光电倍增管和半导体光电器件新应用举例
光电倍增管的原理和应用
光电倍增管的原理和应用1. 原理光电倍增管(Photomultiplier Tube, PMT)是一种能将光信号转化为电信号并进行放大的光电转换器件。
它由光阴极、光阴極多级倍增结构和阳極等部分组成。
光电倍增管的工作原理如下: 1. 光信号进入光电倍增管时,首先经过光阴极激发,激发后的光电子被加速电压所加速; 2. 加速后的光电子轰击光阴极,产生更多的次级光电子,这个过程称为光电子的倍增; 3. 产生的次级光电子经过一系列的倍增极间碰撞,产生更多的次级光电子,最终形成电流信号; 4. 电流信号经过阳极的收集和放大,输出为一个与光输入强度成正比的电压信号。
通过上述的工作原理,光电倍增管能够将弱光信号放大至可被检测和测量的强度,具有高增益、低噪声和较快的响应速度等特点。
2. 应用光电倍增管在各个领域都有广泛的应用,下面列举几个主要的应用领域:2.1 显微成像在显微成像领域,光电倍增管常被用于低光强下的图像增强和放大。
显微镜配备光电倍增管可以大大提升显微图像的清晰度和细节,特别是在观察透射和荧光显微图像时效果更加明显。
2.2 荧光检测在生物医学领域,光电倍增管常被用于荧光检测和荧光分析。
它可以将微弱的荧光信号转化为强电信号,用于荧光探针的测量、蛋白质表达分析、细胞标记等。
2.3 宇宙学研究在宇宙学研究中,光电倍增管常被用于光谱分析和星体测量。
它可以对来自宇宙空间的微弱光信号进行放大和测量,帮助科学家研究宇宙的结构和演化。
2.4 核物理实验在核物理实验中,光电倍增管广泛应用于粒子探测器和谱仪。
它可以将粒子或射线的能量转化为电信号,并通过倍增过程增强信号强度,用于探测和测量。
2.5 环境监测在环境监测中,光电倍增管常被用于气体检测和核辐射检测。
它可以对气体中的特定成分进行精确测量,如大气中的臭氧、氮氧化物等;同时,也可以用于监测和测量环境中的辐射强度和辐射类型。
3. 小结光电倍增管作为一种重要的光电转换器件,具有广泛的应用前景。
光电倍增管特性及应用
光电倍增管特性及应用光电倍增管(photomultiplier tube,简称PMT)是一种具有高增益和低噪声的光电探测器,广泛应用于光电传感、光谱分析、医学影像等领域。
在本文中,我将详细介绍光电倍增管的特性和应用。
光电倍增管的结构由光阴极、光学系统、电子倍增系统和采样系统组成。
当入射光通过光学系统到达光阴极时,光子会激发光阴极上的电子发射,被光阴极吸收的光子数与发射电子数成正比。
这些发射的电子经过电子倍增系统,通过二次发射和隔离电子逐级倍增,从而形成一个电荷增益的级联过程。
最后,采样系统将输出信号转化为电压脉冲形式。
光电倍增管具有以下特点:1. 高增益:光电倍增管的增益通常在10^6到10^8之间,即每一个入射光子可以产生大量的电子被乘以倍增因子。
2. 宽动态范围:光电倍增管的输出信号可以覆盖从甚微的光到极强的光,可以处理不同亮度范围的信号。
3. 快速响应:光电倍增管的时间响应通常在几纳秒到几十纳秒之间,可以满足对快速变化的光信号的需求。
4. 低噪声:光电倍增管的噪声来自于光电子发射过程和电子倍增过程中的随机性,但其噪声水平较低,可以提供较高的信噪比。
5. 可靠性:光电倍增管具有长寿命、高可靠性和较好的线性输出特性,适用于长时间连续工作。
光电倍增管在许多领域都有广泛应用:1. 光电传感:光电倍增管可以将光信号转换为电信号,用于检测和测量光的强度、波长和时间特性。
例如,在光谱仪、光度计和测光仪中,光电倍增管可以实现对光谱的高灵敏度和高分辨率的测量。
2. 时间测量:光电倍增管的快速响应特性使其在时间测量中得到广泛应用。
例如,在飞行时间质谱仪中,光电倍增管可以测量荷电粒子的到达时间,从而确定其质量和能量,广泛应用于物理、化学和生物学等领域。
3. 放射性测量:光电倍增管可用于检测和测量放射性粒子的能量和强度。
例如,在核物理实验中,光电倍增管可以用于测量射线的能量和位置,从而提供有关粒子的重要信息。
4. 医学影像:光电倍增管广泛应用于医学影像,如正电子发射断层成像(PET)和单光子发射断层成像(SPECT),用于检测和诊断疾病。
《光电倍增管》课件
案例二:光电倍增管在环境监测领域的应用
总结词
光电倍增管在环境监测领域中发挥着重要作用,能够实现高精度、高灵敏度的气体和水质监测,为环境保护提供 科学依据。
详细ቤተ መጻሕፍቲ ባይዱ述
光电倍增管在环境监测中主要用于气体和水的分析。对于气体监测,光电倍增管可以检测空气中的有害气体和温 室气体,如二氧化碳、甲烷等。对于水质监测,光电倍增管可以检测水中的重金属离子、有机污染物等有害物质 ,为水处理和水质管理提供依据。此外,光电倍增管还可用于气象观测和遥感监测等领域。
高增益与低噪声
通过改进倍增级结构和材料,提高光电倍增管的 增益和降低噪声,从而提高探测器的信噪比和灵 敏度。
多通道并行处理
采用多通道并行处理技术,实现多个光电倍增管 同时工作,提高探测器的响应速度和测量精度。
光电倍增管的市场展望
不断增长的市场需求
随着科学技术的进步和应用领域的拓 展,光电倍增管的市场需求将持续增 长,尤其在医疗、环保、安全等领域 的应用前景广阔。
污染物等。
02 光电倍增管的结构与特性
光电倍增管的结构
光电阴极
将光信号转换为电子的过程发生在此区域,通常 使用材料如硫化锑或硒化铊。
倍增极
一系列的电子倍增器,用于放大由光电阴极产生 的电子。
阳极
收集倍增后的电子并产生最终的电流或电压输出 。
光电倍增管的特性
01
02
03
高灵敏度
能够检测到微弱的入射光 信号,通常在亚纳瓦级别 。
05 光电倍增管的典型案例分析
案例一:光电倍增管在医疗仪器中的应用
总结词
光电倍增管在医疗仪器中具有广泛的应用, 能够提高医疗设备的检测精度和灵敏度,为 医疗诊断和治疗提供有力支持。
光电倍增管基础及应用
光电倍增管基础及应用
光电倍增管,这家伙就像是光的超级侦探,专门干那种把微乎其微的光线变成我们可以读取的电信号的活儿。
想象一下,它里面是个真空的大管子,分了几步来完成这项神奇的转换:
大门敞开迎光来:最前面有个透明的窗户,光就从这里溜进去。
变身游戏开始:窗户后面有个叫光阴极的家伙,光一照上去,就像魔术一样,光粒子(光子)就变成了电子。
电子大派对:接下来是光电倍增管的重头戏,里面有一串像多米诺骨牌一样的金属片,电子一碰到第一个,就像开了挂,每个金属片都能让电子数量翻倍,一路跑下来,电子越来越多,就像滚雪球。
终点集合拿奖品:最后,这些海量的电子跑到终点——阳极,这时候,我们就通过测量这些电子形成的电流,来知道原来的光线有多强。
这玩意儿在很多高大上的地方都大显身手:
科研探险:科学家用它来捕捉宇宙中的微弱信号,探索星空的秘密,或者在实验室里研究超微小的光亮。
医疗侦探:在医院的PET扫描仪里,它能帮医生看到身体里的微妙变化,就像给身体做超精细的拍照。
环保卫士:在监测空气、水质污染时,它能发现那些不易察觉的荧光标记,告诉人们环境是否健康。
核物理界的大佬:在研究放射性物质时,它是探测微弱辐射的高手。
化学实验室的秘密武器:分析复杂的化合物时,它能捕捉到物质发出的微光,帮科学家们解密物质的构成。
现在还有个升级版叫硅光电倍增管(SiPM),更小巧、节能,还耐用,就像光电界的超级英雄,越来越受追捧。
总之,光电倍增管就是个让光线说话,帮助人类探索微观世界的超级工具。
光电倍增管应用
光电倍增管(PMT)研究进展及应用光电倍增管技术的进展图1 滨松生产的PMT近些年得到广泛应用的MCP-PMT(Microchannel Plate Photomultiplier),金属封装PMT,多通道PMT代表了光电倍增管的最新研究进展:1.高量子效率,高灵敏度,高响应速度,探测波长向红外延伸。
某些型号PMT光谱响应范围可延伸置1200nm。
2.采用金属封装,多通道结构,提高有效光电面积。
已有的平板型PMT,其有效光电面积可达89%。
3.采用平板化、多阳极技术,可以小型化,具有二维高分辨率。
已有的10×10道阳极, 44的MCP-PMT厚度仅有14.8mm。
4.努力降低暗电流和自身噪声,减少放射性物质。
暗电流最小可达0.5nA,自身噪声可减置5cm sec。
个暗计数/25.将电子管真空技术与半导体技术,微细加工技术,电子轨道技术和周边电路技术相结合。
HPD(Hybrid Photo Detector)就是一种结合了电子管真空技术与半导体技术的复合器件。
光电转换后的电子经过电场加速,直接照射在CCD或APD上,引起“电子入射倍增效应”。
6.使用简单化,价格降低。
光电倍增管的应用领域光电倍增管的应用领域非常广泛,主要分为以下十几种:光谱学:紫外/可见/近红外分光光度计,原子吸收分光光度计,发光分光光度计,荧光分光光度计,拉曼分光光度计,其他液相或气相色谱如X光衍射仪、X光荧光分析和电子显微镜等。
质量光谱学与固体表面分析:固体表面分析,这种技术在半导体工业领域被用于半导体的检查中,如缺陷、表面分析、吸附等。
电子、离子、X射线一般采用电子倍增器或MCP来测定。
环境监测:尘埃粒子计数器,浊度计,NOX、SOX 检测。
生物技术:细胞分类计数和用于对细胞、化学物质进行解析的荧光计。
医疗应用:γ相机,正电子CT,液体闪烁计数,血液、尿液检查,用同位素、酶、荧光、化学发光、生物发光物质等标定的抗原体的定量测定。
光电倍增管的应用
2.荧光寿命测定 把激光作为激励光源,测定样品荧光强度的 时间变化,用来研究样品的分子结构。
十五、等离子体
1.等离子体探测 托克马克核聚变实验中的等离子电子密度、 电子温度测量系统中,使用光电倍增管用来计 测等离子中的杂质。
九、工业计测
1.厚度计
工业生产中的诸如纸张、塑料、钢材等的厚度检 测,可以通过包括放射源、光电倍增管和闪烁体的设 备来实现。对于低密度物质,比如橡胶、塑料、纸张 等,采用β射线源;诸如钢板等的高密度物质则使用γ 射线。(在电镀、蒸发控制等处,镀膜的厚度可使用 X射线荧光光度计)
2.半导体检查系统
广泛地应用于半导体芯片的缺陷检查、掩膜错位等。 芯片的缺陷检查装置中用光电倍增管检测芯片被激光照 射后,尘埃、污染、缺陷等产生的散乱光。
3.液体闪烁计数 液体闪烁计数应用于年代分析和生物化学等 领域。将含有放射性同位素物质溶于有机闪烁 体内,并置于两个光电倍增管之间,两个光电 倍增管同时检测有机闪烁体的发光。
4.临床检查 通过对血液、尿液中微量的胰岛素、激素、 残留药物及病毒等对于抗原、抗体的作用特性, 进行临床身体检查、诊断治疗效果等。光电倍 增管对被同位素、酶、荧光、化学发光、生物 发光物质等标识的抗原体的量进行化学测定。
其他:①液相或气相色谱;②X光衍射仪,X光 荧光分析;③电子显微镜
三、质量光谱学与固体表面分析
1.固体表面分析 固体表面的成分和结构,可以用极细的电子、 离子、光或X射线的束流,入射到物质表面,对 表面发出的电子、离子、X射线等进行测定来分 析。这种技术在半导体工业领域被用于半导体的 检查中,如缺陷、表面分析、吸附等。电子、离 子、X射线一般采用电子倍增器或MCP来测定。
2.空气浴计数器 宇宙线与地球大气撞击时,同大气原子发生作用, 生成二次粒子,并进一步生成三次粒子。这样地 增加下去,称作空气浴。这种空气浴产生的γ线、 契伦柯夫光,由在地面上排列成格子状的许多光 电倍增管来探测。
电子束光电器件:光电倍增管工作原理与应用研究
电子束光电器件:光电倍增管工作原理与应用研究光电倍增管(Photomultiplier Tube,PMT)是一种常见的光电子器件,被广泛应用于高灵敏度光信号检测领域。
本文将介绍光电倍增管的工作原理以及其在科学研究、医学、环境监测等领域的应用。
光电倍增管的工作原理可以简单概括为“光电发射-倍增电子-电子放大”,下面将详细阐述每个步骤的原理。
光电发射:当入射的光子通过PMT的光阴极时,光子的能量被转化为光电子的能量。
光阴极通常由碱金属化合物(如氢化钾)制成,其材料具有较高的光电发射效率,可以将光子释放出来并转化为光电子。
倍增电子:光电子进入光电倍增管后,通过电场加速被引导到第一个倍增极板。
第一倍增极板上的电场会将光电子加速,并使其发生倍增电离,释放出多个次级电子。
这些次级电子进一步被加速并经过多个倍增过程,从而产生更多的电子。
电子放大:倍增过程中产生的电子经过倍增管中的多个倍增阶段,每个阶段中的倍增电子数目都会增加。
最终形成一个电子雨,并快速收集到收集极上,形成一个电流脉冲。
这个电流脉冲的幅度与入射光子的能量成正比,因此可以利用这个幅度信号来测量入射光子的能量。
光电倍增管具有高增益、高灵敏度和宽动态范围的特点,因此在许多领域都有广泛的应用。
在科学研究中,光电倍增管常用于光学实验中的光谱分析、荧光检测以及高能物理实验等领域。
其高增益特性可以帮助科学家探测非常微弱的光信号,从而实现更精确的实验结果。
在医学领域,光电倍增管被广泛应用于核医学、放射性同位素检测等方面。
例如,在放射性同位素治疗中,光电倍增管可以用于测量放射性同位素的衰变,评估治疗效果。
同时,光电倍增管还可以用于生物荧光显微镜中,帮助研究人员观察细胞和微生物的活动。
在环境监测方面,光电倍增管的高灵敏度特性使其成为大气污染监测中的重要工具。
通过测量大气中的微小光子信号,光电倍增管可以帮助监测空气中的颗粒物浓度以及其他污染物的含量,从而提供环境保护决策的参考数据。
光电效应原理的应用实例
光电效应原理的应用实例1. 光电效应原理简介光电效应指的是光照射到金属物质上时,会使其释放出电子的现象。
该现象在20世纪初被发现,并为之后的量子力学研究奠定了基础。
光电效应的原理是,光子通过与金属原子相互作用,将一部分能量传递给电子,使其能够克服金属的束缚力而离开表面。
光电效应具有很多应用实例,以下将介绍其中几个常见的应用领域。
2. 光电效应在太阳能电池中的应用太阳能电池是一种将阳光转换为电能的装置,其核心原理就是光电效应。
太阳能电池板上覆盖了一层光敏材料,如硅或硒化铟等,当光照射到上面时,光能被转化为电能。
光敏材料的作用是吸收光子并释放出电子,形成一个电子流。
这个电子流经过导线并连接到外部电路后,就可以为我们提供电能。
太阳能电池的优点是可再生、环保,并可在没有电源供应的地方使用。
因此,它被广泛应用于一些没有电网的地区,比如山区、荒漠地带以及海上钻井平台等。
3. 光电效应在光电管中的应用光电管是一种光电效应的应用装置,主要用于光信号的放大和探测。
它由一个真空灯泡、阴、阳极等组成。
当光照射到光电管的阴极时,光电效应发生,电子被释放并加速向阳极运动,产生一个电子流。
这个电子流经过阳极后,会产生一个电压信号,用于探测光信号或放大电信号。
光电管广泛应用于光电测量、图像传感和通信等领域。
在科学实验中,光电管也常用于测量光的强度、频率和能量等参数。
4. 光电效应在光电二极管中的应用光电二极管是一种利用光电效应工作的半导体器件。
它结构简单,由一个特殊材料的p-n结组成。
当有光照射到光电二极管的p-n结时,光电效应发生,电子从n型区运动到p型区,产生一个电流。
这个电流可以被用来探测光信号或作为开关进行电路的控制。
光电二极管广泛应用于光电传感器、摄像头、光电开关和光电式液晶显示器等设备中。
在光通信领域,光电二极管也是一种常用的光信号接收器件。
5. 光电效应在光电倍增管中的应用光电倍增管是一种利用光电效应放大光信号的装置。
光电倍增管的应用及原理图
光电倍增管的应用及原理图1. 光电倍增管的简介光电倍增管(Photomultiplier Tube,简称PMT)是一种具有极高灵敏度的光电转换器件,用于将光信号转换为电信号。
它广泛应用于光谱分析、粒子探测、荧光测量等领域,在科研、工业和医学等领域发挥着重要作用。
2. 光电倍增管的原理光电倍增管的工作原理基于光电子发射增强效应。
下面是光电倍增管的工作原理图:输入光信号 --> 光阴极 --> 集成光电子倍增机构(多级电子倍增器) --> 输出电信号3. 光电倍增管的应用光电倍增管在以下领域有着广泛的应用:•光谱仪:光电倍增管能够高效地转换光信号,因此被广泛应用于光谱仪中。
在光谱仪中,光信号被转换为电信号后,可以通过电子学系统进行放大、滤波、测量等处理,从而得到精确的光谱数据。
•粒子探测:光电倍增管对粒子的辐射有很高的灵敏度,因此可以应用于粒子探测器中。
通过探测粒子辐射后产生的光信号,光电倍增管可以将光信号放大为电信号,从而实现对粒子的探测和测量。
•荧光测量:光电倍增管对荧光的敏感度很高,因此在荧光测量中得到广泛应用。
光电倍增管能够将微弱的荧光信号转换为电信号,并对信号进行放大处理,以提高测量的灵敏度和精确度。
•生命科学:在细胞学、分子生物学等生命科学研究中,光电倍增管可以应用于荧光显微镜、流式细胞仪、免疫分析等仪器中。
通过光电倍增管将荧光信号转换为电信号,可以实现对生物样品的定量分析和图像获取。
4. 光电倍增管的优势相比于其他光电转换器件,光电倍增管具有以下优势:•高灵敏度:光电倍增管能够将微弱的光信号放大到可测量范围内,具有极高的灵敏度。
•宽动态范围:光电倍增管能够在大范围的光强下工作,具有较宽的动态范围。
•快速响应:光电倍增管具有快速的响应时间,能够处理高速的光信号。
•低噪声:光电倍增管的噪声水平较低,使得测量结果更加准确。
5. 光电倍增管的结构光电倍增管的基本结构分为以下几部分:•光阴极:将光信号转换为光电子信号的部分。
第5章光电倍增管
(2)单碱锑化物:
CsSb阴极最为常用,紫外和可见光区的灵敏度最高
•金属锑与碱金属锂、钠、钾、铷、铯中的一种化合,能 形成具有稳定光电发射的发射体。
•最常用的是锑化铯(CsSb),其阴极灵敏度最高,量子 效率为15-25%,蓝光区量子效率高达30%,长波限为: 600nm。广泛用于紫外和可见光区的光电探测器中。光谱 响应范围较窄对红光&红外不灵敏
增大
反而下降
n2
n1
Cd k U ,k0.7~0.8
二次发射系数 与一次电子能量关系
Epmax约为100~1800eV
不同材料 δmax 金属:0.5~1.8 半导体和介质:5~6 负电子亲和势材料:500~
内增益极高--倍增原理
(1)二次电子发射
入射光照射到光电阴极K上,发射光电子,经电子光学系 统加速,聚焦到倍增极上,发射出多个二次电子;电子经 n级倍增极,形成放大的阳极电流,在负载RL上产生放大 的信号输出。
5.2.2 光电倍增管 Photomultiplier Tube 简称PMT
1.基本结构
电子光学系统
1.基本结构
1). 入射光窗
作用:
(a)侧窗式 (b)端窗式
1)光入射通道
2)短波阈值
窗口材料
硼硅玻璃(无钾玻璃)
常用的玻璃材料,可以透过从 近红外至300nm的入射光,不 适合于紫外区的探测。
1.灵敏度 3.光电特性
2.电流增益 4.光谱特性
5.伏安特性
6.时间特性
7.暗电流
8.疲劳特性
9.噪声
1.灵敏度
灵敏度是衡量光电倍增管探测 光信号能力的一个重要参数。
光电倍增管的灵敏度:
SKSK((?))=IKI?/K?λ?/ Φ
光电倍增管用途
光电倍增管用途光电倍增管(Photomultiplier Tube,简称PMT)是一种能将光信号转化为电信号的光电探测器,具有灵敏度高、信号放大倍数大等特点。
它被广泛应用在科学研究、医学诊断、工业检测等领域。
光电倍增管的用途十分广泛。
首先,它在科学研究领域中起到了至关重要的作用。
在高能物理实验中,探测粒子的能量和种类是非常重要的,而光电倍增管能够将微弱的光信号转化为电信号,并经过倍增放大,从而提高了信号的灵敏度,使得粒子能够被准确地探测和测量。
在天文学研究中,光电倍增管也被用于探测远距离的星体发出的微弱光信号,帮助科学家观测和研究宇宙中的各种现象。
光电倍增管在医学诊断领域也有着重要的应用。
在医学成像中,比如X射线成像、CT扫描等,需要将射入人体的X射线转化为电信号,以便形成图像。
光电倍增管的高灵敏度和大信号放大倍数使得它成为医学成像中最重要的探测器之一。
通过将光电倍增管和其他成像设备结合,医生可以清晰地观察到人体内部的结构和异常情况,提高了医学诊断的准确性和可靠性。
光电倍增管也在工业检测领域得到了广泛应用。
在光谱分析仪器中,光电倍增管可以将光信号转化为电信号,并经过放大和处理,从而得到样品的光谱信息。
光电倍增管的高灵敏度和快速响应时间使得它在光学检测、光谱分析等领域中成为不可或缺的元件。
同时,光电倍增管还可以应用于光电传感器、激光测距仪、光电计数器等仪器中,提高了测量的精度和可靠性。
光电倍增管作为一种重要的光电探测器,具有灵敏度高、信号放大倍数大等特点,被广泛应用在科学研究、医学诊断、工业检测等领域。
它的出现和应用极大地推动了这些领域的发展和进步,为人们提供了更多的研究手段和诊断工具。
随着科技的不断进步,相信光电倍增管在更多领域中将发挥出更大的作用,为人类的发展和进步做出更多贡献。
光电倍增管原理特性及其应用
. I目录1.概述 (1)2.结构 (1)3.电子倍增系统 (2)4.光谱响应 (2)5.使用材料 (3)5.1光阴极材料 (3)5.2窗材料 (3)6.使用特性 (4)6.1. 辐射灵敏度 (4)6.2.光照灵敏度 (4)6.3.电流放大(增益) (4)6.4.阳极暗电流 (5)6.5 温度特性 (5)6.6.滞后特性 (5)6.7.均匀性 (5)6.8.时间特性 (5)7.应用举例 (5)结束语 (7)参考文献 (7)光电倍增管原理特性及其应用摘要:光电倍增管是一种能将微弱的光信号转换成可测电信号的光电转换器件。
本文首先介绍光电倍增管的一般原理,对它的工作原理进行较详细的描述,然后介绍其组成结构,使用特性及其应用,并归纳总结了几种常用的光电倍增管光电阴极材料及窗材料,最后介绍了光电倍增管在一些领域的应用,如光电测光等。
关键词:光电倍增管;端窗型;侧窗型;光谱响应;材料;特性,光电测光。
1.概述光电倍增管(PMT)是一种具有极高灵敏度和超快时间响应的光探测器件。
当光照射到光阴极时,光阴极向真空中激发出光电子。
这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。
然后把放大后的电子用阳极收集作为信号输出。
因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。
另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。
基于外光电效应和二次电子发射效应的电子真空器件。
它利用二次电子发射使逸出的光电子倍增,获得远高于光电管的灵敏度,能测量微弱的光信号。
光电倍增管包括阴极室和由若干打拿极组成的二次发射倍增系统两部分(见图)。
图1 光电倍增管工作原理图阴极室的结构与光阴极K的尺寸和形状有关,它的作用是把阴极在光照下由外光电效应产生的电子聚焦在面积比光阴极小的第一打拿极D1的表面上。
二次发射倍增系统是最复杂的部分。
打拿极主要选择那些能在较小入射电子能量下有较高的灵敏度和二次发射系数的材料制成。
光电成像器件及应用
光电成像器件及应用光电成像器件是一种将光信号转换为电信号的器件,常见的光电成像器件有光电二极管(Photodiode)、光电倍增管(Photomultiplier),以及最常见的光敏传感器(CMOS和CCD)。
这些器件通过将光信号转换为电信号,实现了对光信号的检测和分析,广泛应用于图像传感、光谱测量和通信等领域。
光电二极管是一种能够将光信号转换为电流的器件。
通过在PN结附近引入一个P型或N型半导体区域,形成一个二极管,使其在光照条件下产生电流。
光电二极管具有响应快、线性范围广、噪声低等优点,因此被广泛应用于光电检测和传感领域。
光电二极管在光通信、光电子测量、遥感等方面发挥着重要作用。
光电倍增管是一种能够将光信号放大到可观测范围的器件。
它由一个光阴极、若干个倍增极和一个吸收极组成。
光阴极吸收光信号产生电子,经过加速电场进入倍增极,倍增极通过二次电子发射产生更多的电子,最后被吸收极收集。
光电倍增管具有高增益、高灵敏度、宽波长范围等优点,常用于低强度光信号的检测和放大,比如粒子物理实验、荧光光谱等领域。
光敏传感器是一种通过将光信号转换为电信号,并将其存储或处理,实现图像捕捉和分析的器件。
光敏传感器分为CCD(Charge Coupled Device)和CMOS (Complementary Metal-Oxide-Semiconductor)两种类型。
CCD传感器通过将光信号转化为电荷信号,然后通过移位寄存器将电荷信号逐行转移到AD转换器进行数字化处理。
CMOS传感器则将光信号直接转化为电信号,并通过像素阵列逐一读出,实现图像的数字化。
光敏传感器具有分辨率高、动态范围广、响应速度快等优点,被广泛应用于数码相机、摄像机、智能手机等图像采集设备。
光电成像器件在很多领域都有广泛的应用。
在图像传感领域,光电成像器件能够将光信号转化为电信号,并通过传感器的像素阵列将其逐一读出,实现图像的捕捉和存储。
在医学影像方面,光电成像器件能够通过对不同波长的光信号的接收和分析,实现对生物组织的成像和诊断。
光电倍增管原理特性及其应用
光电倍增管原理特性及其应用光电倍增管(Photomultiplier Tube,简称PMT)是一种特殊的电子设备,广泛应用于光电探测、荧光测量、核物理实验等领域。
它利用电子受光激发释放的方式将光信号转换为电信号,并通过电子倍增过程将电信号放大多倍,达到目的信号放大的效果。
本文将介绍光电倍增管的原理、特性以及常见的应用。
1.光信号的发射:光信号通过光阴极进入光电管,光阴极通常由碱金属镓锑(NaKSb)材料制成。
当光信号照射到光阴极上时,光子与光阴极上的物质相互作用,使得光电子从光阴极上释放出来。
2.倍增过程:光释放的电子进入倍增极,倍增极是一种由若干离子阱和荧光幕构成的结构。
当光电子进入倍增极后,它们会受到倍增极上高电压的作用,在电场的驱动下不断加速并撞击倍增极表面的离子阱。
每一次撞击会产生一系列二次电子,这些二次电子再次撞击离子阱,又会产生更多的二次电子,从而形成电子的雪崩放大效应。
通过层层倍增,最终使得放大倍数达到几千倍甚至几万倍。
3.电子与收集极的相互作用:经过倍增极放大的电子进入到收集极,收集极是一个高电压的吸收电极。
当电子撞击收集极时,就会产生微弱的电流信号,这个电流信号即为光电倍增管放大后的输出信号。
1.高增益:光电倍增管能够将输入光信号进行倍增,放大增益可达几千倍甚至几万倍。
2.快速响应:光电倍增管由于对光信号的快速响应能力强,其时间分辨率可以达到纳秒级。
3.宽动态范围:光电倍增管的动态范围非常广,可以从微弱信号到强光信号都能够进行检测。
4.低噪声:光电倍增管具有较低的噪声水平,能够提高信号的信噪比。
1.光谱分析:光电倍增管适用于光谱仪器、光谱分析系统等领域,能够将微弱的光信号转换为电信号并放大,提高谱线的信噪比。
2.荧光测量:光电倍增管可以用于荧光检测系统中,通过对荧光信号的放大和检测,实现对荧光染料浓度、荧光标记物的检测等。
3.粒子探测:在核物理实验中,光电倍增管可以用于探测粒子轨迹、测量粒子能量、顶点位置等研究。
PMT基础知识之一光电倍增管的工作原理特点及应用)解析
PMT基础知识之一光电倍增管的工作原理特点及应用)解析光电倍增管(Photomultiplier Tube,简称PMT)是一种能将光信号转化为电信号的光电转换器件。
它以其高增益、快速响应和低噪音等特点,在许多领域的光学测量中得到广泛应用,包括光谱分析、荧光检测、核物理实验等。
光电倍增管的工作原理是利用光电效应和二次电子倍增效应。
它由以下几个要素组成:光阴极、光增倍电极、聚焦电极、二极子结构和阳极。
光阴极是光电效应的关键部分,它所采用的材料通常是碱金属或多元化合物。
当光照射到光阴极上时,光子能量被转化为电子能量,从而产生光电子。
光电子经过电场的作用,被加速到光增倍电极上。
光增倍电极上有许多层金属环,称为光栅,它们可以运用电场将光电子逐级地加速,并在每一级都发生冲击电离,产生次级电子,使光电子数量逐级增加。
次级电子经过电场聚焦,被减震电极引导到二极子结构处。
二极子结构由多个层次的金属环组成,其中正极为阳极,负极为阴极。
次级电子在二极子结构上发生冲击电离,二次电子产生的数量比初始光电子数量更多。
最后,二次电子被加速到阳极上,产生电流信号。
该电流的幅度与初始光子的能量成正比。
这个信号经过放大和处理后,最终用于检测和测量。
光电倍增管的特点包括高增益、宽动态范围、快速响应和低噪音。
其高增益是由于倍增过程中的二次电子冲击电离效应,可以将一个光子转化为数千个电子。
它的宽动态范围可以处理从强光到弱光的广泛光强范围。
快速响应让光电倍增管适用于高速计数和时间分辨测量。
低噪音使得它对弱信号有很高的灵敏度。
光电倍增管在许多领域中得到广泛应用。
在光谱分析中,它可以用于光谱仪和分光仪的检测器。
在荧光检测中,光电倍增管可以提高荧光检测的灵敏度和信噪比。
在核物理实验中,它可以用于测量射线和粒子的强度和能量。
总结起来,光电倍增管的工作原理是通过光电效应和二次电子倍增效应将光信号转化为电信号。
它的特点包括高增益、宽动态范围、快速响应和低噪音。
光电倍增管及其应用
光电倍增管及其应⽤光电倍增管是将微弱光信号转换成电信号的真空电⼦器件。
它建⽴在外光电效应,⼆次电⼦发射和电⼦光学理论基础上。
结合了⾼增益,低噪声,⾼频率响应和⼤信号接受区等特征,是⼀种具有极⾼灵敏度和超快时间响应的光敏电真空器件。
可以⼯作在紫外,可见和近红外的光谱区。
光电倍增管有两种形式,即早期的达纳极光电倍增管与后来发明的微通道板光电倍增管。
达纳极光电倍增管由光阴极,倍增极和阳极等组成。
由玻璃封装,内部⾼真空。
由于倍增极处于阳极anode和阴极cathode之间,所以英⽂将其命名为dynode,也叫⼆次发射极。
倍增极由⼀系列达纳极制成,每个达纳极⼯作在较前极更⾼的电压下。
达纳极光电倍增管接受光的⽅式分为端窗和侧窗两种。
达纳极光电倍增管的⼯作原理:光⼦撞击光阴极材料,克服了光阴极的脱出功⽽发出光电⼦。
经电⼦加速,聚焦,带着更⾼的能量撞击第⼀级达纳极,发射更多的能量电⼦。
这些电⼦依次被加速向下级达纳极撞击,导致⼀系列⼏何级数的倍增,最后电⼦到达阳极,电荷累积形成尖锐电流脉冲,可表征输⼊的光学信号。
微通道板光电倍增管,均为端窗光电倍增管。
适于受照⾯积⼤的应⽤,典型的微通道板光电倍增管组成包括输⼊光窗,光阴极,电⼦倍增极与电⼦收集极-阳极。
微通道板是⼀种⼤⾯积阵列⾼空间分辨率的电⼦倍增器,并具备⾮常⾼的时间分辨率,主要⽤做⾼性能夜视仪象增强器,并⼴泛应⽤于各种科研领域。
微通道版以薄⽚为基⽚,在基⽚上以数微⽶到⼗⼏微⽶的空间周期以六⾓形周期排布孔径⽐周期略⼩的微孔。
⼀块微通道板上约有上百万微通道,⼆次电⼦可以通过道壁上的碰撞倍增放⼤。
微通道板是⼀种特殊光学纤维器件,是⼀种先进的具有传输增强电⼦图像功能的电⼦倍增器。
具有体积⼩,重量轻,分辨率好,增益⾼,噪声低,使⽤电压低等特点。
它利⽤其⼆次电⼦发射特性,可使⾼速碰撞在内壁通道上电⼦成倍增加,达到万倍以上电⼦增强。
利⽤这种特性,微通道板⼴泛应⽤于光电倍增管,象增强器,微光电视,X光象增强器,⾼速⽰波器以及单光⼦计数,X射线,紫外光⼦,电⼦,离⼦,带电粒⼦,亚原⼦粒⼦的探测中。
PMT基础知识之一光电倍增管的工作原理特点及应用)
PMT基础知识之一光电倍增管的工作原理特点及应用)光电倍增管(Photomultiplier Tube,简称PMT)是一种能够将光信号转换为电信号的器件,具有高灵敏度、高增益、快速响应等特点,广泛应用于光学测量、粒子探测等领域。
PMT的工作原理是基于光电效应和二次电子倍增效应。
当光通过PM中的光阴极时,光子撞击光阴极上的金属或半导体材料,从而产生光电子。
光电子将被电场加速并进入第一倍增极,通过材料的二次发射效应,产生更多的二次电子。
这些二次电子接着被电场加速并进入下一个倍增极,继续产生更多二次电子。
这个过程循环进行,多级倍增极逐级放大电子信号,最终输出一个明显增强的电流脉冲。
PMT的特点主要包括:1.高灵敏度:PMT能够检测到非常微弱的光信号,其灵敏度可以达到单光子级别,可用于低光条件下的测量。
2.高增益:PMT具有非常高的增益,一次光电子可以放大为数百份甚至数千份电子信号。
这使得PMT在低光强条件下也能够产生易于检测的电信号。
3.宽动态范围:PMT的输出信号强度可以根据光信号的强弱自动调节,具有宽动态范围。
4.快速响应:PMT的输出信号响应时间较快,常常可以在纳秒到亚纳秒的时间内完成信号放大和输出。
PMT具有广泛的应用领域,包括但不限于以下几个方面:1.光学测量:PMT可用于光谱分析、荧光光谱测量、光强测量和生物荧光检测等领域。
2.粒子探测:PMT可作为核物理和高能物理中的粒子探测器,用于测量粒子的能量、充能、时间等参数。
3.星光观测:由于PMT对低光强的高灵敏度和高增益,可用于天文学中观测微弱的星光信号。
4.医学影像:PMT可用于核医学成像技术,如正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)。
总之,光电倍增管是一种基于光电效应和二次电子倍增效应的器件,具有高灵敏度、高增益、快速响应等特点。
广泛应用于光学测量、粒子探测、医学影像等领域。
光电倍增管的原理和应用
光电倍增管的原理和应用光电倍增管的工作原理是在真空环境下,光子进入光电阴极后,通过光电效应产生光电子,光电子经过倍增级的电子倍增带,通过电场在倍增级中抽取附近的电子,并将其加速,进一步碰撞新的电子,产生更多的电子,以此类推。
最后,由万向电子聚焦的效应使电子在进入阳极之前被聚焦,从而产生电流信号。
1.光谱仪和色度计:光电倍增管可以将光信号转换为电信号放大后进行测量和分析。
在光谱仪中,光电倍增管可以感知和测量不同波长的光信号,并生成相对应的电压信号。
在色度计中,光电倍增管可以检测和测量颜色的亮度和饱和度。
2.核物理实验:光电倍增管在核物理实验中起着关键的作用。
它可以将高能粒子射入的能量转换成电信号,从而测量和分析粒子的能量、种类和强度。
光电倍增管在粒子探测器和闪烁体探测器中广泛应用。
3.气相和液相色谱仪:光电倍增管被广泛用于色谱仪中。
对于气相和液相色谱仪,光电倍增管可以将分离出的化合物转化为电信号,并通过放大电信号进行测量和分析。
4.光子计数:光电倍增管可以用于测量低光强度的光信号,例如用于量子计算和量子通信中的单光子计数。
光电倍增管能够将微弱的光信号转换为可观测的电信号,从而实现对单个光子的检测和计数。
5.星光探测器:由于光电倍增管对低光强信号的高灵敏度和放大能力,它被广泛应用于天文观测和星光探测器中。
光电倍增管能够检测和测量由星体射入地球的微弱光信号,并提供详细的光谱分析和测量。
综上所述,光电倍增管是一种基于真空电子技术的装置,可以将光信号转换为可观测的电信号并进行放大。
它在光谱仪、核物理实验、色谱仪、光子计数和星光探测器等领域中都有广泛的应用,为科学研究和工程技术提供了重要的技术支持。
简述光电倍增管的原理及应用
简述光电倍增管的原理及应用1. 光电倍增管的原理光电倍增管(Photomultiplier Tube,简称PMT)是一种用于检测和放大光信号的装置。
它主要由光阴极、一系列倍增极以及阳极组成。
PMT的原理可以简单描述为以下几个步骤: 1. 入射光子激发光阴极中的电子,并使其从物表逸出。
2. 入射光子激发光电子沿着电场导向进入第一倍增极,在该倍增极上由于存在高强度电场,光电子可以获得能量的倍增。
3. 倍增过程中,光电子以极高的速率击打紧邻的倍增极,导致光电子数目指数级增加。
4. 当光电子到达最后一个倍增极时,它的数量变得足够大,以至于能够引起阳极上的电流。
5. 阳极中的电流信号进一步被放大和处理,最终得到一个与入射光子能量成正比的电压脉冲。
PMT的工作原理依赖于特殊材料的选择和电场的控制。
它的主要特点包括灵敏度高、信噪比好、动态范围广等。
2. 光电倍增管的应用光电倍增管广泛应用于各种科学研究和工程领域,包括但不限于以下几个方面:2.1 光学成像光电倍增管可用于获取低光强条件下的图像。
例如,在天文学中,天文学家利用光电倍增管观测天体,以获取来自宇宙深处的微弱光信号。
此外,在生物医学领域,光电倍增管可用于荧光显微镜中的图像获取,实现对细胞和组织的高分辨率成像。
2.2 激光测距光电倍增管在激光测距系统中起到关键作用。
利用光电倍增管检测激光脉冲发射和返回时间之间的差异,可以实现高精度的测距。
激光测距广泛应用于地质勘探、航空测量、汽车安全等领域。
2.3 核物理实验光电倍增管在核物理实验中常被用来检测和测量放射性粒子的能量和轨迹。
通过将光电倍增管与各种探测器相结合,科学家可以研究原子核结构、粒子物理学等领域。
2.4 荧光光谱分析光电倍增管可用于荧光光谱分析。
在荧光分析中,被测物质通过受激发射光子产生荧光信号。
光电倍增管可以检测和放大荧光信号,进一步分析被测物质的成分和浓度。
2.5 核医学在核医学中,光电倍增管用于单光子发射计算机断层显像(Single Photon Emission Computed Tomography,简称SPECT)。
光电倍增管在天文研究中的应用
光电倍增管在天文研究中的应用光电倍增管(PMT)是一种高性能光电探测器,其主要作用是将光信号转化为电信号,而电信号可以被进一步传递、处理、记录。
在天文学中,PMT常常被用于测量光子的能量、数量、时间、角度等信息,从而揭示遥远星系、恒星、行星、射电、宇宙背景辐射等事物的本质。
基本原理PMT的基本结构包括铜进出口、阴极、光阴极、电子倍增部分,以及高压电源、前置放大器、数字显示、计算机控制等辅助部分。
当光子穿过光阴极时,会激发出光电子,光电子会经过电子加速和倍增过程后形成强电信号,并被导入前置放大器、数字显示并记录。
其中光阴极的材料和涂层、倍增段的长度、电压、温度等因素都会影响PMT的性能和灵敏度,需要根据具体要求进行选择和优化。
天文应用光电倍增管在天文研究中具有多种应用,下面我将从几个典型案例入手,展示它们的技术亮点、科学价值和未来前景。
(一)光电探测和成像望远镜是天文学的重要工具之一,能够通过收集和转换光子信号来获得星体的各种信息。
而PMT则是望远镜中非常重要的探测器之一,广泛应用于光电伽马望远镜、X射线望远镜、望远镜相机等领域。
例如,欧洲空间局(ESA)的XMM-Newton X射线望远镜就利用PMT成功地探测到了许多X射线源,揭示了黑洞、中子星、星际物质等的一系列重要特征。
此外,PMT还可以被用于光学望远镜的成像系统中,如Hubble太空望远镜的Wide Field Camera 3,它利用PMT的高分辨率和灵敏度,拍摄了众多海王星分辨率的迷人照片。
(二)全球大气闪烁探测全球大气闪烁(Global Atmospheric Flashes)是一种天气现象,它是由于高能宇宙线在大气层中相互作用而产生的。
PMT可以被用于探测和研究这种闪烁现象,通过测量其能量、空间分布、时间演化等信息,从而评估大气层的物理状态、输运过程和地球环境等。
此外,全球大气闪烁还可以在宇宙射线的研究中发挥重要作用,例如通过探测宇宙线的组成、来源、加速机制等,来了解宇宙的演化过程和物理规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电倍增管(PMT)研究进展及应用——记2004年北京HAMAMATSU技术交流会前言“2004年北京HAMAMATSU技术交流会”于2004年10月27日~2004年10月29日在浙江杭州召开的。
北京HAMAMATSU技术交流会是由北京滨松光子技术有限公司承办的技术交流活动,每年举办一次,邀请各个科研机构和生产单位的专家和技术人员参加,主要介绍滨松公司的产品和研究进展,解答用户的技术问题,交流讨论光电器件在科研和生产中的应用问题。
我代表西安交通大学生物医学与分子光子学研究室和西安天隆科技有限公司有幸参加了这次交流活动。
HAMAMATSU(滨松)是总部设在日本的一家主要生产光器件的跨国公司。
它在亚洲、欧洲和北美设有七家分支机构。
日本滨松下设四个生产部门:电子管事业部,主要生产以光电倍增管为主的各种真空探测器,真空光源等相关仪器设备。
半导体事业部,主要生产以光电二极管为主的各种半导体光电器件。
系统事业部,主要生产以滨松公司自产器件为中心的各种分析和测量仪器,应用在半导体芯片,生物工程和医疗等各种领域。
激光器事业部,主要生产科研和产业用的大功率半导体激光器。
北京滨松光子技术有限公司是1988年由中国核工业总公司北京核仪器厂与日本滨松光子学株式会社共同投资成立的。
在2004年交流会中来自日本滨松总部、电子管事业部、半导体事业部的五位专家做了五场专题报告,分别是大冢副社长做的“HPK(滨松)与光产业的现状和未来”,夸田敏一先生做的“PMT新产品介绍”,久米英浩先生做的“PMT应用技术产品及应用领域”,伊藤先生做的“半导体光检测新产品介绍”和石原繁树做的“光源产品介绍”。
会议过程中还穿插有技术交流活动,为来自各个科研院所和生产单位的技术人员提供了一个交流的平台。
光电倍增管技术的进展图1 滨松生产的PMT近些年得到广泛应用的MCP-PMT(Microchannel Plate Photomultiplier),金属封装PMT,多通道PMT代表了光电倍增管的最新研究进展:1.高量子效率,高灵敏度,高响应速度,探测波长向红外延伸。
某些型号PMT光谱响应范围可延伸置1200nm。
2.采用金属封装,多通道结构,提高有效光电面积。
已有的平板型PMT,其有效光电面积可达89%。
3.采用平板化、多阳极技术,可以小型化,具有二维高分辨率。
已有的10×10道阳极,Φ44的MCP-PMT厚度仅有14.8mm。
4.努力降低暗电流和自身噪声,减少放射性物质。
暗电流最小可达0.5nA,自身噪声可减置5cm sec。
个暗计数/25.将电子管真空技术与半导体技术,微细加工技术,电子轨道技术和周边电路技术相结合。
HPD(Hybrid Photo Detector)就是一种结合了电子管真空技术与半导体技术的复合器件。
光电转换后的电子经过电场加速,直接照射在CCD或APD上,引起“电子入射倍增效应”。
6.使用简单化,价格降低。
光电倍增管的应用领域光电倍增管的应用领域非常广泛,主要分为以下十几种:光谱学:紫外/可见/近红外分光光度计,原子吸收分光光度计,发光分光光度计,荧光分光光度计,拉曼分光光度计,其他液相或气相色谱如X光衍射仪、X光荧光分析和电子显微镜等。
质量光谱学与固体表面分析:固体表面分析,这种技术在半导体工业领域被用于半导体的检查中,如缺陷、表面分析、吸附等。
电子、离子、X射线一般采用电子倍增器或MCP来测定。
环境监测:尘埃粒子计数器,浊度计,NOX、SOX 检测。
生物技术:细胞分类计数和用于对细胞、化学物质进行解析的荧光计。
医疗应用:γ相机,正电子CT,液体闪烁计数,血液、尿液检查,用同位素、酶、荧光、化学发光、生物发光物质等标定的抗原体的定量测定。
其他如X光时间计,用以保证胶片得到准确的曝光量。
射线测定:低水平的α射线,β射线和γ射线的检测。
资源调查:石油测井,用于判断油井周围的地层类型及密度。
工业计测:厚度计,半导体检查系统。
摄影印刷:彩色扫描,把彩色分解成三原色(红、绿、兰)和黑色,作为图象数据读出。
高能物理——加速器实验:辐射计数器,TOF计数器,契伦柯夫计数器,热量计。
中微子、正电子衰变实验,宇宙线检测:中微子实验,空气浴计数器,天体X线探测,恒星及星际尘埃散乱光的测定激光:激光雷达,荧光寿命测定。
等离子体:等离子体探测,使用光电倍增管用来计测等离子中的杂质光电倍增管和半导体光电器件新应用举例一、滨松生产的高通量(high-throughput)PET系统图2 PET系统外观图3 PET扫描图像显示了许多疾病的早期征兆作为一种全身检查工具,PET正逐渐用于癌症、心脏病,甚至痴呆的早期普查和诊断。
滨松把它掌握的光子学技术,和达到最新技术发展水平的PMT应用在PET上,极大推进了PET的发展,使它灵敏度更高,响应速度更快。
滨松已经开始用自己生产的PET为公司员工做定期的健康检查,取得了显著效果。
二、利用半导体激光的植物栽培技术,图4 红色LD和蓝色LED照射下的植物工厂用有限的土地生产更多的粮食——新型植物工厂。
滨松的研究人员凭借他们在光学方面的专长发现了一种提高粮食产量的新方法。
过去的研究发现,红色激光可以显著刺激水稻的生长,但事实上,它刺激的只是秸秆的生长,因而实际上减少了水稻的产量。
经过大量的实验,他们发现蓝光可以刺激开花并使稻穗饱满。
通过合理结合红色激光和蓝光可以既提高水稻生长速度又增加产量。
三、植物生长的光子分析技术图5 15O水被西红柿植株吸收的过程想要准确了解在植物体中到底发生了什么是非常困难的,但是滨松的“平板正电子发射成像(Planar Positron Emission Imaging)”技术使实时观察植物新陈代谢和化学物质的移动成为可能。
这项技术在农业科学方面有非常广泛的应用前景。
四、跟踪“电子发光”优化IC设计图6 通过记录光子发射观察电子轨迹现在的集成电路技术可以在很小的硅片上集成数以百万计的晶体管,但是如何确定电路是否工作一切正常成了新的问题。
一种全新的方法是跟踪电子的“发光轨迹”,如果能捕获到电子通过晶体管时发出的数个光子,就能十分精确地评估电子线路的工作状态。
但是这需要专门的超高灵敏度的光探测器,它不仅能进行单光子计数,还能确定光子在平面上的确切位置,而且时间响应在1110−秒以内。
采用这项技术,IC制造商可以在设计初期发现隐藏的问题,改进产品设计。
五、宇宙射线探测图7 Super-Kamiokanden内部的PMT阵列位于日本神冈的Super-Kamiokande(其前身为 Kamiokande),原是为了测量质子衰变所建造的实验装置,不过至今尚未测量到衰变的实例,可是其设计同样相当适合用来观测中微子。
身处地底一千公尺深的神冈矿山下,注入了50000吨纯水的超大水缸,其内层布满了11200颗光电倍增管(PMT, Photomultiplier Tubes)。
当中微子与水中的电子发生电子散射(ES, Electron Scattering)时,中微子的能量便会传给电子或经反应制造出的μ子,而这些带电粒子因为其行进速度超过光在水中的速度,使得它们会在行进方向幅射出一锥状的电磁波,也就是所谓的Cerenkov 光锥,而这些光锥就会在表面的探测器上留下一圈圈的讯号。
Super-Kamiokande 于1998所发表的论文之中,首度凭借测量大气层中微子的比例而间接验证了中微子振荡的效应,并给出大气层中微子的质量平方差。
荣获2002诺贝尔物理奖的东京大学教授小柴昌俊便是因为领导此实验而获此殊荣。
六、三维人体测量系统图8三维人体曲线扫描系统及控制软件截图滨松生产的人体曲线扫描系统,基于激光扫描器,可以进行全身高精度非接触式测量,测量范围2 m (H) x 0.6 m (D) x 1 m (W),精度达到+/- 0.5%,测量时间6~11秒。
这套系统可以应用于服装工业,医疗行业和运动制品行业。
七、癌症诊断治疗新技术,按分子分离癌细胞和正常细胞图9 肺部癌组织近红外激励的拉曼光谱当激光照射在一种材料上时就会发生拉曼散射效应;光线是散射的,其中一小部分散射光发生能量损失,转换为分子的振动能,分子的振动频率是特有的,通过分析这些散射光,就能获悉材料的结构和化学组成特征。
2002年日本东京大学研究生院理学系教授浜口宏夫等人组成的研究小组与日本庆应大学、日本滨松公司使用拉曼散射光谱技术,对癌细胞和正常细胞成功进行了分子分离。
实验中使用的是浜口等人开发的被称为“时空分解拉曼散射光谱技术”,将波长为1064nm的近红外激光用作光源。
尽管此次是利用由生物活体上切除下来的肺癌样品对拉曼散射光的光谱进行了观测,但如果开发出像光纤内窥镜那样的装置的话,就能够以数百nm的空间分辨率实时地观测癌细胞,有望用于对癌症的早期发现和治疗等。
过去由于没有能够检测近红外光光谱的设备,因此一般情况下都是使用可见光作为光源,而此时产生的萤光由于比拉曼散射光要强,因此难以检测出光谱。
此次,浜口等人与滨松光电共同开发出了能够检测近红外拉曼散射光光谱的检测设备。
通过将该设备配备于时空分解拉曼散射光谱技术的系统上,就能够利用拉曼散射光谱技术精确区分出癌细胞和正常细胞的不同的生物分子结构。
另外,试验证明还能够区分出不同癌症的分子结构差异。
时空分解拉曼光谱技术能够对由空间和时间所导致的拉曼散射光光谱变化进行分析。
因此可根据患部的位置,检测出不同的光谱。
进行癌症切除手术时,还能够一边确认癌细胞的范围,一边进行切除。
为了应用于实际诊断,今后必须收集各种癌细胞及正常细胞的拉曼散射光光谱,以便将其作为基本数据来构筑数据库。
另外还必须开发能够根据数据库,来分析光谱对应于哪种癌细胞,以及癌细胞和正常细胞各占多大的比例的应用软件及诊断系统等。
相关链接:日本滨松光子学株式会社:/北京滨松光子技术有限公司:/(生命学院 李炜)。