电磁场复习汇总
电磁场知识总结
电磁场知识总结12一、麦克斯韦方程、本构关系、边界条件麦克斯韦方程⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇ρD B t B E t D J H0 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅=⋅⋅∂∂-=⋅⋅⎪⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰⎰⎰⎰⎰⎰V SS SC S dV S dD S d B S d t B l dE Sd t D J l d H ρ0C 本构关系⎪⎩⎪⎨⎧===E J H B E D σμε ⎪⎩⎪⎨⎧=+=+=E J M H B PE Dσμε)(00 边界条件 ⎪⎪⎩⎪⎪⎨⎧=-⨯=-⨯=⋅-=⋅-0)()(0)()(21212121E E e J H H e e B B e D D ns nn snρ ⎪⎪⎩⎪⎪⎨⎧=-=-=-=-021212121t ts tt n n sn n E E J H H B B D Dρ3二、静电场源与库仑力源:电荷,⎰=''')(x dx r q ρ,库仑力(库仑定律),()'13'04i Ni ii r r r r q q F --=∑=πε,电场强度,000lim q FE q→= ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-==⎪⎭⎫ ⎝⎛∆∆==⎪⎭⎫ ⎝⎛∆∆==⎪⎭⎫ ⎝⎛∆∆=→∆→∆→∆点电荷密度线电荷密度面电荷密度体电荷密度)()(lim )(lim )(lim )('''0'''0'''0''''r r q r dl dq l q r dSdq S q r dV dqV q r l lS S V δρρρρ ()()()()⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--------=∑⎰⎰⎰=点电荷线电荷面电荷体电荷'13'0'3'''0'3'''0'3'''041)(41)(41)(41)(iN i i i l l SS V r r r r q dl r r r r r dS r r r r r dV r r r r r r Eπερπερπερπε辅助函数ϕ-∇=E ,⎰⋅==Q Pl d r E r P)()()(ϕϕ4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+-+-+-+-=⎰⎰⎰∑=线电荷面电荷体电荷点电荷系l l S S V N i iiC dl r r r C dS rr r C dV r r r Cr r q r '''''''''1')(41)(41)(4141)( ρπερπερπεπεϕ场方程 E E P E D r εεεε00==+=⎩⎨⎧=⨯∇=⋅∇0E D ρ⎪⎩⎪⎨⎧=⋅==⋅⎰⎰⎰0lV S l d E qdV S d Dρ ⎪⎩⎪⎨⎧=⨯∇=⋅∇0E E ερ⎪⎩⎪⎨⎧=⋅==⋅⎰⎰⎰01lV S l d E q dV S d E ερε ερϕ-)(2=∇r 0)(2=∇r ϕ 边界条件⎩⎨⎧=-⨯=⋅-0)()(2121E E e e D D n snρ ⎩⎨⎧=-=-02121t t sn n E E D Dρ ⎪⎩⎪⎨⎧=∂∂-∂∂=S n nρϕεϕεϕϕ-2211215电容ϕqC = U qq C ==21-ϕϕ i ii nj j i ij i C C q ϕϕϕ+-=∑≠1)(能量与静电力⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=∑⎰⎰⎰=多导体线电荷面电荷体电荷ni i i l l SS V e qdl dS dV W 121212121ϕϕρϕρϕρ ⎰⋅=Ve dV D E W 21 D E w e ⋅=21 常数=∂∂-=q er rW F 常数=∂∂=ϕrW F e r6三、静磁场源与安培力源:电流,⎰⎰⋅==S S S d J i d I ,安培力(安培定律),()⎰⎰⨯⨯=213212111220124C C R R l d I l d I Fπμ, 磁感应强度,()⎰--⨯=C rr r r l d I r B 3'''04)( πμ,毕奥—萨伐尔定律,()3''0'4)(r r rr l Id r B d --⨯=πμ ⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛∆∆==⎪⎭⎫ ⎝⎛∆∆=→∆→∆面电流密度体电流密度dl di e l i e J ds di e s i e J t l t s n s n 00lim lim()()⎪⎪⎩⎪⎪⎨⎧--⨯--⨯=⎰⎰面电流密度体电流密度S s V dS r r r r r J dV r r r r r J r B '3'''0'3'''0)(4)(4)( πμπμ辅助函数磁矢位:A B ⨯∇=,0=⋅∇A (库伦规范),⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+-+-+-=⎰⎰⎰线电流面电流体电流l S V C r r dl I Cd r r r J C dV rr r J r A ''0S '''0'''04S )(4)(4)( πμπμπμ7磁标位:m r H ϕ-∇=)(场方程 rBB M B H μμμμ00==-=⎩⎨⎧=⋅∇=⨯∇0B JH⎪⎩⎪⎨⎧=⋅=⋅=⋅⎰⎰⎰0SS C S d B I S d J l d H ⎩⎨⎧=⨯∇=⋅∇J B B 00μ ⎪⎩⎪⎨⎧=⨯=⋅⎰⎰I l d B S d B lS 00μJ A μ-=∇202=∇A 02=∇m ϕ边界条件⎩⎨⎧=-⨯=⋅-sn n J H H e e B B )(0)(2121⎩⎨⎧=-=-st t n n J H H B B 21210⎪⎩⎪⎨⎧==⎪⎪⎭⎫ ⎝⎛⨯∇-⨯∇⨯21221111AA J A A e S n μμ ⎪⎩⎪⎨⎧∂∂=∂∂=n n m m m m 221121ϕμϕμϕϕ电感I I L L L i i ψ+ψ=+=00 ⎰⎰-⋅=ψ=211221112124C C r r l d l d I Mπμ (纽曼公式)8能量与静磁力∑=ψ=Ni i i m I W 121 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅⋅⋅=∑⎰⎰⎰=多导体面电流体电流N i i i i i S S V m l d I A dSA J dV A J W 1212121 ⎰⋅=V m dV B H W 21 B H w m⋅=21常数=∂∂=I mrW F常数=ψ∂∂-=r WF m9四、恒定电场源恒定电流,dt dqt q i t =⎪⎭⎫ ⎝⎛∆∆=→∆0lim ,⎰⎰⎰∂∂-=-=⋅=VV S dV t dV dt d S d J I ρρ ,0=∂∂+⋅∇t J ρ 辅助函数 ϕ-∇=E场方程 E Jσ=⎩⎨⎧=⨯∇=⋅∇00E J ⎪⎩⎪⎨⎧=⋅=⋅⎰⎰CS dl E S d J 0002=∇ϕ 边界条件⎩⎨⎧=-⨯=-⋅0)(0)(2121E E e J J e n n⎩⎨⎧=-=-02121t t n n E E J J ⎪⎩⎪⎨⎧∂∂=∂∂=n n221121ϕσϕσϕϕ 电导⎰⎰⎰⎰⋅⋅=⋅⋅==N PS N PS ld E S d E l d E dS J UI G PP σεσ=C G10五、时变电磁场源变化电场t D ∂∂ 和变化磁场tB∂∂辅助函数磁矢位:A B ⨯∇=,t A ∂∂-=⋅∇ϕεμ (洛伦兹规范) 磁标位:ϕ∇-∂∂-=tAE场方程⎪⎩⎪⎨⎧=+=+=E J M H B P E D σμε)(00 ⎪⎩⎪⎨⎧===EJ H B E Dσμε ⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂=⨯∇00D B t B E t D H ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅=⋅⋅∂∂-=⋅⋅⎪⎪⎭⎫ ⎝⎛∂∂=⋅⎰⎰⎰⎰⎰⎰SS SC S S dD S d B S d t B l dE S d t D l d H 00C11边界条件⎪⎪⎩⎪⎪⎨⎧=-⋅=-⋅=-⨯=-⨯s nn n sn D D e B B e E E e J H H e ρ)(0)(0)()(21212121⎪⎪⎩⎪⎪⎨⎧=-=-=-=-s n nnn t t st t D D B B E E J H H ρ2121212100波动方程无源介质区:0-222=∂∂∇t E E εμ,0-222=∂∂∇tH H εμ 导电媒质中:0-222=∂∂∂∂-∇t E t E E εμμσ,0-222=∂∂∂∂-∇t H t H H εμμσ 有源空间:J t H H t J t E E ⨯-∇=∂∂∇∇+∂∂=∂∂∇222222-,-εμερμεμ 达朗贝尔方程:J t A A μεμ-=∂∂∇222- ερϕεμϕ-=∂∂∇222-t ,⎪⎩⎪⎨⎧-=∇-=∇ερϕμ22J A(场量不随时间变化) 电磁能量与波印亭矢量)],(),([21),(),(21),(),(21),(22t r H t r E t r H t r B t r E t r D t r w με+=⋅+⋅=12⎰⎰⎰⎰⎰⋅+⎪⎭⎫⎝⎛+=⋅+⎪⎭⎫ ⎝⎛⋅+⋅=⋅⨯V V V V S dVJ E dV H E dt d dV J E dV H B E D dt d S d H E2221212121)(-με(坡印廷定理)坡印亭矢量:H E ⨯=S ,),(),(t)(r,S t r H t r E⨯=时谐电磁场⎥⎦⎤⎢⎣⎡=t j m e r A t r A ω)(Re ),( )()()(r j m m e r A r A φ =t∂∂ωj ⎪⎪⎩⎪⎪⎨⎧=⋅∇=⋅∇-=⨯∇+=⨯∇)()(0)()()()()()(r r D r B r B j r E r D j r J r H ρωω ⎪⎪⎩⎪⎪⎨⎧=⋅∇=⋅∇-=⨯∇=⨯∇00E H H j E E j H ωμωε 理想介质中时谐电磁场的波动方程:022=+∇E k E ,022=+∇H k H ,εμω=k有耗媒质(导电媒质):ωσεεjc -=,"'μμμj c -=13⎪⎪⎩⎪⎪⎨⎧=⋅∇=⋅∇-=⨯∇=⨯∇00E H H j E Ej H c ωμωε 022=+∇E k E c ,022=+∇H k H c ,c c c k μεω= 瞬时坡印廷矢量:])(Re[])(Re[),(t j tj e r H e r E t r S ωω ⨯= 平均坡印廷矢量:[])()(Re 21)(*r H r E r S av ⨯=平均能量密度:[][]⎪⎩⎪⎨⎧⨯=⨯=)()(Re 41),()()(Re 41),(**r H r B t r w r E r D t r w mav eav14六、基础与其它矢量代数θcos AB B A =⋅ ,θsin AB e B A n =⨯,)()()B A C A C B C B A ⨯⋅=⨯⋅=⨯⋅(,)()()(B A C C A B C B A ⋅-⋅=⨯⨯0)(=⨯∇⋅∇A ,0)(=∇⨯∇u ,B A A B B A ⨯∇⋅-⨯∇⋅=⨯⋅∇)(,A A A 2)(∇-⋅∇∇=⨯∇⨯∇坐标转换圆柱坐标与直角坐标转换:⎪⎩⎪⎨⎧===z z y x φρφρsin cos ,⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫⎝⎛=+=z z x y y x arctan 22φρ直角坐标与球坐标转换:⎪⎩⎪⎨⎧===θφθφθcos sin sin cos sin r z r y r x ,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛++=++=x y z y x z z y x r arctan arccos222222φθ15球坐标与圆柱坐标转换:⎪⎩⎪⎨⎧===θφφθρcos sin r z r ,⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫⎝⎛=+=φφρθρz z r arctan 22场论基础哈密顿算子:z e y e x e z y x∂∂+∂∂+∂∂=∇ ,z e e e z ∂∂+∂∂+∂∂=∇ φρρφρ1,φθθφθ∂∂+∂∂+∂∂=∇sin 11r e r e r e r 普拉斯算子:2222222z u y u x u u ∂∂+∂∂+∂∂=∇,2222221zu u u u ∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∇φρρρρ, 2222222sin 1sin sin 11φθθθθθ∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=∇ur u r r u r r r u 梯度: z u e y u e x u e u grad u z y x∂∂+∂∂+∂∂==∇ )(,z u e u e u e u z ∂∂+∂∂+∂∂=∇ φρρφρ1,φθθφθ∂∂+∂∂+∂∂=∇ur e u r e r u e u r sin 11 散度:z A y A x A A div A z y x ∂∂+∂∂+∂∂==⋅∇ ,zA A A A z∂∂+∂∂+∂∂=⋅∇φρρρρφρ1)(1 , φθθθθφθ∂∂+∂∂+∂∂=⋅∇A r A r r A r rA r sin 1)(sin sin 1)(12216散度定理: ⎰⎰⋅∇=⋅VSdV A S d A旋度: zy x z y xA A A z y x e e e A ∂∂∂∂∂∂=⨯∇,zzA A A z e e e A φρφρρφρρρ∂∂∂∂∂∂=⨯∇1,φθφθθφθθθA r rA A r e r e r e r A r r sin sin sin 12∂∂∂∂∂∂=⨯∇ 斯托克斯定理: ⎰⎰⋅⨯∇=⋅SCS d A l d A 几个重要定理格林定理:()⎰⎰⎰⋅∂∂=⋅∇=∇⋅∇+∇S S VS d nS d dVψϕψϕψϕψϕ2()()⎰⎰⎰⋅⎪⎭⎫ ⎝⎛∂∂-∂∂=⋅∇∇=∇∇S S VS d n n S d dV ϕψψϕϕψψϕϕψψϕ--22唯一性定理:假设一个矢量场的散度和旋度在全区域内确定,且在包围区域的封闭面上的法向分量也确定,则这个矢量场在区域内是唯一。
电磁场复习纲要
《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。
二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。
在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。
3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。
6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。
第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。
三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。
2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。
3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。
求任意点的电场强度及电位。
电磁场复习
B∝r
1 B∝ r
B( r ) =
I 2π r
r≥R
r
21、一带电粒子径迹在纸面内如图示,它在匀强磁场中运动, 、一带电粒子径迹在纸面内如图示,它在匀强磁场中运动, 并穿过铅板,损失一部分动能,则由此可以断定出粒子: 并穿过铅板,损失一部分动能,则由此可以断定出粒子:
( A ) 带负电,从 a → b → c 带负电, ( B ) 带正电,从 a → b → c 带正电, ( C ) 带负电,从 c → b → a 带负电, ( D ) 带正电,从 c → b → a 带正电,
Pm = Iπ R 2
2 0 I 2 0 I B′ = = = 4B 0 2R′ R
4π R ′ = 2π R
R R′ = 2
B =4 B0
′ Pm 1 = Pm 2
19、在均匀磁场中,有两个平面线圈,其面积A1=2A2, 、在均匀磁场中,有两个平面线圈,其面积A A 通有电流I 则它们所受的最大力矩之比是多少? 通有电流I1=2I2,则它们所受的最大力矩之比是多少
ቤተ መጻሕፍቲ ባይዱ
R
Il R Il B l dx = 2π 2 ∫ 0 x dx = 4π R
0 0
4π×10-7×10×1 = 1.0×10-6Wb = 4π
25、 一螺线管长为 30cm, 直径为 、 直径为15mm,由绝 由绝 缘的细导线密绕而成,每厘米绕有100匝,当导线中通 缘的细导线密绕而成,每厘米绕有 匝 的电流后, 以2.0A的电流后,把这螺线管放到 = 4.0T的均匀磁 的电流后 把这螺线管放到B 的均匀磁 场中。 场中。求 (1)螺线管的磁矩; )螺线管的磁矩; (2)螺线管所受力矩的最大值。 )螺线管所受力矩的最大值。
电磁场与电磁波知识点复习
电磁场与电磁波知识点复习一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。
电场是由电荷产生的,而磁场则是由电流或变化的电场产生的。
电荷是产生电场的源,库仑定律描述了两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比。
电场强度是描述电场强弱和方向的物理量,其定义为单位正电荷在电场中所受到的力。
电流是产生磁场的源,安培定律描述了电流元之间的相互作用。
磁场强度则是描述磁场强弱和方向的物理量。
二、电磁波的产生电磁波是由时变的电场和时变的磁场相互激发而产生,并在空间中以一定的速度传播。
变化的电流和电荷分布都可以产生电磁波。
例如,一个振荡的电偶极子就是一种常见的电磁波源。
当电偶极子中的电荷来回振动时,周围的电场和磁场也随之发生周期性的变化,从而产生电磁波向空间传播。
三、电磁波的性质1、电磁波是横波电磁波中的电场强度和磁场强度都与电磁波的传播方向垂直,这是电磁波作为横波的重要特征。
2、电磁波的传播速度在真空中,电磁波的传播速度恒定,等于光速 c,约为 3×10^8 米/秒。
3、电磁波的频率和波长频率和波长是描述电磁波的两个重要参数,它们之间的关系为:波长=光速/频率。
电磁波的频率范围非常广泛,从低频的无线电波到高频的伽马射线。
4、电磁波的能量电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。
四、麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,包括四个方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培麦克斯韦定律。
高斯定律描述了电场的通量与电荷量之间的关系;高斯磁定律表明磁场的通量总是为零;法拉第电磁感应定律说明了时变磁场可以产生电场;安培麦克斯韦定律则指出时变电场也可以产生磁场。
这组方程统一了电学和磁学现象,预言了电磁波的存在,并奠定了现代电磁学的基础。
五、电磁波的传播电磁波在不同介质中的传播特性不同。
在均匀介质中,电磁波遵循直线传播规律;当电磁波从一种介质进入另一种介质时,会发生折射和反射现象。
电磁场电磁波复习重点
电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。
2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。
4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积F.dS定义为矢量F穿过面元矢量dS的通量。
如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。
如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。
电流是磁场的旋涡源。
5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。
Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。
6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。
第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。
电磁场知识点
电磁场附录1、通量、散度、环量、旋度2、无源场、无旋场以及无源无旋场的条件3、拉普拉斯方程、泊松方程第一章静电场1、库仑定律2、均匀带电的无限长线电荷、无限大带电平面、球面(球内、球外)的电场强度E3、静电场环路定律(无旋场)4、电偶极子5、电极化强度P、电通密度(电位移矢量)D(分别是怎么来的)6、静电场基本方程、分界面衔接条件、静电场折射定律7、静电场边值问题(求满足边界条件的破松方程或laplace方程的解)8、镜像法(球面时要注意球面是否接地)、电轴法第二章恒定电场1、电流密度;各元电荷(体、面、线)2、欧姆定律、焦耳定律、功率密度3、电源电动势和局外场强4、电流连续性方程(经过电源和不经过电源)5、恒定电厂基本方程、衔接条件6、恒定电场边值问题7、镜像法8、电导G9、接地电阻第三章恒定磁场1、毕奥-沙伐定律、安培力定律、洛伦兹力;无限长载流导线和无限大电流平面的磁感应强度B2、真空中安培环路定律3、分子磁矩;转矩作用(力图使M与外磁场B方向一致);磁化强度;磁化电流4、磁化强度M;磁场强度H(与B的关系);一般形式的安培环路定律;5、磁通连续性原理6、恒定磁场的基本方程;衔接条件(不同煤质)7、磁矢位A(可用于计算磁感应强度和磁通量),库伦规范条件8、磁矢位边值问题9、磁位(为简化计算而引入,无意义);边值问题;衔接条件10、镜像法11、电感12、聂以曼公式13、磁场能量(自由能和互有能);磁场能量体密度;利用磁场能量求自感第四章时变电磁场1、电磁感应定律2、全电流定律3、麦克斯韦方程组;各项同性煤质中D与E,B与H,J与E的关系4、分界面的衔接条件5、坡印亭定理例题(标红的很重要,其他的自己随意感受下吧)1-1,1-2,1-3,1-4,1-5,1-7,1-8,1-9,1-10,1-11,1-13,1-18, 2-1,2-2,2-3,3-1,3-4,3-5,3-6,3-9,3-12,3-13,3-15,3-16,3-174-1,4-2,4-6。
工程电磁场 复习资料
工程电磁场_复习资料工程电磁场复习资料一、电磁场的基本概念1、电磁场:是由电场和磁场两种矢量场组成的一种物理场。
2、电磁场的性质:电磁场具有能量、动量和惯性等性质,这些性质可以从麦克斯韦方程组中得到描述。
3、电磁场的波动性:电磁场以波的形式传播,这种波动性表现为电场和磁场在空间中的传播。
4、电磁感应:当导体处于变化的磁场中时,导体内部会产生感应电流,这种现象称为电磁感应。
二、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程组,包括四个基本方程:1、安培环路定律:描述磁场与电流之间的关系。
2、法拉第电磁感应定律:描述电磁感应现象。
3、麦克斯韦方程组的一般形式:描述了电场和磁场在空间中的传播。
4、高斯定律:描述了电荷在空间中的分布。
三、电磁场的边界条件电磁场在两种不同媒质的分界面上会发生反射和折射等现象,这些现象可以用边界条件来描述。
边界条件包括:1、电场强度和磁场强度在分界面上的连续性。
2、电位移矢量和磁感应强度在分界面上的连续性。
3、分界面上没有电荷堆积。
四、电磁场的能量和动量电磁场具有能量和动量,这些量可以用以下公式计算:1、电磁场的能量密度:W=1/2(E^2+B^2)2、电磁场的动量密度:P=E×B3、电磁场的能量流密度:S=E×H五、电磁场的波动性电磁场以波的形式传播,这种波动性可以用波动方程来描述。
波动方程的一般形式为:∇×E=ρ/ε,∇×H=J/εc^2,其中ρ和J分别为电荷密度和电流密度,ε为真空中的介电常数,c为光速。
六、电磁场的散射和衍射当电磁波遇到障碍物时,会发生散射现象;当电磁波通过孔洞或缝隙时,会发生衍射现象。
这些现象可以用费马原理和基尔霍夫公式来描述。
管理学复习资料马工程版一、管理学概述1、管理学定义:管理学是一门研究管理活动及其规律的科学,旨在探索如何有效地组织、协调和控制人的行为,以实现组织目标。
2、管理学的发展历程:管理学作为一门独立的学科,经历了古典管理理论、行为科学理论、现代管理理论等多个发展阶段。
电磁场高分复习笔记知识点
电磁场高分复习笔记知识点1.什么是电磁场?1)由带电物体产生的物理场,带电物体在电磁场内会受到电磁场的作用力。
2)电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。
变化的磁场生电场,变化的电场生磁场。
3)带电物体与电磁场之间的相互作用可以用麦克斯韦方程组和洛伦兹力定律来描述。
2.静电场(不运动、量不变化电荷产生的电场)1)库仑定律:无限大真空中,两带电体距离远大于本身尺寸时,两带电体之间的相互作用力●2)电场强度 E:用来表示电场强弱和方向的物理量,试探电荷在电场内所受力的方向就是电场方向(N/C)3)电位移矢量 D:在静电场存在介质时,用以描述电场的辅助量(C/平方米)4)静电场环路定理:静电场中,沿闭合路径移动电荷,电场力做功恒为零。
5)高斯定律:不管是在真空中还是电介质中,任意闭曲面S上电通密度D的面积分,等于该曲面内的总自由电荷,而与一切极化电荷及曲面外的自由电荷无关6)基本方程●高斯定律(库伦定律+叠加原理)●积分形式:电位移矢量闭合面积分=面内总自由电荷(静电场有源)●微分形式:静电场是有散场●环路定理●积分形式:电场强度环路积分=0(静电场能量守恒)●微分形式:静电场是无旋场7)边界条件:分界面两侧D法向量不连续且= 分界面上自由电荷面密度,E的切向量连续8)静电能量:静电场不为0的空间都储存着静电能量9)电位:由于静电场无旋性,用电位函数φ描述,电位是标量(V)10)泊松方程、拉普拉斯方程:(求解静电场边值问题下的电位函数或电场强度分布)●表达了场中各点电位的空间变化与该点自由电荷体密度之间的普遍关系,本质都是电位函数的微分方程,拉普拉斯方程是在无引力源的情况下的泊松方程。
11)静电场中导体:在导体表面形成为一定面积的电荷分布,使得导体内部的电场为零,每个导体都成为等位体,导体的表面均为等位面。
12)电介质的极化:在外加静电场的作用下,电介质分子由中性转而呈现正负电荷在分子范围内的极化,其作用中心不再重合,形成一个小小的电偶极子,形成附加电场,引起原先电场分布的变化3.恒定电场(电流恒定的场)1)电流密度 J:按体密度ρ分布的电荷,以速度v作匀速运动时,产生电流密度矢量J(A/m²)2)基本方程(积分——高斯散度定理+斯托克斯定理——微分)●电流连续性方程●积分形式:导电介质维持恒定电场,任一闭合面流出的传导电流=0●微分形式:电流面密度线是闭合曲线,因此恒定电流只在闭合电路流动●电场强度的环路线积分●积分形式:积分路线不经过电源,则只存在库伦场强●微分形式:场强的旋度=0,恒定电场是保守场3)边界条件:分界面两侧电流密度J的法向量连续,电场强度E的切向量连续4)恒定电场与静电场的比拟(表格)●对应物理量满足的方程形式上一样,若两个场边界条件相同,只要通过一个场的求解,再利用对应量关系置换,即可得到另一个场的解4.恒定磁场(恒定电流引起的磁场)1)奥斯特发现电流的磁效应,法拉第发现电磁感应现象,亨利发表自感应现象论文2)磁感应强度 B:描述磁场强弱和方向的矢量(特斯拉 T)3)磁场强度矢量 H:在磁场存在磁介质时,用以简化安培环路定理引入的描述磁场的辅助矢量(A/m)4)基本方程●磁通连续性原理——表明磁感应线连续,是磁场中的高斯定律●积分形式:磁路中磁通量守恒●微分形式:恒定磁场是一个无散场●安培环路定律——毕奥沙伐定律+磁场叠加性●积分形式:磁场强度H的线积分=穿过该回路包围面积的自由电流●微分形式:磁场是有旋场5)边界条件:6)电感:将电能转化为磁能储存起来的元件●自感:回路的电流与该回路交链的磁链的比值●互感:回路的电流与另一个回路产生的磁链的比值7)磁场能量:●磁场能量是建立回路电流过程中外源做的功,分布于磁场所在的整个空间8)矢量磁位:●由于磁场无散性,用矢量磁位A来描述。
电磁场复习资料(附答案)
电磁场与电磁波复习资料填空题1.梯度的物理意义为,等值面、方向导数与梯度的关系是。
2.用方向余弦γβαcos ,cos ,cos 写出直角坐标系中单位矢量l e的表达式。
3.某二维标量函数x y u -=2,则其梯度u ∇=,梯度在正x 方向的投影为。
4.自由空间中一点电荷位于()4,1,3-S ,场点位于()3,2,2-P ,则点电荷的位置矢量为,场点的位置矢量为,点电荷到场点的距离矢量R为。
5.矢量场z e y e x eA z y x ˆˆˆ++=,其散度为,矢量场A在点()2,2,1处的大小为。
6.直角坐标系下方向导数lu∂∂的数学表达式 ,梯度的表达式为 ,任意标量的梯度的旋度恒为 ,任意矢量的旋度的散度恒为 。
7.矢量散度在直角坐标系的表达式为 ,在圆柱坐标系的表达式为 ,在球坐标系的表达式为 。
8.矢量微分运算符∇在直角坐标系、圆柱坐标系和球坐标系的表达式分别为 , , 。
9.高斯散度定理数学表达式为 ,斯托克斯定理数学表达式为 。
10.矢量通量的定义为 ,散度的定义为 ,环流的定义为 ,旋度的定义为 。
11.矢量的旋度在直角坐标系下的表达式为 。
12.矢量场F为无旋场的条件为,该矢量场是由 源所产生。
13.矢量场F为无散场的条件为,该矢量场是由源所产生。
14.电流连续性方程的微分形式为 。
15.在国际单位制中,电场强度的单位是 ,电位移的单位是 ,磁场强度的单位是 ,磁感应强度的单位是 ,介电常数的单位是 ,磁导率的单位是 ,电导率的单位是 。
16.在自由空间中,点电荷产生的电场强度与其电荷量成 比,与场点到源点的距离平方成 比。
17.从宏观效应来看,物质对电磁场的响应可分为 , , 三种现象。
18.线性且各向同性媒质的本构关系方程是: , , 。
19.麦克斯韦方程组的微分形式是: , , , 。
20.麦克斯韦方程组的积分形式是: , , , 。
21.求解时变电磁场或解释一切宏观电磁现象的理论依据是 。
电磁波与电磁场(总复习).
5.电容C
q q U 1 2 1 1 q2 2 (We qU CU ) 2 2 2C We
V
1 n 电场能量:We qii 2 i 1
1 E DdV 2
二、计算
1.基本计算:均匀媒质、2种媒质中带电体周围的 D、E、 ? 分析方法:使用高斯定律
C
0 4
B(r )
0 4
V
J ( r ') R dV ' 3 R
J mS M n
3.基本方程: H dl I H J 本构关系: B H 矢量磁位: B A 4.边界条件:B2 n B1n 5. 电感:L I M 12
一主要知识点概念主要结论第五章时变电磁场一主要知识点
第 1章
矢量分析要点
一 、概念 1.“场”:定义、分类、几何描述方法? 2. 亥姆霍兹定理? 二、标量场 G e e e
l
x
x
y
y
z
z
P0
cos cos cos G l 0 x y z
3.瞬时矢量与复矢量之间的转换规则?
( x, y, z)e jt ] E( x, y, z, t ) Re[E
波动方程的2种形式?复数波动方程的推导? 二、计算: 1.场的瞬时形式与复矢量之间的转换? 2.已知磁场,求电场: 已知电场,求磁场:
第六章
平面电磁波
一、主要知识点 均匀平面波传播特性;波的极化 1.均匀平面波定义 2.无耗介质中 E ex E0 e jkz E( z, t ) ex E0m cos(t kz 0 )
计算: ?
完整版电磁场理论复习总结
完整版电磁场理论复习总结1.1 标量场和⽮量场1.2 三种常⽤的正交坐标系1.3标量场的梯度哈密顿算符:(⼀e —e —e z)x y z2.梯度的垄本运算公式1) VC-0 (C^S)2) V(Cu)⼆CVw3) V((/ ⼟巧⼆可肿⼟V7附4) V(/a T) = Z/V V +T V;/5) VF(u) = F r(u)Vu6) V(-) = -l(rV?/-i/Vv)v vFF cF7) ^7(^ v) = —Vw + — Vvdu dv式中:U育常報;级⽢为半标变最遢載;3”梯度的重要性质16CJ55 「「⼩V x V/z = 0产⽣场的场源所在的空闾位国点称为源点上记为am或7 场所在的疇间⾫置点称为场贞「记为(x,y\2}或⼫源点到场点的距S?j?=|r-r| 从源点指向场点的⽮量为^ = r-F例3求鸥叫哙呻?刃畑%&R⾐⽰对仗」4运算R表⽰对运算.R^r-r1^J(x-A?)r+(y-/>:BR 、BR 、BR—MY臥叫帝M还W(R) = ARWR = ^-\R(lii dii fir ?S A dS A. A y A zdivA lim ——V 0 V x y zdivA A x A y A z Ax y zA e x( A z A y) e y( A x A z) e z(⼊sy z z x x y1) V Y C=02) Vx(i = A3) V x(H ±B) —V XJ1±V>.54) V x (u = uV y /< + V u KX B)=2J-V XJ4-J4-V X5l f ***** 4;jd' V x Vy - 0! 7)V (VxJ)-O:W屜囲焉唉屋?熾常数,址为标量函数「du电磁总复习第⼀章⽮量分析l ?Eit ⼗dit ?duIt= 0 r ——+ 0 L ——+&——标量场⼼的梯度. ex cy czV u =—yir rotAc'R ex R_y-y r漁—R 忑RVR = -RR'⽮童场的雄度1.4⽮量场的通量与散度三. 散度的运算公式])V C-02)V(Arl) = )tV^4) V (u A) =wV .4 + 4 Vw 沐为常数」为标量函数)- (IA5) V J(rt) - V// —du四、⾼斯定理(散度定理)L v知⼀丄%物理詳5G穿过⼀封闭曲⾓的总谓呈等于⽮虽散度的休秘分1.5⽮量场的环流与旋度-------------------- V VV v ?c A dl rotA nlim --S 0Sr r re x e y e zir irot A Ax y zA x A y A z4-症度计算相关公式:标葷场的梯度的旌度恒为零1G:2D3*酶点录场点df Rmax三、斯托克斯定理物理含义;—个⿂量场旋度的⾯税分導于演⽮量沿此由⾯周界的曲线眦四、⽮量场擬度的重要性质⼙(Vxj^O任意⽮量场I?度的散度等于議⽮量场有两种不同性质的源:(1)散度源(标量)(2)旋度源(⽮量)。
电磁场复习资料
一名词解释1.体电流密度:以体密度ρ分布的电荷,按速度v作匀速运动时,形成体电流密度向量。
2. 简述跨步电压的定义及其产生的条件。
答:地面上的行走的人的两足间的电压,称为跨步电压。
在电力系统接地体附近,由于接地电阻的存在,当有电流在土壤中流动时,使地面上的行走的人的两足间产生跨步电压静电场:相对观察者静止且量值不随时间变化的电荷所产生的电场。
1.介质放在电场中产生的物理现象是(极化)2.电偶极子:相距很近的两个符号相反而量值相等的电荷。
3.根据亥姆霍兹定理,一个矢量场由它的散度和旋度唯一地确定。
4.静电场中,场强大处,电位一定高:高低不定5.下图所示平板电容器的电位?1.煤质的磁化:将煤质放在外磁场中,外磁场对煤质分子磁矩将有转矩作用,使得分子磁矩的排列比较有序化,煤质内总的磁矩不再等于零,而呈现磁性的现象,称为煤质的磁化。
2.自感、互感与哪些因素有关?答:自感、互感均与本身回路的形状、尺寸、大小、材料及周围煤质的特性有关。
互感还与两回路的相互位置有关。
3.毕奥—沙伐定律揭示了哪些物理量之间的关系?答:揭示了电流密度和磁感应强度之间的联系,同时也说明了恒定的电流能够产生磁场.4、电场强度(Electric Field Intensity ) E表示单位正电荷在电场中所受到的力(F ), 它是空间坐标的矢量函数, 定义式给出了E 的大小、方向与单位。
5.理解电磁感应定律和全电流定律的物理含义麦克斯韦方程的物理含义:变化的电场可以产生磁场,变化的磁场可以产生电场全电流定律——麦克斯韦第一方程, 表明传导电流和变化的电场都能产生磁场;电磁感应定律——麦克斯韦第二方程, 表明电荷和变化的磁场都能产生电场静态场和恒定场是时变场的两种特殊形式电场线会终止磁场线不会终止、磁场线必须要有两极而电场线只要有电荷就行6、什么是辐射?电磁波从波源出发,以有限速度 在媒质中向四面八方传播,一部分电磁波能量脱离波源而单独在空间波动,不再返回波源,这种现象称为辐射7、辐射电阻表示天线辐射电磁能量的能力,它和哪些因素有关?辐射电阻的大小与天线的尺寸、形状及工作波长有关为什么发射高频时用的天线往往比较短?当天线的长度为无线电信号波长的1/4时,天线的发射和接收转换效率最高。
高三电磁场知识点总结详细
高三电磁场知识点总结详细电磁场是物理学中的一个重要概念,对于高三学生来说,电磁场是必修课程中的一个重点内容。
本文将详细总结高三电磁场的知识点,帮助学生们复习和理解相关知识。
第一部分:电磁场基础知识1. 电磁场的概念- 电磁场是由电荷体系形成的以电场和磁场为基本特征的力场。
2. 静电场与静磁场- 静电场:由静止的电荷所产生的电场。
- 静磁场:由静止的电荷所产生的磁场。
3. 电磁感应定律- 法拉第电磁感应定律:导体中的磁通量变化会产生感应电动势。
- 感应电动势的大小与导体中磁通量变化率成正比。
第二部分:电磁场的基本定律1. 库仑定律- 库仑定律描述了两个点电荷间相互作用力的大小与距离的关系。
- 库仑定律公式:F = k * (q1 * q2) / r^22. 电场的叠加原理- 多个电荷同时存在时,它们产生的电场可以通过叠加原理求和得到。
3. 磁场的基本性质- 磁场是由带电粒子运动或者电流产生的。
- 磁场具有方向性,用磁力线表示。
第三部分:电场与电势1. 电势能- 电荷在电场中具有电势能,电势能与电荷的大小、电势差和电场强度有关。
- 电势能的计算公式:Ep = q * V2. 电位- 电位是指某一点的电势能与单位正电荷之比。
- 电位的计算公式:V = U / q3. 静电平衡- 静电平衡要求电场内的电势能相等,即电荷处于平衡状态。
第四部分:电流与磁场1. 安培环路定理- 安培环路定理描述了电流通过闭合回路所产生的磁场的性质。
- 安培环路定理公式:∮B·dl = μ0 * I2. 磁场的磁感应强度- 磁感应强度描述了磁场中的力场作用强度。
- 磁感应强度的计算公式:B = F / (q * v * sinθ)第五部分:电磁感应与电磁波1. 电磁感应现象- 电磁感应现象是指磁场变化时在导体中感应出电流的现象。
2. 法拉第电磁感应定律- 法拉第电磁感应定律描述了磁通量变化导致感应电动势的产生。
- 法拉第电磁感应定律公式:ε = -ΔΦ / Δt3. 麦克斯韦方程组- 麦克斯韦方程组总结了电场和磁场的关系以及它们对物质的作用。
大学物理电磁学基础知识点汇总
大学物理电磁学基础知识点汇总一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着它们的连线。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为库仑常量,$q_1$和$q_2$为两个点电荷的电荷量,$r$为它们之间的距离。
2、电场强度电场强度是描述电场力的性质的物理量,定义为单位正电荷在电场中所受到的力。
其表达式为:$E =\frac{F}{q}$。
对于点电荷产生的电场,其电场强度的表达式为:$E = k\frac{q}{r^2}$,方向沿径向向外(正电荷)或向内(负电荷)。
3、电场线电场线是用来形象地描述电场的一种工具。
电场线的疏密表示电场强度的大小,电场线的切线方向表示电场强度的方向。
静电场的电场线不闭合,始于正电荷或无穷远,终于负电荷或无穷远。
4、电通量电通量是通过某一面积的电场线条数。
对于匀强电场,通过平面的电通量为:$\Phi = ES\cos\theta$,其中$E$为电场强度,$S$为平面面积,$\theta$为电场强度与平面法线的夹角。
5、高斯定理高斯定理表明,通过闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以$\epsilon_0$。
即:$\oint_S E\cdot dS =\frac{1}{\epsilon_0}\sum q$。
高斯定理是求解具有对称性电场分布的重要工具。
二、电势1、电势电势是描述电场能的性质的物理量,定义为把单位正电荷从电场中某点移动到参考点(通常取无穷远处)时电场力所做的功。
某点的电势等于该点到参考点的电势差。
点电荷产生的电场中某点的电势为:$V = k\frac{q}{r}$。
2、等势面等势面是电势相等的点构成的面。
等势面与电场线垂直,沿电场线方向电势降低。
3、电势差电场中两点之间的电势之差称为电势差,也称为电压。
其表达式为:$U_{AB} = V_A V_B$。
电磁场与波复习资料完整版
(2.11) (2.12) (2.13) (2.14)
线密度分布电荷 3.静电场方程 积分形式 :
∫
l
r −r' ρl ( r ')dl ' 3 r −r'
1 N ∑ qi ε 0 i =1
� ∫
S
E ( r )idS =
(2.15) (2.16) (2.17) (2.18)
� ∫ E ( r )idl = 0
1.坡印廷定理 坡印廷定理表征了电磁场能量守恒关系,其微分形式为
−∇i( E × H ) =
积分形式为
∂ 1 1 ( H i B + E i D) + E i J ∂t 2 2
(4.8)
d 1 1 ( H i B + E i D )dV + ∫ E i JdV (4.9) ∫ V dt V 2 2 坡印廷定理的物理意义:单位时间内通过曲面 S 进入体积 V 的电磁能量等于单位时间
ρ ( r ) = lim
C/m3 C/m 2 C/m
(2.1) (2.2) (2.3)
“点电荷”是电荷分布的一种极限情况。当电荷 q 位于坐标原点时,其体密度 ρ ( r ) 应 为
ρ ( r ) = lim
可用 δ 函数表示为
q ⎧ ⎪0 =⎨ ∆V → 0 ∆V ⎪ ⎩∞ ρ ( r ) = qδ ( r )
Wm =
(3.37) (3.38) (3.39)
L= M 21 = ψ 21 I1 µ M= 4π
ψ I
, M 12 =
(3.41) (3.42) (3.43)
∫
c1
ψ 12 I2 dl gdl ∫ c2 r12− r21
电磁场-复习资料
(9.1b) (9.1c)
∫S B(r) ⋅ dS= 0,
∇ ⋅ B(r) = 0
(9.1d)
3.问题:既然变化磁场能产生涡旋电场,那么变化电场能否产生磁场呢?图 4.1 中接交变电
源的电容器的断路回路上为什么存在传导电流?8
4.动态场基本方程——麦克斯韦方程
∫l
E(r,t) ⋅ dl
=
− ∫S
∂B(r , t ) ∂t
性微分算符“ ∇ ”来统一表示?
19.亥姆霍兹定理:在无界区域中,某场点的矢量场由其散度和旋度唯一确定。 第二章 源量的定义和库伦定律 1.微粒物质构成的带电体所带电量的多少称为电荷量。 2.当观察点与带电体的距离远大于带电体尺度时,可将点电荷视为体积很小而电荷密度很大 的带电小球的极限,其总电量完全集中于球心处。 3.电荷作定向运动,形成电流,其大小用电流强度来表示。
6.线电流——电流在某细导线上定向运动形成的电流。 7.电荷守恒性——电荷不能自生自灭,只能在物体内不同区域、或不同物体间转移。
电荷守恒定律——在一个无外界电荷交换的闭合系统内,正、负电荷的代数和在任何电磁
过程中均保持不变。 8. 库仑定律:自由空间中两个静止点电荷 q 和 q0 (探测静电力的试验电荷)的相互作用
与该点场矢量的方向一致。
4. 问题:为什么要同时应用矢量场的通量和环量来描述矢量场的场域性质?
5. 矢量场对有向曲面的面积分称为矢量场通过该有向曲面的通量。 7.(1)当ψ > 0 时,表示穿出闭合闭曲面 S 的通量线多于穿入的通量线,闭曲面 S 内必有发出
通量线的正通量源(例如,发出静电场力线的正电荷);
构成一个完备方程组,它定量描述了场量、源量和媒质间的相互作用规律和转化关系,全面 反映了电磁场与波的基本性质和普遍的运动规律,是宏观电磁理论的基础,所有的电磁现象 都可以由它得到说明。 7.问题:如何得动态位波动方程的单值解?按什么原则选择 A 的散度之值? 8. 理想介质——电导率极小的低耗介质
电磁场复习要点
电磁场复习要点第一章 矢量分析一、重要公式、概念、结论1. 梯度、散度、旋度在直角坐标系下的计算公式。
梯度:x y z u u u u x y z∂∂∂∇=++∂∂∂e e e 散度:y x zA A A x y z∂∂∂∇⋅=++∂∂∂A旋度: 2. 两个重要的恒等式: ()0u ∇⨯∇=,()0∇⋅∇⨯=A第二章 电磁场的基本规律 一、重要公式、概念、结论1.电场和磁场是产生电磁场的源量。
2.从宏观效应看,物质对电磁场的响应可分为极化、磁化和传导三种现象。
3. 静电场的基本方程:s lD D ds QE E dl ρ∇•=•=∇⨯=•=⎰⎰ 表明:静电场是有散无旋场。
电解质的本构关系: 0r D E E εεε==xyzy y z x z x x y z x y zA A A A A A x y z y z z x x y A A A ∂∂⎫⎫⎛⎛∂∂∂∂∂∂∂⎫⎛∇⨯==-+-+- ⎪⎪⎪ ∂∂∂∂∂∂∂∂∂⎝⎭⎝⎝⎭⎭e e e A e e e4. 恒定磁场的基本方程:l sH J H dl I B B ds ∇⨯=•=∇•=•=⎰⎰ 磁介质的本构关系:0r B H H μμμ==5. 相同场源条件下,均匀电介质中的电场强度为真空中电场强度值的倍r1ε。
6. 相同场源条件下,均匀磁介质中的磁感应强度是真空中磁感应强度的r μ倍。
7. 电场强度的单位是V/m ;磁感应强度B 的单位是T (特斯拉),或Wb/m 2 8. 电磁感应定律表明:变化的磁场可以激发电场。
9. 全电流定律表明:变化的电场也可激发磁场。
10. 理解麦克斯韦方程组:微分形式: 积分形式:⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂-=⨯∇•∂∂+=•∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ρ本构关系: E J HB EDσμε===二、计算。
电磁场与电磁波复习资料全
一、名词解释1.通量、散度、高斯散度定理通量:矢量穿过曲面的矢量线总数。
(矢量线也叫通量线,穿出的为正,穿入的为负)散度:矢量场中任意一点处通量对体积的变化率。
高斯散度定理:任意矢量函数A的散度在场中任意一个体积的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。
2.环量、旋度、斯托克斯定理环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。
其物理意义随 A 所代表的场而定,当 A 为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。
旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。
斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。
3.亥姆霍兹定理在有限区域 V 的任一矢量场,由他的散度,旋度和边界条件(即限定区域 V 的闭合面S 上矢量场的分布)唯一的确定。
说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.电场力、磁场力、洛仑兹力电场力:电场力:电场对电荷的作用称为电力。
磁场力:运动的电荷,即电流之间的作用力,称为磁场力。
洛伦兹力:电场力与磁场力的合力称为洛伦兹力。
5.电偶极子、磁偶极子电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。
磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。
6.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。
位移电流:电场的变化引起电介质部的电量变化而产生的电流。
7.全电流定律、电流连续性方程全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面穿过的全部电流的代数和。
电流连续性方程:8.电介质的极化、极化矢量电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。
电磁场复习要点
电磁场复习要点第⼀章1、⽮量的点乘和叉乘公式、性质,特别是在直⾓坐标系下的计算公式2、三种常⽤正交坐标系的相互转换,各⽅向单位⽮量之间的⽅向关系。
3、场论的基础知识:(1)标量场的梯度的概念、性质、公式、与⽅向导数的关系(2)⽮量场的散度的概念、公式、与通量的关系、散度定理、通量源和⽮量线的特点(3)⽮量场的旋度的概念、公式、与环量的关系、斯托克斯定理、漩涡源和⽮量线的特点(4)两个恒等式(5)亥姆霍兹定理第⼆章1、三⼤实验定律:公式、含义、物理意义2、两个基本假设:有旋电场和位移电流3、麦克斯韦⽅程组微分形式、积分形式及其物理意义4、两种不同介质分界⾯上的边界条件(普通的、理想介质与理想介质、理想导体与理想介质)5、媒质的电磁特性:极化、磁化和传导。
6、三种介质的本构关系对以上公式要求理解,能够灵活运⽤公式进⾏解题。
重点例题:P80页例2.7.1,例2.7.3第三章1、电位函数:引⼊依据,与电场强度之间的关系(积分形式和微分形式),电位参考点的选取原则。
2、电容的定义及其求解3、静电场的能量和能量密度(各种公式)重点查看课本P96页双导体电容的计算步骤。
例3.1.4,例3.1.54、⽮量磁位:引⼊依据,与磁感应强度之间的关系(积分形式和微分形式),⽮量磁位的⽅向。
5、电感的定义,⾃感⼜分内⾃感和外⾃感。
圆截⾯长直导线单位长度的内⾃感是多少6、恒定磁场的能量和能量密度(各种公式)P125页例3.3.77、恒定电场的源量和场量,基本性质。
电阻的求解。
8、什么是边值问题,他的分类,唯⼀性定理及其意义9、边值问题的常⽤解法10、镜像法的原理、求解关键。
接地的⽆限⼤导体平⾯的镜像,具有⼀定夹⾓的接地导体平⾯的镜像。
接地和不接地导体球⾯的镜像。
主要能够求出镜像电荷的个数、位置、⼤⼩。
11、分离变量法的原理。
针对给出问题能够列出位函数满⾜的⽅程和边界条件。
12、有限差分法的主要思想,和主要公式。
第四章1、波动⽅程的意义2、位函数和场量的关系3、坡印廷⽮量的定义,物理意义。
电磁学复习总结(知识点)
电磁学复习总结(知识点)电磁学复总结(知识点)知识点1: 电荷和电场- 电荷是基本粒子的属性,可能为正电荷或负电荷。
- 电场是由电荷产生的力场,它描述了在某一点周围的电荷受到的力。
知识点2: 高斯定律- 高斯定律是电磁学中的重要定律,描述了电场通过一个封闭曲面的总通量与该曲面内的电荷之间的关系。
知识点3: 电势和电势能- 电势是电场在某一点的势能大小,与正电荷的势能增加和负电荷的势能减少相关。
- 电势能是电荷在电场中具有的能量,可以通过电势差来计算。
知识点4: 静电场中的电场分布- 静电场中的电场分布可通过库仑定律计算。
- 静电场中的电场线是指示电场方向的线条,其切线方向为电场的方向。
知识点5: 电容和电- 电容是描述电储存电荷能力的物理量。
- 电是由两个导体之间存在的绝缘介质隔开的装置,用于储存电荷。
知识点6: 电流和电阻- 电流是电荷在单位时间内通过导体横截面的数量。
- 电阻是导体对电流的阻碍程度,可通过欧姆定律计算。
知识点7: 磁场和磁感应强度- 磁场是由电流产生的力场,描述了电流受到的力。
- 磁感应强度是描述磁场强度的物理量,可通过安培定律计算。
知识点8: 磁场中的磁场分布- 磁场中的磁力线是指示磁场方向的线条,其切线方向为磁场的方向。
- 安培环路定律描述了磁场中磁场强度沿闭合路径的总和为零。
知识点9: 电磁感应和法拉第定律- 电磁感应是指磁场与闭合线圈之间产生的感应电动势。
- 法拉第定律描述了感应电动势与磁场变化速率和线圈导线的关系。
知识点10: 自感和互感- 自感是指电流变化时产生的感应电动势。
- 互感是指两个线圈之间产生的相互感应电势。
知识点11: 交流电路和交流电源- 交流电路是指电流方向和大小周期性变化的电路。
- 交流电源是产生交流电的电源,如发电机。
知识点12: 电磁波- 电磁波是由振动的电场和磁场沿空间传播的波动现象。
- 电磁波根据波长可分为不同的频段,如无线电波、微波、可见光等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ev
v E2
v J
2
I
2 2l
ev
内外导体之间的电压
U0
R2 R1
v E1
d
v
R3 R2
v E2
d
v
R2 R1
I
2 1l
ev
d ev
R3 R2
I
2 2l
ev
d
ev
I
2l
1
1
ln
R2 R1
1
2
ln
R3 R2
漏电流
I
1 ln
1
2lU0
R2 1
R1 2
ln
R3 R2
2l
2ln
R2 R1
第一章 静电场
2. 基本计算方法
(1)计算条件
• 介质分界面衔接条件:
① 场量表示
r ur ur
en E2 E1 0
r ur ur
en D2 D1
E1t E2t D1n D2n ( 0时)
② 电位表示
1 2
1
1
n
2
2
n
( 0时)
• 介质和导体分界面边界条件: r ur
场的基本场量,用
r J
0
、
r E
0
作为它们的基本方程。
4、从能量的角度看
当静电场已经建立起来时,其中各带电量的电量不再随时间变 化,也不再需要外界提供能量。
在恒定电场中,导电媒质内的电荷在电场作用下运动要消耗能 量,要保持恒定的电流,就必须给导电媒质接上电源,为电电场
三、恒定电场与静电场的异同点
5、某些实际问题的近似
在某些实际问题中,往往认为良导体表面是等位面。因为良导体
的电导率 很大,所以良导体内的E很小。
在良导体与理想介质分界面上,设良导体为媒质1,理想介质为媒 质2,则 E2t E1t E2n,理想介质一侧的 E2 E2n ,可以近似把分界 面视为等位面,将理想介质中的恒定电场看作静电场。
第二章 恒定电场
三、恒定电场与静电场的异同点
1、两者概念 静电场是由相对于观察者静止的且电量不随时间变化的
电荷所引起的电场 恒定电场是在恒定电流情况下,由分布不随时间变化但做
恒定流动的电荷所引起的电场
2、电场强度与电位分布 静电场中,导体内部的电场强度为零,导体是等位体,导
体表面为等位面,电场强度垂直于导体表面。 恒定电场中,导电媒质内部的电场强度不为零,导电媒质
径为 c,内导体带有均匀面电荷分布为σ,求下列情况下空间
任意点的 E。(a)外导体未接地;(b)外导体接地。
解:两种情况下:
当r<a时 E 0
当a≤r≤b时 当b<r<c时
v E
a 0r
evr
E0
当r≥c且外导体未接地时,外表面有感应电荷,此时:
当r≥c且外导体接地时,外表面没有感应电荷,此时:
h a
x
半径为 a 且线电荷密度为-τ 的无限长圆柱导体为
像电荷。再采用电轴法,相应电轴位置如左下图所 y
示。 则 d h2 a2
h a
h r
a
x
d
d
yoz平面上任意点的电场强度为:
v E
0r cos
evx
这里 r d 2 y2 h2 a2 y2
y
cos d h2 a2
y h2 a2 y2
解:(1)建立如图坐标系
dq 0dS 0ad a sin d 0a2 sin d d
z
0 d
E
d
x
dq
y
又对称性可知,
E
方向为
z
轴负方向,则
v dEz
dq
4 0 a 2
cos evz
v
E
v dEz
0evz 4 0
2
2 sin cos d d
00
0
0 4 0
ev z
x
(2)将半球看作由无数球壳组成的,则
dt
电流密度(或线电流)
电流面密度 电流线密度
J
ρv
(A/m 2
)
K
σv
(A
m)
线电流
I v ( A)
元电流段 vrdq
vrρdV
r JdV
Am
vrσdS
r KdS
Am
vr dl
r Idl
Am
I J dS S
I
l
v (K
evn
)dl
2、电源与恒定电场
rr
rr
局外力,局外场强,电源电动势 Ee fe / q l Ee dl
① 场量表示 en E2 0
r ur
en D2
② 电位表示 1 2
2
2
n
第一章 静电场
2. 基本计算方法
(2)计算方法 a) 四种计算静电场分布的方法
① 在无限大各向同性线性均匀介质中,由场---源关系式计算;
② 高斯定理计算:
分析电场分布的对称性
确定计算范围
作计算图
建立坐标系
h a
d
h r
a
x
d
v
E
0
h2 a2 y2
h2 a2 h2 a2 y2
evx
h2 a2
0 h2 a2
y2
evx
v v
D 0E
h2 a2
h2 a2 y2
evx
D
n0
h2
h2 a2 a2 y2
第二章 恒定电场
一、基本内容和公式
1、电流与电流密度 I dq
很多恒定电场(电源外)问题的解决,都可以归结为在 给定边值条件下,求出拉普拉斯方程的解答(边值问题)。
第二章 恒定电场
一、基本内容和公式
7、静电比拟
表1 两种场所满足的基本方程和重要关系式
静电场 ( 0)
导电媒质中恒定电场(电源外)
E 0 E
E 0 E
D 0
D E 2 0
场应为平行平面电场,可取图示截面的区域来计算。考 虑到结构上的圆柱对称特点,取电容器轴线为 z 轴建立
圆柱坐标系,电场的分布仅与径向坐标 相关。电容器
2
、2
1、1
u0
R1
两电极可视为良导体,内、外导体电极圆柱表面分别为 等位面,两电极之间的介质是非理想的损耗介质,漏电 流将是由内导体向外导体呈均匀圆柱辐射状分布。
v E
a 0r
evr
E0
真空中一半径为 a 的无限长圆柱导体,线电荷密度 τ,与一无限 大导体平面平行放置,圆柱体轴与导体平面距离为 h,求导体平 面面电荷密度。
解:建立如图坐标系,导体平面与 yoz 平面重合, 且圆柱体圆心到导体平面的垂线与 x 轴重合。 首先采用镜像法,在导体平面的另一侧对称地设一
1 2U0 1ln
R3 R2
电流密度
v J
1
1
ln
R2 R1
U0 1
2
ln
R3 R2
ev
R1 R3
电场强度
v E1
ln
R2 R1
U0
1 2
ln
R3 R2
ev
v E2
2 1
ln
U0 R2 R1
ln
R3 R2
evr
r 3 0
evr
v E
4 R3
3
40r 2
evr
R3 30r 2
evr
r>R时
vv E dl
l
r
R3 3 0 r 2
dr
R3 30
r
1 r2
dr
R3 30r
r≤R时
vv E dl
l
R r r 30
dr
R3 R 30r 2
dr
R2 r2
6 0
R2 R2 r2 30 20 60
J 0
J E 2 0
q D
D dS
S
E1t E2t D1n D2n
I SJ dS
E1t E2t J1n J 2n
表2 两种场对应物理量
静电场 ( 0)
E
D
q
导电媒质中恒定电场(电源外)
E
J I
8、电导和接地电阻 G I U
第二章 恒定电场
二、本章重点与难点 1、本章重点 深刻理解恒定电流和恒定电场的概念 掌握微分形式的欧姆定律和焦耳定律 掌握恒定电场的基本方程和分界面上的衔接条件 能正确分析和求解恒定电场的问题 2、本章难点 掌握电导和接地电阻的计算方法 掌握恒定电场与静电场的静电比拟方法
上的元电荷,如图所示。根据对称性,此环形元电荷的电场方向沿 z
轴,
即 dE
dEz
dq
4 0R2
cos
rdr 20
(r2
z
z2
3
)2
则无限大面电荷在 P 点产生的电场为
dr
r
R
P dEz
o
z
E
ez
z
2ε0
rdr 0 (r2 z 2 )32
ez
z 2 0
ez
2 0
z z
220e0zez
第二章 恒定电场
一、基本内容和公式
3、欧姆定律与焦耳定律的微分形式
导电媒质中电流密度与电场强度之间的关 系 导电媒质中电流流动时功率损耗,其体密度
J γE
rr p J E
4、恒定电场的基本方程
积分形式:
S
v J
v dS
0
vv
Ñl E dl 0
微分形式: