2.3.多项式的最大公因式(二)解析

合集下载

《高等代数(上)》课程标准

《高等代数(上)》课程标准

《高等代数(上)》课程标准1.课程说明《高等代数(上)》课程标准课程编码〔 37008 〕承担单位〔师范学院〕制定〔〕制定日期〔2022.11.20 〕审核〔〕审核日期〔〕批准〔〕批准日期〔〕(1)课程性质:本门课程是数学教育专业的专业基础课程之一,是本专业的核心课程,也是必修课程。

本课程是初等代数的延续与提高, 它的知识,技能,思想方法,对中小学数学教学有直接的指导作用,特别是数学能力的培养和提升发挥着不可替代的作用,可以增强学生的数学思维品质和提高学生的数学素养,为未来的数学教师生涯和今后的再学习奠定良好的专业理论基础。

(2)课程任务:本课程主要针对中小学数学教育教师及相关等岗位开设,主要任务是培养学生在中小学数学教育教师岗位的数学课程教学能力,要求学生掌握中小学数学教师在代数方面的专业理论基础知识、基本技能及思想方法和解决相关问题的能力。

(3)课程衔接:在课程设置上,前导课程有中学数学,后续课程有《高等代数(下)》、《解析几何》、《概率统计基础》、《数论》等。

2.学习目标通过本课程的学习,使学生掌握《高等代数(上)》的基础知识、基本理论、基本方法。

提高学生的逻辑推理能力,提高学生的数学思维能力,提高学生的再学习的能力。

培养学生实事求是、诚实守信、爱岗敬业、团结协作的职业精神,培养学生善于沟通、勇于合作的良好品质,为发展职业能力奠定良好的基础。

使学生成为具备从事中小学数学教育职业的高素质劳动者和教学高级技术人才。

(1)知识目标掌握一元多项式理论、线性方程组、行列式与矩阵及二次型的基本知识、基本理论。

熟练掌握行列式、矩阵的运算。

熟练掌握运用初等变换求解线性方程组、求可逆矩阵的逆矩阵等基本方法。

(2)素质目标培养良好的思想品德、心理素质。

培养良好的职业道德,包括爱岗敬业、诚实守信、遵守相关的法律法规等。

培养学生踏实、认真、求实的做事态度,使学生形成勇于承担责任、实事求是的工作作风。

培养良好的团队协作、协调人际关系的能力。

一元多项式的定义和运算讲解

一元多项式的定义和运算讲解
定理 2.4.1
令f (x)是F [x]的一个次数大于零的多项式,并且
此处
定理 2.4.2
例 在有理数域上分解多项式 为不可约因式的乘积.容易看出
(2)
一次因式x + 1自然在有理数域上不可约.我们证明, 二次因式 也在有理数域上不可约.不然的话, 将能写成有理数域上两个次数小于2的因式 的乘积,因此将能写成
这个定义的条件也可以用另一种形式来叙述
若多项式 有一个非平凡因式 而 ,那么 与 的次数显然都小于 的次数.反之,若 能写成两个这样的多项式的乘积,那么 有非平凡因式.因此我们可以说:
这里
多项式的减法
2.1.5 多项式加法和乘法的运算规则
(1)加法交换律:
(2)加法结合律:
(3)乘法交换律:
(4)乘法结合律:
(5)乘法对加法的分配律:
注意:
要把一个多项式按“降幂”书写

时,
叫做多项式的首项.
2.1.6 多项式的运算性质
定理
是数环R上两个多项式,并且
定义 2
设 是多项式 与 的一个公因式.若是 能被 与 的每一个公因式整除,那么 叫做 与 的一个最大公因式.
定义 1
的任意两个多项式 与 一定有最大公因式.除一个零次因式外, 与 的最大公因式是唯一确定的,这就是说,若 是 与 的一个最大公因式,那么数域F的任何一个不为零的数 c与 的乘积 ,而且当 与 不全为零多项式时,只有这样的乘积是 与 的最大公因式.
由此得出,


的最大公因式,而
定理 2.3.3
的两个多项式 与 互素的充分且必要条 件是:在 中可以求得多项式 与 ,使

高等代数课件 第二章

高等代数课件 第二章

三、 多项式的带余除法定理
定理 设f x, gx F[x] ,且 gx 0,则存在
qx, rxF[x], 使得
f x gxqx rx
这里 rx 0,或者 0 rx 0 gx. 并且满足上述条件的 qx和r(x) 只有一对。
注1: qx, rx分别称为 gx除f (x)所得的商式和
余式
注2: gx 0, gx| f x rx 0.
使以下等式成立:
f xux gxvx dx
三、多项式的互素
1. 互素的定义
定义 3 如果 Fx 的两个多项式除零次多项式外
不再有其它的公因式,我们就说,这两个多项式互素.
2. 互素的性质
(1)定理 2.3.3 Fx的两个多项式 f x与gx 互素
的充分且必要条件是:在 Fx中可以求得多项式 ux
二.教学目的 1.掌握最大公因式,互素概念. 2.熟练掌握辗转相除法 3.会应用互素的性质证明整除问题
三.重点,难点 辗转相除法求最大公因式. 证明整除问题
一、最大公因式的定义
定义 1 令 f x和 gx是F [x]的两个多项式,若 是F [x]的一个多项式hx 同时整除 f x和gx ,那么 hx 叫做 f x与gx的一个公因式.
f1x, f2 x,, fk x,及 q1x, q2 x,, qk x,
使得
fk1x fk x qk1xgx

0 f x 0 f1x 0 gx
由于多项式 f1x, f2x,的次数是递降的, 故存在k使
fk x 0或0 fk x 0gx ,于是
qx q1x qk x及rx fk x
系数所在范围对整除性的影响
二、教学目的
1.掌握一元多项式整除的概念及其性质。 2.熟练运用带余除法。

2.3.多项式的最大公因式(二)

2.3.多项式的最大公因式(二)

11
数学与计算机科学学院高等代数课件
例 6 令F是有理数域。求出 F x 的多项式
f x 4 x 4 2 x 3 16 x 2 5 x 9, g x 2 x 3 x 2 5 x 4
的最大公因式 d x 以及满足等式
f xux g xvx d x
8
数学与计算机科学学院高等代数课件
由倒数第二个等式移项得 : rk 1 ( x) rk 3 ( x) rk 2 ( x)qk 1 ( x)
代入[1]式整理得 :
rk 3 ( x)v1 ( x) rk 2 ( x)(u1 ( x) v1 ( x)qk 1 ( x)) rk ( x)
16
(1)设a, b, c Z,如果(a, c) 1, , c) 1, 那么(ab, c) 1 (b 。
数学与计算机科学学院高等代数课件
二、多项式互素的概念 1、定义3
如果 F x 的两个多项式除零次多项式外不再有 其它的公因式,我们就说,这两个多项式互素。
2、f ( x)与g ( x)互素 ( f ( x), g ( x)) 1 。
因为h( x) h( x), h( x) f ( x) g ( x),
所以h( x) h( x)[u ( x) g ( x)] [ f ( x) g ( x)]v( x), 即:h( x) g ( x)。
2
数学与计算机科学学院高等代数课件
二、最大公因式的存在性、唯一性 定理 2.3.1(PartI): F [ x] 的任意两个多项式 f x 与 g x 一定有最大公因式。
定理 2.3.1(part II): 如果 d1 x 、d 2 x 是
f x 与 g x 的两个最大公因式,那么:

【全国百强校】四川省成都市第七中学高一年级竞赛数学多项式专题讲义:4.多项式的因式

【全国百强校】四川省成都市第七中学高一年级竞赛数学多项式专题讲义:4.多项式的因式

成都七中高一数学竞赛多项式专题讲义A4.多项式的因式一、基础知识多项式的公因式:设多项式(),()[],f x g x P x ∈如果多项式()[]x P x ϕ∈使得()|()x f x ϕ且()|()x g x ϕ,则称()x ϕ为()f x 与()g x 的公因式.多项式的最大公因式:设多项式(),()[],f x g x P x ∈[]P x 中多项式()d x 称为()f x 与()g x 的最大公因式,如果它满足下面两个条件:①()d x 是()f x 与()g x 的公因式;②()f x 与()g x 的公因式全是()d x 的因式.不可约多项式:数域P 上次数1≥的多项式()p x 如果不能表成数域P 上的两个次数比()p x 的次数低的多项式的乘积,则称()p x 为数域P 上的不可约多项式.显然一次多项式总是不可约多项式.22x +是实数域上的不可约多项式,但是在复数域上却不是不可约多项式,这就说明了一个多项式是否不可约是依赖于系数域的.k 重因式:不可约多项式()p x 称为多项式()f x 的k 重因式,如果1()|(),()().k k p x f x p x f x +Œ二、典型例题与基本方法1.如果多项式(),(),(),()f x g x q x r x 满足()()()(),f x q x g x r x =+证明:(1)(),()f x g x 和(),()g x r x 有相同的公因式;(2)(),()f x g x 和(),()g x r x 有相同的最大公因式.2.设多项式(),()[],f x g x P x ∈证明(),()f x g x 的最大公因式在可以相差一个数域P 上的非零常数倍的意义下是唯一确定的.我们知道两个不全为零多项式的最大公因式总是一个非零多项式,我们约定用((),())f x g x 来表示首项系数为1的那个最大公因式.3(裴蜀定理)对于[]P x 中任意两个多项式(),()f x g x ,在[]P x 中存在(),()f x g x 的最大公因式(),d x 且()d x 可以表成(),()f x g x 的一个组合,即存在[]P x 中的多项式(),()u x v x 使得()()()()().d x u x f x v x g x =+4.[]P x 中两个多项式(),()f x g x 称为互素的,如果((),()) 1.f x g x =显然两个多项式互素,那么它们除去零次多项式外没有其他的公因式,反之亦然.5.证明:(1)如果((),())1,f x g x =且()|()(),f x g x h x 则()|().f x h x(2)如果12()|(),()|(),f x g x f x g x 且12((),())1,f x f x =则12()()|().f x f x g x6.[]P x 上的不可约多项式()p x 的因式只有非零常数()c c P ∈与它自身的非零常数倍()()cp x c P ∈这两种,此外就没有了.反过来,具有这个性质的次数1≥的多项式一定是不可约的.由此可知不可约多项式()p x 与[]P x 上任一多项式()f x 之间只可能有两种关系,或者()|()p x f x 或者((),()) 1.p x f x =证明:如果()p x 是一个不可约多项式,那么对于任意的两个多项式(),(),f x g x 由()|()()p x f x g x 一定可推出()|()p x f x 或者()|().p x g x7.设多项式1110()n n n n f x a x a xa x a --=++++,规定它的导数是1211()(1).n n n n f x a nx a n x a ---'=+-++我们可得到关于多项式导数的基本公式:(()())()(),(())(),f x g x f x g x cf x cf x '''''+=+=1(()())()()()(),(())()().m m f x g x f x g x f x g x f x mf x f x -'''''=+=证明:(1)如果不可约多项式()p x 是()f x 的k 重因式(1)k ≥,那么()p x 是()f x '的1k -重因式.(2)()p x 是不可约多项式,如果()p x 是()f x 的重因式⇔()p x 是()f x 与()f x '的公因式.(3)多项式()f x 没有重因式⇔()f x 与()f x '互素.B4.练习 姓名:1.求多项式43()235f x x x x =+++除以2()(1)g x x =+的余式.2.证明:如果多项式(),()f x g x 不全为零多项式,且()()()()((),()).u x f x v x g x f x g x +=证明:((),()) 1.u x v x =3.举例说明断言“如果不可约多项式()p x 是()f x '的1(1)k k -≥重因式,那么()p x 是()f x 的k 重因式”是不对的.A4.多项式的因式一、基础知识多项式的公因式:设多项式(),()[],f x g x P x ∈如果多项式()[]x P x ϕ∈使得()|()x f x ϕ且()|()x g x ϕ,则称()x ϕ为()f x 与()g x 的公因式.多项式的最大公因式:设多项式(),()[],f x g x P x ∈[]P x 中多项式()d x 称为()f x 与()g x 的最大公因式,如果它满足下面两个条件:①()d x 是()f x 与()g x 的公因式;②()f x 与()g x 的公因式全是()d x 的因式.不可约多项式:数域P 上次数1≥的多项式()p x 如果不能表成数域P 上的两个次数比()p x 的次数低的多项式的乘积,则称()p x 为数域P 上的不可约多项式.显然一次多项式总是不可约多项式.22x +是实数域上的不可约多项式,但是在复数域上却不是不可约多项式,这就说明了一个多项式是否不可约是依赖于系数域的.k 重因式:不可约多项式()p x 称为多项式()f x 的k 重因式,如果1()|(),()().k k p x f x p x f x +Œ二、典型例题与基本方法1.如果多项式(),(),(),()f x g x q x r x 满足()()()(),f x q x g x r x =+证明:(1)(),()f x g x 和(),()g x r x 有相同的公因式;(2)(),()f x g x 和(),()g x r x 有相同的最大公因式.证明:(1)如果()x ϕ是(),()f x g x 的一个公因式,则()|(),()|(),x f x x g x ϕϕ于是()|()()(),x f x q x g x ϕ-即()|(),x r x ϕ于是()x ϕ也是(),()g x r x 的一个公因式.如果()x ϕ是(),()g x r x 的一个公因式,则()|(),()|(),x g x x r x ϕϕ于是()|()()(),x q x g x r x ϕ+即()|(),x f x ϕ于是()x ϕ也是(),()f x g x 的一个公因式.所以(),()f x g x 和(),()g x r x 有相同的公因式.(2)若()d x 是(),()f x g x 的一个最大公因式,则由(1)知()d x 是(),()g x r x 的一个公因式.设()x ϕ是(),()g x r x 的任一个公因式,则由(1)知()x ϕ也是(),()f x g x 的一个公因式,于是()|(),x d x ϕ这就证明了()g x 与()r x 的公因式()x ϕ全是()d x 的因式.所以()d x 也是(),()g x r x 的一个最大公因式.若()d x 是(),()g x r x 的一个最大公因式,则由(1)知()d x 是(),()f x g x 的一个公因式.设()x ϕ是(),()f x g x 的任一个公因式,则由(1)知()x ϕ也是(),()g x r x 的一个公因式,于是()|(),x d x ϕ这就证明了()f x 与()g x 的公因式()x ϕ全是()d x 的因式.所以()d x 也是(),()f x g x 的一个最大公因式.这就证明了(),()f x g x 和(),()g x r x 有相同的最大公因式.2.设多项式(),()[],f x g x P x ∈证明(),()f x g x 的最大公因式在可以相差一个数域P 上的非零常数倍的意义下是唯一确定的.我们知道两个不全为零多项式的最大公因式总是一个非零多项式,我们约定用((),())f x g x 来表示首项系数为1的那个最大公因式.证明:设12(),()d x d x 是(),()f x g x 的两个最大公因式,因为()f x 与()g x 的公因式全是最大公因式的因式.所以1221()|(),()|(),d x d x d x d x 于是12()(),,0.d x cd x c P c =∈≠所以(),()f x g x 的最大公因式在可以相差一个数域P 上的非零常数倍的意义下是唯一确定的.3(裴蜀定理)对于[]P x 中任意两个多项式(),()f x g x ,在[]P x 中存在(),()f x g x 的最大公因式(),d x 且()d x 可以表成(),()f x g x 的一个组合,即存在[]P x 中的多项式(),()u x v x 使得()()()()().d x u x f x v x g x =+证明:如果(),()f x g x 有一个为零多项式,不妨设()0,g x =则()f x 就是(),()f x g x 的一个最大公因式,所以存在()()[],d x f x P x =∈且()()1()1().d x f x f x g x ==⋅+⋅因为1,P ∈所以此时()() 1.u x v x ==如果(),()f x g x 均不为零多项式,按带余除法,用()g x 除(),f x 得到商1(),q x 余式1()r x ;如果1()0,r x ≠就再用1()r x 除(),g x 得到商2(),q x 余式2()r x ;又如果2()0,r x ≠就再用2()r x 除1(),r x 得到商3(),q x 余式3()r x ;如此辗转相除下去,显然,所得余式的次数不断降低,即12(())(())(()),g x r x r x ∂>∂>∂>因此在有限次之后,必然有余式为零多项式.于是我们有一串等式:1121213232131212111()()()(),()()()(),()()()(),()()()(),()()()(),()()()(),()()()0.i i i i s s s s s s s s s s s f x q x g x r x g x q x r x r x r x q x r x r x r x q x r x r x r x q x r x r x r x q x r x r x r x q x r x ---------+=+=+=+=+=+=+=+因为()s r x 与0的最大公因式是()s r x ,由第1题知道()s r x 也就是1()s r x -与()s r x 的最大公因式,同样的理由,逐步推上去,()s r x 就是()f x 与()g x 的一个最大公因式()d x .这就证明了()d x 的存在性.由上面的倒数第二个等式,我们有21()()()(),s s s s r x r x q x r x --=-再由倒数第三式,1312()()()(),s s s s r x r x q x r x ----=-代入上式可消去1(),s r x -得到1123()(1()())()()().s s s s s s r x q x q x r x q x r x ----=+-然后根据同样的方法用它上面的等式逐个地消去21(),,(),s r x r x -再并项就得到()()()()(),s r x u x f x v x g x =+于是即()()()()()().s d x r x u x f x v x g x ==+4.[]P x 中两个多项式(),()f x g x 称为互素的,如果((),()) 1.f x g x =显然两个多项式互素,那么它们除去零次多项式外没有其他的公因式,反之亦然.证明:[]P x 中两个多项式(),()f x g x 称为互素的⇔有[]P x 中的多项式(),()u x v x 使()()()() 1.u x f x v x g x +=证明:()⇒由裴蜀定理知道显然成立.()⇐若有[]P x 中的多项式(),()u x v x 使()()()()1,u x f x v x g x +=设()d x 是(),()f x g x 的一个最大公因式,则()|(),()|(),d x f x d x g x 于是()|()()()(),d x u x f x v x g x +所以()|1.d x所以(())0,d x ∂=所以(),()f x g x 互素的5.证明:(1)如果((),())1,f x g x =且()|()(),f x g x h x 则()|().f x h x(2)如果12()|(),()|(),f x g x f x g x 且12((),())1,f x f x =则12()()|().f x f x g x证明:(1)如果((),())1,f x g x =则()()()() 1.u x f x v x g x +=于是()()()()()()().u x f x h x v x g x h x h x +=因为()|()(),f x g x h x 又()|()(),f x f x h x 所以()|()()()()()()().f x u x f x h x v x g x h x h x +=(2)由1()|()f x g x ,则11()()(),g x f x h x =又2()|(),f x g x 于是211()|()(),f x f x h x 因为12((),())1,f x f x =由(1)知道21()|(),f x h x 即122()()().h x f x h x =所以11122()()()()()(),g x f x h x f x f x h x ==于是12()()|().f x f x g x6.[]P x 上的不可约多项式()p x 的因式只有非零常数()c c P ∈与它自身的非零常数倍()()cp x c P ∈这两种,此外就没有了.反过来,具有这个性质的次数1≥的多项式一定是不可约的.由此可知不可约多项式()p x 与[]P x 上任一多项式()f x 之间只可能有两种关系,或者()|()p x f x 或者((),()) 1.p x f x =证明:如果()p x 是一个不可约多项式,那么对于任意的两个多项式(),(),f x g x 由()|()()p x f x g x 一定可推出()|()p x f x 或者()|().p x g x证明:如果()|(),p x f x 则结论已经成立.如果()(),p x f x Œ则((),())1,p x f x =因为()|()()p x f x g x ,所以()|().p x g x7.设多项式1110()nn n n f x a x a xa x a --=++++,规定它的导数是1211()(1).n n n n f x a nx a n x a ---'=+-++我们可得到关于多项式导数的基本公式:(()())()(),(())(),f x g x f x g x cf x cf x '''''+=+=1(()())()()()(),(())()().m m f x g x f x g x f x g x f x mf x f x -'''''=+=证明:(1)如果不可约多项式()p x 是()f x 的k 重因式(1)k ≥,那么()p x 是()f x '的1k -重因式.(2)()p x 是不可约多项式,如果()p x 是()f x 的重因式⇔()p x 是()f x 与()f x '的公因式.(3)多项式()f x 没有重因式⇔()f x 与()f x '互素.证明:(1)由条件()()(),()().k f x p x g x p x g x =Œ因此1()()(()()()()).k f x p x kg x p x p x g x -'''=+这说明1()|().k px f x -'令()()()()(),h x kg x p x p x g x ''=+假设()|(),p x h x 注意到()|()(),p x p x g x '于是()|()()(),p x h x p x g x '-即()|()().p x kg x p x '因为()p x 是不可约多项式,所以()|()p x g x 或者()|().p x p x '而这两种情况都不能成立.于是假设错误.所以()(),p x h x Œ这就证明了()|(),kp x f x '所以()p x 是()f x '的1k -重因式. (2)()⇒如果不可约多项式()p x 是()f x 的重因式,则2()|(),p x f x 于是2()()(),f x p x q x =2()2()()()()()(2()()()),f x p x q x p x q x p x q x p x q x '''=+=+所以()|(),p x f x '显然()|(),p x f x 于是()p x 是()f x 与()f x '的公因式.()⇐若()p x 是()f x 与()f x '的公因式,则()()()(1),()().k f x p x q x k p x q x =≥Œ,若1,k =则()()(),f x p x q x = 于是()()()()(),f x p x q x p x q x '''=+因为()|(),p x f x '显然有()|()(),p x p x q x '所以()|()().p x p x q x '因为()p x 是不可约因式,所以()|(),p x p x '或者()|().p x q x 而这两种情况都不能成立.所以 2.k ≥这就是证明了不可约多项式()p x 是()f x 的重因式.(3)()⇒设多项式()f x 没有重因式,如果()f x 与()f x '不互素,则()f x 与()f x '有公因式(),x ϕ设()p x 是整除()x ϕ的不可约多项式(),p x 由(2)知道()f x 有重因式矛盾.()⇐设()f x 与()f x '互素,若多项式()f x 有重因式(),p x 则由(2)知道()p x 是()f x 与()f x '的公因式矛盾.B4.练习 姓名:1.求多项式43()235f x x x x =+++除以2()(1)g x x =+的余式.解:竖式除法得22()(1)(1)5 6.f x x x x =+-++()5 6.r x x =+ 法2设()()()().f x q x g x r x =+可设().r x ax b =+于是432235()(1).x x x q x x ax b +++=+++令1x =-,则1.a b =-+两边求导得322463()(1)2(1)().x x q x x x q x a '++=++++ 令1,x =-则5.a =所以 6.b =所以()5 6.r x x =+2.证明:如果多项式(),()f x g x 不全为零多项式,且()()()()((),()).u x f x v x g x f x g x +=证明:((),()) 1.u x v x =证明: 因为((),())|(),((),())|(),f x g x f x f x g x g x于是存在12(),()q x q x 使得12()((),())(),()((),())().f x f x g x q x g x f x g x q x ==所以()()()()((),())u x f x v x g x f x g x +=即为12()((),())()()((),())()((),()).u x f x g x q x v x f x g x q x f x g x +=因为多项式(),()f x g x 不全为零多项式,所以((),())f x g x 不是零多项式.所以12()()()() 1.u x q x v x q x +=所以((),()) 1.u x v x =3.举例说明断言“如果不可约多项式()p x 是()f x '的1(1)k k -≥重因式,那么()p x 是()f x 的k 重因式”是不对的.解:设()p x x =是不可约多项式,()()11,k k f x p x x =-=-则1()k f x kx -'=显然是()p x x =的1k -重因式,但 ()p x x =却不是()1k f x x =-的k 重因式.。

因式分解提公因式法(二)

因式分解提公因式法(二)

因式分解提公因式法第2课时课题:3.2提公因式法(二) 课型:新授 备课人:唐思梁教学目标:A层、理解公因式的概念,会找出多项式的公因式,并能用提取公因式法因式分解。

B层、初步形成观察、分析、概括的能力和逆向思维方法。

C层、在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣。

教学重点:掌握公因式的概念,会使用提取公因式法进行因式分解。

教学难点: 运用提公因式法把多项式分解因式找到多项式的最大公因式.教学过程:一、自主学习1、阅读教材P60-612、用短除法分解因式。

二、师生共探1、怎样分解因式? 如何把 分解因式?2、如何把分解因式?3、在草稿上检验例4、例5.4、例6.把因式分解。

三、归纳总结1、当首项系数为负时,通常应提取负因数,在提取“-”号时,余下的各项都变号。

2、提取公因式要彻底;注意易犯的错误:①提取不尽②漏项③疏忽变号④只提取部分公因式,整个式子未成乘积形式。

四、拓展提高1、把因式分解。

2、先变形,再分解因式。

.五、课堂检测A层.选择题(1)多项式-2an-1-4an+1的公因式是M,则M等于( )A.2an-1 B.-2an C.-2an-1 D.-2an+(2)下列因式分解不正确的是( )A.-2ab²+4a²b=2ab(-b+2a) B.3m(a-b)-9n(b-a)=3(a-b)(m+3n)C.-5ab+15a²bx+25ab³y=-5ab(-3ax-5b²y) D.3ay²-6ay-3a=3a(y²-2y-1)(3)将多项式a(x-y)+2bx-2by分解因式,正确的结果是( )A.(x-y)(-a+2b) B.(x-y)(a+2b)C.(x-y)(a-2b) D.-(x-y)(a+2b)B层.把下列各式分解因式:C层.如何把。

最大公因式

最大公因式
就可以),这是因为 f ( x ) 和 cf ( x ) 具有完全相同的 因式,即
( f ( x ), g( x )) (c1 f ( x ), g( x )) ( f ( x ), c2 g( x )) (c1 f ( x ), c2 g( x )) ,
c1 , c2 为非零常数.
© 2009, Henan Polytechnic University §4 最大公因式
8 8
第一章 多项式
从而有 ( f ( x ),g( x ))=( g( x ),r1 ( x ))
=( r1 ( x ),r2 ( x ))
=…
=( rs1 ( x ),rs ( x ))
=( rs ( x ), 0)
再由上面倒数第二个式子开始往回迭代,逐个消去
rs1 ( x ),
, r1 ( x ) 再并项就得到 rs ( x )=u( x ) f ( x ) v( x ) g( x ).
5 5
有一为0,如 g ( x ) 0,则 f ( x ) 证:若 f ( x )、g( x )
就是一个最大公因式.且 f ( x ) 1 f ( x ) 0 g( x ). 考虑一般情形: f ( x ) 0,
g( x ) 0,
第一章 多项式
用 g ( x ) 除 f ( x ) 得:

d1 ( x )、d 2 ( x ) 为 f ( x )、g( x )
的最大公因式,则 d1 ( x )=cd 2 ( x ) ,c为非零常数.
© 2009, Henan Polytechnic University §4 最大公因式
3 3
第一章 多项式
二、最大公因式的存在性与求法

高等代数02多项式

高等代数02多项式

注意: 注意:
定理2.3.2的逆命题不成立.但是当(2)式成立,而d(x)是f(x)与 g(x)的一个公因式时, d(x)一定是f(x)与g(x)的一个最大公因式. 定义3 定义3 F[X]的两个多项式 与 互素的充分必要条件是: F[X]的两个多项式f(x)与g(x)互素的充分必要条件是:在 的两个多项式 互素的充分必要条件是 F[X]中可以求得多项式u(x)与v(x),使 中可以求得多项式u(x) 中可以求得多项式u(x)与v(x), f(x)u(x)+g(x)v(x)=1
最大公因式的定义可以推广到n(n>2)个多项式的情形: n n>2) 若是多项式h(x)整除多项式中 f1 ( x), f 2 ( x),L f n ( x) 的每一个,那么 h(x)叫做这n个多项式的一个公因式.若是 f1 ( x), f 2 ( x),L f n ( x) 的公因式d(x)能被这n多个多项式的每一个公因式整除,那么d(x)叫 做 f1 ( x), f 2 ( x),L f n ( x) 的一个最大公因式。 容易推出:若d0 ( x)是多项式 f1 ( x), f 2 ( x),L f n ( x ) 的一个最大公因式 容易推出 那么 d 0 ( x) 与多项式f(x)的最大公因式也是多项式 f1 ( x), f 2 ( x),L f n ( x) 的最大公因式。
§2.4 多项式的分解
我们知道,给了F(X)的任何一个多项式f(x),那么的任何不为零 的元素c都是f(x)的因式.另一方面,c与f(x)的成绩cf(x)也总是f(x)的因 式.我们f(x)把的这样的因式叫做他的平凡因式 平凡因式. 平凡因式 定义 令f(x)是F[X]的一个次数大于零的多项式.若是f(x)在F[X] f(x)是F[X]的一个次数大于零的多项式.若是f(x)在 的一个次数大于零的多项式 f(x) 中只有平凡因式,f(x)就是说在数域 上不可约. f(x)除平凡 就是说在数域F 中只有平凡因式,f(x)就是说在数域F上不可约.若f(x)除平凡 饮食外, F[X]中还有其它因式 f(x)就是说在 上可约。 中还有其它因式, 就是说在F 饮食外,在F[X]中还有其它因式,f(x)就是说在F上可约。 对于零多项式与零次多项式我们既不能说它们是可约的,也 不能说它们是不可约的。在任一多项式环F[X]中都存在不可约多 项式,因为F[X]的任何一个一次多项式总是不可约的. 注意: 注意:我们只能对给定的数域来谈论多项式可约或不可约

高等代数考研辅导第1讲多项式

高等代数考研辅导第1讲多项式

(1)零多项式只能整除零多项式 4.说明 (2) f ( x), cf ( x)有相同的因式和倍式
例1.1: 证明:x2 +x 1| x3m +x3n 1 x3 p 2 (m, n, p N ).
(1)( x 1) | f ( x n ) x n 1| f ( x n ) 同理可证明 (2) x 2 x 1| f ( x 3 ) xf ( x 3 ) ( x 1) | f ( x), ( x 1) | f ( x). 1 2 1 2
r 标准分解式:f ( x) cp1r1 ( x) p22 ( x) psrs ( x), c是f ( x)的首项系数,p1 ( x), ,ps ( x)是首项系数为1的
互不相同的不可约多项式,ri是正整数.
k l r 1 (1) f ( x) ap1k1 ( x) prkr ( x) prk11 ( x) pmm ( x), g ( x) bp1l1 ( x) prlr ( x) qrlr1 ( x) qnn ( x), 其中pr 1 ( x), , pm ( x)与
(1)找u ( x), v( x), 使u ( x) f ( x) v( x) g ( x) 1; (2)证明f ( x), g ( x)的任一公因式都是非零常数; (3)证明( f ( x), g ( x)) 1的方法: (3)反证法; (4) f ( x)的均不是g ( x)的根.
2.因式分解定理及唯一性定理:P上每个次数 1的多项式f ( x )都可以唯一 分解成P上一些不可约多项式的乘积.所谓唯一性指 f ( x ) p1 ( x ) ps ( x ) q1 ( x ) qt ( x ), 那么s t且适当调序后有pi ( x ) ci qi ( x )(ci 0)

多项式长除法精讲精练

多项式长除法精讲精练

多项式长除法是代数中的一种算法,用一个同次或低次的多项式去除另一个多项式。

是常见算数技巧长除法的一个推广版本。

它可以很容易地手算,因为它将一个相对复杂的除法问题分解成更小的一些问题。

例计算写成以下这种形式:然后商和余数可以这样计算:1.将分子的第一项除以分母的最高次项(即次数最高的项,此处为x)。

结果写在横线之上(x3÷x = x2).2.将分母乘以刚得到结果(最终商的第一项),乘积写在分子前两项之下 (x2· (x−3) = x3− 3x2).3.从分子的相应项中减去刚得到的乘积(注意减一个负项相当于加一个正项),结果写在下面。

((x3− 12x2) − (x3− 3x2) = −12x2 + 3x2 = −9x2)然后,将分子的下一项“拿下来”。

4.重复前三步,只是现在用的是刚写作分子的那两项5.重复第四步。

这次没什么可以“拿下来”了。

横线之上的多项式即为商,而剩下的 (−123) 就是余数。

算数的长除法可以看做以上算法的一个特殊情形,即所有x被替换为10的情形。

除法变换使用多项式长除法可以将一个多项式写成除数-商的形式(经常很有用)。

考虑多项式P(x), D(x) ((D)的次数 < (P)的次数)。

然后,对某个商多项式Q(x) 和余数多项式R(x) ((R)的系数 < (D)的系数),这种变换叫做除法变换,是从算数等式.[1]得到的。

应用:多项式的因式分解有时某个多项式的一或多个根已知,可能是使用 rational root theorem 得到的。

如果一个 n 次多项式 P(x) 的一个根 r 已知,那么 P(x) 可以使用多项式长除法因式分解为 (x-r)Q(x) 的形式,其中 Q(x) 是一个 n-1 次的多项式。

简单来说,Q(x)就是长除法的商,而又知 r 是 P(x) 的一个根、余式必定为零。

相似地,如果不止一个根是已知的,比如已知 r 和 s 这两个,那么可以先从 P(x) 中除掉线性因子 x-r 得到 Q(x),再从 Q(x) 中除掉 x-s ,以此类推。

两零多项式的最大公因式

两零多项式的最大公因式

两零多项式的最大公因式
1. 什么是多项式的最大公因式
- 多项式最大公因式指两个或多个多项式的最大公因数。

- 最大公因数是能够整除给定数字集合中所有数字的最大整数。

2. 两个一元两零多项式的最大公因式计算方法
- 辗转相除法:将两个多项式相除,若有余数,则将除式除以余数。

一直重复直到余数为零。

此时除数即为两个多项式的最大公因式。

3. 举例说明
- 例1:求多项式 f(x)=4x^3-2x^2+2x-2 和 g(x)=2x^2-6 的最大公因式。

- 首先将两个多项式按降幂排列,即 f(x)=4x^3-2x^2+2x-2,
g(x)=0x^3+2x^2-6x+0。

- 用 g(x) 去除 f(x),得到商为 2x 和余数为 2x-2。

- 将 g(x) 除以余数 2x-2,得到商为 x+1,余数为 4。

- 由于余数不为零,再将 2x-2 除以 2,得到商为 x-1,余数为 0。

- 于是,最大公因式为 (2x-2)(x+1)=2(x-1)(x+1)。

- 例2:求多项式 f(x)=6x^3+3x^2-9x-9 和 g(x)=3x^2-6x-15 的最大公因式。

- 首先将两个多项式按降幂排列,即 f(x)=6x^3+3x^2-9x-9,
g(x)=0x^3+3x^2-6x-15。

- 用 g(x) 去除 f(x),得到商为 2x 和余数为 -3x-9。

- 将 g(x) 除以余数 -3x-9,得到商为 -x-3,余数为 0。

- 于是,最大公因式为 3(x+3)。

公因式知识点总结

公因式知识点总结

公因式知识点总结一、定义公因式是指两个或多个多项式中公有的因式,可以被每一个多项式整除的因式。

比如,对于多项式2x^2+4x,我们可以分解因式2x(x+2),其中2x是公因式。

二、求公因式的方法1. 求出每个多项式的所有因式;2. 找出所有多项式中的公有因式。

例如,对于两个多项式4x^2-9和12x^2-27,首先分解因式得到:4x^2-9 = (2x+3)(2x-3)12x^2-27 = 3(2x+3)(2x-3)然后我们可以发现两个多项式中都有因式2x+3和2x-3,因此这两个因式就是两个多项式的公因式。

三、公因式与最大公因式最大公因式是指两个或多个多项式中所有公因式中次数最高的那个因式,也就是说最大公因式不仅是公因式,而且是所有公因式中次数最高的那个。

比如,对于两个多项式3x^2+6x和9x^3-12x^2,我们可以分解因式得到:3x^2+6x = 3x(x+2)9x^3-12x^2 = 3x^2(3x-4)其中,两个多项式的公因式为3x,而最大公因式为3x^2。

四、公因式的运用1. 整理多项式当我们将多项式进行因式分解时,公因式可以帮助我们把多项式进行合并和简化,从而更容易求解或进行其他运算。

比如,对于多项式6x^2+12x+18和9x^2-36,我们可以发现这两个多项式的公因式为3,因此可以将公因式提出来,得到:6x^2+12x+18 = 3(2x^2+4x+6)9x^2-36 = 3(3x^2-12)2. 求多项式的最大公因式在求解多项式的最大公因式时,公因式的概念非常重要。

因为只有找到了所有公因式,才能确定最大公因式。

比如,对于多项式12x^2+20x+8和16x^2-24x-8,我们可以展开因式分解,得到:12x^2+20x+8 = 4(3x^2+5x+2)16x^2-24x-8 = 4(4x^2-6x-2)这里我们发现两个多项式的公因式为4,而最大公因式为4(3x^2+5x+2)。

线性代数下02最大公因式与因式分解

线性代数下02最大公因式与因式分解

f(x)与 g(x) 互素.
定理2 设 f(x), g(x)∈F[x],则 (f(x), g(x)) = 1 ⇐⇒ ∃u(x), v(x)∈F[x],s.t. u(x)f (x)+v(x)g(x) = 1. 证明思路:“⇒”由定理1即得 “⇐”若d(x)|f(x),d(x)|g(x), 则d(x)|1 ⇒ d(x)=1.
多项式的最大公因式 & 因式分解
1
上讲复习
1、代数基本系统简介
群(Group):集合+运算+4个条件(凤姐咬你) 环(Ring):集合+2运算(凤姐咬你脚、凤姐) 域(Field):集合+2运算(凤姐咬你双脚) 数域:包含 的域 (最小ℚ ,最大 )
2、多项式环F[x]: F上全体多项式对加法和乘法构成环
多项式的最大公因式 & 因式分解
一、多项式的最大公因式 二、互素多项式 三、唯一分解定理 四、 [x]中的因式分解 五、 [x]中的因式分解
4
一、多项式的最大公因式
问题: 中的最大公因子如何定义? 公因子+最大 这个概念是否可移植到多项式环F[x]中? 何谓最大? 定义1 (最大公因式) 设f(x), g(x)∈F[x],若∃d(x)∈F[x],s.t. (1) d(x) | f(x), 且 d(x) | g(x); (2) ∀h(x)∈F[x], h(x) | f(x), h(x) | g(x) =⇒ h(x) | d(x), 则称 d(x)是 f(x)与g(x)的最大公因式 (the Greatest Common Divisor). 并记 d(x)=gcd(f(x),g(x))=(f(x),g(x)) 注记:与 类似,条件(1)+(2 ⟺ 公因子+最大; 但这样定义的GCD不唯一! GCD( f , g ) d1 | d d q1d1 d q1qd deg( q1q ) 0 d d1 d | d1 d1 qd 约定:GCD为首一多项式(首项系数为1)——从而GCD唯一! 5

多项式最大公因式性质定理及求解方法

多项式最大公因式性质定理及求解方法

多项式最大公因式性质定理及求解方法作者:xxx 指导教师:xxx摘 要 对多项式最大公因式理论中的重要性质定理进行总结归纳及对其中一个性质定理的结构进行进一步的研究,以及研究最大公因式的几种求解方法:因式分解法;辗转相除法;矩阵的初等变换法.关键词 公因式 最大公因式 辗转相除法 初等变换最大公因式是多项式理论的核心概念,最大公因式的性质在多项式理论的研究中具有关键作用,本文将分三个方面阐述这些内容:首先总结归纳最大公因式的性质定理;其次对其中的一个重要性质定理作进一步的研究;最后将对最大公因式的求解方法:因式分解法、辗转相除法、矩阵的初等变换法进行研究.本文所考虑的多项式均为数域F 上的一元多项式环]x [F 内的多项式.§1.最大公因式的定义及性质首先我们给出最大公因式的定义:定义1:设)x (d 是多项式)x (f 与)x (g 的一个公因式,若是)x (d 能被)x (f 与)x (g 的每一个公因式整除,那么)x (d 叫做)x (f 与)x (g 的一个最大公因式.以))x (g ),x (f (表示)x (f 与)x (g 在]x [F 中最高项系数为1的最大公因式.例1.如果)x (q )x (g )x (f ⋅=,那么)x (g 是)x (f 和)x (g 的最大公因式.证明:按定义1.有)x (g 是)x (f 与)x (g 的一个公因式,设)x (h 是)x (f 和)x (g 的任一公因式,则有:)x (g |)x (h ,所以按定义,有)x (g 是)x (f 与)x (g 的最大公因式.为研究多项式最大公因式的性质定理下面将给出一个引理:引理1:如果多项式)x (h 是多项式)x (f 和)x (g 的公因式,)x (a 和)x (b 是]x [F 上的两个任意多项式,那么)x (h 一定是多项式)x (g )x (b )x (f )x (a ⋅+⋅的因式.证明:因为)x (h 是)x (f 的因式,所以 可设 )x (m )x (h )x (f ⋅=, )x (n )x (h )x (g ⋅=,其中)x (m ,)x (n ∈]x [F .又因为 )x (n )x (b )()x (m )x (a )x (h )x (g )x (b )x (f )x (a ⋅⋅+⋅⋅=⋅+⋅x h)]()()()()[(x n x b x m x a x h +⋅=.所以 )x (h 是)x (g )x (b )x (f )x (a ⋅+⋅的因式.注:应用引理1有时可以方便的求两个多项式的最大公因式.例2:求12x 3x )x (f 3--=和52x 3x )x (g 3-+=的最大公因式.解:由上面的引理可知:所求的最大公因式一定是:)1x (4)x (g )x (f -=+-的因式,又因为 0)1(f =,0)1(g =,可知所求的最大公因式就是1x -.定理1:设0)(≠x g ,)x (r )x (q )x (g )x (f +⋅=,其中))(())((x g x r ︒︒∂<∂,则有 ))x (r ),x (g ())x (g ),x (f (= .注:定理1的结论可以形象的叙述为:)()(除式,余式被除式,除式=.证明:设)x (d 是)x (g 和)x (r 的最大公因式,那么根据引理1得:)x (d 也是)x (f 的因式,从而)x (d 是)x (f 和)x (g 的公因式;其次,设]x [F )x (h ∈是)x (f 和)x (g 的任一公因式,那么由引理1得:)x (h 是)x (q )x (g )x (f )x (r ⋅-=的因式,所以)x (h 是)x (r 的因式.因此, )x (h 是)x (g 和)x (r 的公因式,从而可知)x (h 能够整除)x (d ;所以)x (d 是)x (f 和)x (g 的最大公因式.根据引理1和定理1不难得到:定理2:如果)x (f 和)x (g 不全是零多项式,那么)x (f 和)x (g 一定有最大公因式,并且)x (f 和)x (g 的最大公因式,除了一个零次多项式的因式差别之外是唯一确定的.具体证明过程可参阅[1] 、[2].两个多项式的最大公因式存在的一条非常重要的性质:定理3:若)x (d 是]x [F 的多项式)x (f 和)x (g 的公因式,则以下命题等价:(i ))x (d 为)x (f 和)x (g 的一个最大公因式;(ii )在]x [F 里存在多项式)x (u 与)x (v 使)x (d )x (g )x (v )x (f )x (u =⋅+⋅.证明:由(i)推(ii):若0)x (g )x (f ==,那么0)x (d =,这时]x [F 中任何两个多项式都可以取作)x (u 与)x (v .若)x (f 与)x (g 不都等于零,不妨假定0)x (g ≠,用辗转相除法来求()x (f ,)x (g ).用)x (g 去除)x (f 应用带余除法,得商式)x (q 1及余式)x (r 1.如果)x (r 1≠0,那么再以)x (r 1除)x (g ,得商式)x (q 2及余式)x (r 2.如果)x (r 2≠0,再以)x (r 2除)x (r 1,得商式)x (q 3及余式)x (r 3如此继续下去,因为余式的次数在带余除法中每次降低,所以作了有限次这种除法后,必然得出这样一个余式0x )(r k ≠,使得)()()(11x q x r x r k k k +-⋅=,于是我们得到一串等式:)x (r )x (q )x (g )x (f 11+⋅=,)x (r )x (q )x (r )x (g 221+⋅=,)x (r )x (q )x (r )x (r 3321+⋅=, (1))x (r )x (q ).x (r )x (r 1-k 1-k 2-k 3-k +=,)x (r )x (q )x (r )x (r k k 1-k 2-k +⋅=,)x (q )x (r )x (r 1k k 1-k +⋅=.则 )x (r k 就是)x (f 与)x (g 的一个最大公因式,考察等式组(1)的倒数第二个等式,得)x (r )x (q )x (r )x (r k k 1-k 2-k =⋅-,令 1)x (u 1=,)x (q )x (v k 1-=,那么上面的等式可以写成 :)x (r )x (v )x (r )x (u )x (r k 11-k 12-k =⋅+⋅. (3) 由(1)的倒数第三个等式,得)x (q )x (r )x (r )x (r 1-k 2-k 3-k 1-k ⋅-=.把)x (r 1-k 的这个表达式带入(3)中,并令 )x (v )x (u 12=,)x (q )x (v )x (u )x (v 1-k 112⋅-=,所以有)x (r )x (v )x (r )x (u )x (r k 22-k 23-k =⋅+⋅.如此继续利用(1)中的等式,最后可得到)x (r )x (v )x (g )x (u )x (f k k k =⋅+⋅.但)x (f 与)x (g 的最大公因式)x (d 等于F 中不为零的数c 与)x (r k 的积:)x (r c )x (d k ⋅=,因此 取)x (u c )x (u k ⋅=,)x (v c )x (v k ⋅=,即得所证.由(ii)推(i):设)x (h 是)x (f 与)x (g 的任一公因式,则)x (f |)x (h ,)x (g |)x (h ,由引理1得h(x)是)x (d )x (g )x (v )x (f )x (u =⋅+⋅的因式,即)x (d |)x (h .又因为)x (d 是)x (f 与)x (g 的公因式,所以)x (d 是)x (f 与)x (g 的一个最大公因式.若1))x (g ),x (f (=,则称多项式)x (f 与)x (g 互素.与定理3类似的还有下面一条重要的定理:定理4 :在]x [F 中,设)x (f )x (d )x (f 1⋅=,)x (g )x (d )x (g 1⋅=,且)x (f 与)x (g 不全为零,则)x (d 是)x (f 与)x (g 的最大公因式⇔))x (g ),x (f (111=.证明:充分性:如果))x (g ),x (f (111=,则由多项式互素的判定定理有,存在)x (u ,)x (v 使1)x (v )x (g )x (u )x (f 11=⋅+⋅,则 等式两边同时乘以)x (d ,得d(x ))x (v )x (g )()x (u )x (f d(x )11=⋅⋅+⋅⋅x d ,由命题条件)x (f )x (d )x (f 1⋅=,)x (g )x (d )x (g 1⋅=知)x (d 是)x (f 与)x (g 的公因式,结合上式同时有)x (d )x (v )x (g )x (u )x (f =⋅+⋅,所以,由定理3得)x (d 是)x (f 与)x (g 的一个最大公因式.必要性:若)x (d 是)x (f 与)x (g 的一个最大公因式,则由定理3得,存在)x (u ,)x (v 使)x (d )x (v )x (g )x (u )x (f =⋅+⋅.因为 )x (f )x (d )x (f 1⋅=,)x (g )x (d )x (g 1⋅=,所以代进上式变为)x (d )]x (v )x (g )x (u )x (f [)x (d 11=⋅+⋅⋅,又因为)x (f ,)x (g 不全为零,所以0)(≠x d ,可用)x (d 除等式两边,得1)x (v )x (g )x (u )x (f 11=⋅+⋅,所以 1是)x (f 与)x (g 的公因式,由3Th 得,))x (g ),x (f (111=.已知))x (g ),x (f ()x (d =,则)x (d ))x (g ),x (af (=,)x (d ))x (g ),x (g )x (f (=+,一般地有: 定理5 :令)x (f 与)x (g 是]x [F 的多项式,而a 、b 、c 、d 是F 中的数,并且0bc ad ≠-,则)x (d 是)(x f 与)x (g 的最大公因式⇔)x (d 也是)x (bg )x (af +与)x (dg )x (cf +的最大公因式.证明:设)x (d 是)x (f 与)x (g 的最大公因式,并令))x (g ),x (f ()x (d =.命 )x (bg )x (af )x (F +=,)x (dg )x (cf )x (G +=,现只需证明))x (G ),x (F ()x (d =即可. 由 引理1知,d(x)是F(x)的因式,同时d(x)也是G(x)的因式,所以 )x (d 是F(x)与G(x)的公因式.设 )x (h 是F(x)与G(x)的任一公因式,现证明)x (d |)x (h 如下:因为 )x (bg )x (af )x (F +=,)x (dg )x (cf )x (G +=,且0≠-bc ad ,所以 从F(x)与G(x)的表达式中可得:)x (G bcad b )x (F bc ad d )x (f ---=, )x (G bcad a )x (F bc ad c )x (g -+--=, 又由于h(x)是F(x)与G(x)的公因式,所以)x (f |)x (h ,)x (g |)x (h ,从而)x (d |)x (h .即证明了)x (d 是)x (bg )x (af +与)x (dg )x (cf +的最大公因式.""⇐因为 )x (d 是)x (bg )x (af +与)x (dg )x (cf +的最大公因式 ,由3Th 可知在F[x]里总可以求得多项式)x (u 与)x (v 使)x (d )]x (dg )x (cf )[x (v )]x (bg )x (af )[x (u =+++ ,即 )x (d )]x (dv )x (bu )[x (g )]x (bv )x (au )[x (f =+++.令 )x (cv )x (au )x (u 1+=,)x (dv )x (bu )x (v 1+=,则)x (d )x (g )x (v )x (f )x (u 11=+. ①由引理1得)(x d 是)x (f )bc ad ()]x (dg )x (cf [b )]x (bg )x (af [d -=+-+的因式,同时也是)x (g )ad bc ()]x (dg )x (cf [a )]x (bg )x (af [c -=+-+的因式.又)x (g |)x (d ),x (f |)x (d ,0bc ad ∴≠- , ②综合3Th ①、②由得)x (d 是)x (f 与)x (g 的最大公因式.§2.关于定理3中)x (u ,)x (v 的结构前面研究了多项式最大公因式的性质定理,为了更好理解这一定理,现将对定理3中的)x (u ,)x (v 作进一步分析,从而得出有关)x (u ,)x (v 的一些新的结论,以此作为上述定理3的补充.定理3中涉及一个事实,即∀]x [F )x (),x (f ∈g ,0)x (f ≠与0)x (g ≠,∃]x [F )x (v ),x (u ∈,使得))x (g ),x (f ()x (g )x (v )x (f )x (u =⋅+⋅, ①设))x (g ),x (f ()x (d =,)x (f )x (d )x (f 1⋅=,)x (g )x (d )x (g 1⋅=,由§1中定理4得1))x (g ),x (f (=.作了上面的准备工作,现给出)x (u ,)x (v 的结构定理,并加以证明.定理6:(1)设s(x),t(x)∈F(x),∀]x [F )x (h ∈,取)x (g )x (h )x (u )x (s 1⋅+=,)x (f )x (h )x (v )x (t 1⋅-=,则))x (g ),x (f ()x (g )x (t )x (f )x (s =⋅+⋅;(2)如果有]x [F )x (t ),x (s ∈使))x (g ),x (f ()x (g )x (t )x (f )x (s =⋅+⋅,则∃]x [F )x (h ∈,使)x (g )x (h )x (u )x (s 1⋅+=,)x (f )x (h )x (v )x (t 1⋅-=.证明:(1)设d(x)=(f(x),g(x)),将)x (g )x (h )x (u )x (s 1⋅+=,)x (f )x (h )x (v )x (t 1⋅-=,代入下式得)x (g ))x (f )x (h )x (v ()x (f ))x (g )x (h )x (u ()x (g )x (t )x (f )x (s 11⋅⋅-+⋅⋅+=⋅+⋅ =)()()()()()()()()()(11x g x f x h x f x g x h x g x v x f x u -++其中)x (d )x (g )x (v )x (f )x (u =⋅+⋅.又因为 )x (g )x (f )x (d )x (f (x )g )x (f )x (g 1111⋅=⋅⋅=⋅,所以 0)x (g )x (f )x (h )x (f )x (g )x (h 11=⋅⋅-⋅⋅,从而 ))x (g ),x (f ()x (g )x (t )x (f )x (s =⋅+⋅.(2)因为 ))x (g ),x (f ()x (g )x (t )x (f )x (s =⋅+⋅))x (g ),x (f ()x (g )x (v )x (f )x (u =⋅+⋅,上边两式左右两边同时作差得:0)x (g )]x (v )x (t [)x (f )]x (u )x (s [=⋅-+⋅-,因为 0)x (d ≠,两边同除以)x (d ,则有:0)x (d /)x (g )]x (v )x (t [)x (d /)x (f )]x (u )x (s [=⋅-+⋅-,又因为 1))x (d /)x (g ),x (d /)x (f (=,从 )x (d /)x (g )]x (t )x (v [)x (d /)x (f )]x (u )x (s [⋅-=⋅- (*)中,得)]x (u )x (s [|)]x (d /)x (g [-,即 ∃]x [F )x (h ∈,使得)x (d /)x (g )x (h )x (u )x (s ⋅=-,又因为)x (g )x (d /)x (g 1=,)x (f )x (d /)x (f 1=,所以有 )x (g )x (h )x (u )x (s 1⋅=-,代入(*)式得)x (f )x (h )x (t )x (v 1⋅=-即 ⎩⎨⎧⋅-=⋅+=)x (f )x (h )x (v )x (t )x (g )x (h )x (u )x (s 11. 这个定理一方面指出了满足①的)x (u ,)x (v 是不唯一的,同时也给出了所有)x (u ,)x (v 的一般形式,这对研究多项式最大公因式的理论是有很大的作用.§3.最大公因式的求解方法在前面对多项式最大公因式的理论研究指导下,现来研究一下多项式最大公因式的几种求解方法.1.因式分解法利用因式分解法求多项式的最大公因式,一般先求两个(或多个)多项式的标准分解式,如设多项式)x (f 与)x (g 的标准分解式分别为:s 1r r 1k s k 1r k r k 1)x (q )x (q )x (p )x (ap )x (f ++=,t 1r r 1l t _l 1r _l r l 1)x (q )x (q )x (p )x (bp )x (g ++=,其中每一)x (q i ,)s ,,1r i ( +=不等于任何)x (q j _)t ,,1r j ( +=,令i m 是i k 与i l 两个自然数中较小的一个)r ,,2,1i ( =,那么r 21m r m 2m 1)x (p )x (p )x (p )( =x d ,就是)x (f 与)x (g 的最大公因式.例3.求实数域R 上多项式1x x x x x )x (f 2345+++++=与1x x x )x (g 34+++=的最大公因式.解:分别对两个多项式进行标准因式分解得 1x x x x x )x (f 2345+++++=22(x 1)(x 1x)(x 1x)=++++-,1x x x )x (g 34+++=)x 1x ()1x (22-++=,由)x (f 与)x (g 的标准分解式可看出: 1x )1x x )(1x ())x (g ),x (f (32+=+-+=.应该指出的是多项式的标准分解式一般不易求得.因此,求两个多项式的最大公因式一般不用此法.2.辗转相除法利用辗转相除法不但证明任意两个多项式都存在最大公因式,而且也是求最大公因式的一种有效方法.但是在运算过程中经常会出现分数运算,为了简化过程可用]x [F 中一个非零常数去乘被除式或除式,这种做法可在求最大公因式的每个步骤中进行,而对求出多项式的最大公因式d(x)的结果不会受到影响,原因如下:设f(x),g(x)∈F(x),其中q(x)是g(x)除f(x)的商式,r(x)是余式,即表示为:)x (r )x (q )x (g )x (f +⋅=,对F c ∈∀且0≠c 有)x (cr )]x (cq [)x (g )x (cf +⋅= ⑴,)x (r )]x (q c1[)]x (cg [)x (f +⋅= ⑵, 故由§1定理1得:))x (g ),x (f ())x (r ),x (g ())x (cr ),x (g ())x (g ),x (cf (===,))x (g ),x (f ())x (r ),x (g ())x (r ),x (cg ())x (cg ),x (f (===.根据此结论,在用辗转相除法求最大公因式的过程中,用F 中的非零常数去乘被除式或除式,会给运算带来很大的方便,以下用例题说明:例4.令F 是有理数域,求]x [F 的多项式:34x 4x 2x x )x (f 234-+--=与34x 5x 2x )x (g 23+--=的最大公因式.解法一,对)x (f 与)x (g 作辗转相除法,但对过程中的系数不作处理,这种解法的过程略.解法二,对)x (f 与)x (g 作辗转相除,对相除中的系数作一些处理:观察)x (f 与)x (g 的系数,先对)x (f 的系数作处理即 2)x (f =68842234-+--x x x x ,用)x (g 去除2)x (f ,商x ,余65423-+-x x x ,观察此步对系数作处理得2(65423-+-x x x )=12108223-+-x x x ,用)x (g 去除12108223-+-x x x ,商1,余151432-+-x x ,观察此步对系数作处理得 912x 15x 6x )x (3g 23+--=,用151432-+-x x 去除912x 15x 6x 23+--,商-2x ,余942132+-x x ,观察此步对系数作处理得 )94213(32+-x x =27126392+-x x ,用151432-+-x x 去除27126392+-x x ,商-13,余16856-x ,观察此步对系数作处理得 3)16856(561-=-x x , 用3-x 去除151432-+-x x ,商x 3-,余155-x ,观察此步对系数作处理得 3)155(51-=-x x ,用3-x 去除3-x ,商1,余0.所以 3x ))x (g ),x (f (-=.由上式的求解过程可以看出,有时系数很大,给运算带来不便,根据§1中引理可知,将被除式减去除式的某个倍式,再做辗转相除法而不影响求))x (g )x (f (,的结果,由§1中引理1有: ))x (g ),x (f ())x (r ),x (g ())x (g ),x (g )x (b )x (f )x (a (==⋅+⋅.解法三,对)x (f 与)x (g 作辗转相除:65x 4x x )x (x g )x (2f 23-+-=-,令 65x 4x x )x (r 231-+-=,则有 1514x 3x )x (2r )x (g 21+-=-,令 1514x 3x )x (r 22+-=,则有)3x ()3x (2182x )x (x r )x (3r 221-⋅+=-=-,令 182x )x (r 23-=,则有)3x (144214x )x (r 23)x (r 32--=+-=-, 故 3x ))x (g ),x (f (-=.很明显,解法三比解法一、二均简便,所以在解题的过程中应尽量利用最大公因式的性质定理使求解过程更简便.3.矩阵的初等变换法给出数域F 上)2n (n ≥个多项式,如何求其最大公因式?现给出n 个多项式的最大公因式的定义:定义2:设)x (f ,),x (f ),x (f n 21 是数域F 上的n 个多项式,并且)x (d 是多项式),x (f 1)x (f 2, ...,)x (f n 的一个公因式,若是)x (d 能被)x (f ,),x (f ),x (f n 21 中的每一个公因式整除,那么)x (d 叫做)x (f ,),x (f ),x (f n 21 的一个最大公因式.规定用符号()x (f ,),x (f ),x (f n 21 )表示)x (f ,),x (f ),x (f n 21 在)(x F 中最高次项系数为1的最大公因式.由上述定义及§1的结论得关于数域F 上n 个一元多项式最大公因式的性质:(1):设)(,),(,),(,),(1x f x f x f x f n j i 是F(x)中的n 个一元多项式,则有))x (f ,),x (f ,),x (f ),x (f (n j i 1 =))x (f ,),x (f ,),x (f ,),x (f (n i j 1 ,n j i 1≤≤≤.(2):设)(,),(,),(,),(1x f x f x f x f n j i 是F(x)中的n 个一元多项式,则有 ))x (f ,),x (f ,),x (f ())x (f ,),x (cf ,),x (f (n i 1n i 1 =,且n j i 1≤≤≤,F c ∈≠0为常数.(3):设)(,),(,),(,),(1x f x f x f x f n j i 是F(x)中的n 个一元多项式,则有 ))x (f ,),x (f ,),x (f )x (f ,),x (f ())x (f ,),x (f ,),x (f ,),x (f (n j j i 1n j i 1 ±=, 其中n j i 1≤≤≤.性质(1)、(2)、(3)阐述了在求解多项式的最大公因式时的不变性,由这些不变性又可得到下面推论:推论1:设)(,),(,),(,),(1x f x f x f x f n j i 是F(x)中的n 个一元多项式,则有))x (f ,),x (f ,),x (cf )x (f ,),x (f ())x (f ,),x (f ,),x (f ,),x (f (n j j i 1n j i 1 ±=, 其中n j i 1≤≤≤,F c 0∈≠为任意常数.再给出一个引理:引理2:设),,2,1)((n i x f i =是F 上的n 个一元多项式,d(x)= ()x (f ,),x (f ),x (f n 21 ),若)x (f ,),x (f ),x (f n 21 中至少有一个常数项不为0,则它们的最大公因式)x (d 的常数项必不为0.证明:假设)x (d 的常数项等于0,则)x (d 能被x 整除,所以),,2,1)((n i x f i =的常数项均为0,与条件矛盾,证毕.再由前3个性质及推论1得性质4:(4):设)(,),(,),(,),(1x f x f x f x f n j i 是F(x)中的n 个一元多项式,并设)x (g x )x (f i k =,其中n i 1≤≤,k 为非负整数,)x (f j 为常数项不为0的一元多项式,其中n j 1≤≤,且j i ≠,则 ))x (f ,),x (f ,),x (g ,),x (f ())x (f ,),x (f ,),x (f ,),x (f (n j i 1n j i 1 =.证明:设))x (f ,),x (f ,),x (g ,),x (f (n j i 1 )x (d =,显然 )x (d 是)x (f ,),x (f ,),x (f ,),x (f n j i 1 的一个公因式.其次 设)x (h 是)x (f ,),x (f ,),x (f ,),x (f n j i 1 的任一公因式,则)x (f |)x (h i ,)x (g x |)x (h i k ,而 ()x (f 1…,)x (f i ,)x (f 1i +,…,)x (f j ,…,)(x f n )的常数项非零,则)x (h 不含k x 这一因式,从而)x (g |)x (h i ,因而)x (h 是)x (f 1…,)x (g i ,…,)(x f n 的公因式,所以 )x (d |)x (h .所以 ))x (f ,),x (f ,),x (g ,),x (f ())x (f ,),x (f ,),x (f ,),x (f (n j i 1n j i 1 =.为了更方便的介绍n 个多项式最大公因式的求解,现将上述四条性质相应的称为:第一种,第二种,第三种,第四种初等变换,并用以下内容概括:⑴交换两个多项式的位置,所求的最大公因式不会改变;⑵用一非零常数乘以某一多项式,所求的最大公因式不会改变;⑶把某一多项式的k 倍)0k (≠,加到另一个多项式上,所求的最大公因式不会改变;⑷性质4我们暂称为替换变换,它也不改变其最大公因式(只有在某一多项式常数项不为0的条件下才成立).现再给出n 行多项式矩阵的定义:定义3:设),,2,1)((n i x f i =是F 上的n 个一元多项式,且这n 个多项式的最高次项的次数是m 次,现将每个多项式各项的系数(按逐次降幂次序排列,缺少次数的项的系数取0)排出来作为矩阵的一行,这样构造出来一个n 行m+1列矩阵,我们称这个矩阵为n 个多项式的n 行多项式矩阵,n 个多项式)x (f ,),x (f ,x )(f n 21 所组成的n 行多项式矩阵记为⎪⎪⎪⎭⎫ ⎝⎛)x (f )x (f n 1 ,并规定该矩阵表示()x (f ,),x (f ,x )(f n 21 )的最高次项系数为1的最大公因式.下面将给出关于n 行多项式矩阵的一些结论:定理7:设),,2,1)((n i x f i =是F 上的n 个一元多项式,对这n 个多项式(至少有一个常数项不等于0)组成的多项式矩阵⎪⎪⎪⎭⎫ ⎝⎛)x (f )x (f n 1 ,作四种初等变换,所求的最大公因式不会改变;该定理可由前面谈到的n 个多项式最大公因式的四条性质直接得到.在前面的基础上,现给出定理8:定理8:对于n 行多项式矩阵⎪⎪⎪⎭⎫ ⎝⎛)x (f )x (f n 1 ,一定可以通过四种初等变换,化成⎪⎪⎪⎭⎫ ⎝⎛0 0)x (d 的形式,其中)x (d 就是它的最大公因式.定理8的证明过程参阅[3].下面以实例阐述多项式最大公因式的矩阵求法.例5.设84x 2x x )x (f 23+--=,44x x x )x (g 23+--=,求))x (g ),x (f (.解:对矩阵⎪⎪⎭⎫ ⎝⎛--=44-1-18421A 施行矩阵的初等变换得: ⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛---→40104-0104-01004-0140108421A ⎪⎪⎭⎫ ⎝⎛-→00004010. 故 4x )0,4x ())x (g ),x (f (22-=-=.例6.设23x 5x 2x )x (f 23+++=,2x x 24x )x (g 23++=,343x 6x )x (h +=+x x 272+ 2+,求它们的最大公因式.解:对矩阵⎪⎪⎪⎭⎫ ⎝⎛=227360224023520A 施行初等变换得:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→000000000021211000000000000112001120011200112000336077140011120002160335200120001-2162352001120A 故 21x 21x )0,0,21x 21x ())x (h ),x (g ,f(x)(22++=++=. 参考文献:[1]余元庆.方程论初步.上海:教育出版社,1979.[2]张禾瑞,郝炳新.高等代数(第四版).北京:高等教育出版社,1997.[3]郁金祥.多项式最大公因式求解方法的推广.嘉兴学院学报,2003,(3):27-29.[4]汪军.关于多项式最大公因式的进一步探讨.工科数学,1999,(3):137-139.[5]王向东.高等代数常用方法.科学出版社,1989.[6]万哲先.代数导引.科学出版社,2004.The proprties and methods about the greatestcommon divisor of the polynomialsWang Fei Directed by Prof .Dong HuiyingAbstract This paper summaries the important proprties about the greatest common divisor of the polynomials,among which is further researched for its serucfure ,and gives several methods of finding the greatest common divisors of the polynomials :factoring method;Euclidean algorithm;matrix method .Key words common divisors greatest common divisors Euclidean algorithm elemetary transform。

多项式的基本性质与应用

多项式的基本性质与应用

多项式的基本性质与应用一、多项式的定义与表示1.多项式是由常数、变量及它们的运算符(加、减、乘、除)组成的表达式。

2.多项式中的每个单项式称为多项式的项。

3.多项式中最高次数的项的次数称为多项式的次数。

4.多项式可以表示为:P(x) = a0 + a1x + a2x^2 + … + anx^n,其中a0, a1, …, an为常数,x为变量。

二、多项式的基本性质1.多项式中,每个单项式的系数都是实数或复数。

2.多项式的系数可以为正、负或零。

3.多项式的次数非负。

4.多项式的每一项都有对应的次数。

5.两个多项式相加或相减时,对应的项才能相加或相减。

6.两个多项式相乘时,每个项都要与其他多项式的每个项相乘。

三、多项式的运算1.加法:将两个多项式的同类项相加。

2.减法:将两个多项式的同类项相减。

3.乘法:将两个多项式的每一项相乘,然后将结果相加。

4.除法:用一个多项式除以另一个多项式,得到商和余数。

四、多项式的应用1.解方程:将方程转化为多项式的形式,然后通过运算求解。

2.求解不等式:将不等式转化为多项式的形式,然后通过运算求解。

3.函数图像:将多项式表示为函数,然后绘制其图像。

4.最大公因式:找出两个或多个多项式的最大公因式,用于简化运算。

5.因式分解:将多项式分解为几个因式的乘积,便于理解和运算。

6.代数恒等式:运用多项式的运算性质,证明恒等式。

五、多项式的特殊形式1.一次多项式:次数为1的多项式,形式为P(x) = ax + b。

2.二次多项式:次数为2的多项式,形式为P(x) = ax^2 + bx + c。

3.三次多项式:次数为3的多项式,形式为P(x) = ax^3 + bx^2 + cx + d。

4.常数多项式:次数为0的多项式,形式为P(x) = a0。

六、多项式的项的性质1.同类项:具有相同变量的指数的项。

2.单项式:只有一个项的多项式。

3.多项式:有两个或多个项的代数表达式。

七、多项式的系数1.常数项:没有变量的项,其系数为常数。

高等代数课件(北大三版)--第二章--多项式

高等代数课件(北大三版)--第二章--多项式
惠州学院数学系
定义 1
令f x 和 gx是F [x]的两个多项式,若是F [x]的一 个多项式 hx同时整除 f x和 gx ,那么hx 叫做
f x与 gx的一个公因式.
定义 2
设dx是多项式 f x 与 gx的一个公因式.若是 dx 能被 f x 与 gx的每一个公因式整除,那么 dx叫做 f x与gx的一个最大公因式.
(3)乘法交换律: f xgx gx f x (4)乘法结合律: f xgxhx f xgxhx
(5)乘法对加法的分配律: f xgx hx f xgx f xhx
注意:要把一个多项式按“降幂”书写
an x n an1x n1 a1x a0 当 an 0 时,an xn叫做多项式的首项.
那么由上面定理的证明得 f xgx 0
推论2 f xgx f xhx, f x 0 gx hx
证 由 f xgx f xhx得 f xgx hx 。但 f x 0
所以由推论1必有 gx hx 0 ,即
gx hx
惠州学院数学系
例 当 a,b, c 是什么数时,多项式
f x ax3 bx2 c b x3 x2
这里当m < n 时,bm1 bn 0
惠州学院数学系
多项式的乘法
给定数环R上两个多项式
f x a0 a1x a2 x2 an xn gx b0 b1x b2 x2 bm xm
f (x) 和g (x) 的乘法定义为
f xgx c0 c1x c2 x2 cnn xnm
2.1.1 认识多项式
多项式
令R是一个含有数1的数环.R上一个文字x的多项式或
一元多项式指的是形式表达式
a0 a1x a2 x2 an xn

多项式的最大公因式

多项式的最大公因式

4.4 多项式的最大公因式授课题目:4.4多项式的最大公因式教学目标:掌握最大公因式的概念、性质、求法以及多项式互素概念和性质授课时数:4学时教学重点:最大公因式的概念与性质、多项式互素概念和性质教学难点:多项式的最大公因式的矩阵求法教学过程:一、多项式的最大公因式的定义1、定义(公因式与最大公因式)定义 1 若)(x h 既是)(x f 的因式,又是)(x g 的因式,则称)(x h 是)(x f 与)(x g 的公因式。

因,0),(|),(|≠c x g c x f c 所以任意两个多项式都有公因式。

定义2 设)(x d 是)(x f 与)(x g 的一个公因式,如果对于)(x f 与)(x g 的 任一个公因式)(x h ,都有),(|)(x d x h 则称)(x d 是)(x f 与)(x g 的一个最大公因式。

2.几个直接的结果1))()(|)(x g x f x g ⇒与)(x cg 都是)(x f 与)(x g 的最大公因式。

2) 0多项式是0多项式与0多项式的最大公因式3、最大公因式之间的关系定理4.4.1 如果 ()()()d x f x g x 是与的一个最大公因式,那么它们的所有最大公因式都是形如()(,0)cd x c F c ∈≠的多项式。

证 设12(),()d x d x 是()f x 与()g x 的两个最大公因式,根据最大公因式的定义,有1221()|(),()|()d x d x d x d x 。

所以存大,0c F c ∈≠,使12()()d x cd x =。

(证毕)由Th.4.4.1,只要能求出f g 与的一个最大公因式,就可以求出它们的所有最大公因式。

我们用((),())f x g x 来表示首项系数为1 的那个最大公因数。

当 ()()0f x g x == 时,规定 ((),())0f x g x = .注意:①这里所说的两个多项式的最大公因式是唯一的,是指不计零次因式的差异意义与的唯一,即本质唯一。

多项式的最大公因式

多项式的最大公因式

" " 若 d1 ( x) cd ( x), c 0 ,则 d1 ( x) | d ( x) d ( x) 是 f (x) 与 g (x) 的一个最大公因式
d1 ( x) | f ( x), d1 ( x) | g ( x)
故 d1 ( x) 是 f (x)与 g (x) 的公因式, 若 ( x) | f ( x), ( x) | g ( x) ,由 d (x) 是最大公因式 。
3. 最大公因式的性质
(1) 若 f ( x) | g ( x),则 f (x) f (x) 与 g (x)的一个最 是
大公因式,因而 f (x) 是 f (x)与0的一个最大公因 式,两个零多项式的最大公因式是0
(2)设 d (x)是 f (x)与 g (x)的一个最大公因式, 则 d1 ( x) 是 f (x) 与 g (x) 的最大的公因式,
10 3 2 2 x x x x 3 3
4
1 1 q 1 ( x) x 9 3

1 3 5 2 x x 3x 3 3 3
1 3 10 2 2 1 x x x 3 9 9 3
5 2 25 10 q ( x) 5 x 10 r 1 ( x) x x 3 81 81 9 9 3
5 2 15 x x 9 9
10 10 x 9 3 10 10 x 9 3
0
用等式写出来,就是
1 1 5 2 25 10 f ( x) ( x ) g ( x) ( x x ) 3 9 9 9 3 27 5 2 25 10 g ( x) ( x 9)( x x ) (9 x 27 ) 5 9 9 3 5 2 25 10 5 10 x x ( x )(9 x 27 ) 9 9 3 81 81

2.4 最大公因式

2.4 最大公因式

g ( x ) ≠ 0,
f ( x ) = q1 ( x ) g( x ) + r1 ( x )
其中 ∂ ( r1 ( x )) < ∂ ( g ( x )) 或 r1 ( x ) = 0 . 若 r1 ( x ) ≠ 0 ,用 r1 ( x ) 除 g( x ),得:
g ( x ) = q2 ( x )r1 ( x ) + r2 ( x )
三、互素
1.定义: f ( x ), g( x ) ∈ P[ x ], 若 ( f ( x ), g( x )) = 1 , 定义:
互素的(或互质的 或互质的). 则称 f ( x ), g ( x ) 为互素的 或互质的 .
说明: 说明:
由定义, 由定义,
f ( x ),g( x ) 互素 ⇔ ( f ( x ), g ( x )) = 1
从而有 ( f ( x ),g ( x ))=( g ( x ),r1 ( x ))
=( r1 ( x ),r2 ( x ))
=…
=( rs−1 ( x ),rs ( x ))
=( rs ( x ), 0)
再由上面倒数第二个式子开始往回迭代, 再由上面倒数第二个式子开始往回迭代,逐个消去
rs−1 ( x ),L , r1 ( x ) 再并项就得到 rs ( x )=u( x ) f ( x ) + v ( x ) #34; 显然.
" ⇐ " 设ϕ ( x )为 f ( x ), g( x ) 的任一公因式,则 的任一公因式,
ϕ ( x ) f ( x ), ϕ ( x ) g( x ), 从而 ϕ ( x ) 1, 又 1 ϕ ( x ),
∴ ϕ ( x ) = c , c ≠ 0.

高等代数(二)预习——3、最大公因式

高等代数(二)预习——3、最大公因式

⾼等代数(⼆)预习——3、最⼤公因式3、最⼤公因式⼀、最⼤公因式的概念 上⼀篇我们介绍了多项式之间的除法:整除和带余除法。

这之后我们就可以探讨⼀个重要的问题,就是多项式的因式分解问题。

在此之前,先来介绍公因式的概念。

定义:K[x]上的多项式f和g的公共因式称为它们的公因式,即若p是f、g的公因式,则有p|f、p|g。

容易看出公因式有这样⼏个性质:1、所有公因式构成⼀个集合;2、若p是f和g的公因式,则cp,c∈K也是,也即公因式的相伴式也是公因式;3、任意两个多项式之间⼀定存在公因式b,deg b=0;4、任意多项式f与0之间⾄少存在⼀个公因式f。

公因式中最特殊的是“最⼤公因式”,定义如下:若d是f和g的公因式,⽽f、g的任⼀公因式c,满⾜c|d,则称d是f和g的最⼤公因式。

最⼤公因式有如下的性质:1、若f、g不全为0且最⼤公因式存在,则不唯⼀:若d1、d2都是最⼤公因式,显然有d1|d2、d2|d1,即⼆者相伴;2、由1⽴即得:最⼤公因式在相伴意义下唯⼀,否则最⼤公因式将构成⼀个集合,我们记(f,g)是f和g的⾸项为1的最⼤公因式;3、任意f与0的公因式c⼀定满⾜c|f,因此f是f与0的⼀个最⼤公因式,这样,如果我们规定0与0的最⼤公因式是0(除此之外0不会成为最⼤公因式),就有:4、任意多项式都是它和它本⾝的⼀个最⼤公因式。

有了3和4,我们下⾯讨论的时候⾃始⾄终都假设多项式不全为0。

除此之外,最⼤公因式还有如下⾮常重要的性质:5、若f和g的公因式集合等于p和q的公因式集合,则任意f和g的最⼤公因式集合等于p和q的最⼤公因式集合。

证明:若d是f和g的最⼤公因式,则任意f和g的公因式c,c|d,由前提,c也是p和q的公因式,那么由定义就知d也是p和q的最⼤公因式。

反过来同样证明。

请⼤家注意这个性质的对称性要求。

此性质的⼀个直接推论就是:f和g的最⼤公因式也是af和bg的最⼤公因式,其中a、b∈K。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
数学与计算机科学学院高等代数课件
新课
四、数域的改变对多项式的最大公因式的影响 从数域 F 过渡到数域 F , f ( x)与g ( x) 的最大公因式 本质上没有改变
5
数学与计算机科学学院高等代数课件
五、最大公因式的表示
定理 2.3.2
若 d x 是 F [ x] 的多项式 f x 与 g x 的最大公因 式,那么在 F [ x] 里可以求得多项式 u x 与 v x , 使以下等式成立:
如果h( x)是f ( x)与g ( x)的任意一个公因式, 则由f ( x)u ( x) g ( x)v( x) 1知h( x) 1。 所以( f ( x), g ( x)) 1。
20
数学与计算机科学学院高等代数课件
三、互素的性质 从定理2.3.3我们可以推出关于互素多项式 的以下重要事实。
1.若多项式 f x 和 g x 都与多项式 hx 互素, 那么乘积 f x g x 也与 hx 互素.
即: ( f ( x), h( x)) 1, ( g ( x), h( x)) 1 ( f ( x) g ( x), h( x)) 1 。
21
数学与计算机科学学院高等代数课件
2
数学与计算机科学学院高等代数课件
二、最大公因式的存在性、唯一性 定理 2.3.1(PartI): F [ x] 的任意两个多项式 f x 与 g x 一定有最大公因式。
定理 2.3.1(part II): 如果 d1 x 、d 2 x 是
f x 与 g x 的两个最大公因式,那么:
问题: ( f ( x) g ( x), h( x)) 1 ( f ( x), h( x)) 1, ( g ( x), h( x)) 1是否成立?
22
数学与计算机科学学院高等代数课件
2.若多项式 hx 整除多项式 f x 与 g x 的乘积,而 hx 与 f x 互素. 那么 hx 一定整除 g x
设 d x 是多项式 f x 与 g x 的一个公因式。若是
d x 能被 f x 与 g x 的每一个公因式整除,那么
d x 叫做 f x 与 g x 的一个最大公因式。
即设f ( x), g ( x), d ( x) F [ x],如果 (1)d ( x) f ( x), d ( x) g ( x); (2)h( x) f ( x), h( x) g ( x) h( x) d ( x)。 就称d ( x)为f ( x)与g ( x)的最大公因式。
7
数学与计算机科学学院高等代数课件
由倒数第二个等式移项得 :
rk 2 ( x) rk 1 ( x)qk ( x) rk ( x)
令u1 ( x) 1,v1 ( x) qk ( x), 那么上面的等式 可以写成: [1] rk 2 ( x)u1 ( x) rk 1 ( x)v1 ( x) rk ( x)
[k ] f ( x)uk ( x) g ( x)vk ( x) rk ( x)
因为d ( x) crk ( x), c F , c 0 因此取u( x) cvk ( x),v( x) cvk ( x),即可得:
f ( x)u( x) g ( x)v( x) d ( x)
即:h( x) f ( x) g( x)且(h( x), f ( x)) 1 h( x) g( x)。
证明:因为 (h( x), f ( x)) 1, 所以存在u( x), v( x)使得 h( x)u( x) f ( x)v( x) 1 。
两边同乘g ( x)得h( x)[u( x) g ( x)] [ f ( x) g ( x)]v( x) g ( x)。
11
数学与计算机科学学院高等代数课件
例 6 令F是有理数域。求出 F x 的多项式
f x 4 x 4 2 x 3 16 x 2 5 x 9, g x 2 x 3 x 2 5 x 4
的最大公因式 d x 以及满足等式
f x ux g xvx d x
由带余除法得:
6
数学与计算机科学学院高等代数课件
f ( x) g ( x)q1 ( x) r1 ( x) g ( x) r1 ( x)q2 ( x) r2 ( x) r1 ( x) r2 ( x)q3 ( x) r3 ( x)
……
rk 3 ( x) rk 2 ( x)qk 1 ( x) rk 1 ( x) rk 2 ( x) rk 1 ( x)qk ( x) rk ( x) rk 1 ( x) rk ( x)qk 1 ( x)
13
数学与计算机科学学院高等代数课件
解:由辗转相除法可得: f x g x 2 x 6 x 2 3x 9 , 1 1 g x 6 x 3x 9 x x 1, 3 3 6 x 2 3x 9 x 16 x 9.
15
数学与计算机科学学院高等代数课件
2.3.2
多项式的互素
一、整数的互素
1、设a, b Z,如果(a, b) 1 ,则称a与b互素。 2、设a, b Z,那么
(a, b) 1 存在u, v Z,使得au bv 1 。
3、互素的性质
(1)设a, b, c Z,如果(a, c) 1 , (b, c) 1, 那么(ab, c) 1 。
2
(1)互素 (2)不互素 (3)互素
18
数学与计算机科学学院高等代数课件
3、定理2.3.3 设f ( x) F[ x], g ( x) F[ x], 那么( f ( x), g ( x)) 1 存在u ( x), v( x) F[ x]使f ( x)u ( x) g ( x)v( x) 1 。
因为h( x) h( x), h( x) f ( x) g ( x),
所以h( x) h( x)[u( x) g ( x)] [ f ( x) g ( x)]v( x), 即:h( x) g ( x)。
证明: (1)( f ( x), g ( x)) 1 存在u ( x), v( x) F [ x]使f ( x)u ( x) g ( x)v( x) 1。 由定理2.3.2立即可得。
19
数学与计算机科学学院高等代数课件
(2)存在u( x), v( x) F[ x]使f ( x)u( x) g ( x)v( x) 1 ( f ( x), g ( x)) 1 。 首先, 1显然是f ( x)与g ( x)的公因式, 其次,
2、f ( x)与g ( x)互素 ( f ( x), g ( x)) 1 。
17
数学与计算机科学学院高等代数课件
例7:考察下列各组多项式 是否互素? (1) f ( x) x 1, g ( x) x 1; (2) f ( x) x 2 1, g ( x) x 1; (3) f ( x) 3, g ( x) x 2 x 1。
d1 x cd 2 x 。其中c F , c 0。
3
数学与计算机科学学院高等代数课件
三、辗转相除法原理
f ( x) g ( x)q1 ( x) r1 ( x) g ( x) r1 ( x)q2 ( x) r2 ( x) r1 ( x) r2 ( x)q3 ( x) r3 ( x)
证明:因为 ( f ( x), h( x)) 1, ( g ( x), h( x)) 1
所以存在u1 ( x), v1 ( x), u2 ( x), v2 ( x)使 f ( x)u1 ( x) h( x)v1 ( x) 1, g ( x)u2 ( x) h( x)v2 ( x) 1 。
10
数学与计算机科学学院高等代数课件
注意:定理2.3.2的逆命题不成立。
例如:对于f ( x) x, g ( x) x 1,有 x( x 2) ( x 1)(x 1) 2 x 2 2 x 1 但是2 x 2 2 x 1显然不是f ( x)与g ( x)的最大公因式。
f xux g xvx d x
证明:若f ( x) g ( x) 0, 那么d ( x) 0, 显然有 0 u( x) 0 v( x) 0, u( x), v( x) F[ x] 若f ( x)与g ( x)不全为0, 不妨假定g ( x) 0,
的多项式 u x 与 vx 。
12
数学与计算机科学学院高等代数课件
对 f x 与 g x 施行辗转相除法。但是现在不允许 用一个零次多项式乘被除式或除式。因为在求多
项式 u x 与 vx 时,不仅要用到余式,同时也要
用到商式。施行除法的结果,我们得到以下一串
等式:
2




由此得出, x Βιβλιοθήκη 1 是 f x 与 g 的最大公因式,而
x
回代
1 1 u x x 1, vx 2 x 2 2 x 3 3 3


14
数学与计算机科学学院高等代数课件
思考:满足定理2.3.2的多项式u x 和vx 是否唯一?
令u2 ( x) v1 ( x),v2 ( x) u1 ( x) v1 ( x)qk 1 ( x), 那么上面的等式可以写 成: [2] rk 3 ( x)u2 ( x) rk 2 ( x)v2 ( x) rk ( x)
9
数学与计算机科学学院高等代数课件
这样继续往上利用等式组,最后可以得到:
两式相乘可得 f ( x) g ( x)u1 ( x)u2 ( x) h( x)[ f ( x)u1 ( x)v2 ( x) g ( x)u2 ( x)v1 ( x) h( x)v1 ( x)v2 ( x)] 1 。
相关文档
最新文档