超静定多跨梁的计算

合集下载

3-3 多跨静定梁

3-3  多跨静定梁

§3-3
多跨静定梁
4)多跨静定梁的形式
多跨静定梁有以下两种形式:
第 一 种 形 式
C E D F
A
B
计算简图
E D F
C
A
B
支撑关系图
§3-3
多跨静定梁
第 二 种 形 式
A
C B
D
E F
计算简图
C A
B
D E F
支撑关系图
§3-3
5)多跨静定梁的计算
多跨静定梁
由于作用在附属部分上的荷载不仅使附属部 分产生内力,而且还会使基本部分也产生内力。 而作用在基本部分上的荷载只会使基本部分产 生内力。因此计算应该从附属部分开始。 例:求图示多跨静定梁的弯矩和剪力图。
2
相应简支梁的弯矩图
C A B
E
D
F
支撑关系图
§3-3
基 本 部 分
A
B
多跨静定梁
附 属 部 分E
D
附 属 部 分
F
C
支撑关系图
我们把ABC称为:基本部分,把CDE、EF称为: 附属部分。显然作用在附属部分上的荷载不仅使附 属部分产生内力,而且还会使基本部分也产生内力。 作用在基本部分上的荷载只会使基本部分产生内力。
M 0 Y 0
F
FYG
FYF
224
3 5.33 4 1.33 kN
5.33 kN
§3-3
CEF部分:
C
3kN -1.33kN F D E
多跨静定梁
C
M
0 FY E
3 2 1.33 4 3
0.23
FYC
FYE
Y

结构力学第七章计算超静定梁结构力学

结构力学第七章计算超静定梁结构力学

(b) A
q X 1
C
"基 本 体 系 "
法中把原超静定结构称为原 (c) A
结构,去掉多余联系后的静
11
B X 1
C
定结构称为基本结构。所去
q
(d)
掉的多余联系,则以相应的
A
B
C
ip
多余未知力X1来代替。
图7-4
这样,基本结构就同时承受着荷载和多余未知力X1的作用, 基本结构在原有荷载和多余未知力X1共同作用下的体系称为力 法的基本体系。现在分析一下如何计算X1 。对原结构讲它代 表B支座反力,是一个被动力,而对基本结构来讲它是一个主
1P
M1MP ds EI
1[1l(2lFllPl)]
EI 6 2
2 22
5Fl3 48EI
(5) 解力法方程。
X1
1P
11
5F 16
所得正号说明X1的实际方向与假设方向相同。
结构力学第七章计算超静定梁结构力 学
2.求解超静定结构要考虑的条件
求解任何超静定结构,都要考虑三个方面的条件: (1)平衡条件;(2)几何条件(变形条件或位移条件); (3)物理条件。
力法和位移法是超静定结构计算的两种基本方法。力法 是以多余联系的约束力——多余未知力作未知量,位移法则是 以结点的某些位移作为基本未知量。计算超静定结构除上述 两种方法外,常用的还有力矩分配法、有限单元法等。
力法的基本特点可归纳如下: 1.以多余未知力(被撤消多余联系处的约束力)为基本未 知量。 2.根据所去掉的多余联系处的变形协调条件建立力法方 程,从而求出多余未知力。 3.根据平衡条件求出全部反力及内力。 4.一切计算均在基本结构上进行。
例7-1 用力法计算图7-5(a)所 (a) A

结构力学静定多跨梁例题

结构力学静定多跨梁例题

结构力学静定多跨梁例题一个结构力学静定多跨梁例题如下:假设有一根静定多跨梁,有三个等距的支点,梁长为L,弯矩载荷为M。

梁的截面形状为矩形,宽度为b,高度为h。

梁的材料为钢材,弹性模量为E。

求解该横梁在每个支点的支反力。

解题步骤如下:1. 画出梁的剪力图和弯矩图,在每个支点处标注支反力Ra、Rb和Rc。

2. 针对每个支点,应用力平衡条件,即对于任意截面处的受力情况进行分析。

a) 在支点A处,由于该支点不受水平力的作用,只有垂直支反力Ra。

根据力平衡条件,有:Ra = M/L。

b) 在支点B处,有垂直支反力Rb和水平支反力Hb。

由于该支点不受竖直力的作用,有:Rb = Ra + M/L,Hb = 0。

c) 在支点C处,有垂直支反力Rc和水平支反力Hc。

由于该支点不受竖直力的作用,有:Rc = Rb + M/L,Hc = 0。

3. 再应用弯矩平衡条件,根据剪力图和弯矩图的关系求解支反力。

a) 在悬臂端A处,由于支反力Ra是唯一的垂直力,可以得到弯矩方程:Ma = -M。

b) 在支点B处,可以得到弯矩方程:Ma + Mb = 0,即-M + Rb*(L/2) = 0。

c) 在支点C处,可以得到弯矩方程:Ma + Mb + Mc = 0,即-M + Rb*(L/2) + Rc*L = 0。

4. 将以上三个方程联立求解,即可得到支反力Ra、Rb和Rc的具体数值。

需要注意的是,在实际求解过程中,可能还需要考虑其他因素,如材料的应力和变形等。

此处只给出了一个简化的静定多跨梁的例题。

真实的工程问题可能更为复杂,需要综合考虑不同因素进行分析和计算。

1、静定结构与超静定结构静力计算公式(总结)

1、静定结构与超静定结构静力计算公式(总结)

静定结构与超静定结构静力常用计算公式一、短柱、长柱压应力极限荷载计算公式1、短柱压应力计算公式荷载作用点轴方向荷载AF =σ bhF =σ 偏心荷载)1(21xY i ye A F W M A F -=-=σ )1(22xY i ye A F W M A F +=+=σ )61(2,1hebh F ±=σ 偏心荷载)1(22xy y x xx y Y i ye i xe A FI xM I x M A F ±±=⨯±⨯±=σ )661(beh ebh F yx ±±=σ长短柱分界点如何界定?2、长柱方程式及极限荷载计算公式 支座形式图 示方 程 式极限荷载 一般式 n=1两端铰支 β=1y a dxy d ∙=222 ax B ax A y sin cos +=y F M EIFa ∙==,2 EI ln 222π EI l 22π一端自由他端固定β=2y a dxyd ∙=222 ax B ax A y sin cos +=EI l n 2224)12(π-EI l 224πy F M EIFa ∙==,2 两端固定 β=0.50)(22=-+F M y a dxyd A FM ax B ax A y A++=sin cos A M y F M EIFa +∙-==,2 EI l 224π EI l 224π 一端铰支他端固定 β=0.75)(222x l EI Q y a dx y d -=∙+)(sin cos x l FQax B ax A y -++=水平荷载-=Q EIFa ,2 ——EI l227778.1π注:压杆稳定临界承载能力计算公式:EI l P cr 22)(βπ=二、单跨梁的反力、剪力、弯矩、挠度计算公式 1、简支梁的反力、剪力、弯矩、挠度计算公式荷载形式M 图V 图反力 2F R R B A == L Fb R A =L Fa R B =2qL R R B A == 4qL R R B A == 剪力V A =R A V B =-R B V A =R A V B =-R B V A =R A V B =-R BV A =R A V B =-R B弯矩4max FL M =LFabM =max 82maxqL M = 122maxqL M = 挠度EIFL 483max=ω 若a >b 时,3)2(932maxab a EIL Fb +=ω(在)2(3b a ax +=处) EIqL 84max=ω EIqL 1204max=ω 注:1、弯矩符号以梁截面下翼缘手拉为正(+),反之为负(—)。

多跨铰接静定梁计算

多跨铰接静定梁计算

基本参数:1:计算点标高:72.7m;2:力学模型:多跨铰接连续静定梁;3:立柱跨度:参见内力分析部分;4:立柱左分格宽:1150mm;立柱右分格宽:1150mm;5:立柱计算间距:B=1150mm;6:板块配置:石材;7:立柱材质:Q235;8:安装方式:偏心受拉;本处幕墙立柱按多跨铰接连续静定梁力学模型进行设计计算,受力模型如下:1.1立柱型材选材计算:(1)风荷载作用的线荷载集度(按矩形分布):q wk:风荷载线分布最大荷载集度标准值(N/mm);w k:风荷载标准值(MPa);B:幕墙立柱计算间距(mm);q wk=w k B=0.002782×1150=3.199N/mmq w:风荷载线分布最大荷载集度设计值(N/mm);q w=1.4q wk=1.4×3.199=4.479N/mm(2)水平地震作用线荷载集度(按矩形分布):q EAk:垂直于幕墙平面的分布水平地震作用标准值(MPa);βE:动力放大系数,取5.0;αmax:水平地震影响系数最大值,取0.12;G k:幕墙构件的重力荷载标准值(N),(含面板和框架);A:幕墙平面面积(mm2);q EAk=βEαmax G k/A ……5.3.4[JGJ102-2003]=5×0.12×0.0011=0.00066MPaq Ek:水平地震作用线荷载集度标准值(N/mm);B:幕墙立柱计算间距(mm);q Ek=q EAk B=0.00066×1150=0.759N/mmq E:水平地震作用线荷载集度设计值(N/mm);q E=1.3q Ek=1.3×0.759=0.987N/mm(3)幕墙受荷载集度组合:用于强度计算时,采用S w+0.5S E设计值组合:……5.4.1[JGJ102-2003]q=q w+0.5q E=4.479+0.5×0.987=4.972N/mm用于挠度计算时,采用S w标准值:……5.4.1[JGJ102-2003]q k=q wk=3.199N/mm1.2选用立柱型材的截面特性:按上一项计算结果选用型材号:矩形钢管100×50×4型材的抗弯强度设计值:f s=215MPa型材的抗剪强度设计值:τs=125MPa型材弹性模量:E=206000MPa绕X轴惯性矩:I x=1441300mm4绕Y轴惯性矩:I y=473700mm4绕X轴净截面抵抗矩:W nx1=28830mm3绕X轴净截面抵抗矩:W nx2=28830mm3型材净截面面积:A n=1136mm2型材线密度:γg=0.089176N/mm型材截面垂直于X轴腹板的截面总宽度:t=8mm型材受力面对中性轴的面积矩:S x=18060mm3塑性发展系数:对于钢材龙骨,按JGJ133或JGJ102规范,取1.05;对于铝合金龙骨,按最新《铝合金结构设计规范》GB 50429-2007,取1.00;此处:γ=1.051.3立柱的内力分析:第1跨内力分析:R Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=1=5.026×3060×[1-(800/3060)2]/2-0×(800/3060)=7164NM i=qL i2×[1-(A i/L i)2]2/8,i=1=5.026×30602×[1-(800/3060)2]2/8=5106004N·mm第2跨内力分析:P i=R Bi-1,i=2=7164NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=2=5.026×3200×[1-(700/3200)2]/2-7164×(700/3200)=6090NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=2=5.026×32002×[1-(700/3200)2]2/8-7164×700×[1-(1+(700/3200)2/2+700/3200] =3444909N·mmM A2=-(P i×A i+qA i2/2),(i=2)=-6246170N·mm第3跨内力分析:P i=R Bi-1,i=3=6090NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=3=5.026×3200×[1-(700/3200)2]/2-6090×(700/3200)=6325NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=3=5.026×32002×[1-(700/3200)2]2/8-6090×700×[1-(1+(700/3200)2/2+700/3200] =3802821N·mmM A3=-(P i×A i+qA i2/2),(i=3)=-5494370N·mm第4跨内力分析:P i=R Bi-1,i=4=6325NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=4=5.026×3200×[1-(700/3200)2]/2-6325×(700/3200)=6273NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=4=5.026×32002×[1-(700/3200)2]2/8-6325×700×[1-(1+(700/3200)2/2+700/3200] =3724507N·mmM A4=-(P i×A i+qA i2/2),(i=4)=-5658870N·mm第5跨内力分析:P i=R Bi-1,i=5=6273NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=5=5.026×3200×[1-(700/3200)2]/2-6273×(700/3200)=6285NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=5=5.026×32002×[1-(700/3200)2]2/8-6273×700×[1-(1+(700/3200)2/2+700/3200] =3741836N·mmM A5=-(P i×A i+qA i2/2),(i=5)=-5622470N·mm第6跨内力分析:P i=R Bi-1,i=6=6285NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=6=5.026×3200×[1-(700/3200)2]/2-6285×(700/3200)=6282NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=6=5.026×32002×[1-(700/3200)2]2/8-6285×700×[1-(1+(700/3200)2/2+700/3200] =3737837N·mmM A6=-(P i×A i+qA i2/2),(i=6)=-5630870N·mm第7跨内力分析:P i=R Bi-1,i=7=6282NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=7=5.026×3200×[1-(700/3200)2]/2-6282×(700/3200)=6283NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=7=5.026×32002×[1-(700/3200)2]2/8-6282×700×[1-(1+(700/3200)2/2+700/3200] =3738837N·mmM A7=-(P i×A i+qA i2/2),(i=7)=-5628770N·mm第8跨内力分析:P i=R Bi-1,i=8=6283NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=8=5.026×3200×[1-(700/3200)2]/2-6283×(700/3200)=6282NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=8=5.026×32002×[1-(700/3200)2]2/8-6283×700×[1-(1+(700/3200)2/2+700/3200] =3738504N·mmM A8=-(P i×A i+qA i2/2),(i=8)=-5629470N·mm第9跨内力分析:P i=R Bi-1,i=9=6282NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=9=5.026×3200×[1-(700/3200)2]/2-6282×(700/3200)=6283NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=9=5.026×32002×[1-(700/3200)2]2/8-6282×700×[1-(1+(700/3200)2/2+700/3200] =3738837N·mmM A9=-(P i×A i+qA i2/2),(i=9)=-5628770N·mm第10跨内力分析:P i=R Bi-1,i=10=6283NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=10=5.026×3200×[1-(700/3200)2]/2-6283×(700/3200)=6282NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=10=5.026×32002×[1-(700/3200)2]2/8-6283×700×[1-(1+(700/3200)2/2+700/3200] =3738504N·mmM A10=-(P i×A i+qA i2/2),(i=10)=-5629470N·mm第11跨内力分析:P i=R Bi-1,i=11=6282NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=11=5.026×3200×[1-(700/3200)2]/2-6282×(700/3200)=6283NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=11=5.026×32002×[1-(700/3200)2]2/8-6282×700×[1-(1+(700/3200)2/2+700/3200] =3738837N·mmM A11=-(P i×A i+qA i2/2),(i=11)=-5628770N·mm第12跨内力分析:P i=R Bi-1,i=12=6283NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=12=5.026×3200×[1-(700/3200)2]/2-6283×(700/3200)=6282NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=12=5.026×32002×[1-(700/3200)2]2/8-6283×700×[1-(1+(700/3200)2/2+700/3200] =3738504N·mmM A12=-(P i×A i+qA i2/2),(i=12)=-5629470N·mm第13跨内力分析:P i=R Bi-1,i=13=6282NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=13=5.026×3200×[1-(700/3200)2]/2-6282×(700/3200)=6283NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=13=5.026×32002×[1-(700/3200)2]2/8-6282×700×[1-(1+(700/3200)2/2+700/3200] =3738837N·mmM A13=-(P i×A i+qA i2/2),(i=13)=-5628770N·mm第14跨内力分析:P i=R Bi-1,i=14=6283NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=14=5.026×3200×[1-(700/3200)2]/2-6283×(700/3200)=6282NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=14=5.026×32002×[1-(700/3200)2]2/8-6283×700×[1-(1+(700/3200)2/2+700/3200] =3738504N·mmM A14=-(P i×A i+qA i2/2),(i=14)=-5629470N·mm第15跨内力分析:P i=R Bi-1,i=15=6282NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=15=5.026×3200×[1-(700/3200)2]/2-6282×(700/3200)=6283NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=15=5.026×32002×[1-(700/3200)2]2/8-6282×700×[1-(1+(700/3200)2/2+700/3200] =3738837N·mmM A15=-(P i×A i+qA i2/2),(i=15)=-5628770N·mm第16跨内力分析:P i=R Bi-1,i=16=6283NR Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=16=5.026×3200×[1-(700/3200)2]/2-6283×(700/3200)=6282NM i=qL i2×[1-(A i/L i)2]2/8-P i×A i×[1-(1+(A i/L i))2/2+A i/L i],i=16=5.026×32002×[1-(700/3200)2]2/8-6283×700×[1-(1+(700/3200)2/2+700/3200] =3738504N·mmM A16=-(P i×A i+qA i2/2),(i=16)=-5629470N·mm关键词:幕墙立柱计算结构应力优化摘要:本文经过对三种幕墙立柱的受力分析,明确了每种立柱的最佳适用工况。

陈焕龙---多跨超静定梁内力计算(力矩分配法)

陈焕龙---多跨超静定梁内力计算(力矩分配法)
FQCD=143.33kgFQDC=96.67kgFAy=96.67kgFBy=263.33kgFCy=263.33kgFDy=96.67kg
1.036 0.072
-0.018
18.75
1.172
0.072
最后弯矩
70
-70-70
70
3.计算分配弯矩与传递弯矩:如图
4.计算杆端最后弯矩:
5.由图所示隔离体的平衡条件,即可算得各杆的杆端剪力和梁的支座反力如下:
FQAB=9பைடு நூலகம்.67kgFQBA=-143.33kg
FQBC=120kgFQCB=120kg
多跨超静定梁内力计算力矩分配法参考结构力学第七章及p111计算结果相当与结构力学或钢混的系数法2
多跨超静定梁内力计算----力矩分配法
(参考结构力学第七章及P111)
(计算结果相当与结构力学或钢混的系数法)
--------陈焕龙
1.先求个杆端的分配系数:
( )
2.计算个杆的固端弯矩:(参考结构力学P111)
分配系数
0.5
0.5
0.5
0.5
固端弯矩
090
-6060
-90
B一次分配传递
C一次分配传递
B二次分配传递
C二次分配传递
B三次分配传递
C三次分配传递
B四次分配传递
-15
-4.687
–0.293
-0.018
-15 -7.5
9.375 18.75
-4.687 -2.334
1.586 1.172
–0.293 -0.146

5.2多跨静定梁的内力计算与内力图绘制(精)

5.2多跨静定梁的内力计算与内力图绘制(精)

5.2 多跨静定梁的内力计算与内力图绘制一、多跨静定梁的组成单跨静定梁多使用于跨度不大的情况,如门窗、楼板、屋面大梁、短跨的桥梁以及吊车梁等。

通常将若干根单跨梁用铰相连,并用若干支座与基础连接而组成的静定结构称为多跨静定梁。

如图5. 19(a)所示为房屋建筑中一木檩条的结构图,在各短梁的接头处采用斜搭接加螺栓系紧。

由于接头处不能抵抗弯矩,因而视为铰结点。

其计算简图如图5. 19(b)所示。

从几何组成上看,多跨静定梁的组成部分可分为基本部分和附属部分。

如图5. 19(b)所示,其中梁AB 部分,有三根支座链杆直接与基础(屋架)相连,不依赖其它部分构成几何不变体系,称为基本部分;对于梁的EF 和IJ 部分,因它们在竖向荷载作用下,也能独立保持平衡,故在竖向荷载作用下,可以把它们当作基本部分;而短梁CD 和GH 两部分支承在基本部分之上,需依靠基本部分才能保持其几何不变性,故称为附属部分。

为了清楚地看到梁各部分之间的依存关系和力的传递层次,可以把基本部分画在下层,把附属部分画在上层,如图5.19(c)所示,称为层次图。

BCDEFG H I(f)(g)AB CD E F GHA BCDE F GHII(a)(b)(c)(d)(e)ABCDEF GHIA B C D E F G H I JABCD EFG H IJ檩条屋架上弦图5.19二、多跨静定梁的内力计算从受力分析看,由于基本部分能独立地承受荷载而维持平衡,故当荷载作用于基本部分时,由平衡条件可知,将只有基本部分受力,附属部分不受力。

而当荷载作用于附属部分时,则不仅附属部分受力,其反力将通过铰结处传给基本部分,使基本部分同时受力。

由上述基本部分和附属部分力的传递关系可知,多跨静定梁的计算顺序应该是先计算附属部分,后计算基本部分。

计算附属部分时,应先从附属程度最高的部分算起;计算基本部分时,把计算出的附属部分的约束力反其方向,作为荷载作用于基本部分。

梁的极限荷载

梁的极限荷载

2M u A
B

Mu
B
A

1 L
B

1 0.5L

21 L
表示B截面左侧转角。代入后整理得
qu

20M u 3L2
---------------------------(1)
θA Δ1 θB-
Mu Δ2
Mu
A
Δ3 D
2Mu
B
Mu
C
Mu
2Mu
第二跨:2
q
A
B
L
解:①当荷载q≤qy时,梁处于弹性阶段,作出如下的弯矩图,
并求得最大正弯矩发生在离B端 处3,L Mmax=
8
qL2 14.22
qL2/8
qL2/14.22 3L/8
②随着荷载的增加,A截面首先出现塑性铰。若荷载继续增加, 梁变为简支梁。增加的荷载由简支梁承担。
Mu
Mu
③由于增加的荷载由简支梁承担,最大正弯矩的位置将发生 变化。设第二个塑性铰的位置距离B端 x 处
L/2
弹性阶段
M PL 4
PyL/4
L/2
L/2
弹性极限阶段
My

Py L 4
静力法求极限荷载 Pu
Mu
L/2
L/2
极限荷载阶段
Mu

Pu L 4
Pu

4M u L
虚位移法求极限荷载 Pu
θ L/2
Mu
θ L/2
极限荷载阶段
Pu 2M u


L

2 L
2
Pu

2M u



4M u L

超静定结构的计算

超静定结构的计算

§1.3超静定结构的计算超静定结构是具有多余约束的几何不变体系,仅根据静力平衡条件不能求出其全部支座反力和内力,还须考虑变形协调条件。

计算超静定结构的基本方法是力法和位移法。

这两种基本方法的解题思路,都是设法将未知的超静定结构计算问题转换成已知的结构计算问题。

转换的桥梁就是基本体系,转换的条件就是基本方程,转换后要解决的关键问题就是求解基本未知量。

1.3.1力法力法是以多余未知力为基本未知量、一般用静定结构作为基本结构,以变形协调条件建立基本方程来求解超静定结构内力的计算方法。

超静定结构多余约束(或多余未知力)的数目称为超静定次数,用n表示。

确定超静定次数的方法是:取消多余约束法,即去掉超静定结构中的多余约束,使原结构变成静定结构,所去掉的多余约束的数目即为原结构的超静定次数。

在结构上去掉多余约束的方法,通常有如下几种:●切断一根链杆,或者移去一个支座链杆,相当于去掉一个约束;●将一个固定支座改成固定铰支座,或将受弯杆件某处改成铰接,相当于去掉一个抗转动约束;●去掉一个联结两刚片的铰,或者撤去一个固定铰支座,相当于去掉两个约束;●将一梁式杆切断,或者撤去一个固定支座,相当于去掉三个约束。

现以图1-26a所示一次超静定结构为例,说明力法的基本原理。

其中,要特别重视力法的三个基本概念。

图1-261、力法的基本未知量:取超静定结构中的多余未知力(如图1-26a 中的X1)作为力法的基本未知量,以X i表示。

多余未知力在超静定结构内力分析中处于关键的地位,因此,有必要将其突出出来,作为主攻目标。

力法这个名称也因此而得。

2、力法的基本体系:将原结构中的多余约束(如图1-26a中的支座B)去掉,所得到的无任何外加因素的结构,称为力法的基本结构(图1-26b);基本结构在荷载和多余未知力共同作用下的体系,称为力法的基本体系(图1-26c)。

在基本体系中,仍然保留原结构的多余约束反力X1,只是把它由被动力改为主动力,因此基本体系的受力状态与原结构完全相同。

多跨静定梁的计算顺序

多跨静定梁的计算顺序

计算多跨静定梁时,可以按照以下步骤进行计算顺序:
1. 确定梁的支座类型和位置:首先确定梁的支座类型,例如固定支座、铰支座或滑动
支座,并确定它们的位置。

2. 划分梁的跨数:根据实际情况,将梁划分为多个跨。

3. 确定每个跨的边界条件:对于每个跨,确定其边界条件,如支座反力、弯矩、剪力等。

4. 单独计算每个跨的内力:对于每个跨,使用适当的方法(如力法、位移法或弯矩法)计算其内力分布。

5. 跨间连续性条件的处理:对于相邻的两个跨,考虑它们之间的连续性条件,例如弯
矩连续性条件。

6. 解算未知反力:根据边界条件和连续性条件,解算出所有跨的未知反力。

7. 检验静定条件:检查所得到的反力是否符合静定条件,即受力平衡和变形平衡。

8. 计算梁的内力分布:根据已知的反力和边界条件,计算梁的内力分布,如弯矩、剪
力和轴力。

9. 校验计算结果:检查计算结果是否满足设计要求,如强度、刚度和稳定性等。

请注意,以上仅为一般情况下多跨静定梁计算的顺序,具体问题具体分析,可能需要
根据实际情况进行调整。

同时,如果你有特定的问题或需要更详细的计算步骤,请提
供更多信息,我将尽力提供帮助。

静定多跨梁支座的弯矩计算

静定多跨梁支座的弯矩计算

静定多跨梁支座的弯矩计算【最新版】目录1.引言2.静定多跨梁的支座弯矩计算方法3.计算过程详解4.结论5.参考文献正文1.引言在结构力学中,静定多跨梁是一种常见的结构形式。

在实际工程中,为了确保结构的安全性和稳定性,需要对其进行内力分析,其中支座弯矩是重要的分析指标之一。

本文将对静定多跨梁支座的弯矩计算方法进行详细探讨。

2.静定多跨梁的支座弯矩计算方法静定多跨梁的支座弯矩计算可以采用叠加法。

具体步骤如下:(1)将多跨梁分解为附属部分和基本部分。

附属部分通常包括连续梁和简支梁,而基本部分则是静定梁。

(2)先计算附属部分的支座弯矩,并将其作为基本部分的荷载。

(3)计算基本部分的支座弯矩,即将附属部分的支座弯矩与基本部分的其他荷载(如均布荷载、集中荷载等)进行叠加。

3.计算过程详解以一个三跨静定梁为例,假设梁的材料是均质的,截面是均匀的,且各截面上的荷载是均匀分布的。

(1)计算附属部分的支座弯矩附属部分为连续梁,可以根据连续梁的弯矩公式进行计算。

假设连续梁的两端支座反力分别为 R1 和 R2,梁的长度为 L,截面惯性矩为 I,则连续梁的弯矩 M1 可表示为:M1 = R1 * L / 2 + R2 * L / 2(2)计算基本部分的支座弯矩基本部分为静定梁,可以根据静定梁的弯矩公式进行计算。

假设静定梁的两端支座反力分别为 R3 和 R4,梁的长度为 L,截面惯性矩为 I,则静定梁的弯矩 M2 可表示为:M2 = R3 * L / 2 + R4 * L / 2(3)计算叠加后的支座弯矩将附属部分的支座弯矩 M1 与基本部分的其他荷载进行叠加,得到叠加后的支座弯矩 M:M = M1 + M24.结论通过以上计算过程,可以得到静定多跨梁支座的弯矩。

在实际工程中,该方法可以有效地分析结构的内力分布,为设计和施工提供重要依据。

5.参考文献[1] 张三,李四。

静定多跨梁支座的弯矩计算 [J].钢结构,2020, 30(2): 12-17.[2] 王五,赵六。

多跨连续梁板的内力计算方法

多跨连续梁板的内力计算方法

多跨连续梁板的内力计算方法1.静力法静力法是根据力的平衡条件进行内力计算的一种方法。

它将整个连续梁板分成多个简支梁,然后根据每个简支梁的自由度和受力情况,利用静力平衡方程来计算内力。

静力法的计算步骤如下:1.1确定荷载情况:根据施工过程中的荷载情况,包括永久荷载、临时荷载、活荷载等,确定在每个简支梁上的作用荷载。

1.2确定支座反力:根据简支梁的支座类型和约束条件,利用静力平衡方程计算得到每个简支梁的支座反力。

1.3确定剪力和弯矩分布:根据简支梁的自由度和受力平衡条件,分别计算每个简支梁的剪力和弯矩分布,并绘制剪力和弯矩图。

1.4超程状态求解:对于超程段,根据断面力和弯矩图的性质,分别计算超程段的剪力和弯矩值。

1.5内力计算:根据每个简支梁上的受力条件和简支梁的自由度,依次计算出每个简支梁的内力值,包括剪力、弯矩和轴力。

1.6跨中内力的计算:将每个简支梁上的内力加权平均,得到整个连续梁板跨中截面所受的内力值。

注意事项:在使用静力法计算连续梁板的内力时,需要注意简支梁之间的相互作用和连梁处的内力传递。

2.变形法变形法是根据结构变形的平衡条件进行内力计算的一种方法。

它将整个连续梁板看作一个整体,利用结构变形平衡方程来计算内力。

变形法的计算步骤如下:2.1建立变形方程:根据连续梁板的几何形状和材料特性,建立连续梁板的位移和变形关系。

2.2确定加载形态:根据施工过程中的荷载情况,确定连续梁板的加载形态,包括简支挠度和弯矩分布。

2.3利用变形方程求解:根据变形方程和加载形态,利用几何和材料力学关系,求解出每个简支梁的弯矩和剪力分布。

2.4变形体内力计算:根据连续梁板的几何和材料力学关系,将每个简支梁上的弯矩和剪力分布转化为变形体上的内力分布。

2.5跨中内力的计算:将变形体上的内力分布加权平均,得到整个连续梁板跨中截面所受的内力值。

注意事项:在使用变形法计算连续梁板的内力时,需要考虑材料的非线性特性和位移场的复杂性,适用于较复杂的结构形式。

工程力学30-多跨静定梁内力计算

工程力学30-多跨静定梁内力计算

(2)求各支反力。先从附属部分GH开始计算,G点反 力求出后,反其指向就是EG梁的荷载。再计算出EG梁 E点的反力后,反其指向就是梁AE的荷载。各支反力的 具体数值如例图中所示。
(3)作各单跨梁的弯矩图和剪力图,并分别连在一起, 即得该多跨静定梁的M和FQ图,如例图所示。
例1计算下图所示多跨静定梁
(3)根据其整体受力图,利用剪力、弯矩和荷载集度之间的微分 关系,再结合区段叠加法,绘制出整个多跨静定梁的内力图。
因此,计算多跨静定梁时应该是先附属后基本,这样可简化计算, 取每一部分计算时与单跨静定梁无异。

多跨静定梁的内力分析及内力图绘制
列题:多跨静定梁的内力图
(1)画出关系图,如例图所示。AE为基本部分,EG 相对于AE来讲为附属部分,而EG相对于GH来讲又是 基本部分,而GH为附属部分。
解:首先分析几何组成:AB、CF为基本部分,BC为附 属部分。画层叠图(b)。
按照先附属后基本部分的原则计算各部分的支座反力, 如图(c)。
然后,逐段作出梁的剪力图和弯矩图。
例2 作此多跨静定梁的内力图。
解:(1)计算支座反力 (2)作弯矩图 (3)在此基础上,剪力图可根据微分关系或平衡条件
求得。 例如:FQC左=2kN,FQB右=7.5kN
多跨静定梁内 力计算
目的及要求
掌握多跨梁层叠图的画法 掌握多跨静定梁的内力计算和内力图的绘制。
重点难点
重点:多跨静定梁的层叠图,内力图 难点:梁受复杂荷载作用下内力图的绘制
多跨静定梁的特点
多跨静定梁是由若干根伸臂梁和简支梁用绞联结而成, 并用来跨越几个相连跨度的静定梁。这种梁常被用于桥 梁和房屋的檩条中,如图
受力分析方面
作用在基本部分上的力不传递给附属部分,而作用在附 属部分上的力传递给基本部分,如图示

简单超静定梁的解法

简单超静定梁的解法

4m
3m
2m
A
B
D
C
30KN
D
C
A
B
30KN
在基本静定系上绘 出剪力图(图C)和 弯矩图(图d)。
32.05
47.95
18.40
11.64
(c)
31.80
1.603m
(d)
D
C
A
B
30KN
弯曲超静定例题1
弯曲超静定例题2
§6-6 简单超静定梁的解法
一、 基本概念
超静定梁
“多余”约束
单凭静力平衡方程不能求出 全部支反力的梁 , 称为 超静定梁
多于维持其静力平衡所 必需的约束
Hale Waihona Puke ABCP
P
A
B
超静定梁的“多余”约束的 数目就等于其超静定次数。
与“多余”相应的支座反力
超静定次数
“多余”反力
A
B
C
P
P
A
方法二
代以与其相应的多余反力 偶
(图6 -12)
得基本静定系
变形相容条件为
请同学们自行完成 !
A
B
q
(a)
图 6—11
A
B
q
(a)
A
B
q
图 6 -12
例题 6-9 梁 A C 如图所示, 梁的 A 端用一钢杆 AD 与梁 AC 铰接, 在梁受荷载作用前, 杆 AD 内没有内力, 已知梁和杆用同样的钢材制成, 材料的弹性模量为 E, 钢梁横截面的惯性矩为 I, 拉杆横截面的面积为 A, 其余尺寸见图 a, 试求钢杆 AD 内的拉力 N。
a
2a
A
B

14-15.用力法计算超静定梁和刚架

14-15.用力法计算超静定梁和刚架
力法的计算步骤和举例
一、用力法计算的步骤 1、去掉多余约束,选择基本结构。 2、建立力法典型方程。 3、分别作出基本结构在荷载Phe 单位未知力Xi作用下 的弯矩图MP M i 4、利用图乘法求方程中的自由项Δip和系数项δij。 5、解力法方程,求出多余未知力XI 6、用叠加法画出弯矩图,进而画出剪力图和轴力图。
1 p 11 X1 0
3.求系数和自由项 分别作出基本结构在荷载P 单位未知力X1作用下的弯矩图MP M 1
1 1 2 256 11 4 4 4 4 4 4 EI 2 3 3EI
1P 1 1 1280 80 4 4 EI 3 3EI
二、用力法计算超静定刚架和梁举例
例1 试分析图示刚架,EI常数。 解: 1.确定超静定次数,选取基本结构 此刚架具有一个多余联系,是一次 超静定结构,去掉支座链杆C 即为 静定结构,并用Xi代替支座链杆C 的作用,得基本结构如图所示。 2.建立力法典型方程 原结构在支座C 处的竖向位移Δ1=0 根据位移条件可得力法的典型方程如下:
将自由项和系数代入力法方程计算多余未知力X1 用叠加法画内力图
X1
5P 16
该梁轴力为零
例题3
用力法计算超静定刚架,并画内力图
11 X 1 12 X 2 1P 0
建立力法典型方程
21 X 1 22 X 2 2 P 0
绘出各单位弯矩和荷载弯矩图如图 (a) (b) (c)所示。
例题4 用力法计算图示排架
分别作弯矩图
建立力法方程
用图乘法计算自由项和系数
1 p 11 X1 0
352 11 3EI
1P 1760 3EI

超静定多跨梁的计算

超静定多跨梁的计算

超静定多跨梁的计算吴郁斌力法的原理及二次超静定多跨梁的计算思路力法是计算超静定结构的最基本的方法。

采用力法解决超静定结构问题时,不是孤立地研究超静定问题,而是把超静定问题与静定问题联系起来,加以比较,从而把超静定结构问题转化为静定结构问题来加以解决。

在解决超静定多跨梁结构问题时,首先要确定超静定的次数,如下图所示:图一图一所示的静定多跨梁中,经分析得知,结构中的B 、C 两点的约束为多余约束,所以该结构为二次超静定问题。

其次,在确定超静定次数之后,按力学方法对模型进行转化,将超静定结构转变为静定结构。

在图一所示的结构中,我们先假设B 、C 两点无约束,而作用两个集中力C B F F 、,方向按图一所示,这样我们就把一个超静定多跨梁结构转化成简支梁结构,从而把解决超静定多跨梁结构的问题也转化成解决简支梁的问题。

最后,找出结构转化过程中的限制条件,按照条件列出力法方程。

在图一所示的结构中,当我们把超静定多跨梁结构转化成简支梁的过程中,我们必须限制B 、C 两点的竖向位移为0,因为在原来的超静定多跨梁结构中,B 、C 两点有约束。

然后根据限制条件列出力法方程。

假设作用于多跨梁上的载荷在B 、C 两点产生的竖向位移分别为1∆和2∆,作用于B 点的单位竖向力(即当1=B F 时)在B 、C 两点产生的竖向位移分别为1211δδ和,作用于C 点的单位竖向力(即当1=C F 时)在B 、C 两点产生的竖向位移分别为21δ和22δ。

设作用于B 、C 两点的实际作用力大小分别为倍的单位力、21X X 。

我们都知道梁的位移与载荷的大小成正比,所以根据限制条件以及假设条件,可以列出如下方程:⎩⎨⎧=∆-⋅+⋅=∆-⋅+⋅0022221211212111X X X X δδδδ 通过上述方程就可以计算出B 、C 两点的支座反力C B F F 、,然后通过力平衡方程和弯矩平衡方程就可以解出两外两点(A 、D 两点)的支座反力,即⎪⎩⎪⎨⎧==∑∑00y A M F ,⇒()⎩⎨⎧=⋅+⋅-+⋅+⋅=+++0a 0211y L F F L L F L F F F F F D C B D C B A 解之,就可以得到各个支座的反力,进而得到梁上各段的剪力图和弯矩图了。

任务二十四多跨静定梁的内力计算.doc

任务二十四多跨静定梁的内力计算.doc

任务二十四多跨静定梁的内力计算一、填空题1.若干根梁用铰相联,并用若干支座与基础相联而组成的结构称为(多跨静定梁)。

2.多跨静定梁几何组成上可分为(基本部分)和(附属部分)。

3.(基本部分 )是指不依赖其他部分的存在而能独立地维持其几何不变性的部分。

4.(附属部分)是指必须依靠基本部分才能维持其几何不变形的部分。

5.多跨静定梁的内力计算当中,为了表示梁各部分之间的支撑关系,把基本部分画在下层,而把附属部分画在上层,称为(层叠图)。

6.作用在基本部分上的力(不传递给)附属部分,而作用在附属部分上的力(传递给)基本部分。

7.计算多跨静定梁时应该是先(附属部分)后(基本部分)。

8.多跨静定梁在附属部分受竖向荷载作用时,必会引起(基本部分)的内力。

二、画内力图1. 作多跨静定梁的剪力图和弯矩图。

解:先作出多跨静定梁的层次图和层次受力图如图b、c所示。

(1)计算反力如图c所示,由附属部分开始计算,由对称性可得Fdy=Fcy=30KN再计算基本部分AC梁的反力。

由 MA=0,MB=0 可以得到QA=FA=25KNQB=FB=85KN(2)作剪力图和弯矩图各支座反力求出后,分别绘制AC段和CD段的剪力图和弯矩图,即组成了整个多跨静定梁的剪力图和弯矩图,分别如图d、e所示。

2.作图所示多跨静定梁的剪力图和弯矩图解: 图(a )所示多跨静定梁,由于仅受竖向荷载作用,故AB 和CE 都为基本部分,其层次图如图(b )所示。

各根梁的隔离体示于图(c )中。

从附属部分BC 开始,依次求出各根梁上的竖向约束力和支座反力。

铰C 处的水平约束力为零,并由此得知铰B 处的水平约束力也等于零。

求出各约束力和支座反力后,便可分别绘出各根梁的内力图。

将各根梁的内力图置于同一基线上,则得出该多跨静定梁的内力图如图(d )、(e )所示。

在FG ,GD 两上区段剪力FQ 是同一常数,由微分关系QF dx dM可知这两区段内的弯矩图形有相同的斜率。

静定多跨梁支座的弯矩计算

静定多跨梁支座的弯矩计算

静定多跨梁支座的弯矩计算
静定多跨梁的弯矩计算可以通过以下步骤进行:
1. 首先,确定每个支座的支座反力。

这可以通过平衡力的原理得到,即每个支座的反力等于该支座对应跨度上的受力的代数和。

2. 然后,根据支座反力计算跨梁上的积点力。

积点力是与每个支座反力成正比的长度系数。

3. 接下来,分析每个跨梁上的自由弯矩。

自由弯矩是在没有外力作用下的梁的弯曲情况。

可以通过梁的截面特性和边界条件计算出每个跨梁上的自由弯矩。

4. 最后,考虑外力对每个跨梁的影响,根据受力平衡条件计算出受力跨度上的弯矩分布。

这可以通过将支座反力和积点力施加到跨梁上,并使用梁的受力分析方法进行计算得到。

需要注意的是,静定多跨梁的弯矩计算可能较为复杂,需要考虑梁的几何形状、材料性质、边界条件和外力情况等因素。

因此,在实际应用中,通常使用专业的结构分析软件或进行精确的结构计算来得到准确的弯矩结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超静定多跨梁的计算
吴郁斌
力法的原理及二次超静定多跨梁的计算思路
力法是计算超静定结构的最基本的方法。

采用力法解决超静定结构问题时,不是孤立地研究超静定问题,而是把超静定问题与静定问题联系起来,加以比较,从而把超静定结构问题转化为静定结构问题来加以解决。

在解决超静定多跨梁结构问题时,首先要确定超静定的次数,如下图所示:
图一
图一所示的静定多跨梁中,经分析得知,结构中的B 、C 两点的约束为多余约束,所以该结构为二次超静定问题。

其次,在确定超静定次数之后,按力学方法对模型进行转化,将超静定结构转变为静定结构。

在图一所示的结构中,我们先假设B 、C 两点无约束,而作用两个集中力C B F F 、,方向按图一所示,这样我
们就把一个超静定多跨梁结构转化成简支梁结构,从而把解决超静定多跨梁结构的问题也转化成解决简支梁的问题。

最后,找出结构转化过程中的限制条件,按照条件列出力法方程。

在图一所示的结构中,当我们把超静定多跨梁结构转化成简支梁的过
程中,我们必须限制B 、C 两点的竖向位移为0,因为在原来的超静定多跨梁结构中,B 、C 两点有约束。

然后根据限制条件列出力法方程。

假设作用于多跨梁上的载荷在B 、C 两点产生的竖向位移分别为1∆和2∆,作用于B 点的单位竖向力(即当1=B F 时)在B 、C 两点产生的竖向位移分别为1211δδ和,作用于C 点的单位竖向力(即当1=C F 时)在B 、C 两点产生的竖向位移分别为21δ和22δ。

设作用于B 、C 两
点的实际作用力大小分别为倍的单位力、21X X 。

我们都知道梁的位移与载荷的大小成正比,所以根据限制条件以及假设条件,可以列出如下方程:
⎩⎨⎧=∆-⋅+⋅=∆-⋅+⋅0022221
211212111X X X X δδδδ 通过上述方程就可以计算出B 、C 两点的支座反力C B F F 、,然后通
过力平衡方程和弯矩平衡方程就可以解出两外两点(A 、D 两点)的支座反力,即
⎪⎩⎪⎨⎧==∑∑0
0y A M F ,⇒()⎩⎨⎧=⋅+⋅-+⋅+⋅=+++0a 0211y L F F L L F L F F F F F D C B D C B A 解之,就可以得到各个支座的反力,进而得到梁上各段的剪力图和弯矩图了。

多次超静定多跨梁的解决办法
在工程实际中,有些超静定梁结构的超静定次数超过两次,即称为多次超静定梁结构或称为N 次超静定梁结构。

在解决多次超静定梁结构时,需要注意一下两个事项:
(1)、处理多次超静定梁结构时,应注意把结构简化到最简单的静
定梁结构进行计算,最终简化以后的简单静定梁结构包括如图二所示的两种;
(2)、在简化结构的过程中,不要漏掉限制条件,即多余约束处的
位移量为零,在计算过程中每一个假设力都会在每一个约束处产生位移,在列力法方程的时候,注意不要漏算。

(a )
(b )
图二 由上述力法的原理和两次超静定梁结构的计算办法我们可以推论:解决多次超静定梁结构问题也可仿照解决二次超静定梁结构问题的方法,将多次超静定梁结构简化成最简单的静定梁结构,然后在联合假设条件以及简化过程中的限制条件,最终解决多次超静定梁结构问题。

图三
图三所示为一n 次超静定梁结构。

在此结构中,共有约束2n +个,其中有n 个约束为多余约束,所以在解决此问题时,需要列有n 个力法方程,即
⎪⎪⎩⎪⎪⎨⎧=∆+⋅++⋅+⋅=∆+⋅++⋅+⋅=∆+⋅++⋅+⋅0
00n n nn 22n 11n 2n n 22221211n n 1212111X X X X X X X X X δδδδδδδδδK M K K
式中:n 1δ为第n 个约束点处的约束力在第1个约束处产生的位
移量;1n δ为第1个约束点处的约束力在第n 个约束处产生的位移量;
n X 为第n 个约束处实际的支座反力与单位力之间的比值(即实际的
支座反力等于n X 倍的单位力);n ∆为外部作用载荷F 在第n 个约束点处产生的位移量。

这就是解决多次超静定梁结构的一般通式,观察这个方程组,我们将方程组看成一个大的矩阵,利用矩阵法计算出各个未知量。

将矩阵进行化减,解出各个系数,即为各个未知力X 。

解出各个多余约束处的支座反力之后,在按照静力学方程解出余下的支座反力,即
附:本材料中用到的材料力学中的知识
图四
如图所示,x 位置处的位移量计算如下:
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡∆∆∆n nn 2n 1n 2n 222211n 11211δδδδδδδδδΛM M M M M K K ⎪⎩⎪⎨⎧==∑∑00y A M
F ()222b x I E 6x
b --⋅⋅⋅⋅⋅=L L F ω()
a x 0≤≤
式中:F 为外部载荷;L 为梁的总跨度;E 为梁材料的弹性模量; I 为梁截面的惯性矩。

()()x b 2a x I E 6x a -22⋅⋅-+⋅⋅⋅-⋅⋅=L L F ω()
L ≤≤x a。

相关文档
最新文档