【点睛】本题考查矩形的性质,解题的关键是熟练运用矩形的性质以及勾股定理.10.A解析:A 【分析】先根据勾股定理求出直角三角形的斜边长,再根据“面积法”求出斜边上的高,即可. 【详解】∵Rt ABC 的两直角边分别是6cm ,8cm ,∴斜边cm , ∴斜边上的高=68=4.810⨯cm , 故选A 【点睛】本题主要考查求直角三角形斜边上的高,掌握勾股定理以及“面积法”是解题的关键.11.C解析:C 【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可. 【详解】解:A. 222456+≠,故此选项错误; B. 222579+≠,故此选项错误; C. 2226810+=,故此选项正确; D. 222101112+≠,故此选项错误. 故选:C . 【点睛】本题考查了勾股数的概念,熟记勾股数的概念是解题的关键.12.C解析:C 【分析】结合题意,得小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长;结合直角三角形的两直角边长分别为3cm和5cm,即可得到小正方形的边长及其面积.【详解】结合题意,可知:小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长∵直角三角形的两直角边长分别为3cm和5cm∴小正方形的边长=5cm-3cm=2cm∴小正方形的面积=222=4cm故选:C.【点睛】本题考查了正方形、直角三角形、全等三角形的知识;解题的关键是熟练掌握正方形、全等三角形的性质,从而完成求解.二、填空题13.【分析】先设CE=x再根据图形翻折变换的性质得出AE=BE=8-x再根据勾股定理求出x的值进而可得出的值【详解】解:设CE=x则AE=8-x∵△BDE是△ADE翻折而成∴AE=BE=8-x在Rt△B解析:7 24【分析】先设CE=x,再根据图形翻折变换的性质得出AE=BE=8-x,再根据勾股定理求出x的值,进而可得出CECB的值.【详解】解:设CE=x,则AE=8-x,∵△BDE是△ADE翻折而成,∴AE=BE=8-x,在Rt△BCE中,BE2=BC2+CE2,即(8-x)2=62+x2,解得x=74,∴CECB =746=724,故答案为:7 24.【点睛】本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.14.5【分析】根据勾股定理可知大正方形面积等于两个小正方形面积和再利用面积和差可以得出阴影部分面积等于重叠部分面积【详解】解:由图可知阴影部分面积=大正方形面积-两个小正方形面积+重叠部分面积根据勾股定解析:5【分析】根据勾股定理可知,大正方形面积等于两个小正方形面积和,再利用面积和差可以得出阴影部分面积等于重叠部分面积.【详解】解:由图可知,阴影部分面积=大正方形面积-两个小正方形面积+重叠部分面积,根据勾股定理可知,大正方形面积等于两个小正方形面积和,所以阴影部分面积=重叠部分面积,故答案为:5.【点睛】本题考查了勾股定理,解题关键是树立数形结合思想,知道大正方形面积等于两个小正方形面积和,通过面积和差得出阴影部分面积等于重叠部分面积.15.10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可【详解】解:当5为直角边时4也为直角边则该直角三角形的面积为5×4÷2=10;当5为斜边时由勾股定理得另一直角边为=3则该直角三角形解析:10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可.【详解】解:当5为直角边时,4也为直角边,则该直角三角形的面积为5×4÷2=10;当5,则该直角三角形的面积为3×4÷2=6,综上,该直角三角形的面积为10或6,故答案为:10或6.【点睛】本题考查直角三角形的面积、勾股定理,利用分类讨论的思想求解是解答的关键.16.﹣1或5【分析】根据点M(24)与点N(x4)之间的距离是3可以得到|2-x|=3从而可以求得x的值【详解】解:∵点M(24)与点N(x4)之间的距离是3∴|2﹣x|=3解得x=﹣1或x=5故答案为解析:﹣1或5【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2-x|=3,从而可以求得x的值.【详解】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x |=3,解得,x =﹣1或x =5,故答案为﹣1或5.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.17.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒∴15BC ==同理6CD ===∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.18.【分析】直接根据勾股定理求解可得【详解】解:∵直角三角形的两条直角边长分别是4和6∴斜边长为故答案为:【点睛】本题考查勾股定理在任何一个直角三角形中两条直角边长的平方之和一定等于斜边长的平方即如果直解析:【分析】直接根据勾股定理求解可得.【详解】解:∵直角三角形的两条直角边长分别是4和6,∴故答案为:【点睛】本题考查勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 19.5【分析】根据题意结合图形求出ab 与a2+b2的值原式利用完全平方公式化简后代入计算即可求出值【详解】解:根据题意得:c2=a2+b2=134×ab=13-1=12即2ab=12则(a+b )2=a2解析:5【分析】根据题意,结合图形求出ab 与a 2+b 2的值,原式利用完全平方公式化简后代入计算即可求出值.【详解】解:根据题意得:c 2=a 2+b 2=13,4×12ab=13-1=12,即2ab=12, 则(a+b )2=a 2+2ab+b 2=13+12=25,则a+b=5故答案为:5.【点睛】本题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解题的关键. 20.4【分析】根据题意设BN=x 由折叠DN=AN=9-x 在利用勾股定理列方程解出x 就求出BN 的长【详解】∵D 是CB 中点BC=6∴BD=3设BN=xAN=9-x 由折叠DN=AN=9-x 在中解得x=4∴BN解析:4【分析】根据题意,设BN=x ,由折叠DN=AN=9-x ,在Rt BDN 利用勾股定理列方程解出x ,就求出BN 的长.【详解】∵D 是CB 中点,BC=6∴BD=3设BN=x ,AN=9-x ,由折叠,DN=AN=9-x ,在Rt BDN 中,222BN BD DN +=,()22239x x +=-,解得x=4∴BN=4.故答案是:4.【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长. 三、解答题21.(1)① 9;② 9;(2)4123S S S S =++,见解析【分析】(1)①在等腰直角三角形ACD ∆中,根据勾股定理AD =CD = ②设5BEG S S ∆=,则()45235423++BEA BFC S S S S S S S S S S ∆∆-=+-=--,利用勾股定理得出52AE BE ==,42CF BF ==即可求解; (2)设5BEG S S ∆=,假设一个等腰直角三角形的斜边为a ,则面积为214a ,利用勾股定理得出222AC BC AB +=,则222111444AC BC AB +=,即ABE ADC BFC S S S =+△△△,依此即可求解. 【详解】解:(1)①ACD ∆是等腰直角三角形,AC =6,∴AD =CD =32,11323292S ∴=⨯⨯=; ②ACB ∠=90°,AC =6,BC =8,∴AB =10,EAB ∆和FCB ∆是等腰直角三角形,∴52AE BE ==,42CF BF ==,设5BEG S S ∆=()4523542311++52524242922BEA BFC S S S S S S S S S S ∆∆-=+-=--=⨯⨯-⨯⨯=;(2)设5BEG S S ∆=,如图,等腰直角三角形的面积公式12ABC S AB CD =⋅=214a ,∵等腰直角三角形ACD ∆,EAB ∆,FCB ∆,∴222111,,444ADC BFC ABE S AC S BC S AB ===△△△, ∵222AC BC AB +=,∴222111444AC BC AB +=,即ABE ADC BFC S S S =+△△△, ∴451253S S S S S S +=+++,∴4123S S S S =++.【点睛】本题考查勾股定理,等腰直角三角形的性质,三角形的面积,有一定难度,解题关键是将勾股定理和直角三角形的面积公式进行灵活的结合和应用.22.(1)见解析;(2)32;(3)见解析【分析】(1)先判断出∠ACD=∠BCE ,得出△ADC ≌△CBE (SAS ),即可得出结论;(2)先判断出DE=2CD ,进而得出△CDE 的周长为(2+2)CD ,进而判断出当CD ⊥AB 时,CD 最短,即可得出结论;(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE 2+DB 2=DE 2,即可得出结论.【详解】证明:(1)∵∠ACB =∠DCE =90°,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2.∵BC =AC ,CD =CE ,∴△CAD ≌△CBE ,∴AD =BE .(2)∵∠DCE =90°,CD =CE . ∴由勾股定理可得CE 2DC .∴△CDE 周长等于CD +CE +DE =22CD CD =(22)CD +.∴当CD 最小时△CDE 周长最小.由垂线段最短得,当CD ⊥AB 时,△CDE 的周长最小.∵BC =AC =6,∠ACB =90°,∴AB =2.此时AD =CD =11623222BD AB ==⨯ ∴当CD 32=时,△CDE 的周长最小.(3)由(1)易知AD =BE ,∠A =∠CBA =∠CBE =45°,∴∠DBE =∠CBE +∠CBA =90°.在Rt △DBE 中:222BE BD DE +=.222AD BD DE ∴+=在Rt △CDE 中:222CD CE DE +=.222CE CE DE ∴+=∴2222AD BD CE +=.【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD ⊥AB 时,CD 最短是解本题的关键.23.(1)见解析 (2)BEC BCE ∠=∠;理由见解析 (3)12+【分析】(1)根据ASA 证明ABE DBC ∆≅∆得BE=BC ,得BEC BCE ∠=∠,进一步可得结论; (2)根据ASA 证明ABE DBC ∆≅∆得BE=BC ,得ABE BCE ∠=∠;(3)连结AD ,分别求出∠AEB=∠ADE=∠ACB=22.5°,再证明AE=CD ,∠ADC=90°,由勾股定理可得AC ,由EC=EA+AC 可得结论.【详解】解:(1)证明BE 平分ABC ∠,,ABE DBC ∴∠=∠在ABE ∆和DBC ∆中,BAE D BA BDABE DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABE DBC ASA ∴∆≅∆,,BE BC ∴=,BEC BCE ∴∠=∠180AEB BCE AEB BEC ∴∠+∠=∠+∠=︒;()2BEC BCE =∠∠.理由:BE 平分ABF ∠,,ABE EBF CBD ∴∠=∠=∠在ABE ∆和DBC ∆中,BAE D BA BDABE DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABE DBC ASA ∴∆≅∆,,BE BC ∴=BEC BCE ∴∠=∠.()3连结AD ,AB BC ⊥,45ABE EBF CBD ∴∠=∠=∠=︒,ABE DBC ∆≅∆,,BAE BDC ∴∠=∠且E E ∠=∠,45,ABE ACD ∴∠=∠=︒由()2得BE BC =,22.5BCD BCE BEC ∴∠=∠=∠=︒,,AB BD =22.5,BAD BDA ∴∠=∠=︒,BEC BDA ∴∠=∠,45,AE AD DAC ACD ∴=∠=︒=∠1,CD =221,112AD AE AC ∴===+=12EC ∴=+【点睛】此题主要考查了全等三角形的判定与性质,勾股定理等知识,连接AD 是解答此题的关键.24.(1)2b mn =;(2)(12,16,20);(3)222b k k =+【分析】(1)根据表格中提供的数据可得答案;(2)把4m =,2n =代入()22222m n mn m n -+,,即可求解;(3)根据勾股定理求解即可;【详解】(1)∵4=2×2×1,12=2×3×2,8=2×4×1,24=2×4×3,…,∴2b mn =,故答案为:2b mn =;(2)当4m =,2n =时,a=m 2-n 2=42-22=12,2b mn ==2×4×2=16,c=m 2+n 2=42+22=20,∴勾股数()a b c ,,为(12,16,20),故答案为:(12,16,20);(3)根据题意,得222(21)(1)k b b ++=+,∴22244121k k b b b +++=++,解得222b k k =+.【点睛】本题考查了数字类规律探究,以及勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.25.这棵树的高为15?米【分析】设树高为x 米,则可用x 分别表示出CD ,利用勾股定理可得到关于x 的方程,可求得x 的值.【详解】解:设树高为x 米,由题意得,BC 10=米,CD x =米,()BD 10x =-米,AC 20=米,在Rt ADC 中, AD ==∵两只猴子所经过的距离相等,BC CA BD DA +=+,即102010x +=-15x =,即树高15米.答:这棵树的高为15米.【点睛】本题主要考查勾股定理的应用,用树的高度表示出CD ,利用勾股定理得到方程是解题的关键.26.【分析】连接DE ,BD ,由题意可证△BCD 是等边三角形,可得BD =BC =6,∠DBC =60°,由直角三角形的性质可求AD =3,AB =BE =,由勾股定理可求解.【详解】解:如图,连接DE ,BD ,∵∠BCD=60°,BC=CD=6,∴△BCD是等边三角形,∴BD=BC=6,∠DBC=60°,∵∠B=90°,AD∥BC,∴∠DAB=90°,∠ABD=30°,∠ADB=∠DBC=60°,∴AD=1BD=3,AB3=32∵折痕交AB边于点E,∴BE=DE,∵∠DBE=∠BDE=30°,∴∠ADE=30°,∴DE=2AE,∴BE=2AE,∵AE+BE=AB=3∴BE=3∴EC22+3,BC BE+=3612故答案为:3【点睛】本题考查了折叠和勾股定理的应用,解题的关键是掌握折叠的性质和勾股定理.。

勾股定理专题训练试题精选(一)附答案

勾股定理专题训练试题精选(一)附答案

勾股定理专题训练试题精选(一)一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.24. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为三角形,则正方形ABCD的边长为()11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+1012.A.132 B.121 C.120 D.以上答案都不对(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形A.2n﹣2B.2n﹣1C.2n D.2n+115. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确对于两人的证法,下列哪一个判断是正确的()16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个17.A.1B .C .D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0根, △ABC内一点P到三边的距离都相等. 则PC为()18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S3219. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个20. 设直角三角形的A.2B.3C.4D.5三边长分别为a、b、c, 若c﹣b=b﹣a>0,则=()21. (1999•A.4B.6C.8D.温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.A.16 B.18 C.12D.1223. 在△ABC中,∠A=15°,AB=12,则△ABC的面积等于()24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.9625. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE26. 如图, 在正方形网格中, cosα的值为()A.1B.C.D.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 129. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A.B重合)BE+CF=EF.上述结论中始终正确的有()A.1个B.2个C.3个D.4个30. 如图, △ABC中, AC=BC, ∠ACB=90°, AE平分∠BAC交BC于E, BD⊥AE于D, DM⊥AC于M, 连CD. 下列结论: ①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个勾股定理专题训练试题精选(一)参考答案与试题解析一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线. 菁优网版权所有专题:几何图形问题.分析:根据直角三角形斜边上的中线的性质可得DG=AG, 根据等腰三角形的性质可得∠GAD=∠GDA, 根据三角形外角的性质可得∠CGD=2∠GAD, 再根据平行线的性质和等量关系可得∠ACD=∠CGD, 根据等腰三角形的性质可得CD=DG, 再根据勾股定理即可求解.解答:解: ∵AD∥BC, DE⊥BC,∴DE⊥AD, ∠CAD=∠ACB, ∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中, DE= =2 .故选:C.故选: C.故选:C.点评:综合考查了勾股定理, 等腰三角形的判定与性质和直角三角形斜边上的中线, 解题的关键是证明CD=DG=3.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.考点:等腰直角三角形;等腰三角形的判定与性质. 菁优网版权所有专题:几何图形问题.分析:利用AD=DB=DE, 求出∠AEC=90°, 在直角等腰三角形中求出AC的长.解答:解: ∵AD=DE,∴∠DAE=∠DEA,∵DB=DE,∴∠B=∠DEB,∴∠AEB=∠DEA+∠DEB= ×180°=90°,∴∠AEC=90°,∵∠C=45°, AE=1,∴AC= .故选:D.故选: D.故选:D.点评:本题主要考查等腰直角三角形的判定与性质, 解题的关键是利用角的关系求出∠AEC是直角.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.2考点:等腰直角三角形. 菁优网版权所有分析:由已知可得Rt△ABC是等腰直角三角形, 得出AD=BD= AB=1, 再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解: ∵∠ACB=90°, CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD= AB=1, ∠CDB=90°,∴CD=BD=1.故选:C.故选: C.故选:C.点评:本题主要考查了等腰直角三角形, 解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.4. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.考点:等腰直角三角形;垂线段最短;平行线之间的距离. 菁优网版权所有分析:利用等腰直角三角形的特点知道AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°, ∠DCE=90°.利用勾股定理得出DE的表达式, 利用函数的知识求出DE的最小值.解答:解: 在等腰RT△ACD和等腰RT△CBE中AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°∴∠DCE=90°∴AD2+CD2=AC2, CE2+BE2=CB2∴CD2= AC2, CE2= CB ,∵DE2=DC2+EC2,∴DE===∴当CB=1时, DE的值最小, 即DE=1.故选:B.故选: B.故选:B.点评:此题考察了等腰直角三角形的特点及二次函数求最值的方法.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°考点:等腰直角三角形;平行线的性质. 菁优网版权所有专题:计算题.分析:根据等腰直角三角形性质求出∠ACB, 求出∠ACE的度数, 根据平行线的性质得出∠2=∠ACE, 代入求出即可.解答:解: ∵∠BAC=90°, AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∴∠2=∠ACE=65°,故选B.点评:本题考查了三角形的内角和定理、等腰直角三角形、平行线的性质, 关键是求出∠ACE的度数.6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理. 菁优网版权所有专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50 m, 从而求得⊙O的直径AD=100 m.解答:解: 连接OB.∵∠ACB=45°, ∠ACB= ∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中, OA=OB(⊙O的半径), AB=100m,∴由勾股定理得, AO=OB=50 m,∴AD=2OA=100m;故选B.点评:本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的长时, 常常将直径置于直角三角形中, 利用勾股定理解答.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB考点:勾股定理;等腰直角三角形;相似三角形的判定与性质. 菁优网版权所有专题:计算题;证明题;压轴题.分析:过点B作BM∥AD, 根据AB∥CD, 求证四边形ADMB是平行四边形, 再利用∠ADC+∠BCD=90°, 求证△MBC为Rt△, 再利用勾股定理得出MC2=MB2+BC2, 在利用相似三角形面积的比等于相似比的平方求出MC即可.解答:解: 过点B作BM∥AD,∵AB∥CD, ∴四边形ADMB是平行四边形,∴AB=DM, AD=BM,又∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°, 即△MBC为Rt△,∴MC2=MB2+BC2,∵以AD.AB.BC为斜边向外作等腰直角三角形,∴△AED∽△ANB, △ANB∽△BFC,= , = ,即AD2= , BC2= ,∴MC2=MB2+BC2=AD2+BC2= += = ,∵S1+S3=4S2,∴MC2=4AB2, MC=2AB,CD=DM+MC=AB+2AB=3AB.故选B.点评:此题涉及到相似三角形的判定与性质, 勾股定理, 等腰直角三角形等知识点, 解答此题的关键是过点B作BM∥AD, 此题的突破点是利用相似三角形的性质求得MC=2AB, 此题有一定的拔高难度, 属于难题.8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.考点:等腰直角三角形;勾股定理. 菁优网版权所有专题:计算题;规律型.分析:先根据勾股定理及等腰三角形的性质求出A2A3及A3A4的长, 找出规律即可解答.解答:解: ∵△A1A2B是直角三角形, 且A1A2=A2B=a, A2A3⊥A1B,∴A1B= = a,∵△A1A2B是等腰直角三角形,∴A2A3⊥A1B,∴A2A3=A1A3= A1B= = ,同理, A4A5= ×= ,∴线段An+1An+2的长为.故选B.故选B.点评:此题属规律性题目, 涉及到等腰三角形及直角三角形的性质, 解答此题的关键是求出A2A3及A3A4的长找出规律.灵活运用等腰直角三角形的性质, 得到等腰直角三角形的斜边是直角边的倍, 从而准确得出结论.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.考点:勾股定理;矩形的性质. 菁优网版权所有专题:压轴题.分析:过E作EG⊥CD于G, 利用矩形的判定可得, 四边形AEGD是矩形, 则AE=DG, EG=AD, 于是可求MG=DG ﹣DM=1, 在Rt△EMG中, 利用勾股定理可求EM.解答:解: 过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG, EG=AD,∴EG=AD=BC=7, MG=DG﹣DM=3﹣2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中, EM= = = =5 .故选B.点评:本题考查了矩形的判定、勾股定理等知识, 是基础知识要熟练掌握.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为的等边三角形,则正方形ABCD的边长为()考点:勾股定理;全等三角形的判定与性质;等边三角形的性质;正方形的性质. 菁优网版权所有分析:根据正方形的各边相等和等边三角形的三边相等, 可以证明△ABE≌△ADF, 从而得到等腰直角三角形CEF, 求得CF=CE=1.设正方形的边长是x, 在直角三角形ADF中, 根据勾股定理列方程求解.解答:解: ∵AB=AD, AE=AF,∴Rt △ABE≌Rt△ADF.∴BE=DF.∴CE=CF=1.设正方形的边长是x.在直角三角形ADF中, 根据勾股定理, 得x2+(x﹣1)2=2,解, 得x= (负值舍去).即正方形的边长是.故选A.点评:此题综合运用了正方形的性质、等边三角形的性质、全等三角形的判定和性质以及勾股定理.11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10考点:等腰直角三角形. 菁优网版权所有分析:所求正方形的边长即为AB的长, 在等腰Rt△ACF、△CDE中, 已知了CE、DE、CF的长均为10, 根据等腰直角三角形的性质, 即可求得AC、CD的长, 由AB=AC+CD+BD即可得解.解答:解: 如图;连接AB, 则AB必过C.D;Rt△ACF中, AC=AF, CF=10;则AC=AF=5;同理可得BD=5;Rt△CDE中, DE=CE=10, 则CD=10 ;所以AB=AC+CD+BD=20 ;故选C.点评:理清题意, 熟练掌握直角三角形的性质是解答此题的关键.A.132 B.121 C.120 D.以上答案都不对12.(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()考点:勾股定理. 菁优网版权所有分析:假设另外两边后, 根据勾股定理适当变形, 即可解答.解答:解: 设另外两边是a、b(a>b)则根据勾股定理, 得:a2﹣b2=121∵另外两边的长都是自然数∴(a+b)(a﹣b)=121=121×1即另外两边的和是121,故三角形的周长是132.故选A.故选A.点评:注意熟练进行因式分解和因数分解, 根据另外两边的长都是自然数分析结论.A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等考点:勾股定理;角平分线的性质;等边三角形的判定;直角三角形斜边上的中线. 菁优网版权所有专题:计算题;证明题.分析:A.根据等腰三角形的性质求解;B.根据直角三角形的面积计算方法求斜边的高;C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C.根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D.求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.解答:解: A.等腰三角形底角相等, 若底角为60°, 则顶角为180°﹣60°﹣60°=60°, 若顶角为60°, 则底角为=60°, 所以有一个角为60°的等腰三角形即为等边三角形, 故A选项正确;B.直角三角形中斜边的中线等于斜边的一半, 只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C.在直角三角形中, 最大的边为斜边, 根据勾股定理可知斜边长的平方的等于两直角边长平方的和, 故C选项正确;D.过三角形角平分线的交点作各边的垂线, 则三角形分成3对小三角形, 其中各顶点所在的两个直角三角形全等, 即过角平分线作的高线相等, 故D选项正确;即B选项中命题为假命题,故选B.故选B.点评:本题考查了全等三角形的证明, 考查了直角三角形中勾股定理的运用, 考查了等腰三角形的性质, 考查了直角三角形中斜边上的中线等于斜边长一半的性质.14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1考点:等腰直角三角形. 菁优网版权所有专题:规律型.分析:根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积, 找出规律即可.解答:解: ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC= = , AD= =2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n ﹣2.故选A.故选A.点评:此题属规律性题目, 解答此题的关键是分别计算出图中所给的直角三角形的面积, 找出规律即可.15. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确的证法,下列哪一个判断是正确的()考点:勾股定理;实数大小比较;三角形三边关系. 菁优网版权所有专题:压轴题;阅读型.分析:分别对甲乙两个证明过程进行分析即可得出结论.解答:解: 甲的证明中说明+ 的值大于5, 并且证明小于5, 一个大于5的值与一个小于5的值一定是不能相等的.乙的证明中利用了勾股定理, 根据三角形的两边之和大于第三边.故选A.故选A.点评:本题解决的关键是正确理解题目中的证明过程, 阅读理解题是中考中经常出现的问题.16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个考点:勾股定理;等腰三角形的判定. 菁优网版权所有专题:探究型.分析:先根据勾股定理求出AB的长, 再根据等腰三角形的性质分别找出以AB为腰和以AB为底边的等腰三角形即可.解答:解: ∵A.B是4×5网格中的格点,∴AB= = ,同理可得, AC=BD=AC= ,∴所求三角形有:△ABD, △ABC, △ABE.故选B.点评:本题考查的是勾股定理及等腰三角形的性质, 先根据勾股定理求出AB的长是解答此题的关键.17.A.1B.C.D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0的两个根, △ABC内一点P到三边的距离都相等. 则PC为()考点:勾股定理;解一元二次方程-因式分解法;三角形的内切圆与内心. 菁优网版权所有专题:压轴题.分析:根据AC、BC的长分别是方程x2﹣7x+12=0的两个根, 根据根与系数的关系求出.解答:解: 根据“AC, BC的长分别是方程x2﹣7x+12=0的两个根”可以得出:AC+BC=7, AC•BC=12,AB2=AC2+BC2=25,AB=5,△ABC内一点P到三边的距离都相等, 即P为△ABC内切圆的圆心,设圆心的半径为r, 根据三角形面积表达式:三角形周长×内切圆的半径÷2=三角形的面积,可得出, AC•BC÷2=(AC+BC+AB)×r÷2,12÷2=(7+5)×r÷2,r=1,根据勾股定理PC= = ,故选B.故选B.点评:本题中考查了勾股定理和一元二次方程根与系数的关系. 本题中三角形内心与三角形周长和面积的关系式是本题中的一个重点.18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S32考点:勾股定理. 菁优网版权所有专题:压轴题.分析:依据半圆的面积公式, 以及勾股定理即可解决.解答:解: 设直角三角形三边分别为a, b, c, 则三个半圆的半径分别为, ,由勾股定理得a2+b2=c2, 即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1.S2.S3之间的关系是S1+S2=S3故选C.故选C.点评:根据勾股定理, 然后变形, 得出三个半圆之间的关系.19. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个考点:等腰直角三角形. 菁优网版权所有专题:压轴题.分析:利用等腰直角三角形的性质来作图, 要注意分不同的直角顶点来讨论.解答:解: 此题应分三种情况:①以AB为腰, 点A为直角顶点;可作△ABC1.△ABC2, 两个等腰直角三角形;②以AB为腰, 点B为直角顶点;可作△BAC3.△BAC4, 两个等腰直角三角形;③以AB为底, 点C为直角顶点;可作△ABC5.△ABC6, 两个等腰直角三角形;综上可知, 可作6个等腰直角三角形, 故选C.点评:等腰直角三角形两腰相等, 顶角为直角, 据此可以构造出等腰直角三角形.关键是以AB为腰和以AB为底来讨论.A.2B.3C.4D.520. 设直角三角形的三边长分别为a、b、c,若c﹣b=b﹣a>0, 则=()考点:勾股定理. 菁优网版权所有分析:根据已知条件判断c是斜边, 并且得到c+a=2b, 然后根据勾股定理得到c2﹣a2=b2, 然后因式分解可以求出c﹣a, 代入要求的式子可以求出结果了.解答:解: ∵c﹣b=b﹣a>0∴c>b>a, c+a=2b根据勾股定理得, c2﹣a2=b2, (c+a)(c﹣a )=b2,∴c﹣a= b∴=4故选C.故选C.点评:此题主要利用了勾股定理和因式分解解题, 题目式子的值不能直接求出, 把它的分子分母分别用b表示才能求出.A.4B.6C .8D.21. (1999•温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()考点:勾股定理. 菁优网版权所有分析:由CD的长, 可求得AD的值, 进而可在Rt△ABD中, 由勾股定理求得BD的长.解答:解: 如图;△ABC中, AB=AC=10, DC=2;∴AD=AC﹣DC=8;Rt△ABD中, AB=10, AD=8;由勾股定理, 得:BD= =6;故选B.点评:此题主要考查了等腰三角形的性质及勾股定理的应用.22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.考点:勾股定理. 菁优网版权所有专题:计算题.分析:作AE⊥BC, DF⊥BC, 构建直角△AEB和直角△DFC, 根据勾股定理计算BE, CF, DF, 计算EF的值, 并根据EF求AD.解答:解: 如图, 过点A, D分别作AE, DF垂直于直线BC, 垂足分别为E, F.由已知可得BE=AE= , CF= , DF=2 ,于是EF=4+ .过点A作AG⊥DF, 垂足为G.在Rt△ADG中, 根据勾股定理得AD= = = = = .故选D.点评:本题考查了勾股定理的正确运用, 本题中构建直角△ABE和直角△CDF是解题的关键.A.16 B.18 C.12D.1223. 在△ABC中,∠C=90°,∠A=15°,AB=12,则△ABC的面积等于()考点:勾股定理;三角形的面积. 菁优网版权所有专题:计算题.分析:作∠ABD=∠A=15°, 则∠BDC=30°;设BC=x, 则BD=2x, CD= x, 计算AC=AD+CD=(2+ )x, BC=x, AB=12, 根据勾股定理计算AC, BC的长度, △ABC的面积为根据•BC•AC计算可得.解答:解: 如图, 作∠ABD=∠A=15°BD交AC于D, 则∠DBC=75°﹣15°=60°在Rt△BCD中, 因为∠BDC=90°﹣∠DBC=30°所以BD=2BC, CD= BC设BC=x,所以BD=2x, CD= x因为∠A=∠ABD, 所以AD=BD=2x所以AC=AD+DC=(2+)x在Rt △ABC中AC2+BC2=AB2∴∴,故选B.点评:本题考查了勾股定理在直角三角形中的运用, 考查了直角三角形面积的计算, 本题中设BC=x, 根据直角△ABC求x的值, 是解题的关键.24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.96考点:勾股定理;相似三角形的判定与性质. 菁优网版权所有分析:先利用勾股定理求出AB的长, 再根据相似三角形对应边成比例求出DE、BD的长, 然后代入面积公式即可求解.解答:解: ∵∠BDE=∠C=90°, ∠B=∠B∴△BDE∽△BCA∴BE: BA=BD: BC∵AC=BE=15, BC=20∴AB==25∴15: 25=BD: 20∴BD=12∴DE=9∴S△BDE=×12×9=54;S△ABC=×15×20=150∴四边形ACED的面积=S△ABC﹣S△BDE=150﹣54=96故选D.故选D.点评:此题主要考查了学生对相似三角形的性质及勾股定理的运用.25. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE考点:勾股定理;对顶角、邻补角;三角形内角和定理;等腰三角形的性质;圆周角定理. 菁优网版权所有专题:证明题;压轴题.分析:根据等腰三角形的性质证出∠BO2E=2∠BDE, 即可得出答案B错误, 假设A成立证出C也正确, 即可判断A、C都错误, 即可选出选项.解答:解: A.∵∠ABC+∠EDA=180°, ∠ADB=90°,∴∠EDB+∠ABC=90°.∵∠BDE+∠EDC=90°, 且∠EDC=∠BCA.∴∠ABC=∠BCA.∴AB=AC. 正确, 故本选项错误;B.∵O2B=O2D,∴∠DBO2=∠EDB,∴∠BO2E=2∠BDE,∵BE=BD,∴∠BDE=∠E,∴∠BO2E=2∠E, 正确, 故本选项错误;C.∵AC=AB,∴∠C=∠ABC,∵∠BO2E=2∠BDE, ∠ABC=∠BO2E+∠E,∴∠ABC=3∠E,∵BC为⊙O2的直径,∴∠CDB=90°,∴4∠E=90°,∠E=22.5°∴∠C=∠ABC=67.5°,∴∠A=180°﹣2×67.5°=45°,在Rt△ABD中由勾股定理得:AB= BD= BE, 正确, 故本选项错误;D.故本选项正确;故选D.故选D.点评:本题主要考查了勾股定理, 三角形的内角和定理, 等腰三角形的性质, 圆周角定理, 对顶角, 邻补角等知识点, 综合运用性质进行证明是解此题的关键.26. 如图, 在正方形网格中, cosα的值为()A .1B .C .D.考点:勾股定理;锐角三角函数的定义. 菁优网版权所有专题:网格型.分析:cosα的值可以转化为直角三角形的边的比的问题, 先根据勾股定理求出AB的长, 再在Rt△ABC中根据三角函数的定义求解.解答:解: 在Rt△ABC中, BC=3, AC=4,则AB= =5,则cosα= = .故选D.点评:本题考查勾股定理和锐角三角函数的概念:在直角三角形中, 正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()考点:勾股定理;解一元二次方程-因式分解法. 菁优网版权所有专题:分类讨论.分析:先解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4, 所以另一条边是6, 再分两种情况考虑:①若8为斜边, 则用勾股定理得第三条边长是2 ;②若8和6是两条直角边, 再用勾股定理求斜边得10.解答:解: 根据题意得解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4,所以另一条边是6,①若8为斜边, 则用勾股定理得第三条边长是=2 ;②若8和6是两条直角边, 则此直角三角形的第三条边长是=10.故选:D.故选: D.故选:D.点评:本题考查了勾股定理、解方程. 解题的关键是要注意分情况讨论.28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 1考点:勾股定理的证明. 菁优网版权所有分析:根据勾股定理可得大正方形ABCD的边长, 再根据和差关系得到小正方形EFGH的边长, 根据正方形的面积公式可得大正方形ABCD和小正方形EFGH的面积, 进一步即可求解.解答:解: 如图, 设大正方形的边长为xcm,由勾股定理得32+42=x2,解得:x=5,则大正方形ABCD的面积为: 52=25;∵小正方形的边长为: 4﹣3=1,∴小正方形EFGH的面积为: 12=1.则大正方形ABCD和小正方形EFGH的面积比是25:1.故选:D.故选: D.故选:D.点评:本题考查勾股定理及正方形的面积公式, 比较容易解答, 关键是求出大小正方形的边长.29. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;。

8无理数与勾股定理的逆运用(一对一)

8无理数与勾股定理的逆运用(一对一)

师:大家从小学就开始接触正方形,同学们知道它们的面积怎么算吗?生:回答师:大家都知道已知边长的正方形面积如何计算,那么给大家面积同学们能够告诉老师它的边长吗?请说出面积为4cm2、16cm2、25cm2正方形的边长吗?生:回答师:前面给出的数据都是有规律的平方数,如果正方形面积是10cm2、20cm2,同学们怎么去计算正方形的边长?这就是下面我们要学习的内容1.算术平方根=,那么这个正数x叫做a的算术平方一般地,如果一个正数x的平方等于a,即2x a根.a的算术平方根记为______,读作________,a叫做__________.规定:0的算术平方根是_____.2. 平方根一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.=,那么______叫做_________的平方根.这就是说,如果2x aa的算术平方根记为______,读作________,a叫做__________.求一个数a的平方根的运算,叫做_________.3.立方根(1)定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.=,那么______叫做_________的平方根.这就是说,如果3x a求一个数的立方根的运算,叫做_________.=(2)性质:正数的立方根是_____数;负数的立方根是_____数;0的立方根是_____勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是______三角形.(20-40分钟)实数 【典题导入】【亮点题】例1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)【方法提炼】无理数是无限不循环小数【小试牛刀】1.把下列各数填入相应的集合内: -7.5,15,4,179,32,327-,0.31,-π, 15.0 (1)有理数集合:{ ···}(2)无理数集合:{ ···}(3)正实数集合:{ ···}(4)负实数集合:{ ···}考点1考点2有理数集合无理数集合平方根与算数平方根【典题导入】【亮点题】例一、求下列各数的平方根与算术平方根(1)100 (2)0.0001(3)0.0025 (4)121例二、2(4)的算术平方根是________;81的算术平方根的相反数是__________.【小试牛刀】求下列各数的平方根:(1)100 (2)0.25. (3)11125(4)0立方根【典题导入】【亮点题】考点3(1)364 (2)3125- (3)30.001- (4)364125-【小试牛刀】1.310227-- 2.331864--.估值与比较大小【典题导入】【亮点题】例一、估计与35最接近的整数.例二、已知a 是10的整数部分,b 是它的小数部分,求32()(3)a b -++的值.例三、估计与60的立方根最接近的整数.考点4【小试牛刀】1.写出√20的整数部分与小数部分2.估计与100的立方根最接近的数勾股定理的逆运用考点5【典题导入】【亮点题】例一、下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5【小试牛刀】1. 下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,62.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4勾股定理的应用【典题导入】【亮点题】例一、如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【小试牛刀】1.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()考点6A.12m B.13m C.16m D.17m考点7平面展开-最短路径问题【典题导入】【亮点题】例一、如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cmC.cm D.2cm【小试牛刀】1.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为(20-40分钟)A1通过估算,比较下列各数的大小: (1)3-2与-32; (2)2与3.4.2.求下列各数的平方根和算术平方根:(1)0.0196; (2)2)6425(-; (3)81; (4)7109.4⨯;3.和数轴上的点一一对应的是( )A .整数B .有理数C .无理数D .实数4_________.5.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数. (填“是”或“不是”)B1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行米.2.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米.3.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).4.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)5.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.无理数1.下列各数是无理数的是()A.0.37 B.3.14 C.D.02.下列各数中无理数的个数是(),0.1234567891011…(省略的为1),0,2π.A.1个B.2个C.3个D.4个3.下列命题中正确的是()A.有理数是有限小数B.有理数是有限小数C.有理数是无限循环小数D.无限不循环小数是无理数4.指出下列各数中哪些是有理数?哪些是无理数?3,,3.14,,﹣π,5.6,901,4.121121112…,3.141414….有理数有______,无理数有______.5.如果x2=10,则x是一个______数,x的整数部分是______.勾股定理1.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3 2.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=503.以下各组数为边长的三角形中,能组成直角三角形的是()A.3、4、6 B.9、12、15 C.5、12、14 D.10、16、254.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米 B.米 C.米或米 D.米6.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A.30厘米 B.40厘米 C.50厘米 D.以上都不对7.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm8.有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()A.5cm B.cm C.4cm D.3cm9.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.10.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.11.如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1米时,求BB′的长.。

初中勾股定理练习题精选全文完整版

初中勾股定理练习题精选全文完整版

可编辑修改精选全文完整版第一章《勾股定理》练习题一、选择题(8×3′=24′) 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是( ) A 、2ab<c 2 B 、2ab ≥c 2 C 、2ab>c 2 D 、2ab ≤c 22、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。

其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或3607、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、4.58、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 二、填空题(12×3′=36′)9、在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=___________。

完整版《勾股定理》典型练习题

完整版《勾股定理》典型练习题

《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:若是直角三角形的两直角边为 a、 b,斜边为 c ,那么 a 2 + b 2= c 2。

公式的变形: a2 = c 2- b 2, b 2= c 2-a 2。

2、勾股定理的逆定理若是三角形 ABC的三边长分别是a, b, c,且满足 a2 + b2= c2,那么三角形 ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意办理好以下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方 +中间边的平方 .③获取的结论:这个三角形是直角三角形,并且最大边的对角是直角.④若是不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足 a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必定是正整数,不能够是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常有勾股数有:(3,4,5)(5,12,13) (6, 8, 10 ) ( 7,24, 25 ) ( 8,15,17 )(9 ,12,15 )4、最短距离问题:主要5、运用的依照是两点之间线段最短。

二、考点分析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;( 2)阴影部分是长方形;( 3)阴影部分是半圆.2.如图,以 Rt△ABC的三边为直径分别向外作三个半圆,试试究三个半圆的面积之间的关系.3、以下列图,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、 S3,则它们之间的关系是()A. S - S = SB. S + S = SC. S +S < SD. S - S =S S 31 2 3 1 2 3 2 3 1 2 3 1 S1S 24、四边形 ABCD中,∠ B=90°, AB=3,BC=4,CD=12, AD=13,求四边形 ABCD的面积。

2024年第十七章勾股定理课堂复习题及答案第3课时 勾股定理与无理数

2024年第十七章勾股定理课堂复习题及答案第3课时 勾股定理与无理数

解:OAn2=( n−1)2+1=n,Sn= 2n(n为正整数).
12
第3课时 勾股定理与无理数
素养达标
(2)推算出OA10的长;
解:OA120=( 9)2+1=10,∴OA10= 10.
(3)求出S12+S22+S32+…+S120的值.
解:S12+S22+S32+…+S120=
1 2
2
+
2
2 2
解:如图所示.
1234567
第3课时 勾股定理与无理数
网格图中的无理数 5.点A,B,C在网格中的位置如图所示,网格中的小正方形的边长为1,则
35 点C到线段AB所在直线的距离为____5_______.
1234567
第3课时 勾股定理与无理数
6.[2022·河北中考改编]如图是钉板示意图,每相邻4个钉点是边长为1 个单位长度的小正方形顶点,钉点A,B的个小正方形边长都是1,每个小格的顶点叫做格点,以格 点为顶点分别按下列要求画三角形(涂上阴影). (1)在图1中,画一个三角形,使它的三边长都是有理数; (2)在图2,图3中,分别画一个直角三角形,使它 的三边长都是无理数.(两个三角形不全等)
解:如图所示.(第二、三个图画法不唯一)
+
2
3 2
+…+
+34+…+94+140=1+2+3+4…+9+10=1+2104×10=545.
2
9 2
+
2
10 2
=14+24
12
图1

17.1 勾股定理(第三课时 利用勾股定理表示无理数的点)(练习)(解析版)八年级数学下册(人教版)

17.1 勾股定理(第三课时 利用勾股定理表示无理数的点)(练习)(解析版)八年级数学下册(人教版)

第十七章勾股定理17.1 勾股定理(第三课时利用勾股定理表示无理数的点)精选练习答案一、单选题(共10小题)1.(2018·山东枣庄市·八年级期末)如图,在正方形网格中,每个正方形的边长为1,则在△ABC中,边长为无理数的边数是( )A.0 B.1 C.2 D.3【答案】C【分析】根据图中所示,利用勾股定理求出每个边长,然后根据无理数的定义即可得出答案【详解】根据题意得:AB=22+=2615BC=22+=20=2524AC=22+=18=3233∴边长为无理数的个数为3个故答案为D2.(2020·宁夏期中)如图所示,数轴上点A所表示的数为a,则a的值是()A6B.3C.32D.25【答案】D【分析】根据勾股定理,可得圆的半径,根据圆的性质,可得答案.【详解】解:如图,22OC CB OB +=,∴OB=2242+=20,∴OA=OB=20=25,∴a=25.故选:D .3.(2020·天津和平区·八年级期末)利用勾股定理,可以作出长为无理数的线段.如图,在数轴上找到点A ,使5OA =,过点A 作直线l 垂直于OA ,在l 上取点B ,使2AB =,以原点O 为圆心,以OB 长为半径作弧,弧与数轴的交点为C ,那么点C 表示的无理数是( )A 21B 29C .7D .29【答案】B【分析】 利用勾股定理列式求出OB 判断即可.【详解】由勾股定理得,OB 225229+=∴点C 29.故选:B .4.(2020·陕西西安市期中)如图,根据图中的标注和作图痕迹可知,在数轴上的点A 所表示的数为()A.15-+C.5---B.15-D.15【答案】A【分析】根据勾股定理,结合数轴即可得出结论.【详解】解:∵在Rt△BCD中,BD=2,CD=1,∴BC=22+=5,21∵根据图中的标注和作图痕迹可知,∴AB=BC=5,--.∴点A表示的实数是15故选A.5.(2020·福建三明市·八年级期中)如图,AD=1,点M表示的实数是()A10B.10C.3 D.3-【答案】A【分析】根据勾股定理求出斜边AC,再由AM=AC从而得到M代表的实数.【详解】解:如图所示:∵AD=1,AB=3,∠CBA=90°,∴BC=1,由勾股定理得:22AC=+=,3110∴AM=AC=10.故选A.6.(2020·贵州毕节市·八年级期中)如图,数轴上A表示数﹣2,过数轴上表示1的点B作BC⊥x轴,若BC=2,以A为圆心,AC为半径作圆弧交数轴于点P,那么数轴上点P所表示的数是( )A.13B.13﹣2 C.13﹣3 D.4﹣13【答案】B【分析】首先在直角三角形中,利用勾股定理可以求出线段CA的长度,然后根据AC=AP即可求出AP的长度,接着可以求出数轴上点P所表示的数.【详解】解:∵CA=22+=,3213∴AC=AP=13,∴P到原点的距离是13﹣2,且P在原点右侧.∴点P所表示的数是13﹣2.故选B.7.(2019·北京市期末)如图,点A表示的实数是( )A .-2B .2C .1-2D .2-1 【答案】C【分析】 首先根据勾股定理计算出BC 的长,进而得到AC 的长,再根据C 点表示1,可得A 点表示的数.【详解】解:BC=2211=2+ ,则AC=2 ,∵C 点表示1,∴A 点表示的数为:-(2-1)=1-2,故选C .8.(2019·山西吕梁市期末)如图,在ABC ∆中,90ACB ∠=︒,2BC =,1AC =,BC 在数轴上,以B 点为圆心,AB 长为半径画弧,交数轴于点D ,则D 点表示的数是( )A .35B 5C 53-D .33-【答案】A【分析】 首先根据勾股定理求出AB 的长,再根据同圆的半径相等可知AB=DB ,再根据条件:点B 对应的数是3,可求出D 点坐标.【详解】解:在ABC ∆中,90ACB ∠=︒,2BC =,1AC =,∴22BC 5AC +以B点为圆心,AB长为半径画弧,交数轴于点D,∴BD=AB=5,-.∴点D表示的数是:35故选A.9.(2018·山西忻州市·八年级期中)如图所示,以数轴的单位长线段为边作一个正方形,以数轴的表示数1的点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.2.41C.3D.12+【答案】D【分析】已知图中正方形的边长为1,则可根据勾股定理求出正方形对角线的长度,即为圆的半径.以对角线长度为半径作圆与数轴交于点A,则点A表示的数即为1加上对角线的长度.【详解】解:根据勾股定理,求得正方形的对角线的长度为为:2211=2+,再以2为半径画弧,交数轴正半轴于点A,则点A表示的数为:1+2.故选:D.10.(2018·北京市期末)如图,边长1的正方形一边与数轴重合,以原点为圆心,OB长为半径画弧,与数轴交于点A,则点A所表示的数为( )A.2-B.2C.2-D2【答案】C【分析】正方形的对角线长度就是圆的半径长度,且OA与OB等长.【详解】因为正方形边长为1,所以22OB=+=,即圆的半径等于2,OA也等于2.又因112为点A在原点的左边,所以点A所表示的数为2-.故答案为:C二、填空题(共5小题)11.(2020·河南许昌市·八年级期末)如图,在数轴上点A表示的实数是_____.【答案】5【分析】根据勾股定理,可得直角三角形中斜边的长,根据圆的性质,可得答案.【详解】解:由勾股定理,得斜边的长为22+=125,由圆的性质,得:点A表示的数为5,故答案为 5.12.(2020·山东淄博市·七年级期末)如图,长方形ABCD的边AD长为2,AB长为1,-,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,点A在数轴上对应的数是1则这个点E表示的实数是_________________.-【答案】51【分析】先算出AC的长度,即可知道AE的长度,再用AE长度减去AO长度即可表示.【详解】∵AD=2,CD=AB=1,∠CDA=90°.∴AC=22+.1=25∴AE=AC=5.∴OE=AE-AO=51-.-.∴E表示的实数是:51-.故答案为:51=,数轴上点A对应的数是______ 13.(2020·重庆市期中)如图,已知OA OB【答案】13【分析】先利用勾股定理求出OB的长度,再根据OA=OB即可得到OA的长度,从而得到A对应的数.【详解】由勾股定理得22OB=+=2313=∵OA OBOA=∴13-∴数轴上点A对应的数是13故答案为:1314.(2019·江西九江市·八年级期末)如图,在Rt AOB ∆中1OB =,2AB =,,以原点O 为圆心,OA 为半径画弧,交数轴于点P ,则点P 表示的实数是_____.【答案】-5【分析】根据勾股定理,可得OA 的长,根据半径相等,可得答案.【详解】由勾股定理,得OA =222212OB AB +=+=5,由半径相等,得OP =OA =5,∴点P 表示的实数是-5故答案为:-5.15.(2020·河北衡水市·八年级期中)如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.【答案】5【分析】根据勾股定理计算长方形对角线的长,再由点A 的位置,确定点A 的符号,即可得出点A 的坐标.【详解】2212+5∴5∵点A 在原点左侧,∴A 点表示的数是:5-, 故答案为:5-.三、解答题(共2小题)16.(2019·陕西西安市期末)如图,直线l 垂直数轴于原点在数轴上,用尺规作出表示13-的点E (不写作法,保留作图痕迹).【答案】如图所示,见解析;点E 是表示13-.【分析】 由221323=+,根据勾股定理可知:作一个直角边分别为2、3的直角三角形,斜边即为13,然后以原点为圆心,以13为半径作圆,与原点左侧交点即为所求.【详解】由221323=+,根据勾股定理可知:作一个直角边分别为2、3的直角三角形,斜边即为13,然后以原点为圆心,以13为半径作圆,与原点左侧交点即为所求. 如图所示,点E 是表示13-.17.(2018·安徽滁州市·八年级期中)细心观察图形,认真分析各式,然后解答问题. OA 22=21)12+=,11S =; OA 32=12+22)3=,22S 2=;OA 42=12+2(3)4=,33S =… (1)请用含有n (n 是正整数)的等式表示上述变规律:OA n 2=______;S n =______. (2)求出OA 10的长.(3)若一个三角形的面积是5,计算说明他是第几个三角形?(4)求出S 12+S 22+S 32+…+S 102的值.【答案】(1)OA n 2=n ;S n n ;(2)OA 1010(3)说明他是第20个三角形;(4)554. 【解析】【分析】 (1)利用已知可得OA n 2,注意观察数据的变化,(2)结合(1)中规律即可求出OA 102的值即可求出,(3)若一个三角形的面积是5 (4)根据题意列出式子即可求出.【详解】(1)结合已知数据,可得:OA n 2=n ;S n =2n ; (2)∵OA n 2=n ,∴OA 1010; (3)若一个三角形的面积是5S n =2n 5 n 520,∴说明他是第20个三角形,(4)S 12+S 22+S 32+…+S 102,=12310 4444+++⋯+,=123104+++⋯+,=51054⨯+,=554.故答案为(1)OA n2=n;S n(2)OA10;(3)说明他是第20个三角形;(4)554.。

勾股定理,无理数

勾股定理,无理数

一.选择题 ( 本大题共 6 小题 , 每小题 3 分,共 18 分)1. 直角三角形一直角边长为12,另两边长均为自然数,则其周长为( )A . 36;B. 28;C. 56;D.不能确定 .2. 直角三角形两直角边长分别为 3 和 4, 则它斜边上的高是 ( )A.3.5; B. 2.4; C.1.2; D. 5.3. 下面几组数 : ① 7,8,9; ② 12,9,15; ③ m 2 + n 2, m 2 – n 2 , 2mn(m,n 均为正整数 ,m n); ④ a 2 , a 21, a 2 2 . 其中能组成直角三角形的三边长的是( )A. ①② ;B. ①③ ;C. ②③ ;D. ③④4. 三角形的三边长为(a b) 2 c 22ab , 则这个三角形是 ( )A. 等边三角形 ;B.钝角三角形 ; C.直角三角形 ;D.锐角三角形 .5. 等腰三角形的腰长为 10, 底长为 12, 则其底边上的高为 ( )A.13;B.8;C.25;D.64.6. 小刚准备测量一段河水的深度 , 他把一根竹竿插到离岸边 1.5m 远的水底 , 竹竿高出水面0.5m, 把竹竿的顶端拉向岸边 , 竿顶和岸边的水面刚好相齐 , 则河水的深度为 ( )A. 2m;B. 2.5m;C. 2.25m;D. 3m.7. 直角三角形一直角边长为 12,另两条边长均为自然数,则其周长为( ).( A )30 (B )28 (C ) 56( D )不能确定 8. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 ( A ) 4 cm ( B ) 8 cm( C ) 10 cm( D ) 12 cm一 . 填空题 ( 本大题共 6小题,每小题 3分,共 18分)9. 已知 x 6y 8(z 10) 2 0 , 则由此 x, y, z 为三边的三角形是三角形 .9.在 ABC 中, 若 AB=30,AC=26,BC 上的高为 24, 则此三角形的周长为.2A D10. 一直角梯形 , ∠ B=90 ,AD ∥ BC,AB=BC=8,CD=10,则梯形的面积是. 11. 一直角三角形三边长分别为5,12,13, 斜边延长 x , 较长的直角边延长 x +2, 所得的仍是直角三角形 , 则x =.12. 在222.B CABC 中 , 若 AB+BC=AC, 则∠ A+∠ C= 11、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、 3dm 、 2dm ,?A 和 B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到 B 点的最短路程是 ;12. 如图为某楼梯 , 测得楼梯的长为 5米, 高 3米 , 计划在楼梯表面铺地毯 , 地毯的长度至少需要____________米 .A203米2 35 米B第12题 第11题 第13题13.如图,在△ ABC 中,∠ C=90°, BC=3,AC=4.以斜边 AB 为直径作半圆,则这个半圆的面积是 ____________.14. 直角三角形的三边长为连续偶数,则其周长为.15.如图,校园内有两棵树,相距12 米,一棵树高 13 米,另一棵树高 8 米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ ABC 中,∠ C=90°, AB 垂直平分线交BC 于 D 若 BC=8,AD =5,则 AC 等于______________.三.解答题(本大题共8 小题,每小题8 分共 64 分)13.如图 , 一直角三角形三边长分别为6,8,10, 且是三个圆的直径 , 求阴影部分面积 ( 取 3.14)23 、如图所示 ,有一条小路穿过长方形的草地ABCD, 若 AB=60m,BC=84m,AE=100m, ? 则这条小路的面积是多少?A FDB E C27、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为 8cm,? 长 BC ?为 10cm.当小红折叠时,顶点 D 落在 BC 边上的点 F 处(折痕为AE ).想一想,此时 EC 有多长? ?A DEB F C22. 如图所示的一块地,∠ADC=90°, AD=12m,CD=9m, AB=39m, BC=36m,求这块地的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《勾股定理与无理数》专题
班级 姓名
没有所谓幸运或厄运,每件事情有因必有果。

勾股定理的内容
【探究】我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示2的点吗?
【思考】13=9+4,即()213=()2+﹝ ﹞2
;若以 和 为直角三角形的两直角边长,则斜边长为13。

那么,你能在数轴上画出表示13的点吗?
2. 同理以 和 (均填正整数)为直角三角形的两直角边长,则斜边长为17。

在数轴上画出表示17的点?(尺规作图)
5 ● ● ● ● ● ● O 1 2 3 4 5 ● ● ● ● ● ● O 1 2 3 4
5 ● ● ● ● ● ● O 1 2 3 4
【当堂检测】
1.已知直角三角形中30°角所对的直角边长是32cm ,则另一条直角边的长是( )A . 4cm B . 34cm C . 6cm D . 36cm
2.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )
A .42
B .32
C .42 或 32
D .37 或 33
3.等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 ,面积为 .
4.如图,螺旋形由一系列直角三角形组成,则第n 个三角形的面积为 _________.
5.如图:螺旋状图形是由若干个直角
三角形所组成的,其中①是直角边长为1的
等腰直角三角形。

那么OA 1= ,OA 2= ,
OA 3= ,OA 4= ,OA 5= ,OA 6= ,
OA 7= ,…,OA 14= , …,OA n = .
思考:利用课本上的方法能找出 表示6和280的点吗?
6.已知等边△OAB 的边长为a ,以AB 边上的高OA 1为边,
按逆时针方向作等边△OA 1B 1,A 1B 1与OB 相交于点A 2.(1)
求线段OA 2的长;(2)若再以OA 2为边,按逆时针方向
作等边△OA 2B 2,A 2B 2与OB 1相交于点A 3,按此作法进行
下去,得到△OA 3B 3,△OA 4B 4,…△OAnBn (如图).求
△OA 6B 6的周长.。

相关文档
最新文档