高中物理曲线运动经典题型总结(可编辑修改word版)
高考物理曲线运动解题技巧及经典题型及练习题(含答案).docx
高考物理曲线运动解题技巧及经典题型及练习题 ( 含答案 )一、高中物理精讲专题测试曲线运动1. 光滑水平轨道与半径为 R 的光滑半圆形轨道在 B 处连接,一质量为m 2 的小球静止在 B处,而质量为 m 1 的小球则以初速度 v 0 向右运动,当地重力加速度为g ,当 m 1 与 m 2 发生弹性碰撞后, m 2 将沿光滑圆形轨道上升,问:(1)当 m 1 与 m 2 发生弹性碰撞后, m 2 的速度大小是多少?(2)当 m 1 与 m 2 满足 m 2 km 1 (k0) ,半圆的半径 R 取何值时,小球 m 2 通过最高点 C后,落地点距离 B 点最远。
【答案】( 1) 2m 1v 0 /( m 1 +m 2) ( 2) R=v 0 2/2g(1+k)2【解析】【详解】( 1)以两球组成的系统为研究对象,由动量守恒定律得: m 1v 0=m 1v 1+m 2v 2,1 2121由机械能守恒定律得:m 1v 0 =m 1v 1 +2 22m 2v 22,解得: v 22m 1v 0 ; m 1 m 2(2)小球 m 2 从 B 点到达 C 点的过程中,由动能定理可得:1 2 1 2,-m 2g ×2R= m 2v 2 ′-2 m 2v 224gR(2v 0)解得: v 2v 2 4gR (2mv)2 2 4gR ;21m 1 m 21 k小球 m 2 通过最高点 C 后,做平抛运动,竖直方向: 2R= 1gt 2,2水平方向: s=v 2′t ,解得: s(2v 0 )2 4R 16R 2 ,1 k g由一元二次函数规律可知,当v 02 时小 m 2 落地点距 B 最远.Rk )22g(12. 如图所示,质量 m=3kg 的小物块以初速度秽 v 0=4m/s 水平向右抛出,恰好从 A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R= 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道 BD 平滑连接, A 与圆心 D 的连线与竖直方向成37角, MN 是一段粗糙的水平轨道,小物块与 MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
高考物理曲线运动常见题型及答题技巧及练习题(含答案)
高考物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g取若北小球运动的角速度,求此时细线对小球的拉力大小。
高中物理曲线运动常见题型及答题技巧及练习题(含答案)含解析
高中物理曲线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,将一小球从倾角θ=60°斜面顶端,以初速度v 0水平抛出,小球落在斜面上的某点P ,过P 点放置一垂直于斜面的直杆(P 点和直杆均未画出)。
高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析
高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
高中物理曲线运动经典题型总结-(1)
专题曲线运动一、运动的合成和分解【题型总结】1.合力与轨迹的关系如图所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,且质点的运动方向是从A 到E ,则下列说法中正确的是( ) A .D 点的速率比C 点的速率大 B .A 点的加速度与速度的夹角小于90° C .A 点的加速度比D 点的加速度大D23练习1:则()A 、A v =4例1例2用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为((A) (B)(C) 1、 一A 、 沿[A .足球沿直线从球门的右上角射入球门B .篮球在空中划出一条规则的圆弧落入篮筐C .台球桌上红色球沿弧线运动D .羽毛球比赛时,打出的羽毛球在对方界内竖直下落。
2、如图所示为一空间探测器的示意图,P 1、P 2、P 3、P 4是四个喷气发动机,P 1、P 2的连线与空间一固定坐标系的x 轴平行,P 3、P 4的连线与y 轴平行.每台发动机开动时,都能向探测器提供推力,但不会使探测器转动.开始时,探测器以恒定的速率v o 向正x 方向平动.要使探测器改为向正x 偏负y 60°的方向以原来的速率v o 平动,则可() A .先开动P 1适当时间,再开动P 4适当时间 B.先开动P 3适当时间,再开动P 2适当时间 C.开动P 4适当时间D.先开动P 3适当时间,再开动P 4适当时间解析:火箭、喷气飞机等是由燃料的反作用力提供动力,所以P 1、P 2、P 3、P 4分别受到向左、上、右、下的作用力。
使探测器改为向正x 偏负y 60°的方向以原来的速率v o 平动,所以水平方向上要减速、竖直方向上要加速。
答案:A3、如图所示,A 、B 为两游泳运动员隔着水流湍急的河流站在两岸边,A 在较下游的位置,且A 的游泳成绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?()A.A 、B 均向对方游(即沿虚线方向)而不考虑水流作用B.B 沿虚线向A 游且A 沿虚线偏向上游方向游C.A 沿虚线向B 游且B 沿虚线偏向上游方向游D.解析:1解:该tan B 处,221gt 。
高考物理曲线运动常见题型及答题技巧及练习题(含答案)
高考物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g取若北小球运动的角速度,求此时细线对小球的拉力大小。
【答案】【解析】【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。
【详解】若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:此时小球做圆周运动的半径为:解得小球运动的角速度大小为:代入数据得:若小球运动的角速度为:小球对圆锥体有压力,设此时细线的拉力大小为F,小球受圆锥面的支持力为,则水平方向上有:竖直方向上有:联立方程求得:【点睛】解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。
2.如图所示,将一小球从倾角θ=60°斜面顶端,以初速度v0水平抛出,小球落在斜面上的某点P,过P点放置一垂直于斜面的直杆(P点和直杆均未画出)。
已知重力加速度大小为g,斜面、直杆处在小球运动的同一竖直平面内,求:(1)斜面顶端与P点间的距离;(2)若将小球以另一初速度v从斜面顶端水平抛出,小球正好垂直打在直杆上,求v的大小。
【答案】(1);(2);【解析】本题考查平抛与斜面相结合的问题,涉及位移和速度的分解。
(1)小球从抛出到P点,做平抛运动,设抛出点到P点的距离为L小球在水平方向上做匀速直线运动,有:在竖直方向上做自由落体运动,有:联立以上各式,代入数据解得:(2)设小球垂直打在直杆上时竖直方向的分速度为v y,有:在水平方向上,有:在竖直方向上,有:,由几何关系,可得:联系以上各式,得:另解:小球沿斜面方向的分运动为匀加速直线运动,初速度为:,加速度为小球垂直打在直杆上,速度为,有:在斜面方向上,由匀变速运动规律得:联立以上各式,得:点睛:物体平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体;也可分解为沿斜面方向的匀变速直线运动和垂直斜面的匀变速直线运动。
高中物理曲线运动21个典型题
高中物理曲线运动21个典型题典型例题1——关于飞机轰炸飞机在离地面720m的高度,以70的速度水平飞行,为了使飞机上投下的炸弹落在指定的轰炸目标上,应该在离轰炸目标的水平距离多远的地方投弹?(不计空气阻力取)可以参考媒体展示飞机轰炸目标的整个过程以及分析,帮助理解.解:设水平距离为子弹飞行的时间:水平距离典型例题2——关于变速运动火车上的平抛运动在平直轨道上以的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m.间隔时间为1s.两物体落地点的间隔是2.6m,则当第一个物体下落时火车的速度是多大?(取)分析:如图所示、第一个物体下落以的速度作平抛运动,水平位移,火车加速到下落第二个物体时,已行驶距离.第二个物体以的速度作平抛运动水平位移.两物体落地点的间隔是2.6m.解:由位置关系得:物体平抛运动的时间:由以上三式可得点评:解本题时,作出各物体运动情况的草图对帮助分析题意十分重要.先后作平抛运动的物体因下落高度相同,所以运动的时间相同,但下落的时间不同于火车加速度运动的时间,不要混淆.典型例题3——关于三维空间上的平抛运动分析光滑斜面倾角为,长为,上端一小球沿斜面水平方向以速度抛出(如图所示),小球滑到底端时,水平方向位移多大?解:小球运动是合运动,小球在水平方向作匀速直线运动,有①沿斜面向下是做初速度为零的匀加速直线运动,有②根据牛顿第二定律列方程③由①,②,③式解得说明:中学阶段研究的曲线运动一定是两维空间(即平面上的)情况,因此,该题首先分析在斜面上的分运动情况.研究曲线运动必须首先确定分运动,然后根据“途径”处理.典型例题4——关于小船过河的一系列问题一艘小船在200m宽的河中横渡到对岸,已知水流速度是2m/s,小船在静水中的速度是4m/s,求:①当船头始终正对着对岸时,小船多长时间到达对岸,小船实际运行了多远?②如果小船的路径要与河岸垂直,应如何行驶?消耗的时间是多少?③如果小船要用最短时间过河,应如何?船行最短时间为多少?【分析与解答】①在解答本题的时候可由此提问:船头始终正对河岸代表什么含义.(①题的答案:50秒,下游100米)②路径与河岸垂直——船的实际运动——船的合运动(在两个分运动的中间,并与河岸垂直)(②题的答案:与上游河岸成60°,57.7s)③分析本题,可以得到求t最小的方法:1、河宽一定,要想使时间最少应使垂直河岸方向的分速度最大,即正对河岸航行,则.2、或者由三个式子一一分析.一定,又有最小值,即河宽,便可以求出渡河最短时间.(③题的答案:50s)典型例题5——关于拉船分运动的分解判断在高处拉低处小船时,通常在河岸上通过滑轮用钢绳拴船,若拉绳的速度为4m/s,当拴船的绳与水平方向成60°时,船的速度是多少?(8m/s)【分析与解答】:在分析船的运动时,我们发现船的运动产生了两个运动效果:绳子在不断缩短;而且绳子与河岸的夹角不断减小,所以我们可以将船的运动——实际运动——合运动分解成沿绳子方向的运动和垂直绳子方向所做的圆周运动,因此可以将船的运动分为:1、船沿水平方向前进——此方向为合运动,求合速度v.2、小船的运动可以看成为沿绳子缩短方向的运动和垂直绳子方向做圆周运动的合运动.所以根据题意,船的速度大小与绳子的运行速度之间的关系是:典型例题6——关于汽车通过不同曲面的问题分析一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:(重力加速度)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有:,解得桥面的支持力大小为根据牛顿第三定律,汽车对桥面最低点的压力大小是N.(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有,解得桥面的支持力大小为根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N.(3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有,解得:汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力.典型例题7——细绳牵引物体做圆周运动的系列问题一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.【分析与解答】(1)小球通过圆周最高点时,受到的重力必须全部作为向心力,否则重力G 中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运。
高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析
高中物理曲线运动常有题型及答题技巧及练习题 ( 含答案 ) 及分析一、高中物理精讲专题测试曲线运动1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足 0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q 1 m A gL 10(J )(ⅱ)当知足0.2 ≤μ≤ 0.A3和小车能共速,产生的热量为时, Q 11m A v 121 m A M v2 ,解得 Q 2=2J222. 如下图,水平长直轨道AB 与半径为R=0.8m 的圆滑1 竖直圆轨道BC 相切于B , BC4与半径为r=0.4m 的圆滑1 竖直圆轨道 CD 相切于C ,质量m=1kg 的小球静止在A 点,现用4F=18N 的水平恒力向右拉小球,在抵达 AB 中点时撤去拉力,小球恰能经过 球与水平面的动摩擦因数μ=0.2,取 g=10m/s 2.求:D 点.已知小( 1)小球在 D 点的速度 v D 大小 ; ( 2)小球在 B 点对圆轨道的压力 N B 大小;( 3) A 、B 两点间的距离 x .【答案】 (1) v D 2m / s ( 2)45N (3)2m【分析】 【剖析】 【详解】(1)小球恰巧过最高点 D ,有:2 mgmv Dr解得: v D 2m/s(2)从 B 到 D ,由动能定理:mg(R r )1mv D 21mv B 22 2设小球在 B 点遇到轨道支持力为 N ,由牛顿定律有:2 N mgmv BRN B =N联解③④⑤得: N=45N(3)小球从 A 到 B ,由动能定理:Fxmgx1 mv B2 22解得: x 2m故此题答案是: (1) v2m / s( 2) 45N (3)2mD【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加快阶段的位移,3. 如下图,在圆滑的圆锥体顶部用长为的细线悬挂一质量为 的小球, 因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加快度 g 取 若北小球运动的角速度,求此时细线对小球的拉力大小。
高中物理曲线运动常见题型及答题技巧及练习题(含答案)含解析
高中物理曲线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,在风洞实验室中,从A 点以水平速度v 0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F ,经过一段时间小球运动到A 点正下方的B 点 处,重力加速度为g ,在此过程中求(1)小球离线的最远距离; (2)A 、B 两点间的距离; (3)小球的最大速率v max .【答案】(1)202mv F(2)22022m gv F (3)2220 4v F m g F【解析】 【分析】(1)根据水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)根据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A 、B 两点间的距离;(3)小球到达B 点时水平方向的速度最大,竖直方向的速度最大,则B 点的速度最大,根据运动学公式结合平行四边形定则求出最大速度的大小; 【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解 水平方向:F =m a x v 02=2a x x m解得:202m mv x F= (2)水平方向速度减小为零所需时间01xv t a = 总时间t =2t 1竖直方向上:22202212m gv y gt F== (3)小球运动到B 点速度最大 v x =v 0 V y =gt222220max 4x y v v v v F m g F==++【点睛】解决本题的关键将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B到C的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B至C过程中小球克服阻力做的功;(3)小球离开C点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小3.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N.求:(1)线断裂的瞬间,线的拉力;(2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 20 =9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t=220.810hsg⨯==0.4s,则落地点离桌面的水平距离为:x=vt=5×0.4=2m.4.如图所示,在竖直平面内有一倾角θ=37°的传送带BC.已知传送带沿顺时针方向运行的速度v=4 m/s,B、C两点的距离L=6 m。
(完整)高中物理必修二第五章曲线运动知识点总结,推荐文档
匀速圆周运动: v 2 r T
匀速圆周运动: 2 T
③周期 T: 物体运动一周需要的时间 。 单位:s。
④频率 f: 物体 1 秒钟的时间内沿圆周绕圆心绕过的圈数。 单位:Hz
⑤转速 n:物体 1 分钟的时间内沿圆周绕圆心绕过的圈数。 单位:r/s 或 r/min
f 1 T
说明:弧度 rad ;角速度 rad / s ;转速 r / s ,当转速为 r / s 时, f n
(3)当 v gR 时, mg m v2 ,N=0,杆或轨道对物体无作用力。 R
龙文教育——您值得信赖的专业化个性化辅导学校
龙文教育——您值得信赖的专业化个性化辅导学校
(4)当 v gR 时, mg N m v2 , v N ,杆或轨道对物体产生向下的作用力。 R
龙文教育——您值得信赖的专业化个性化辅导学校
①时间的三种求法: t 2h x vy ,在空中飞行时间由高度决定。 g v0 g
tan y gt x 2v0
② vt v02 2gh ,落地速度与 v0 和 h 有关。
③ tan 2 tan ,末速度偏角为位移偏角正切值的 2 倍, vt 的反向延长线平分水平位移。
4、斜抛运动定义:将物体以一定的初速度沿与水平方向成一定角度抛出,且物体只在重力作用下(不计 空气阻力)所做的运动,叫做斜抛运动。它的受力情况与平抛完全相同,即在水平方向上不受力,加速 度为 0;在竖直方向上只受重力,加速度为 g。
速度: vx v0 cos
位移: x v0 cost
vy v0 sin gt
时间: t x 2 v sin
v0 cos
g
y
v0
sin
t
1 2
gt
高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)
高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.4.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字)【答案】(1)0v (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得0v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆5.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '=对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,轨道ABCD 的AB 段为一半径R =0.2 m 的光滑1/4圆形轨道,BC 段为高为h =5 m 的竖直轨道,CD 段为水平轨道.一质量为0.2 kg 的小球从A 点由静止开始下滑,到达B 点时速度的大小为2 m /s ,离开B 点做平抛运动(g =10 m /s 2),求:(1)小球离开B 点后,在CD 轨道上的落地点到C 点的水平距离; (2)小球到达B 点时对圆形轨道的压力大小;(3)如果在BCD 轨道上放置一个倾角θ=45°的斜面(如图中虚线所示),那么小球离开B 点后能否落到斜面上?如果能,求它第一次落在斜面上的位置距离B 点有多远.如果不能,请说明理由.【答案】(1)2 m (2)6 N (3)能落到斜面上,第一次落在斜面上的位置距离B 点1.13 m 【解析】①.小球离开B 点后做平抛运动,212h gt =B x v t =解得:2m x =所以小球在CD 轨道上的落地点到C 的水平距离为2m ②.在圆弧轨道的最低点B ,设轨道对其支持力为N由牛二定律可知:2Bv N mg m R-=代入数据,解得3N N =故球到达B 点时对圆形轨道的压力为3N ③.由①可知,小球必然能落到斜面上根据斜面的特点可知,小球平抛运动落到斜面的过程中,其下落竖直位移和水平位移相等212B v t gt ⋅''=,解得:0.4s t '= 则它第一次落在斜面上的位置距B 点的距离为20.82m B S v t ='=.8.如图所示,在光滑水平桌面EAB 上有质量为m =2 kg 的小球P 和质量为M =1 kg 的小球Q ,P 、Q 之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E 处放置一质量也为M =1 kg 的橡皮泥球S ,在B 处固定一与水平桌面相切的光滑竖直半圆形轨道。
高中物理曲线运动常见题型及答题技巧及练习题(含答案)
高中物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L=3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v0≤13 m/s;(2)55m/s;【解析】【分析】【详解】(1)若v太大,小球落在空地外边,因此,球落在空地上,v的最大值v max为球落在空地最右侧时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t1.则小球的水平位移:L+x=v max t1,小球的竖直位移:H=gt12解以上两式得v max=(L+x)=(10+3)×=13m/s.若v太小,小球被墙挡住,因此,球不能落在空地上,v的最小值v min为球恰好越过围墙的最高点P落在空地上时的平抛初速度,设小球运动到P点所需时间为t2,则此过程中小球的水平位移:L=v min t2小球的竖直方向位移:H﹣h=gt22解以上两式得v min=L=3×=5m/s因此v0的范围是v min≤v0≤v max,即5m/s≤v0≤13m/s.(2)根据机械能守恒定律得:mgH+=解得小球落在空地上的最小速度:v min′===5m/s3.如图所示,在竖直平面内有一绝缘“ ”型杆放在水平向右的匀强电场中,其中AB、CD 水平且足够长,光滑半圆半径为R,质量为m、电量为+q的带电小球穿在杆上,从距B点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0=4gR ,则小球运动到半圆上B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度v=4gR ,初始位置变为x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >(3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+4.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N 联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-=解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,5.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.6.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.7.光滑水平轨道与半径为R 的光滑半圆形轨道在B 处连接,一质量为m 2的小球静止在B 处,而质量为m 1的小球则以初速度v 0向右运动,当地重力加速度为g ,当m 1与m 2发生弹性碰撞后,m 2将沿光滑圆形轨道上升,问:(1)当m 1与m 2发生弹性碰撞后,m 2的速度大小是多少?(2)当m 1与m 2满足21(0)m km k =>,半圆的半径R 取何值时,小球m 2通过最高点C 后,落地点距离B 点最远。
高中物理曲线运动常见题型及答题技巧及练习题(含答案)含解析
高中物理曲线运动常有题型及答题技巧及练习题( 含答案 ) 含分析一、高中物理精讲专题测试曲线运动1.如下图,一箱子高为H.底边长为L,一小球从一壁上沿口 A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离 C 点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的 B 点,求初速度的可能值。
【答案】( 1)( 2)【分析】【剖析】(1)将整个过程等效为完好的平抛运动,联合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的 B 点,则水平位移应当是2L 的整数倍,经过平抛运动公式列式求解初速度可能值。
【详解】(1)本题能够当作是无反弹的完好平抛运动,则水平位移为: x==v0t竖直位移为: H= gt2解得: v0=;(2)若小球正好落在箱子的 B 点,则小球的水平位移为:x′=2nL( n= 1.2.3 )同理: x′=2nL=v′20t,H=gt ′解得:( n= 1.2.3 )2.如下图,质量为M4kg 的平板车P的上表面离地面高h 0.2m,质量为 m 1kg 的小物块 Q (大小不计,可视为质点)位于平板车的左端,系统本来静止在圆滑水平川面上,一不行伸长的轻质细绳长为R 0.9m ,一端悬于Q正上方高为R处,另一端系一质量也为 m 的小球(大小不计,可视为质点)。
今将小球拉至悬线与竖直方向成60o角由静止开释,小球抵达最低点时与Q 的碰撞时间极短,且无机械能损失。
已知Q 走开平板车时速度大小 v1 1m/s ,Q与P之间的动摩擦因数0.2 ,重力加快度 g10m/s2,计算:(1)小球与 Q 碰撞前瞬时,细绳拉力T 的大小;(2)平板车 P 的长度 L;(3)小物块 Q 落地时与小车的水平距离s。
【答案】 (1) 20 N; (2) 1.75 m; (3) 0.1 m。
高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析
高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:vy =m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 2==m/s 物块到达P 的速度:P v ===3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J.4.如图所示,在竖直平面内有一倾角θ=37°的传送带BC.已知传送带沿顺时针方向运行的速度v=4 m/s,B、C两点的距离L=6 m。
高考物理曲线运动常见题型及答题技巧及练习题(含答案)
高考物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在风洞实验室中,从A 点以水平速度v 0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F ,经过一段时间小球运动到A 点正下方的B 点 处,重力加速度为g ,在此过程中求(1)小球离线的最远距离; (2)A 、B 两点间的距离; (3)小球的最大速率v max .【答案】(1)202mv F(2)22022m gv F (3)2220 4v F m g F【解析】 【分析】(1)根据水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)根据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A 、B 两点间的距离;(3)小球到达B 点时水平方向的速度最大,竖直方向的速度最大,则B 点的速度最大,根据运动学公式结合平行四边形定则求出最大速度的大小; 【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解 水平方向:F =m a x v 02=2a x x m解得:202m mv x F= (2)水平方向速度减小为零所需时间01xv t a = 总时间t =2t 1竖直方向上:22202212m gv y gt F== (3)小球运动到B 点速度最大 v x =v 0 V y =gt222220max 4x y v v v v F m g F==++【点睛】解决本题的关键将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C 点再落回到水平面,重力加速度为g .求:(1)弹簧弹力对物块做的功;(2)物块离开C 点后,再落回到水平面上时距B 点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少? 【答案】(1) (2)4R (3)或【解析】 【详解】(1)由动能定理得W =在B 点由牛顿第二定律得:9mg -mg =m解得W =4mgR(2)设物块经C 点落回到水平面上时距B 点的距离为S ,用时为t ,由平抛规律知 S=v c t 2R=gt 2从B 到C 由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知 EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或EP≥mgR.3.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析
高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,物体在A 的上方O 点用细线悬挂一小球C(可视为质点),线长L =0.8m .现将小球C 拉至水平无初速度释放,并在最低点与物体A 发生水平正碰,碰撞后小球C 反弹的速度为2m/s .已知A 、B 、C 的质量分别为m A =4kg 、m B =8kg 和m C =1kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10m/s 2.(1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小; (2)求A 、C 碰撞后瞬间A 的速度大小;(3)若物体A 未从小车B 上掉落,小车B 的最小长度为多少? 【答案】(1)30 N (2)1.5 m/s (3)0.375 m 【解析】 【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m 0gl 12=m 0v 02 代入数据解得:v 0=4m/s ,对小球,由牛顿第二定律得:F ﹣m 0g =m 02v l代入数据解得:F =30N(2)小球C 与A 碰撞后向左摆动的过程中机械能守恒,得:212C mv mgh = 所以:22100.22C v gh ==⨯⨯=m/s小球与A 碰撞过程系统动量守恒,以小球的初速度方向为正方向, 由动量守恒定律得:m 0v 0=﹣m 0v c +mv A 代入数据解得:v A =1.5m/s(3)物块A 与木板B 相互作用过程,系统动量守恒,以A 的速度方向为正方向, 由动量守恒定律得:mv A =(m+M )v代入数据解得:v =0.5m/s由能量守恒定律得:μmgx 12=mv A 212-(m+M )v 2 代入数据解得:x =0.375m ;3.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大? ②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)1515T mg = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得cos mgT α=解得:41515T mg =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。
高中物理曲线运动常见题型及答题技巧及练习题(含答案)
高中物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
42+ 32【题型总结】专题五曲线运动一、运动的合成和分解1.速度的合成:(1)运动的合成和分解(2)相对运动的规律v甲地=v甲乙+v乙地例:一人骑自行车向东行驶,当车速为 4m/s 时,他感到风从正南方向吹来,当车速增加到 7m/s 时。
他感到风从东南方向(东偏南45º)吹来,则风对地的速度大小为()A. 7m/sB. 6m/sC. 5m/sD. 4 m/s解析:“他感到风从正南方向(东南方向)吹来” ,即风相对车的方向是正南方向(东南方向)。
而风相对地的速度方向不变,由此可联立求解。
解:∵θ=45°∴V 风对车=7—4=3 m/s∵V风对车+V车对地=V风对地V 风对∴V 风对地= =5答案:C2.绳(杆)拉物类问题m/sV 风对V 车对① 绳(杆)上各点在绳(杆)方向上的速度相等②合速度方向:物体实际运动方向分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)垂直于绳(杆)方向:使绳(杆)转动例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ 角,且重物下滑的速率为v 时,小车的速度为多少?解:方法一:虚拟重物M 在Δt 时间内从A 移过Δh 到达C的运动,如图(1)所示,这个运动可设想为两个分运动所合成,即先随绳绕滑轮的中心轴O 点做圆周运动到B,位移为Δs1,然后将绳拉过Δs2到C.1若Δt 很小趋近于0,那么Δφ→0,则Δs1=0,又OA=OB,∠OBA=β=2 (180°-Δφ)→90°.亦即Δs1近似⊥Δs2,故应有:Δs2=Δh·cosθ∆s2因为∆t=∆h∆t ·cosθ,所以v′=v·cosθ方法二:重物M 的速度v 的方向是合运动的速度方向,这个v 产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v′运动,如图(2)所示,由图可知,v′=v·cosθ.(1)(2)V 风对θV A2α A V A1 αV B V V B2α 船练习 1:一根绕过定滑轮的长绳吊起一重物 B ,如图所示,设汽车和重物的速度的大小分别为v A , v B ,则 ( ) A 、v A = v B B 、v A 〉v B C 、v A 〈v B D 、重物 B 的速度逐渐增大解析:(微元法)设经过 t ,物体前进 s 1 ,绳子伸长 s 2 : s 1 = v A t , s 2 = v B t ⇒ v B = v A cos⇒↓ , v B ↑ , s 2 = s 1 cos. ∵ cos 〈1 , ∴ v B 〈v A练习 2:如图所示,一轻杆两端分别固定质量为 m A 和 m B 的两个小球 A 和 B (可视为质点)。
将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成α角时,A 球沿槽下滑的速度为 V A ,求此时 B 球的速度 V B ? 解:A 球以 V A 的速度沿斜槽滑下时,可分解为:一个使杆压缩的分运动,设其速度为 V A1;一个使杆绕 B 点转动的分运动,设其速度为 V A2。
而 B 球 沿斜槽上滑的运动为合运动,设其速度为 V B ,可分解为:一个使杆伸长的V 分运动,设其速度为 V B1,V B1=V A1;一个使杆摆动的分运动设其速度为 V B2;由图可知:V B 1 = V B sin = V A 1 = V A cosV B = V A ⋅ cot3. 渡河问题d(1) 以时间为限制条件:①时间最短:使船头垂直于河岸航行. t 短 =船d (d 为河宽) s = sind(为合速度与水流速度的夹角) ②普通情况: t =v 船 sin( 为船头与河岸的夹角)(2) 以位移为限制条件:d ① v 水 〈v 船S 短 = d (d 为河宽) t =v sin (为船头与河岸的夹角)② v 水 〉v 船v 合 = S = dv 水短v 船船的真实方向指的是船的航行方向;船的划行方向指的是船头指向。
例 1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为 v 1, 摩托艇在静水中的航速为 v 2,战士救人的地点 A 离岸边最近处 O 的距离为 d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离 O 点的距离为( )解析:摩托艇要想在最短时间内到达对岸,其划行方向要垂直于江岸,摩托艇实际的运动是相对于水的划 d行运动和随水流的运动的合运动,垂直于江岸方向的运动速度为 v 2,到达江岸所用时间 t= ;沿江岸方v 2向的运动速度是水速 v 1 在相同的时间内,被水冲下的距离,即为登陆点距离 0 点距离 s = v t = dv 1。
1 v2答案:C例 2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了 T 1;若此船用最短的位移v 2 水 船- v 2vCv过河,则需时间为T2,若船速大于水速,则船速与水速之比为()(A) (B) (C) (D)d解析:设船速为v1,水速为v2,河宽为 d ,则由题意可知:T1 =①1d当此人用最短位移过河时,即合速度v 方向应垂直于河岸,如图所示,则T2=②v 2-v 21 2T v 2-v 2v T联立①②式可得:1=T2【巩固练习】12,进一步得1=v1v2答案:Am1、一个劈形物体M,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个光滑小球m,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是()M A、沿斜面向下的直线B、竖直向下的直线C、无规则的曲线D、抛物线解析:由于小球初速度为零,所以不可能做曲线运动;又因为小球水平方向不受力,水平方向运动状态不变,所以只能向下运动。
答案:C[同类变式1]下列说法中符合实际的是:()A.足球沿直线从球门的右上角射入球门B.篮球在空中划出一条规则的圆弧落入篮筐C.台球桌上红色球沿弧线运动D.羽毛球比赛时,打出的羽毛球在对方界内竖直下落。
解析:足球在空中向前飞行时,只受重力作用,一定做曲线运动;抛出的篮球,所受重力的方向不可能总与篮球的速度方向垂直,所以不可能是规则的圆弧;滚动的台球所受合力是摩擦力,与运动方向相反,只能做减速直线运动;打出的羽毛球受到重力及较大的空气阻力作用,其中空气阻力总与运动方向相反,随着运动速率减小而减小,二力合力的大小及方向都在不断变化,所以打出的球较高时有可能竖直下落。
D [同类变式 2]匀速上升的载人气球中,有人水平向右抛出一物体,取竖直向上为 y 轴正方向,水平向右为 x轴正方向,取抛出点为坐标原点,则地面上的人看到的物体运动轨迹是下图中的:A解析:物体具有竖直向上的初速度,在空中只受重力作用,所以做斜上抛运动(水平方向作匀速运动、竖直方向做竖直上抛运动。
)答案:B2、如图所示为一空间探测器的示意图,P1、P2、P3、P4是四个喷气发动机,P1、P2的连线与空间一固定坐标系的x 轴平行,P3、P4的连线与y 轴平行.每台发动机开动时,都能向探测器提供推力,但不会使探测器转动.开始时,探测器以恒定的速率v o向正x 方向平动.要使探测器改为向正x 偏负y 60°的方向以原来的速率v o平动,则可( )A.先开动P1适当时间,再开动P4适当时间B.先开动P3适当时间,再开动P2适当时间C.开动P4适当时间D.先开动P3适当时间,再开动P4适当时间解析:火箭、喷气飞机等是由燃料的反作用力提供动力,所以P1、P2、P3、P4分别受到向左、上、右、下的作用力。
使探测器改为向正x 偏负y 60°的方向以原来的速率v o平动,所以水平方向上要减速、竖直方向上要加速。
答案:A3、如图所示,A、B 为两游泳运动员隔着水流湍急的河流站在两岸边,A 在较下游的位置,且A 的游泳成绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?()A.A、B 均向对方游(即沿虚线方向)而不考虑水流作用B.B 沿虚线向A 游且A 沿虚线偏向上游方向游2T 2-T 22 1B DC.A 沿虚线向B 游且B 沿虚线偏向上游方向游D.都应沿虚线偏向下游方向,且B 比A 更偏向下游解析:游泳运动员在河里游泳时同时参与两种运动,一是被水冲向下游,二是沿自己划行方向的划行运动。
游泳的方向是人相对于水的方向。
选水为参考系,A、B 两运动员只有一种运动,由于两点之间直线最短,所以选 A。
二、平抛运动【题型总结】1.斜面问题:①分解速度:例:如图所示,以水平初速度v0抛出的物体,飞行一段时间后,垂直撞在倾角为的斜面上,求物体完成这段飞行的时间和位移。
解:tan=vxvy=vgt,∴t =1vg ⋅t anv 2 (2 tan 2+ 1)S =S +S ⋅tan=gt 2+v t ⋅tan=0y x 2 0 2g tan 2练习:如图所示,在倾角为 370的斜面底端的正上方 H 处,平抛一小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度。
解:小球水平位移为H -1gt 2x =v0t ,竖直位移为y =1gt 2,由图可知,2tan 370= 2 ,又tan 370=v0 ,解之得:v = 153gH .②分解位移:vt gt 017例:如图,在倾角为的斜面顶端A 处以速度v0水平抛出一小球,落在斜面上的某一点B 处,设空气阻力不计,求小球从A 运动到 B 处所需的时间和位移。
解:设小球从A 处运动到B 处所需的时间为t ,则水平位移x =v t ,竖直位移y =1gt 2。
1gt 2= (v t) tan,∴t =2vtan S =Sy1gt 2=22v 2 tan 2=02 2 0g sin sin g sin练习1:(求平抛物体的落点)如图,斜面上有a、b、c、d 四个点,ab=bc=cd。
从a 点正上方的O 点以速度v0水平抛出一个小球,它落在斜面上b 点。
若小球从O 点以速度 2v0水平抛出,不计空气阻力,则它落在斜面上的A.b 与c 之间某一点B.c 点C.c 与d 之间某一点D.d 点解析:当水平速度变为 2v0时,如果作过b 点的直线 be,小球将落在c 的正下方的直线上一点,连接 O 点和e 点的曲线,和斜面相交于bc 间的一点,故 A 对。
答案:A练习 2:(证明某一夹角为定值)从倾角为θ的足够长的 A 点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v1,球落到斜面上前一瞬间的速度方向与斜面的夹角为,第二次初速度,球落在斜面上前一瞬间的速度方向与斜面间的夹角为,若,试比较的大小。
解析:,所以。
即以不同初速度平抛的物体落在斜面上各点的速度是互相平行的。