第6章 用变分法求解最优控制问题
最优控制
![最优控制](https://img.taocdn.com/s3/m/352a514ac850ad02de80418e.png)
J =
能观,
1 1 x ( t f ) T C T Q 0 Cx ( t f ) + 2 2
tf
[ x T C T Q 1 Cx + u T Q 2 u ] dt ∫
t0
二次型指标最优控制问题
线性系统
二次型性能指标
x = Ax + Bu y = Cx
tf
J =
1 T x (t f )Q 0 x (t f ) + 2
1 二次型性能泛函
1 1 T J = x (t f ) Q 0 x (t f ) + 2 2
半正定
tf
[ x T Q 1 x + u T Q 2 u ] dt ∫
t0
半正定
正定
误差大小的代价函数, qij大表示对应误差要求小 对控制的约束或要求. 表示在区间内消耗的能量, qij大表示对应付出的能量小. 最优控制目标是使性能指标J取得极小值, 其实质是用不大的控制来 保持比较小的误差,从而达到所用能量和误差综合最优的目的.
0 x = 1
1 x a + 2
1
y=x1
1 w( s ) = C ( sI A) B = 2 s + s a + 2 +1
281
6.4 线性二次型最优控制问题
6.4 线性二次型最优控制问题
输出调节问题
x (t ) = A (t ) x (t ) + B (t )u (t ) y ( t ) = C ( t ) x ( t ), x ( t 0 ) = x 0
q1 , q 2 > 0 , q 0 ≥ 0
u * ( t ) = Q 2 1 ( t ) B T ( t ) P ( t ) x ( t ) = q 2 1 p ( t ) x ( t )
第6章 最优控制
![第6章 最优控制](https://img.taocdn.com/s3/m/ae6a11b41a37f111f1855b16.png)
1 (t ) x2 (t ) 0 x 2 (t ) u (t ) 0 x
根据边界条件:
x1(0) 1 ,x2 (0) 1 ,x1(2) 0,x2 (2) 0
可解出各待定系数为:
7 a1 3,a2 ,a 3 1,a4 1 2
解:
u a1t a2
刻 T 不固定,终端状态 x(T ) 也不固定,但又必须满足
x(T ) (T )这一约束条件时,终端条件变为横截条件,
即:
F x ) 0 F ( t T x
6.2.4 多元泛函的极值问题
设泛函为:
1, x 2 ,, x n , x1, x2 ,, xn , t )dt J F (x
T
0
) dt (1 x
2
x(t ) 2 t
x(0) 1
其中:F (1 x 2)
T
t
由欧拉方程有
x (t )
2) F (1 x
d 0 dt 1 x
x
F d F 0 x dt x
x(0) 1
x(t ) 2 t
x 1 x
边界条件为:
x1(0) 1 ,x2 (0) 1 ,x1(2) 0,x2 (2) 0
引进乘子: (t ) 1 (t ) 2 (t )T 构造一个新的函数:
1 2 1 x2 ) 2 ( x 2 u ) F F f u 1 ( x 2
* T
y ( x 3)2
求当 x 取何值时, y 有极小值。这一问题的解答结果是一个数值, y 即当 x 时, 有极小值 0。 3 在最优控制中,目标函数J是 u 的函数,而 u 又是时间t的 函数。所以和上述问题不同,最优控制的解答结果是一个函数而 不是一个数值。例如
第6章 最优控制
![第6章 最优控制](https://img.taocdn.com/s3/m/1ca8702d58fb770bf78a55f5.png)
F * d F * 0 X dt X F * d F * 0 u dt u
解出 u 的表达式。
例题: 约束条件为: 初始条件为:
1 2 2 J Q (t )dt 2 0
Q(t ) u(t )
Q(0) 1 Q(0) 1 Q(2) 0,Q(2) 0 , ,
第六章 最优控制
——泛函及变分法 ——最小值原理
6.1 最优控制问题及其描述
6.1.1 最优控制问题的例子
飞船软着陆问题
宇宙飞船在月球表面上着陆时垂直速度必须为零,即软着陆。 这个问题必须靠控制发动机推力的变化来实现。问题是如何选择 一个推力方案,使燃料消耗最小。
设飞船的总质量为 m ,高度为 的重力加速度为 g ,推力为 u 。
取:x1(t ) Q(t ),x2 (t ) Q(t )
有:
x1 (t ) x2 (t ) x2 (t ) u (t )
x1 (t ) x2 (t ) 0 x2 (t ) u (t ) 0
x1 (t ) x2 (t ) f x2 (t ) u (t )
轨线1
x(t f )
t
此时终端不仅状态可变、终端的时间也是可变的。
F 0 F ( x) x t T
例题:求 x(0)=1 到直线 x(t)=2-t 的距离最短的直线:
解:目标函数为:
积分上限是可变的
x (t )
J
T
0
(1 x ) dt
T
F d F 0 x dt x
这是一个微分方程,其解中含有待定系数,通过给出的边界条件
x(t0 ) x0 , x(T ) x1
变分法与最优控制
![变分法与最优控制](https://img.taocdn.com/s3/m/683be920050876323012127f.png)
2.1 变分法概述
1、泛函定义
定义: 如果变量y对于某一函数类中的每一个函数 x(t),都有一个确定的值与之对应,那么就 称变量y为依赖于函数x(t)的泛函,记为: y=J [x(t)]。
说明:由于函数的值是由自变量的选取而确定的,而泛函 的值是由自变量的函数的选取而确定的,所以将泛函理解 为“函数的函数”。
点向较低的B点滑动,如果不考
虑各种阻力的影响,问应取怎样 的路径,才能使所经历的时间最 短?
结论:最速降线是一条圆滚线。
B(xf,yf)
y
在A、B两点所在的竖
直平面内选择一坐标系,
如上图所示。A点为坐 标原点,水平线为x轴, 铅垂线为y轴。
向量欧拉方程
对于向量空间的泛函,也存在着欧拉方程,不 过是欧拉方程组(即向量欧拉方程)。
若给定曲线x(t)的始端x(t0)= x0和终端x(tf)= xf,
J[x(t) ] tf L[x(t)x ,(t)t,]dt t0
达到极值的必要条件是,曲线x(t)满足欧拉方程
Lx ddtLx0 或
欧拉(Euler)方程
其中x(t)应有连续的二阶导数, L[x(t)x ,(t)t,] 则至少应是二次连续可微的。 (证明略)
2.2 无约束最优化问题
1、无约束固定端点泛函极值必要条件
问题 2-1 无约束固定终端泛函极值问题为:
其中, L[x(t),及x(tx)(,tt)]在[t0,tf]上连续可微, t0及tf固定, x(t0)= x0,x(tf)= xf, x(t)Rn
求满足上式的极值轨线x*(t)。
边界条件
定理2-5 则泛函
(证明略)
定理2-2 连续泛函J(x)的二次变分定义为
(证明略)
现代控制理论 第6章 最优控制(校内讲稿)1
![现代控制理论 第6章 最优控制(校内讲稿)1](https://img.taocdn.com/s3/m/0569f8deb14e852458fb57c3.png)
2)终端型性能指标( 梅耶问题)
J x( t f )或J x( N )
3)综合型性能指标( 鲍尔扎问题)
J x ( t f ) Lx t ,ut ,t dt
终端指标
t
f
或J x( N )
N 1 k k 0
t0
L [ x( k ),u( k ),k ]
2.拉格朗日乘子法 设目标函数:
n维
x( tk 1 ) f [ x( tk ),u( tk ),tk ] n N倍
N 1 L k 0
J x( N ) 约束条件为:
x( k ), u( k ), k
( k 0 ,1, N 1 )
f [ x( k ), u( k ), k ] x( k 1 ) 0
6.9
Bang-Bang控制
总目录 章目录 返回
上一页 下一页
教学要求: 1. 学习泛函变分法,理解最优控制的一般概念 2. 掌握利用变分法求最优控制方法 3.掌握状态调节器,极小值原理
重点内容: •最优控制的一般问题及类型,泛函与变分,欧拉 方程,横截条件。 •变分法求有约束和无约束的最优控制。 •连续系统的极小值原理。 •有限和无限时间状态调节器方法,Riccati方程求 解。
爬山法 梯度法
总目录 章目录 返回
上一页 下一页
6.3 静态最优化问题的解
6.3.1 一元函数的极值
设: f ( u ) a , b 上的单值连续可微函数 J 则1) u为极小值点的充要条件
f ( u ) |u u 0
f ( u ) |u u 0
f ( u ) |u u 0
H f ( g )T 0 x x x H f ( g )T 0 u u u H g ( x ,u )0
第6章 用变分法求解最优控制问题
![第6章 用变分法求解最优控制问题](https://img.taocdn.com/s3/m/ca94e401cc1755270722086a.png)
x(t) = x*(t) +εη(t) = x*(t) +δ x(t)
§6-2 泛函与变分的基本概念
3.泛函的变分 ● 泛函的增量 由自变量函数 x(t) 的变分δ x(t)引起泛函 J[ x(t)]的增量
∆J = J[ x*(t) +δ x(t)] − J[x*(t)] 为泛函 J[ x(t)] 的增量。
§6-2 泛函与变分的基本概念
一. 泛函与泛函的变分 1. 泛函的定义 对于某一类函数集合{x(t)} 中的每一个函数 x(t),均有一个确定的数 J 与之对应,则称 J 为依赖于函数 x(t) 的泛函,记作
J = J[x(⋅)] = J[x(t)]
函数值。 例泛函:
J[x(t)] 中的 x(t)应理解为某一特定函数的整体,而不是对应于 t 的
α = ∫ 2[x(t) + δ x(t)]δ x(t)dt α=0
0
1
= ∫ 2x(t)δ x(t)dt
0
1
§6-2 泛函与变分的基本概念
二. 泛函的极值 1. 泛函极值的定义 如果泛函 J[x(t)] 在 x(t) = x (t) 的邻域内,其增量
*
∆J = J[x(t) − x*(t)] = J[x(t)] − J[x*(t)] ≥ 0
∂ J[x*(t) +αδ x(t)] α=0 = 0 ∂α ∂ J[x*(t) +αδ x(t)] α=0 = δ J[x*(t)] = 0 ∂α
§6-3 无约束条件的变分问题
引理:如果函数 F(t) 在区间 [t0, t f ] 上是连续的,而且对于只满足某些 一般条件的任意选定的函数
η(t) 有
第六章 用变分法求解最优控制问题
现代控制理论最优控制(1)
![现代控制理论最优控制(1)](https://img.taocdn.com/s3/m/5632b71dcc7931b765ce1552.png)
1)泛函自变量的变分
δ x x(t ) x (t )
*
2)泛函的变分 泛函的增量:由自变量函数x(t)的变分δx(t)的泛函J[x(t)]
增量为
Δ J [x] J [x(t) δ x(t)] J [x(t)] L[x(t ), δ x(t)] o[x(t), δ x(t)]
泛函的变分:泛函J[x(t)]的增量ΔJ[x(t)]的线性主部称为 泛函的一阶变分,简称泛函变分记为δJ,即
J J [ x(t ) x(t )] 0 L[ x(t ), x(t )]
类比于函数y=f(x),其增量为 Δy= f(x+Δx)-f(x)=f’(x)dx+o(Δx) y=f(x)的微分 dy=f’(x)dx
2. 确定容许控制域
对于r维控制向量u(t),要满足客观约束条件
i ( x, u ) 0 j 1, 2,, m mr 把u {u (t ) i ( x, u ) 0}称为控制域
满足u (t ) u的u (t )称为容许控制
3.确定始端与终端条件 若系统的初始时刻t0确定,则:
3) 泛函的极值
若泛函J[x(t)]在曲线x(t)= x*(t)上达到极值,则有
J J [ x(t ) x(t )] 0 0
若
ΔJ=J[x(t)]-J[x*(t)] ≥0
则称泛函J[x(t)]在曲线x*(t)上达到极小值;若
ΔJ=J[x(t)]-J[x*(t)] ≤0
3)综合型性能指标( 波尔扎型)
J x t , u t , t dt x(t f ), t f t 0 L 或J x(k f ), k f L[ x (k ), u ( k ), k ]
变分法求解最优控制
![变分法求解最优控制](https://img.taocdn.com/s3/m/821290da33d4b14e852468a7.png)
J (u(t )) (t f , x(t f )) F (t, x(t ), u(t ))dt
t0 tf
性能指标J(u(t))在数学上称为泛函,在控 制系统中称为损失函数。
变分法基本概念
1.泛函
设S 为一函数集合,若对于每一个函数 x(t)∈S有一个实数J 与之对应,则称J 是 定义在S 上的泛函,记作J (x(t))。S 称为 J 的容许函数集。
t0
tf
再令 J 1 0 ,由 便得:
dt f ,x(t f ),x,u, 的任意性,
(i) x * , * 必满足正则方程: 1.状态方程
x H f (t, x, u)
2.协态方程
H x
* *
(ii)哈密顿函数 H (t, x , u, ) 作为u的函数,也 必须满足
定义一个标量函数:
H (t, x, u, ) F (t, x, u) T (t ) f (t, x, u)
称为哈密顿函数。所以新的性 能指标为
J 1 ( x, u, ) (t f , x(t f )) [ H (t, x, u, ) T x]dt
t0 tf
t0 tf
d (dt fy) [t f fF xt ,yxdx , t ) t t f F'( ) y ) ( (, ) , u dy a (
T
b( y )
] [x(t f )] x (t f )
T
T tf
[(x) H x (u) H u ( ) H ( ) x]dt (t f )x t t f (x)T dt t0 f y ( x, y)dx f [b( y), y)]b' ( y) f [a( y), y)]at'0( y)
最优控制变分法
![最优控制变分法](https://img.taocdn.com/s3/m/b0c50b1e6c175f0e7cd13752.png)
AB
x2 x1
1 y ' 2 dx
通过A,B两点的函数若为 y f (x) ,则不同的函数有不同的 弧长,即弧长是 y 的函数,记为 J ( y ) ,即
x2 1 y 2 dx J ( y ) AB x1
因此,求弧长的定积分是一种变换,它把x1与x2之间各点相应 的y变换为标量(弧长)。由此例可以看出定积分为泛函。 以下是各章经常要用到下列形式的目标函数
以下计算第二个积分,实际上是估计余项。 按泛函求极值的
ˆ 与 y 的一级距离应落入ε邻区内(由于本节的泛函 定义, y
只对 y 与 y’提出要求,故只用到一级距离),即令
ˆ y| d 0 max | y
x [ x 0 , x1 ]
ˆ ' y ' | d 1 max | y
x [ x 0 , x1 ]
第一章
变分法
1.1 泛函 1.2变分的推演 1.3Euler方程 1.4向量情形 1.5有约束的情形 1.6端点可变情形 1.7变分的另一种定义
1.1 泛函
(1)定义(泛函)
泛函是一映射L : J K , J Y , Y为一向量空间, K 一般为实数 域R或复数域C。 这说明泛函是一种变换,它把向量空间Y中某一子集J 映射为 K的某个子集。 例:曲线的弧长 在xy平面上过A(x1 ,y1),B(x2,y2)两点之间的曲线弧长公式为
| [ ( Fy Fy ) ' (F y ' Fy ' )]dx | | |dx
x0 x0
x1
x1
[| (Fy Fy ) | | ' ( F y ' Fy ' ) |]dx
最优控制第六章极小值原理
![最优控制第六章极小值原理](https://img.taocdn.com/s3/m/a2ac87623b3567ec112d8a21.png)
以 w u,w * u*代入上式,便得
H x*, *,u,t H x*, *,u*,t
(35)
上式表明,如果哈密尔顿函数H看成 utU 的
函数,那么最优轨迹上与最优控制u*(t)相对应的
H将取绝对极小值(即最小值)。这是极小值原理的
一个重要结论。
定理 设系统状态方程为
xt0 x0
Nxt f ,t f 0
(48)
这就是著名的极小值原理。
下面对定理作些说明: 1) 定理的第一、第二个条件,即式(41)~式
(44),普遍适用于求解各种类型的最优控制问题, 且与边界条件形式或终端时刻自由与否无关。其
中,第二个条件:min H x*, *,u,t H x*, *,u*,t uU
(45)
u u
3) H函数在最优轨迹终点处的值决定于
H
Φ
T
N
0
(46)
t f
t f tt f
4) 协态终值满足横截条件
t f
Φ
x
t
f
N T
x t f
tt f
(47)
5) 满足边界条件
J1
Ψ
x T
Ψ x
Φ t f
N T t f
tt f
t f
d xT
tf
Φ
x
N T x
Ψ x
t t
f
wT
Ψ w tt f
zT
Ψ z
tt f
王孝武主编《现代控制理论基础》(第3版)第6章课件
![王孝武主编《现代控制理论基础》(第3版)第6章课件](https://img.taocdn.com/s3/m/68b18d857e192279168884868762caaedc33ba56.png)
由伴随方程 H 0
x
const
(t
f
)
x(t
f
)
1 2
cx2 (t
f
)
cx(t
f
)
因为 const
(t) (t f ) cx(t f )
由控制方程
H u 0
u
即
u* (t) cx(t f )
将 u* 代入状态方程 x u cx(t f )
解为 x(t) cx(t f )(t t0 ) c1
(7)
其中,x 为n 维状态向量; u 为r 维控制向量; f 为n 维向量函数。
要求在控制空间中寻求一个最优控制向量 u(t),使以下性能指标
J [x(t f )] t f L(x, u,t) d t t0
沿最优轨线 x(t)取极小值。
(8)
(性能指标如(8)式所示的最优控制问题,是变分法中的波尔扎 问题)
当 t t0 时,代入上式,求得 c1 x(t0 ) ,所以
x(t) cx(t f )(t t0 ) x(t0 )
当 t t f 时,
x(t
f
)
1
x(t0 ) (t f
t0
)
最优性能指标为
J
*
1 2
cx2
(t
f
)
1 2
tf t0
u2 d t 1 cx2 (t0 ) 2 1 c(t f t0 )
(10)
则 J [x(t f )] t f [H (x, u, λ,t) λT (t)x]d t
t0
[x(t f )] t f H (x, u, λ,t) d t t f λT (t)x d t
t0
偏微分方程的变分原理与最优控制
![偏微分方程的变分原理与最优控制](https://img.taocdn.com/s3/m/7e256161814d2b160b4e767f5acfa1c7aa00821d.png)
偏微分方程的变分原理与最优控制偏微分方程是数学中非常重要的研究对象,它用于描述物理、工程和经济等领域中的各种现象和问题。
在解决偏微分方程的过程中,变分原理和最优控制方法是两个基本的数学工具。
本文将介绍偏微分方程的变分原理以及在最优控制中的应用。
一、偏微分方程的变分原理1.1 变分计算与最小作用量原理在偏微分方程中,求解一个特定问题的解可以通过变分计算来实现。
变分计算的核心思想是求解一个泛函的极值问题,即寻找使得泛函取得最小值或最大值的函数。
最小作用量原理是变分原理的一个重要应用。
它是由拉格朗日在力学中提出的,后来被应用到偏微分方程中。
最小作用量原理的基本思想是,自然界的过程和发展都是通过使作用量取得最小值的方式进行的。
1.2 欧拉-拉格朗日方程欧拉-拉格朗日方程是从最小作用量原理出发推导得到的,并且是变分原理的基本工具之一。
它的形式是一个偏微分方程,用于描述系统的运动方程。
欧拉-拉格朗日方程的一般形式为:$\frac{\partial L}{\partial u} -\frac{\partial}{\partial x}\left(\frac{\partial L}{\partial u_x}\right) = 0$,其中 $L$ 是拉格朗日量,$u$ 是待求解的函数,$u_x$ 是 $u$ 关于 $x$ 的偏导数。
1.3 求解具体问题的步骤要求解一个具体的偏微分方程问题,可以按照以下步骤进行:(1)确定问题的边界条件和约束条件;(2)建立问题的拉格朗日量;(3)根据欧拉-拉格朗日方程,推导出问题的运动方程;(4)求解得到问题的解。
二、最优控制中的偏微分方程最优控制是研究如何通过选择最优控制策略来使系统的某种性能指标达到最优的一种方法。
在最优控制中,偏微分方程被广泛应用于描述系统的动力学行为。
2.1 哈密顿-雅可比-贝尔曼方程哈密顿-雅可比-贝尔曼方程是最优控制理论中的一个重要方程,用于求解最优控制问题。
最优控制问题的主要方法
![最优控制问题的主要方法](https://img.taocdn.com/s3/m/c4d4b60368eae009581b6bd97f1922791788be4c.png)
最优控制问题的主要方法最优控制问题是控制理论中的一个重要分支,其目标是在给定系统动力学和性能指标的情况下,寻找最优的控制策略,使系统达到最优性能或目标。
以下是最优控制问题的一些主要方法:1.变分法( Calculus(of(Variations):(变分法是一种数学工具,用于寻找泛函的极值。
在最优控制中,系统的性能指标通常可以表示为一个泛函。
变分法可以通过最小化或最大化泛函来导出最优控制问题的欧拉-拉格朗日方程。
2.动态规划 Dynamic(Programming):(动态规划是一种用于解决具有递归结构且满足最优子结构性质的问题的优化方法。
在最优控制中,动态规划可以用于处理具有离散或连续时间的动态系统,并通过构建状态转移方程来找到最优策略。
3.最优控制理论(Optimal(Control(Theory):(最优控制理论是处理连续时间动态系统最优化问题的数学工具。
它利用微分方程和变分法来分析系统,并确定最优控制策略,以使系统性能指标达到最优。
4.Pontryagin最大值原理( Pontryagin's(Maximum(Principle):(Pontryagin最大值原理是最优控制中的一个重要概念,它提供了寻找连续时间系统最优控制策略的方法。
该原理基于最优控制问题的哈密顿函数和共轭动态系统,通过最大化哈密顿函数来确定最优控制。
5.线性二次型调节器 LQR):(线性二次型调节器是一种针对线性动态系统设计最优控制器的方法。
它通过最小化系统状态和控制输入的二次型代价函数来设计最优控制器。
6.模型预测控制 Model(Predictive(Control,MPC):(模型预测控制是一种基于离散时间模型的最优控制方法。
它使用系统的预测模型来预测未来状态,并通过优化控制序列来实现性能指标的最优化。
这些方法可以根据系统的特性、动力学模型、性能指标和实际应用场景选择和应用。
最优控制问题在工程、经济学、生物学等领域有着广泛的应用,能够优化系统的性能并提高控制效果。
现代控制理论 第6章 最优控制(录像)2(极小值 [1]加了二次型
![现代控制理论 第6章 最优控制(录像)2(极小值 [1]加了二次型](https://img.taocdn.com/s3/m/d65dd491fc4ffe473368abc0.png)
min H
uU
min uT BT
u( t ) SGN( BT )
得:
ui( t )sgn ( BT ) i ,i1,2, ,r
1 a 0
其中函数sgn a
0
a0
1 a 0
a为向量时用SGN表示。
总目录 返回 上一页 下一页
6.8 极小值原理
经典变分法
x Hx,u, ,t , Hx,u, ,t , Hx,u, ,t 0
x
u
状态方程
伴随方程
控制方程
应用范围:
u无约束, 且H对u连续可微 难满足
一般 ui Mi ( i 1,2 m ) 更一般控制u(t)受不等式约束:
gxt ,u(t),t 0
总目录 返回 上一页 下一页
t
u 切换时刻
总目录 返回 上一页 下一页
6.10.2 状态轨线及开关曲线
x* t 12.3
1
0 0.307
1
0.5
t 0 0.307
6.44
5
1 t 0 0.307 1 t
总目录 返回 上一页 下一页
例6.8.2 已知系统 x1t x1t ut x10 1
x2 t x1t
x2 0 0
其中 ut 1 ,若x t f 自由,求u* t 使
J x2 1 min
由正则方程组: x Ax Bu
H AT
x
(
t
)
e
AT t
(
0
)
e
AT t 0
u( t ) SGN( BT ) SGN( BT e ATt0 )
1.时间控制是Bang-Bang控制,即开关控制;
第六章 最优控制
![第六章 最优控制](https://img.taocdn.com/s3/m/1972afd76f1aff00bed51e69.png)
(t ) f x(t ), u (t ), t ,把状态x(t ) 定理:J Lx(t ), u (t ), t dt , 系统状态方程为x
第六章 最优控制
, t dt 泛函J L x, x
t0
极值存在的必要条件是:
L d L 满足欧拉方程 0 x dt x
欧拉方程是一 个二阶的微分 方程,其通解 中的两任意常 数由边界条件 确定。
J 0
L x 1 L L x 2 x ... L n x
0 1 0 例:人造地球卫星的某方向姿态控制方程为:x(t ) x(t ) 1u (t ),边界条件为: 0 0 2 0 1 x(0) ,x(2) ,求使J 0.5 u 2 (t )dt取极值的最优曲线x* (t )和最优控制u * (t )。 0 1 0
J = J [ x(·) ]
现代控制理论
第六章 最优控制
泛函与函数的几何解释
x(t ) x(t ) x0 (t )
反映函数的变化
宗量的变分
x(t )与x0 (t )属于同一类函数, x(t ) x0 (t ) 值很小, 称x(t )与x0 (t )有零阶接近度。 有零阶接近度
泛函的增量 泛函的变分
j 1 j
m
耗燃料尽可能少。
C.最小能量控制(通信卫星的电池) J u T (t )u (t )dt
t0 tf
u T (t )u (t )表示与消耗功率成正比的控制能量。
为了使系统的有限能量保证正常工作,要求对控制能量进行约束。
现代控制理论
第六章 最优控制
终端型性能指标:表示控制结束后,对系统末端状态 x(tf) 有要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6-2 泛函与变分的基本概念
3.泛函的变分 ● 泛函的增量 由自变量函数 x(t ) 的变分 x(t ) 引起泛函 J [ x(t )]的增量
J J [ x* (t ) x(t )] J [ x* (t )] 为泛函 J [ x(t )] 的增量。
f {x(t f ); g1[ x(t f )] 0, g 2 [ x(t f )] 0}
3. 容许控制 控制量受客观条件限制所能取值得范围。
U {u (t ); ( x, u ) 0} u (t ) U
§6-1 最优控制问题的一般提法
4. 性能指标 tf L[ x(t ), u (t ), t ]dt (1)积分型性能指标: J t0 反映控制过程中对系统性能的要求。
在容许控制集合 U 中,寻找控制向量 u (t ) U , t [t0 , t f ] ,使系统由 给定的初始状态出发,在 t t0 时刻转移到规定的目标集,并使性能 tf 指标: J [ x(t ), t ] L[ x(t ), u (t ), t ]dt
f f
取得极小值。
t0
1 2
若 x(t ) t 有
t x ( t ) e 若 有
§6-2 泛函与变分的基本概念
2.泛函自变量的变分 泛函 J [ x(t )] 的自变量函数 x(t ) 与标称函数 x* (t )之间的差值函数
x x(t ) x(t ) x* (t ) 称为泛函自变量的变分,记作 x(t )或 x 。 x(t ) x (t ) B 设 x (t ) 为 x(t ) 的容许曲线,即 x(t ) x (t ) x* (t ) (t ) x* (t ) 令 0 1 A 则 x* (t ) x* (t ) (t ) x (t ) t 这样: x(t ) (t ) x(t ) x* (t ) (t ) x* (t ) x(t )
u (t )
M
g
h(t )
§6-1 最优控制问题的一般提法
系统的状态方程为: dx1 (t )
初始条件为:
x2 (t ) dt dx2 (t ) u (t ) g dt m x1 (t0 ) h0,x2 (t0 ) v0
(6 1)
现在的问题是,寻找一个 u (t ) ,且满足 u(t ) C ,使物体在最短时间内由 状态 (h0 , v0 ) ,转移到 (0, 0) 。
J J [ x()] J [ x(t )]
函数值。 例泛函:
J [ x(t )] 中的 x(t )应理解为某一特定函数的整体,而不是对应于 t 的
dx(t ) J ( x (t ) t )dt 0 dt 1 5 2 J (t t )dt 0 6 2 1 e J (e 2t tet )dt 1 0 2
(2)终值型性能指标:J [ x(t f ), t f ] 反映了系统状态在终端时刻的性能。
J [ x(t f ), t f ] L[ x(t ), u (t ), t ]dt (3)复合型性能指标: t0 反映了控制过程和终端时刻对系统性能的要求。
若:[ x(t f ), t f ]、L[ x(t ), u (t ), t ] 为二次型函数,则复合型性能指 标可表示为二次型性能指标:
§6-1 最优控制问题的一般提法
问题例1:对于给定的动态系统(6-1),寻找满足约束条件 u(t ) C 的最优控制 u (t ) ,使性能指标
J dt t f t0
t0
tf
取得极小值,且满足如下约束条件:
x1 (t f ) 0 x2 (t f ) 0
§6-1 最优控制问题的一般提法
最优控制问题是在多种约束条件下寻找控制 u * (t ),使某个性能指标 J 取得极小值。由于 J 为函数 x(t )、u (t ) 的函数,即泛函。最优控制 问题可归结为求某与泛函的变分 1. 泛函的定义 对于某一类函数集合{x(t )} 中的每一个函数 x(t ),均有一个确定的数 J 与之对应,则称 J 为依赖于函数 x(t ) 的泛函,记作
二. 最优控制问题的一般提法 用数学语言描述最优控制问题,应包括以下几个方面的内容: 1. 受控系统的数学模型 用状态方程描述:x (t ) f [ x(t ), u (t ), t ]
2. 受控系统的始端和终端条件,即状态方程的边界条件 对最优控制问题始端条件通常是已知的:x(t0 ) x0 终端条件可以用一个目标集表示:
tf
1 T 1 tf T J x (t f ) Px(t f ) [ x (t )Qx (t ) u T (t ) Ru (t )]dt 2 2 t0
§6-1 最优控制问题的一般提法
最优控制问题的一般提法: 已知受控系统的状态方程
及给定的始端条件 和规定的目标集
(t ) f [ x(t ), u (t ), t ] x x(t0 ) x0 f {x(t f ); g1[ x(t f )] 0, g 2 [ x(t f )] 0}
§6-1 最优控制问题的一般提法
最优控制问题的提法就是怎样把一个最优控制问题抽象为数学问题。
一. 最优控制问题的实例
例1:最速升降问题 设有一物体M,作垂直升降运动。假定物体M内部 有一控制器,可以产生一个作用力 u (t ) 控制物体 上下运动。作用力满足约束条件 u(t ) C。 若物体在 t t0 时,离地面的高度为 h0 ,垂直 运动的速度为 v0 。寻找作用力 u (t ) ,使物体最 快地到达地面,且到达地面的速度为零。 建模:受控系统的状态方程(数学模型) (t ) v(t ) 令 x1 (t ) h(t ),x2 (t ) h