DS18B20智能温度控制器(附软件程序)

合集下载

JD412 DS18B20温度检测控制(带完整程序)

JD412  DS18B20温度检测控制(带完整程序)

DS18B20温度检测控制摘要温度是一个很重要的物理量,在现代工农业生产中,对它的测量与控制有十分重要的意义。

本论文从简单实用方面介绍了由DS18B20单总线数字式温度传感器与AT89S52单片机构成温度检测控制系统。

论文从五个方面介绍了这一设计:绪论部分简单介绍了课题背景及现状,并提出预期目标;第二部分对DS18B20、AT89S52、74LS244的硬件资源、功能等作了较详细的介绍;第三部分介绍了主要硬件电路的设计,包括测量电路、显示电路和电源电路;第四部分介绍软件设计。

程序采用C语言在Keil软件环境下编写、调试,并用计算机并口下载到单片机;第五部分主要对设计进行调试实验,并对实验结果作总结并指出不足。

关键词:单总线单片机 AT89S52 DS18B20iAbstractTemperature is an important physical parameter and the measurement and control it is of great significance. This article introduced a simple and practical temperature examination control system by the DS18B20 1-wrie digital temperature sensor and AT89S52 single-chip computer. The article introduced this design from five aspects: The introduction part simply introduced the topic background and the present situation, and set the anticipated target;the second part introduced function and technique data of the AT89S52, DS18B20、74LS244; The third part introduced the design of main hardware circuit's, including metering circuit, display circuit and power circuit; part four introduced the design of software . Use the C program language which writes and debugs at Keil software environment ,and download to the single-chip computer by combine of computer; The fifth part mainly to designs carries on the debugging experiment, and does to the experimental result summarizes and points out the insufficiency.Key Words:1-wire single-chip computer AT89S52 DS18B20ii目录摘要 (i)Abstract (ii)目录 (iii)一绪论........................................................ - 1 -1. 1 课题背景.............................................. - 1 -1. 2温度采集技术现状....................................... - 1 -1. 3预期目标............................................... - 2 - 二器件介绍.................................................... - 3 - 2.1 DS18B20介绍........................................... - 3 - 2.1.1 测温原理........................................ - 3 - 2.1.2 数据处理........................................ - 4 - 2.1.3 多路测量........................................ - 7 - 2.2 单片机AT89S52介绍..................................... - 8 - 2.2.1 内部结构、资源.................................. - 8 - 2.2.2 引脚介绍........................................ - 9 - 2.2.3 机器周期和指令周期............................. - 11 - 2.2.4 最小系统....................................... - 12 - 2.3 74LS244介绍.......................................... - 12 - 三硬件设计................................................... - 13 - 3.1 总体设计.............................................. - 13 -iii3.2 测量电路.............................................. - 14 - 3.3 显示电路.............................................. - 14 - 3.4 电源电路设计.......................................... - 15 - 四软件设计................................................... - 16 - 4.1 总体程序设计.......................................... - 16 - 4.2主要子程序............................................ - 18 - 4.2.1 初始化......................................... - 18 - 4.2.2 写时间隙....................................... - 19 - 4.2.3 读时间隙....................................... - 20 - 4.2.4 多片传感器数据读取............................. - 21 - 五总结.............................................................................................错误!未定义书签。

ds18b20温度计程序

ds18b20温度计程序

ORG 0000HAJMP MAINORG 0030HMAIN: MOV R5,#0FFHMAIN1:MOV P0,#00H ;系统自检。

自高位向低位带小数点显示8扫描256次CLR P2.4LCALL DELAYSETB P2.4CLR P2.5LCALL DELAYSETB P2.5CLR P2.6LCALL DELAYSETB P2.6CLR P2.7LCALL DELAYSETB P2.7DJNZ R5,MAIN1SETB P2.4 ;关显示SETB P2.5SETB P2.6SETB P2.7SJMP MAIN2DELAY:MOV R7 ,#05H //;延时LP8: MOV R6,#19HLP7:DJNZ R6,LP7DJNZ R7,LP8RET; DS18B20初始化汇编程序;*****************************************//MAIN2:LCALL DISP //;主程序SETB P3.2 // ;18B20DQ置1拉高LCALL INIT // ;调初始化MOV A,#0CCH //;跳过ROM匹配------0CCLCALL WRITE // ;调写DS18B20的程序MOV A,#44H // ;发出温度转换命令LCALL WRITE // ;调写DS18B20的程序MOV R6,#34H //;延时136微秒转换时间,写一个字约需70微秒。

DJNZ R6,$LCALL DISPLCALL INITMOV A,#0CCHLCALL WRITEMOV A,#0BEH // ;发出读温度命令LCALL WRITELCALL READCLR CLCALL CONVTEMPLCALL DISPBCDLCALL DISPSJMP MAIN2WRITE:MOV R0,#8 // ;写子程序CLR CWR1: CLR P3.2MOV 20H,#3 // ;延时17微秒DJNZ 20H,$RRC AMOV P3.2,CMOV 21H,#10 // ;发送后延时45微秒DJNZ 21H,$SETB P3.2NOPDJNZ R0,WR1 // ;8位未发送完转SETB P3.2RETREAD: MOV R6,#2 // ;读子程序CLR PSW.5 // ;清清标志F0RE0:MOV R2,#8RE1:CLR CSETB P3.2 // ;拉高DQNOP // ;延时2微秒CLR P3.2 // ;拉低DQSETB P3.2MOV 22H,#3RE2:DJNZ 22H,RE2MOV C,P3.2MOV 23H,#10RE3:DJNZ 23H,RE3RRC ADJNZ R2,RE1 //;8位未读完继续读CPL PSW.5JNB PSW.5,RE4 // ;高8位保存至28HMOV 29H,A // ;低8位及小数保存至29HRE4:MOV 28H,ADJNZ R6,RE0 //;高8位未读继续RETINIT:SETB P3.2 // ;初始化开始DQ置1(整个时隙和理论值不是很准确)NOP //;延时L0:CLR P3.2 // ;DQ拉低MOV 24H,#100 // ;延时400微秒DJNZ 24H,$SETB P3.2 // ;DQ拉高MOV 25H,#10 // ;置40微秒延时常数L01:JNB P3.2,L2 // ;有18B20响应转L2DJNZ 25H,L01 // ;无18B20响应等待40微秒SJMP L0 // ;无18B20重新初始化L2:MOV R7,#60 // ,延时240微秒L3:DJNZ R7,L3SETB P3.2 //;DQ拉高、退出RETCONVTEMP:MOV A,28H //;温度转换ANL A,#80H //;温度正负判别JZ TEMPC1 //;温度为正转CLR C // ;温度为负调整MOV A,29HCPL AADD A,#01HMOV 29H,AMOV A,28HCPL AADDC A,#00HMOV 28H,AMOV 26H,#0BH // ;温度为负26H内送#0BHSJMP TEMPC11TEMPC1:MOV 26H,#0AH //;温度为正26H内送#0AHTEMPC11:MOV A,26HSWAP AMOV 26H,A // ;26H高4位为温度符号MOV A,29H // ;取温度小数部分ANL A,#0FH ;去整数个位MOV DPTR,#DOTTABMOVC A,@A+DPTRMOV 27H,A // ;查表得小数值,并保存至27H单元MOV A,29H // ;温度整数部分拼装后暂时存入AANL A,#0F0H // ;留下整数个位SWAP AMOV 29H,AMOV A,28HANL A,#0FHSWAP AHEX2BCD1:MOV B,#64H // ;温度整数部分除100得整数百位,并存入R7中DIV ABMOV R7,A // ;R7中为百位,B中为十位和个位MOV A,#0AH // ;温度整数部分除10得整数十位和个位XCH A,B // ;除数与被除数交换DIV ABSWAP AORL A,BTEMPC10:MOV 29H,A // ;温度十位和个位存入29H单元中,十位在高4位,个位在低4位ANL A,#0F0H // ;取温度十位SWAP AORL A,26H //;十位加温度符号存入26H单元;高4位为符号MOV 26H,AMOV A,29HANL A,#0FH // ;取温度个位SWAP AORL A,27HMOV 27H,A // ;27H单元中高4位为个位,低4位为小数MOV A,R7JZ TEMPC12 // ;百位为0退出ANL A,#0FH // ;百位不为0即温度为正和十位重新拼装后存入26H,高4位为百位SWAP A // ;MOV R7,AMOV A,26HANL A,#0FH ; // ;去除26H单元的符号ORL A,R7 //;百位和十位拼装,放入26H单元高4位为百位MOV 26H,A // ;低4位为十位TEMPC12:RETDOTTAB:DB 00H,01H,01H,02H,03HDB 03H,04H,04H,05H,06HDB 06H,07H,08H,08H,09H,09HDISPBCD:MOV A,27H // ;BCD码转换ANL A,#0FHMOV 70H,A // ;取小数,并保存在70H中SWAP AANL A,#0FHMOV 71H,A // ;取整数个位,并保存在71H中MOV A,26HANL A,#0FHMOV 72H,A //;取整数十位,并保存在72H中MOV A,26HSWAP AANL A,#0FHMOV 73H,A // ;取整数百位,并保存在73H中MOV A,72H //;取整数十位ANL A,#0F0HCJNE A,#00H,DISPBCD2SJMP DISPBCD2DISPBCD0:MOV A,26H // ;取整数百位ANL A,#0F0HCJNE A,#00H,DISPBCD2 //;百位不等于0退出MOV A,26HSW AP AANL A,#0FH //;十位保留符号MOV 73H,#0AHMOV 72H,ADISPBCD2:RETDISP:MOV R1,#70H // ;显示子程序MOV R5,#11101111B // ;送Y4位码PLAY:MOV P0,#0FFH // ;关段码MOV A,R5 // ;取Yn位码MOV P2,A // ;送位码MOV A,@R1 //;取段码MOV DPTR,#TABMOVC A,@A+DPTRMOV P0,A // ;送段码MOV A,R5JB ACC.5,LOOP1 // ;位码未指向Y2(整数个位)转CLR P0.7 ;;开小数点LOOP1:LCALL DL1MS //;调显示延时INC R1 // ;指向下一位显示段码MOV A,R5 ;取显示位码JNB ACC.7,ENDOUTRL A // ;向下一位位码MOV R5,AAJMP PLAYENDOUT:MOV P0,#0FFHMOV P3,#0FFHRETTAB: DB 0C0H,0F9H,0A4H,0B0HDB 99H,92H,82H,0F8HDB 80H,90H,0FFH,0BFHDL1MS:MOV R6,#14H // ;延时1mS DL1: MOV R7,#19HDL2: DJNZ R7,DL2DJNZ R6,DL1RETEND。

DS18B20汇编程序(完整版)

DS18B20汇编程序(完整版)

DS18B20汇编程序;实验目的:熟悉DS18B20的使用;六位数码管显示温度结果,其中整数部分2位,小数部分4位;每次按下RB0键后进行一次温度转换。

;硬件要求:把DS18B20插在18B20插座上; 拨码开关S10第1位置ON,其他位置OFF; 拨码开关S5、S6全部置ON,其他拨码开关全部置OFF;*****************以下是暂存器的定义*****************************#INCLUDE<P16F877A.INC>#DEFINE DQ PORTA,0 ;18B20数据口__CONFIG_DEBUG_OFF&_CP_ALL&_WRT_HALF&_CPD_ON&_LVP_OFF&_BODEN_OFF&_PWRTE_ON&_WDT_OFF&_HS _OSCCBLOCK 20HDQ_DELAY1DQ_DELAY2TEMPTEMP1TEMP2 ;存放采样到的温度值TEMP3COUNTCOUNT1ENDCTMR0_VALUE EQU 0AH ;寄存器初值为6,预分频比1:4,中断一次时间为4*(256-6)=1000usDQ_DELAY_VALUE1 EQU 0FAHDQ_DELAY_VALUE2 EQU 4H;**********************以下是程序的开始************************ ORG 00HNOPGOTO MAIN ;入口地址ORG 04HRETFIE ;在中断入口出放置一条中断返回指令,防止干扰产生中断TABLEADDWF PCL,1RETLW 0C0H ;0的编码(公阳极数码管)RETLW 0F9H ;1的编码RETLW 0A4H ;2的编码RETLW 0B0H ;3的编码RETLW 99H ;4的编码RETLW 92H ;5的编码RETLW 082H ;6RETLW 0F8H ;7RETLW 080H ;8RETLW 090H ;9;***************************主程序******************************* MAINCLRF PORTACLRF PORTBBANKSEL TRISACLRF TRISA ;A口所有先设置为输出CLRF TRISDMOVLW 01HMOVWF TRISB ;B0口为输入,其他为输出MOVLW 06HMOVWF ADCON1 ;关闭所有A/D口MOVLW 01HMOVWF OPTION_REG ;分频比1:4,定时器,内部时钟源BCF STATUS,RP0CLRF TEMPCLRF TEMP1CLRF TEMP2 ;清零临时寄存器MOVLW 8HMOVWF COUNTMOVLW 38HMOVWF FSRCLRF INDFINCF FSR,1DECFSZ COUNT,1GOTO $-3;****************************循环处理部分************************;先启动18B20温度转换程序,在判断温度转换是否完成(需750us);未完成则调用显示子程序,直到完成温度转换;完成后读取温度值;送LCD显示LOOPBTFSC PORTB,0 ;判断温度转换按键是否按下GOTO LOOP1 ;否,转显示CALL DELAY ;消抖BTFSC PORTB,0 ;再次判断GOTO LOOP1CALL RESET_18B20 ;调用复位18B20子程序MOVLW 0CCHMOVWF TEMPCALL WRITE_18B20 ;SKIP ROM命令MOVLW 44HMOVWF TEMPCALL WRITE_18B20 ;温度转换命令CLRF STATUSCALL DELAY_750MS ;调用温度转换所需要的750MS延时NOPCALL RESET_18B20MOVLW 0CCHMOVWF TEMPCALL WRITE_18B20 ;SKIP ROM命令MOVLW 0BEHMOVWF TEMPCALL WRITE_18B20 ;读温度命令CALL READ_18B20 ;调用读温度低字节MOVFW TEMPMOVWF TEMP1 ;保存到TEMP1CALL READ_18B20 ;调用读温度高字节MOVFW TEMPMOVWF TEMP2 ;保存到TMEP2CALL RESET_18B20LOOP1CALL TEMP_CHANGE ;调用温度转换程序CALL DISPLAY ;调用LCD显示程序GOTO LOOP ;循环工作;*********************复位DS18B20子程序************************** RESET_18B20;根据DATASHEET介绍,写数据时应遵照如下规定:;主控制器把总线拉低至少480us,;18B20等待15-60us后,把总线拉低做为返回给控制器的应答信号BANKSEL TRISABCF TRISA,0BCF STATUS,RP0BCF DQMOVLW 0A0HMOVWF COUNT ;160USDECFSZ COUNT,1GOTO $-1 ;拉低480usBSF DQ ;释放总线MOVLW 14HMOVWF COUNTDECFSZ COUNT,1GOTO $-1 ;等待60usBANKSEL TRISABSF TRISA,0 ;DQ设置为输入BCF STATUS,RP0BTFSC DQ ;数据线是否为低GOTO RESET_18B20 ;否则继续复位MOVLW 4HMOVWF COUNTDECFSZ COUNT,1 ;延时一段时间后再次判断GOTO $-1BTFSC DQGOTO RESET_18B20MOVLW 4BHMOVWF COUNTDECFSZ COUNT,1GOTO $-1BANKSEL TRISABCF TRISA,0 ;DQ设置为输出BCF STATUS,RP0RETURN;*********************写DS18B20子程序**************************** WRITE_18B20;根据DATASHEET介绍,写数据时应遵照如下规定:;写数据0时,主控制器把总线拉低至少60us;写数据1时,主控制器把总线拉低,但必须在15us内释放MOVLW 8HMOVWF COUNT ;8位数据BANKSEL TRISABCF TRISA,0BCF STATUS,RP0BCF STATUS,CWRITE_18B20_1BSF DQ ;先保持DQ为高MOVLW 5HMOVWF COUNT1BCF DQ ;拉低DQ15usDECFSZ COUNT1,1GOTO $-1RRF TEMP,1BTFSS STATUS,C ;判断写的数据为0还是1GOTO WRITE_0BSF DQ ;为1,立即拉高数据线GOTO WRITE_ENDWRITE_0BCF DQ ;继续保持数据线为低WRITE_ENDMOVLW 0FHMOVWF COUNT1 ;保持45msDECFSZ COUNT1,1GOTO $-1BSF DQ ;释放总线DECFSZ COUNT,1 ;是否写完8位数据GOTO WRITE_18B20_1RETURN;**********************读DS18B20子程序**************************** READ_18B20;根据DATASHEET介绍,读数据时应遵照如下规定:;读数据0时,主控制器把总线拉低后,18B20再把总线拉低60us;读数据1时,主控制器把总线拉低后,保持总线状态不变;主控制器在数据线拉低后15us内读区数据线上的状态。

#ds18b20可调温度控制器

#ds18b20可调温度控制器

自制可调温度控制器(附原理图和源程序>自制可调温度控制器近期我发现很多DIY或是电子爱好的朋友们比较关注电子温度控制器制作的文章,前面我也发过一篇AT89C2051控制的简单温度计制作的文章,但是因为电路比较简易,而且没有调温功能.应部分朋友的要求我在此转载一篇温正伟在无线电杂志上发表过的一款可以方便调节、设定温度的控制器。

1.功能介绍笔者设计的这一款温度控制器是使用仍是比较常用的DS18B20集成温度传感器,还是用七段数码管做显示,完成温度采集与处理控制的CPU仍是AT89C2051单片机,但该电路具有电路简单,制作起来也无需调试,安装好后就可以使用等方便DIY的优点。

该电路最大的特点是用可以直观方便的调节所要限定的温度值,温度值是用3个7段共阳极数码管显示的,上电后会显示当前的温度值,按设定键时会闪烁显示设定温度值,这时可以按上/下调节键调整设定温度值,再次按下设定键时返回当前温度显示同时会对设定温度值进行保存,这个设定值会保存在DS18B20中,掉电后也不会丢失,下次上电时,单片机会自动读入上次的温度设定值。

长按设定键为关闭显示和温控,再次按下时功能再次打开。

电路中还设计了一路继电器控制,程序中设定超出设定温度时继电器被驱动吸合。

2.元器件背景及选用表一是元器件列表。

在这个电路中关键的两个元器件分别是单片机AT89C2051和温度传感传感芯片DS18B20。

AT89C2051具有2K的可多次擦写的FLASH存储器,有15个I/O口,用于做一些小型的控制显示和数据采集系统是很好的选择,本制作中2051单片机除要完成数据采集、处理、控制和显示的任务外,还要完按键值的采集、处理。

如果要用常规的数字加模拟电路实现起来就相对困难多了。

DS18B20是DALLAS半导体公司<现属MAXIM公司)设计生产的单总线数字温度传感器,单总线也就是说只用一根I/O引线完成数据的输入输出功能,所以它的体积很小,而且电压适用范围在3-5.5V,封装形式除有SO/uSO的8PIN贴片式,还有更方便的三极管形式的TO-92封装<封装形式和引脚说明请看图一)。

(完整版)读取DS18B20温度传感器的64位ID号方法及程序

(完整版)读取DS18B20温度传感器的64位ID号方法及程序

#include <reg52.h>#define uchar unsigned char#define uint unsigned int/********************************************************************/ sbit DQ = P2^2; //温度传感器信号线sbit rs = P3^5; //LCD数据/命令选择端(H/L)位声明sbit lcden = P3^4; //LCD使能信号端位声明/********************************************************************/ //uint temp; //定义整型的温度数据//float f_temp; //定义浮点型的温度数据//uint warn_11 = 270; //定义温度设定值,是温度值乘以10后的结果//uint warn_12 = 250; //定义温度下限值//uint warn_h1 = 300; //定义温度上限值/********************************************************************/ void delay(uint z); //延时函数void DS18B20_Reset(void); //DQ18B20复位,初始化函数bit DS18B20_Readbit(void); //读1位数据函数uchar DS18B20_ReadByte(void); //读1个字节数据函数void DS18B20_WriteByte(uchar dat); //向DQ18B20写一个字节数据函数void LCD_WriteCom(uchar com); //1602液晶命令写入函数void LCD_WriteData(uchar dat); //1602液晶数据写入函数void LCD_Init(); //LCD初始化函数void Display18B20Rom(char Rom); //显示18B20序列号函数/**********************************************//* 主函数 *//**********************************************/void main(){ uchar a,b,c,d,e,f,g,h;LCD_Init();DS18B20_Reset();delay(1);DS18B20_WriteByte(0x33);delay(1);a = DS18B20_ReadByte();b = DS18B20_ReadByte();c = DS18B20_ReadByte();d = DS18B20_ReadByte();e = DS18B20_ReadByte();f = DS18B20_ReadByte();g = DS18B20_ReadByte();h = DS18B20_ReadByte();LCD_WriteCom(0x80+0x40);Display18B20Rom(h);Display18B20Rom(g);Display18B20Rom(f);Display18B20Rom(e);Display18B20Rom(d);Display18B20Rom(c);Display18B20Rom(b);Display18B20Rom(a);while(1);}/***************************************************//* 延时函数:void delay() *//* 功能:延时函数 *//***************************************************/void delay(uint z)//延时函数{uint x,y;for( x = z; x > 0; x-- )for( y = 110; y > 0; y-- );}/***************************************************//* DS18B20函数:void DS18B20_Reset() *//* 功能:复位18B20 */ /***************************************************/void DS18B20_Reset(void)//DQ18B20复位,初始化函数{uint i;DQ = 0;i = 103;while( i > 0 ) i--;DQ = 1;i = 4;while( i > 0 ) i--;}/***************************************************//* DS18B20函数:void DS18B20_Readbit() *//* 功能:读1个字节数据函数 *//***************************************************/bit DS18B20_Readbit(void) //读1位数据函数{uint i;bit dat;DQ = 0;i++; //i++起延时作用DQ = 1;i++;i++;dat = DQ;i = 8;while( i > 0 )i--;return( dat );}/***************************************************//* DS18B20函数:void DS18B20_ReadByte() *//* 功能:读1个字节数据函数 */ /***************************************************/uchar DS18B20_ReadByte(void) //读1个字节数据函数{uchar i,j,dat;dat = 0;for( i = 1; i <= 8; i++ ){j = DS18B20_Readbit();dat = ( j << 7 ) | ( dat >> 1 );}return(dat);}/***************************************************//* DS18B20函数:void DS18B20_WriteByte() *//* 功能:向DQ18B20写一个字节数据函数 *//***************************************************/void DS18B20_WriteByte(uchar dat) //向DQ18B20写一个字节数据函数{uint i;uchar j;bit testb;for( j=1; j<=8; j++){testb = dat&0x01;dat= dat>>1;if(testb) //写1{DQ = 0;i++;i++;DQ = 1;i = 8;while(i>0)i--;}else{DQ = 0; //写0i = 8;while(i>0)i--;DQ = 1;i++;i++;}}}/***********************************************//* LCD函数:void LCD_WriteCom() *//* 功能:向LCD写入命令 *//***********************************************/void LCD_WriteCom(uchar com){rs = 0;P0 = com;delay(5);lcden = 0;delay(5);lcden = 1;delay(5);lcden = 0;}/***********************************************//* LCD函数:void LCD_WriteData(uchar dat) *//* 功能:向LCD写入数据 *//***********************************************/void LCD_WriteData(uchar dat){rs = 1; //选择LCD为写入数据状态lcden = 0;P0 = dat; //将待写入数据放到总线上delay(5);lcden = 1; //给LCD使能端一个脉冲delay(5); //信号将之前放到总线上lcden = 0; //的数据写入LCDdelay(5);}/***********************************************//* LCD函数:void LCD_Init() */ /* 功能:初始化LCD,设定LCD的初始状态 *//***********************************************/void LCD_Init(){LCD_WriteCom(0x38); //LCD显示模式设定delay(15);LCD_WriteCom(0x08); //关闭LCD显示delay(3);LCD_WriteCom(0x01); //LCD显示清屏delay(3);LCD_WriteCom(0x06); //设定光标地址指针为自动加1delay(3);LCD_WriteCom(0x0c); //打开LCD显示,但不显示光标}/**********************************************//* */ /* 显示18B20序列号 *//* *//**********************************************/void Display18B20Rom(char Rom){uchar h,l;l = Rom & 0x0f; //取低4位h = Rom & 0xf0; //取高4位h >>= 4;if( ( h >= 0x00 )&&( h <= 0x09 ) )LCD_WriteData(h+0x30); //取ASCII码elseLCD_WriteData(h+0x37); //取ASCII码if( ( l >= 0x00 )&&( l <= 0x09 ) )LCD_WriteData(l+0x30); //取ASCII码elseLCD_WriteData(l+0x37); //取ASCII码}。

DS18B20水温控制系统+电路图程序资料

DS18B20水温控制系统+电路图程序资料

水温控制系统摘要:该水温控制系统采用单片机进行温度实时采集与控制。

温度信号由“一线总线”数字化温度传感器DS18B20提供,DS18B20在-10~+85°C范围内, 固有测温分辨率为0.5 ℃。

水温实时控制采用继电器控制电热丝和风扇进行升温、降温控制。

系统具备较高的测量精度和控制精度,能完成升温和降温控制。

关键字: AT89C51 DS18B20 水温控制Abstract: This water temperature control system uses the Single Chip Microcomputer to carry on temperature real-time gathering and controling. DS18B20, digitized temperature sensor, provides the temperature signal by "a main line". In -10~+85℃the scope, DS18B20’s inherent measuring accuracy is 0.5 ℃. The water temperature real-time control system uses the electricity nichrome wire carring on temperature increiseament and operates the electric fan to realize the temperature decrease control. The system has the higher measuring accuracy and the control precision, it also can complete the elevation of temperature and the temperature decrease control.Key Words:AT89C51 DS18B20 Water temperature control目录1. 系统方案选择和论证 (2)1.1 题目要求 (2)1.1.1 基本要求 (2)1.1.2 发挥部分 (2)1.1.3 说明 (2)1.2 系统基本方案 (2)1.2.1 各模块电路的方案选择及论证 (2)1.2.2 系统各模块的最终方案 (5)2. 硬件设计与实现 (6)2.1系统硬件模块关系 (6)2.2 主要单元电路的设计 (6)2.2.1 温度采集部分设计 (6)2.2.2 加热控制部分 (8)2.2.3 键盘、显示、控制器部分 (8)3. 系统软件设计 (10)3.1 读取DS18B20温度模块子程序 (10)3.2 数据处理子程序 (10)3.3 键盘扫描子程序 (12)3.4 主程序流程图 (13)4. 系统测试 (14)4.1 静态温度测试 (14)4.2动态温控测量 (14)4.3结果分析 (14)附录1:产品使用说明 (15)附录2:元件清单 (15)附录3:系统硬件原理图 (16)附录4:软件程序清单 (17)参考文献 (26)1.系统方案选择和论证1.1题目要求设计并制作一个水温自动控制系统,控制对象为1L净水,容器为搪瓷器皿。

DS18B20程序包含温度设置、报警、华氏温度和摄氏温度转换

DS18B20程序包含温度设置、报警、华氏温度和摄氏温度转换

DS18B20程序包含温度设置、报警、华氏温度和摄氏温度转换# include# includefloat flag=0;unsigned int up=30,down=20,kf=1,hfflag=1,hf;//up为报警温度上限值,down为报警温度下限值;//kf为报警温度设定标志位,kf为1,数码管显示温度值,kf=0,进入报警温度设定选项。

//hfflag为摄氏度与华氏温度转换标志位,hfflag=1,显示的为摄氏度值,hfflag=0,显示的为华氏温度值。

//hf为用来存储华氏温度。

sbit DQ = P2^0; //ds18b20 端口unsigned char tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x39,0 x63,0x40,0x71};//0x39,0x63用来显示摄氏度,0x40用来显示--。

unsigned char tabb[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; //带有小数点的0-9. void displayset();void delayms( int x) //延时1ms函数{int m,j;for(m=1;m<=x;m++)for(j=1;j<=123;j++);}void reset()//对ds18b20进行复位{ unsigned int i;DQ = 1; //DQ复位_nop_(); //稍做延时,此为延时1ms函数DQ = 0; //单片机将DQ拉低i=70;while(i>0) i--; //根据协议要满足大于480usDQ = 1; //拉高总线i=4;while(i>0) i--;}void dswait() //等待ds18b20响应的函数{while(DQ);while(~DQ); //检测到应答脉冲}bit readone()//读取一位数据{ unsigned int i;bit b;DQ=0;i++; //根据资料,进行一次unsigned int 型数据的++,大约为8us时间,此处i++,符合协议要求至少保持1usDQ=1;i++;i++; //延时约16us, 符合协议要求的至少延时15us以上b=DQ;i=8;while(i>0) i--; //延时约64us, 符合读时隙不低于60us要求return(b);}unsigned char readB()//读取一字节数据{unsigned int i;unsigned char j,dat=0;for(i=0;i<8;i++){j=readone();dat=(j<<7)|(dat>>1);//将每一次输出的值通过移位相或送到dat}return(dat);}void writeB(unsigned char dat)//写操作,通过次函数可以控制ds18b20进行一系列操作{unsigned int i;unsigned char j;bit b;for(j=0;j<8;j++){b= dat & 0x01;dat >>=1;if(b) //写"1", 将DQ拉低15us后, 在15us~60us内将DQ拉高, 即完成写1{DQ=0;i++;i++; //此处延时16us。

(完整word版)DS18B20水温控制系统+电路图程序

(完整word版)DS18B20水温控制系统+电路图程序

水温控制系统摘要:该水温控制系统采用单片机进行温度实时采集与控制。

温度信号由“一线总线”数字化温度传感器DS18B20提供,DS18B20在-10~+85°C范围内,固有测温分辨率为0.5 ℃。

水温实时控制采用继电器控制电热丝和风扇进行升温、降温控制.系统具备较高的测量精度和控制精度,能完成升温和降温控制。

关键字:AT89C51 DS18B20 水温控制Abstract: This water temperature control system uses the Single Chip Microcomputer to carry on temperature real-time gathering and controling。

DS18B20,digitized temperature sensor, provides the temperature signal by "a main line”. In -10~+85℃the scope,DS18B20’s inherent measuring accuracy is 0.5 ℃. The water temperature real-time control system uses the electricity nichrome wire carring on temperature increiseament and operates the electric fan to realize the temperature decrease control。

The system has the higher measuring accuracy and the control precision,it also can complete the elevation of temperature and the temperature decrease control. Key Words:AT89C51 DS18B20 Water temperature control目录1.系统方案选择和论证 (2)1。

ds18b20详解及程序

ds18b20详解及程序

最近都在学习和写单片机的程序, 今天有空又模仿DS18B20温度测量显示实验写了一个与DS18B20基于单总线通信的程序.DS18B20 数字温度传感器(参考:智能温度传感器DS18B20的原理与应用)是DALLAS 公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。

因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计。

DS18B20 产品的特点:(1)、只要求一个I/O 口即可实现通信。

(2)、在DS18B20 中的每个器件上都有独一无二的序列号。

(3)、实际应用中不需要外部任何元器件即可实现测温。

(4)、测量温度范围在-55 到+125℃之间; 在-10 ~ +85℃范围内误差为±5℃; (5)、数字温度计的分辨率用户可以从9 位到12 位选择。

将12位的温度值转换为数字量所需时间不超过750ms;(6)、内部有温度上、下限告警设置。

DS18B20引脚分布图DS18B20 详细引脚功能描述:1、GND 地信号;2、DQ数据输入出引脚。

开漏单总线接口引脚。

当被用在寄生电源下,此引脚可以向器件提供电源;漏极开路, 常太下高电平. 通常要求外接一个约5kΩ的上拉电阻.3、VDD可选择的VDD 引脚。

电压范围:3~5.5V; 当工作于寄生电源时,此引脚必须接地。

DS18B20存储器结构图暂存储器的头两个字节为测得温度信息的低位和高位字节;第3, 4字节是TH和TL的易失性拷贝, 在每次电复位时都会被刷新;第5字节是配置寄存器的易失性拷贝, 同样在电复位时被刷新;第9字节是前面8个字节的CRC检验值.配置寄存器的命令内容如下:MSB LSBR0和R1是温度值分辨率位, 按下表进行配置.默认出厂设置是R1R0 = 11, 即12位.4种分辨率对应的温度分辨率为0.5℃, 0.25℃, 0.125℃, 0.0625℃(即最低一位代表的温度值)12位分辨率时的两个温度字节的具体格式如下:其中高字节前5位都是符号位S, 若分辨率低于12位时, 相应地使最低为0, 如: 当分辨率为10位时, 低字节为:, 高字节不变....由上表可看出, 当输出是负温度时, 使用补码表示, 方便计算机运算(若是用C语言, 直接将结果赋值给一个int变量即可).DS18B20 的使用方法:由于DS18B20 采用的是1-Wire 总线协议方式,即在一根数据线实现数据的双向传输,而对单片机来说,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。

DS18B20多点测温(51C程序)

DS18B20多点测温(51C程序)

DS18B20多点测温由于本人在前两天找DS18B20多点测温(51 C程序),网上下载了很多,但是都不是很理想,后来,自己总结前人的知识,重新写了这个程序。

其中包括程序一:单个读序列号。

程序二,匹配并且读两个DS18B20,当然,读多个与读两个基本原理一样,只要加上其序列号等即可。

本程序所有显示都是用LCD1602显示。

程序一:度序列号,并用1602显示,1602从左到右分别是低到高位。

#include<reg51。

h>#define uchar unsigned char#define uint unsigned intsbit DQ=P3^7;//ds18b20与单片机连接口sbit RS=P3^0;sbit RW=P3^1;sbit EN=P3^2;unsigned char code str1[]={" "};unsigned char code str2[]={” ”};uchar fCode[8];uchar data disdata[5];uint tvalue;//温度值uchar tflag;//温度正负标志/*************************lcd1602程序**************************/void delay1ms(unsigned int ms)//延时1毫秒(不够精确的){unsigned int i,j;for(i=0;i<ms;i++)for(j=0;j〈100;j++);}void wr_com(unsigned char com)//写指令//{delay1ms(1);RS=0;RW=0;EN=0;P2=com;delay1ms(1);EN=1;delay1ms(1);EN=0;}void wr_dat(unsigned char dat)//写数据//{delay1ms(1);;RS=1;RW=0;EN=0;P2=dat;delay1ms(1);EN=1;delay1ms(1);EN=0;}void lcd_init()//初始化设置//{delay1ms(15);wr_com(0x38);delay1ms(5);wr_com(0x08);delay1ms(5);wr_com(0x01);delay1ms(5);wr_com(0x06);delay1ms(5);wr_com(0x0c);delay1ms(5);}void display(unsigned char *p)//显示//{while(*p!=’\0'){wr_dat(*p);p++;delay1ms(1);}}void init_play()//初始化显示{lcd_init();wr_com(0x80);display(str1);wr_com(0xc0);display(str2);}/******************************ds1820 *********************/ void delay_18B20(unsigned int i)//延时1微秒{while(i——);}void ds1820rst()/*ds1820复位*/{ uchar x=0;DQ = 1; //DQ复位delay_18B20(4);//延时DQ = 0;//DQ拉低delay_18B20(100); //精确延时大于480us DQ = 1; //拉高delay_18B20(40);}uchar ds1820rd()/*读数据*/{ uchar i=0;uchar dat = 0;for (i=8;i〉0;i--){ DQ = 0;//给脉冲信号dat>〉=1;DQ = 1;//给脉冲信号if(DQ)dat|=0x80;delay_18B20(10);}return(dat);}void ds1820wr(uchar wdata)/*写数据*/ {uchar i=0;for (i=8; i>0;i——){ DQ = 0;DQ = wdata&0x01;delay_18B20(10);DQ = 1;wdata>>=1;}}read_temp()/*读取温度值并转换*/ {uchar a,b;ds1820rst();ds1820wr(0xcc);//*跳过读序列号*/ds1820wr(0x44);//*启动温度转换*/ds1820rst();ds1820wr(0xcc);//*跳过读序列号*/ds1820wr(0xbe);//*读取温度*/a=ds1820rd();b=ds1820rd();tvalue=b;tvalue<〈=8;tvalue=tvalue|a;if(tvalue<0x0fff)tflag=0;else{tvalue=~tvalue+1;tflag=1;}tvalue=tvalue*(0.625);//温度值扩大10倍,精确到1位小数return(tvalue);}/*******************************************************************/void ds1820disp()//温度值显示{ uchar flagdat;disdata[0]=tvalue/1000+0x30;//百位数disdata[1]=tvalue%1000/100+0x30;//十位数disdata[2]=tvalue%100/10+0x30;//个位数disdata[3]=tvalue%10+0x30;//小数位if(tflag==0)flagdat=0x20;//正温度不显示符号elseflagdat=0x2d;//负温度显示负号:—if(disdata[0]==0x30){disdata[0]=0x20;//如果百位为0,不显示if(disdata[1]==0x30){disdata[1]=0x20;//如果百位为0,十位为0也不显示}}wr_com(0xc0);wr_dat(flagdat);//显示符号位wr_com(0xc1);wr_dat(disdata[0]);//显示百位wr_com(0xc2);wr_dat(disdata[1]);//显示十位wr_com(0xc3);wr_dat(disdata[2]);//显示个位wr_com(0xc4);wr_dat(0x2e);//显示小数点wr_com(0xc5);wr_dat(disdata[3]);//显示小数位}void DispCode(){unsigned char i,temp;ds1820rst();ds1820wr(0x33);for (i=0;i〈8;i++){fCode[i]=ds1820rd();}wr_com(0x80+0x40);for (i=0;i<8;i++){temp = fCode[i]〉>4; //显示高四位if (temp〈10)wr_dat(temp + 0x30);elsewr_dat(temp + 0x37);temp = fCode[i]&0x0f;//显示低四位if (temp〈10)wr_dat(temp+ 0x30);elsewr_dat(temp + 0x37);}}/********************主程序***********************************/ void main(){init_play();//初始化显示DispCode(); //系列号显示delay1ms(1000);while(1){//read_temp();//读取温度// ds1820disp();//显示;}}程序二:匹配序列号,并读温度。

完整DS18B20温度测控程序

完整DS18B20温度测控程序

#include<reg52.h>sbit s2=P0^0;sbit led=P1^3;unsigned char wendushangxian=0;sbit DQ=P1^6;sbit wei1=P3^0;sbit wei2=P3^1;sbit wei3=P3^2;sbit wei4=P3^3;sbit key_Max_jia=P0^0;sbit key_Max_jian=P0^1;sbit key_Min_jia=P0^2;sbit key_Min_jian=P0^3;sbit dianji_jian=P1^2;sbit dianji_jia=P1^7;sbit Led_tempreture_Max=P1^3;sbit Led_tempreture_Min=P1^4;sbit Led_normal=P1^5;unsigned char num[11]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xbf}; int tempreture_Max=40;int tempreture_Min=-10;void delay_mylself(int temp){unsigned int i,j;for(i=0;i<temp;i++)for(j=0;j<1140;j++);}void delay(unsigned int i) //如果i是unsigend char类型,则会出现错误结果{while(i--);}void DS18B20_Init(void)//初始化{unsigned char flag=0;DQ = 1; //DQ复位delay(1);DQ = 0; //单片机将DQ拉低delay(80); //精确延时大于480us小于960usDQ = 1; //拉高总线delay(6);while(DQ);while(!DQ);//flag=DQ; //稍做延时后如果flag=0则初始化成功flag=1则初始化失败//delay(30);}unsigned char Read(void)//读字节{unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){DQ = 0; // 给脉冲信号dat>>=1;DQ = 1; // 给脉冲信号if(DQ)dat|=0x80;delay(5);}return(dat);}void Write(unsigned char dat)//写字节{unsigned char i=0;for (i=8; i>0; i--){DQ = 0;DQ = dat&0x01;delay(5);DQ = 1;dat>>=1;}}void init(){wei1=0;wei2=0;wei3=0;wei4=0;}void Display(unsigned int temp){unsigned char one,two,three,four;int wendu=0;if(temp<=0xf000){ temp>>=4; //右移4位,相当于乘0.0625,将温度化为十进制//temp*=10; //扩大10倍,显示一位小数one=temp/1000; //千位two=temp%1000/100; //百位three=temp%1000%100/10; //十位four=temp%1000%100%10; //个位wendu=temp;}else{temp=~temp;temp+=1;temp>>=4;one=10; //负数two=temp%1000/100; //百位three=temp%1000%100/10; //十位four=temp%1000%100%10; //个位wendu=-temp;}if(wendu>tempreture_Max){Led_tempreture_Max=0;Led_tempreture_Min=1;Led_normal=1;dianji_jian=1;dianji_jia=0;}else if(wendu<tempreture_Min){Led_tempreture_Max=1;Led_tempreture_Min=0;Led_normal=1;dianji_jia=1;dianji_jian=0;}else{Led_tempreture_Max=1;Led_tempreture_Min=1;Led_normal=0;dianji_jian=0;dianji_jia=0;}//第1位wei1=1;wei2=0;wei3=0;wei4=0;P2=num[one];delay_mylself(1);//第2位wei1=0;wei2=1;wei3=0;wei4=0;P2=num[two];delay_mylself(1);//第3位wei1=0;wei2=0;wei3=1;wei4=0;P2=num[three];delay_mylself(1);//第4位wei1=0;wei2=0;wei3=0;wei4=1;P2=num[four];delay_mylself(10);}void common_display(int temp){unsigned char one,two,three,four;one=temp/1000; //千位two=temp%1000/100; //百位three=temp%1000%100/10; //十位four=temp%1000%100%10; //个位if(temp<0){temp=-temp;two=temp%1000/100; //百位three=temp%1000%100/10; //十位four=temp%1000%100%10; //个位//第1位wei1=1;wei2=0;wei3=0;wei4=0;P2=num[10];delay_mylself(50);}else{//第1位wei1=1;wei2=0;wei3=0;wei4=0;P2=num[one];delay_mylself(50);}//第2位wei1=0;wei2=1;wei3=0;wei4=0;P2=num[two];delay_mylself(50);//第3位wei1=0;wei2=0;wei3=1;wei4=0;P2=num[three];delay_mylself(50);//第4位wei1=0;wei2=0;wei3=0;wei4=1;P2=num[four];delay_mylself(60);}void key(){unsigned char flag=0;if(key_Max_jia==0){flag=1;tempreture_Max+=1;if(tempreture_Max>125){tempreture_Max=125;}while(!key_Max_jia); //按键松手检测}else if(key_Max_jian==0){flag=2;tempreture_Max-=1;if(tempreture_Max<tempreture_Min){tempreture_Max=tempreture_Min;}while(!key_Max_jian); //按键松手检测}else if(key_Min_jia==0){flag=3;tempreture_Min+=1;if(tempreture_Min>tempreture_Max){tempreture_Min=tempreture_Max;}while(!key_Min_jia); //按键松手检测}else if(key_Min_jian==0){flag=4;tempreture_Min-=1;if(tempreture_Min<-55){tempreture_Min=-55;}while(!key_Min_jian); //按键松手检测}if(flag==1||flag==2){common_display(tempreture_Max);delay_mylself(200);flag=0;}else if(flag==4||flag==3){common_display(tempreture_Min);delay_mylself(200);flag=0;}}void main(){unsigned int temp;unsigned char tl=0,th=0;while(1){DS18B20_Init();Write(0xCC); // 跳过读序号列号的操作Write(0x44); // 启动温度转换delay(100);DS18B20_Init();Write(0xCC); //跳过读序号列号的操作Write(0xBE); //读取温度寄存器等delay(100);tl=Read(); //读取温度值低位th=Read(); //读取温度值高位temp=th<<8;temp|=tl;Display(temp);key();}}。

DS18b20温度测量程序。单片机C51控制

DS18b20温度测量程序。单片机C51控制

//DS18B20的读写程序,数据脚P3.3 ////温度传感器18B20汇编程序,采用器件默认的12位转化 ////最大转化时间750微秒,显示温度-55到+125度,显示精度 ////为0.1度,显示采用4位LED共阳显示测温值 ////P0口为段码输入,P24~P27为位选 ///***************************************************/#include "reg51.h"#include "intrins.h" //_nop_();延时函数用#define Disdata P1 //段码输出口#define discan P0 //扫描口#define uchar unsigned char#define uint unsigned intsbit DQ=P3^2; //温度输入口uint h;//**************温度小数部分用查表法***********//uchar code ditab[16]={0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x08,0x08,0x09,0x09 };//uchar dd[10]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09};//共阳LED段码表 "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "不亮" "-"uchar scan_con[4]={0x00,0x01,0x02,0x03}; //列扫描控制字uchar temp_data[2]={0x00,0x00}; //读出温度暂放uchar display[4]={0x00,0x00,0x00,0x00,}; //显示单元数据,共4个数据和一个运算暂用///////***********11微秒延时函数**********///void delay(uint t){for(;t>0;t--);}///***********显示扫描函数**********/scan(){uchar k;for(k=0;k<3;k++){P0=0xff;dd[k]=dd[display[k]];dd[k]=dd[k]*16;dd[k]=dd[k]|scan_con[k];P0=dd[k];delay(90);P0=0xff;}}/////***********18B20复位函数**********/ ow_reset(void){char presence=1;while(presence){while(presence){DQ=1;_nop_();_nop_();DQ=0; //delay(50); // 550usDQ=1; //delay(6); // 66uspresence=DQ; // presence=0继续下一步 }delay(45); //延时500uspresence = ~DQ;}DQ=1;}/////**********18B20写命令函数*********/ //向 1-WIRE 总线上写一个字节void write_byte(uchar val){uchar i;for (i=8; i>0; i--) //DQ=1;_nop_();_nop_();DQ = 0;_nop_();_nop_();_nop_();_nop_();_nop_();//5us DQ = val&0x01; //最低位移出delay(6); //66usval=val/2; //右移一位}DQ = 1;delay(1);}///*********18B20读1个字节函数********///从总线上读取一个字节uchar read_byte(void){uchar i;uchar value = 0;for (i=8;i>0;i--){DQ=1;_nop_();_nop_();value>>=1;DQ = 0; //_nop_();_nop_();_nop_();_nop_(); //4usDQ = 1;_nop_();_nop_();_nop_();_nop_(); //4usif(DQ)value|=0x80;delay(6); //66us}DQ=1;return(value);}///***********读出温度函数**********///read_temp(){ow_reset(); //总线复位write_byte(0xCC); // 发Skip ROM命令write_byte(0xBE); // 发读命令temp_data[0]=read_byte(); //温度低8位temp_data[1]=read_byte(); //温度高8位ow_reset();write_byte(0xCC); // Skip ROMwrite_byte(0x44); // 发转换命令}/***********温度数据处理函数**********/void work_temp(){display[3]=temp_data[0]&0x0f;display[0]=ditab[display[3]]; //小数部分display[3]=((temp_data[0]&0xf0)>>4)|((temp_data[1]&0x07)<<4); display[2]=display[3]/10%10;display[1]=display[3]%10;}/////**************主函数****************/main(){Disdata=0xff; //初始化端口discan=0xff;ow_reset(); // 开机先转换一次write_byte(0xCC); // Skip ROMwrite_byte(0x44); // 发转换命令for(h=0;h<500;h++){scan();} //开机显示"0000"2秒while(1){read_temp(); //读出18B20温度数据work_temp(); //处理温度数据scan(); //显示温度值2秒}}////*********************结束**************************//。

DS18B20数字温度计的主程序

DS18B20数字温度计的主程序

主程序ORG 0000HLJMP STARTSTART: MOV DISBUF4,#00H ;开始,初始化MOV DISBUF5, #00HMAIN: ;主程序LCAAL KEY ;调按键预置数子程序CLR RS1CLR RS0LCALL RESET ;调复位子程序MOV A,#0CCH ;跳过ROM匹配------0CCLCALL WRITE ;调DS18B20子程序MOV A,#44H ;发出温度转换命令LCALL WRITE ;调DS18B20子程序LCALL RESET ;调复位子程序MOV A,#0CCH ;跳过ROM匹配LCALL WRITE ;调DS18B20子程序MOV A,#0BEH ;发出读取温度值命令LCALL WRITE ;调DS18B20子程序LCALL READ ;调DS18B20子程序MOV A, 3DHMOV 29H,ALCALL READMOV A, 3DHMOV 28H,AMOV R0, #34HMOV A, 28HRLC AMOV 47H,CJNB 47H, BTOD1 ;28H中的最高位是不是为1(温度<0);小于0的温度值不处置,大于0顺序执行BTOD1: MOV A, 28HRRC AMOV 40H,CRRC AMOV 41H,CRRC AMOV 42H,CRRC AMOV 43H,CMOV A, 29HMOV 27H, AMOV C,40H ;将28H中的最低位移入C,40H41H42H43H ;为28H中的位地址RRC A ;将28H中的低4位移到A的高4位MOV C, 41HRRC AMOV C, 42HRRC AMOV C, 43HRRC AMOV 29H,A ;将28H中的低4位放入29H中MOV A, 29H ;将29H中的十六进制数转换成10进制MOV B, #100DIV ABMOV @R0, A ;百位存于34HMOV @R0, #11H ;百位不显示DEC R0MOV A, #10XCH A, BDIV ABMOV @R0, A ;十位存于33HDEC R0MOV @R0, B ;个位存于32HDEC R0ANL 27H, #0FH ;小数点后一名进制转换MOV A, 27HMOV B, #06HMUL ABMOV B, #10DIV ABMOV @R0, A ;小数点后一名存于31HMOV DISBUF0,33H ;十位MOV DISBUF1,32H ;个位MOV DISBUF2,31H ;小数位MOV DISBUF3, #0H ;置0MOV DISBUF6, #0HMOV DISBUF7, #0HLCALL CMP ;调比较报警子程序LCALL DISPLAY ;调显示子程序LJMP MAIN ;转到MAINDS18B20复位子程序RESET: NOPL0: CLR ;拉低数据线MOV R2,#200 ;发出600us的复位脉冲L1: NOPDJNZ R2, L1SETB ;主机释放数据线MOV R2,#30 ;DS18B20等待60usL4: DJNZ R2, L4CLR CORL C, ;DS18B20数据变低(存在脉冲)吗?JC L3 ;DS18B20未预备好,从头初始化MOV R6, #80L5: ORL C,JC L3 ;DS18B20数据变高,初始化成功DJNZ R6,L5 ;数据线低电平可持续3us*80=240us SJMP L0 ;初始化失败,从头初始化L3: MOV R2, #250L2: DJNZ R2,L2 ;DS18B20应答500usRET读DS18B20子程序READ: MOV R6,#8 ;循环8次,读一个字节RE1: CLRMOV R4, #6NOPNOPSETBRE2: DJNZ R4,RE2 ;等待8USMOV C, ;读DS18B20的数据RRC A ;读取的数据移入AMOV R5, #30DJNZ R6,RE1 ;读完一个字节的数据MOV 3DH,A ;数据存入3DH中SETB ;把数据线拉高RET写DS18B20子程序;写DS18B20的子程序, 从DS18B20中写出一个字节的数据WRITE: MOV R3,#8 ;循环8次,写一个字节WR1: SETB ;拉高数据线MOV R4, #8RRC A ;写入位从A中移到CYCLRWR2: DJNZ R4,WR2 ;等待16USMOV ,C ;命令字按位依次送给DS18B20MOV R4, #20WR3: DJNZ R4,WR3 ;保证写进程持续40USDJNZ R3,WR1 ;未写完一个字节转WR1继续SETB ;写完一个字节,数据线置高RET比较报警子程序CMP: MOV A,DISBUF0 ;实际测量温度值放在DISBUF8中SWAP AMOV DISBUF8, AMOV A, DISBUF1ORL A, DISBUF8MOV DISBUF8, AMOV A,DISBUF4 ;预置温度值放在DISBUF9中SWAP AMOV DISBUF9, AMOV A, DISBUF5ORL A, DISBUF9MOV DISBUF9, ACLR CMOV A, DISBUF8SUBB A, DISBUF9JNC KK ;没有借位,即实际温度值大于;预置温度值转KKCLR ;有借位,即实际温度值小于预置温度值;置0,不发报警信号RETKK: SETB ;置1,即发出报警标志发光二极管亮RET按键子程序KEY: JNB , YZBWJNB , YZSWLJMP KEYRET YZBW: LCALL DELAY1JB , KEYRETJNB , $INC DISBUF5MOV A, DISBUF4CJNE A, #10,KEYRETMOV DISBUF4, #0LJMP KEYRETYZSW: LCALL DELAY1JB , KEYRETJNB , $INC DISBUF5MOV A, DISBUF5CJNE A, #10,KEYRETMOV DISBUF5, #0 KEYRET: RET显示子程序DISPLAY: MOV A, DISBUF0MOV DPTR, #SEGMOVC A, @A+DPTRMOV P1, AMOV P2, #00000001BLCALL DELAY1MOV P2, #00000000BMOV A, DISBUF1MOV DPTR, #SEGMOVC A, @A+DPTRORL A, #80HMOV P1, AMOV P2, #00000010BLCALL DELAY1MOV P2, #00000000BMOV A, DISBUF2MOV DPTR, #SEGMOVC A, @A+DPTRMOV P1, AMOV P2, #00000100BLCALL DELAY1MOV P2, #00000000BMOV A, DISBUF3MOV DPTR, #SEGMOVC A, @A+DPTRMOV P1, AMOV P2, #00001000BLCALL DELAY1MOV P2, #00000000BMOV A, DISBUF4MOV DPTR, #SEGMOVC A, @A+DPTRMOV P1, AMOV P2, #00010000BLCALL DELAY1MOV P2, #00000000BMOV A, DISBUF5MOV DPTR, #SEGMOVC A, @A+DPTRMOV P1, AMOV P2, #00100000BLCALL DELAY1MOV P2, #00000000BMOV A, DISBUF6MOV DPTR, #SEGMOVC A, @A+DPTRMOV P1, AMOV P2, #00000000BLCALL DELAY1MOV P2, #00000000BMOV A, DISBUF7MOV DPTR, #SEGMOVC A, @A+DPTRMOV P1, AMOV P2, #00000000BLCALL DELAY1MOV P2, #00000000BRET; (00) (01) (02) (03) (04)SEG: DB 03FH, 06H, 05BH, 04FH, 066H ; (05) (06) (07) (08) (09)DB 06DH, 07DH, 007H, 07FH, 06FH ;延时子程序DELAY1: MOV R1, #0A0HDEL11: NOPDJNZ R1, DEL11RETEND;工作内存概念:DISBUF0 EQU 10H DISBUF1 EQU 11H DISBUF2 EQU DISBUF1+1 DISBUF3 EQU DISBUF2+1 DISBUF4 EQU DISBUF3+1 DISBUF5 EQU DISBUF4+1 DISBUF6 EQU DISBUF5+1 DISBUF7 EQU DISBUF6+1 DISBUF8 EQU DISBUF7+1 DISBUF9 EQU DISBUF8+1。

DS18B20温度传感器详解带c程序

DS18B20温度传感器详解带c程序

00A2H
+0.5
0000 0000 0000 000
0000H
-0.5
1111 1111 1111 1000
FFF8H
-10.125
1111 1111 0110 1110
FF5EH
-25.0625
1111 1110 0110 1111
FF6FH
-55 执行序列与介绍 3.1 执行序列
duan=1; switch(i) {
case 0: if(zf==0) P1=numfh[zf];
else if(bai!=0) P1=numd[bai]; else if(shi!=0) P1=numd[shi]; else P1=numdg[ge]; break;
case 1: if(zf==0&&shi!=0) P1=numd[shi];
表 3.2 DS18B20 温度/数字对应关系表
温度(℃)
输出的二进制码
对应的十六进制码
+125
0000 0111 1101 0000
07D0H
+85
0000 0101 0101 0000
0550H
+25.0625
0000 0001 1001 0001
0191H
+10.125
0000 0000 1010 0010
uchar x,y; for(x=z;x>0;x--)
for(y=110;y>0;y--); } /******************15us 延时函数****************/ void delay(uint z) {
while(z--); } /******************初始化 DS18B20 函数****************/ void reset_ds18b20() {

ds18b20程序设计

ds18b20程序设计

ds18b20程序设计如何使用ds18b20编写程序设计。

DS18B20是一种数字温度传感器,它可以通过编程来读取环境温度信息。

本文将详细介绍如何使用DS18B20进行程序设计,以帮助读者了解如何在自己的项目中应用这款传感器。

第一步:准备工作在开始实际的程序设计之前,我们需要准备一些硬件和软件工具。

首先,我们需要一块支持DS18B20的硬件平台,例如Arduino、树莓派或其他微控制器。

其次,我们需要一块DS18B20传感器和一些杜邦线用于连接。

最后,我们需要一个编程环境,例如Arduino IDE或树莓派的Python开发环境。

第二步:连接硬件将DS18B20传感器与硬件平台连接起来是第二个关键步骤。

DS18B20传感器有三个引脚,其中一个是地线(GND),一个是电源(VCC),还有一个是数据线(DATA)。

将GND引脚连接到硬件平台的地线引脚,将VCC 引脚连接到硬件平台的电源引脚,将DATA引脚连接到硬件平台的数字引脚。

确保连接正确后,我们可以进入下一步。

第三步:配置硬件平台在编程之前,我们需要配置硬件平台,以便能够与DS18B20传感器进行通信。

具体配置的方式取决于使用的硬件平台。

在Arduino中,我们可以使用OneWire库来与DS18B20传感器进行通信。

在树莓派中,我们需要通过GPIO引脚来与传感器进行通信。

了解所使用硬件平台的配置方式是非常重要的。

第四步:编写程序一旦硬件平台配置完成,我们可以开始编写程序。

程序的目标是读取DS18B20传感器的温度数据并将其显示出来。

以下是使用Arduino IDE 编写的简单示例代码:#include <OneWire.h>#include <DallasTemperature.h>数据线引脚连接到Arduino的数字引脚2#define ONE_WIRE_BUS 2OneWire oneWire(ONE_WIRE_BUS);DallasTemperature sensors(&oneWire);void setup() {Serial.begin(9600);sensors.begin();}void loop() {sensors.requestTemperatures();float temperature = sensors.getTempCByIndex(0);Serial.print("Temperature: ");Serial.println(temperature);delay(1000);}上述代码首先引入了两个库:OneWire和DallasTemperature。

DS18B20测温程序

DS18B20测温程序

//温度高于26摄氏度则蜂鸣器响#include<reg52.h>#include<intrins.h>#define uint unsigned int#define uchar unsigned charsbitdula=P2^6;sbitwela=P2^7;sbit beer=P2^3; //控制蜂鸣器sbitdsb=P2^2; //ds18b20的数据总线sbitrs=P3^5; //液晶显示数据命令选择端口sbitlcme=P3^4; //液晶显示使能信号sbit key=P3^7;uint temp; //温度传感器测得的温度uchar code listone[] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d, 0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};ucharcodelisttwo[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; ucharcodelistthree[]={"The temp is under:"};void delay(uchari){while(--i);}Voiddelayone(uint z){uintx,y;for(x=100;x>0;x--)for(y=z;y>0;y--);}/*液晶显示写命令初始化*/ Voidwritecom(uchar com) {rs=0;delayone(2);lcme=0;P0=com;lcme=1;delayone(2);lcme=0;}/*液晶显示写数据初始化*/ void writebyte(uchar byte) {rs=1;delayone(2);lcme=0;P0=byte;lcme=1;delayone(2);lcme=0;}/*液晶显示初始化*/ void ds18b20init() {uinttempone;uinti;dula=0;wela=0;lcme=0;writecom(0x38);writecom(0x0f);writecom(0x06);writecom(0x80);for(i=0;i<16;i++){writebyte(listthree[i]);delayone(2);}writecom(0x80+0x40);for(i=0;i<16;i++){tempone=temp&0x80;writebyte(tempone);delay(2);temp<<=1;}writecom(0x0c);}/*温度传感器初始化*/ voidtempinit(){dsb=1;delay(1);dsb=0;delay(250);dsb=1;delay(100);}voidwritedata(uchardat) {uinti;for(i=0;i<8;i++){dsb=1;_nop_();dsb=0;_nop_();_nop_();dsb=dat&0x01;delay(10);dat>>=1;delay(1);}dsb=1;}ucharreaddata(){uinti;for(i=0;i<8;i++){dsb=1;_nop_();dsb=0;_nop_();_nop_();// date>>=1;dsb=1;delay(1);date>>=1; //右移放于此处也可以if(dsb==1)date|=0x80;delay(10);}return date;}uint control(){floattt;// uint temp;tempinit();writedata(0xcc);writedata(0x44);tempinit();writedata(0xcc);writedata(0xbe);a =readdata();b = readdata();temp = b;temp<<= 8;temp = temp|a;tt = temp*0.0625;temp = tt*100+0.05;return temp;}voidshuma(uint temp) {ucharbai,shi,ge,xiaoshu; bai=(temp/1000);shi=temp%1000/100; ge=temp%100/10; xiaoshu=temp%10;dula=1;P0=listone[bai];dula=0;P0=0xff;wela=1;P0=0xfe;wela=0;delayone(1);dula=1;P0=listtwo[shi];dula=0;P0=0xff;wela=1;P0=0xfd;wela=0;delayone(1);dula=1;P0=listone[ge];dula=0;P0=0xff;wela=1;P0=0xfb;wela=0;delayone(1);dula=1;P0=listone[xiaoshu];dula=0;P0=0xff;wela=1;P0=0xf7;wela=0;delay(10);}void warning(uint temp){if((temp>=2600)&&(temp<2800)&&(key==1)){beer=0;P1=0x55;delayone(4);}if((key==0)||(temp<2600)){delayone(5);if((key==0)||(temp<2600)){beer=1;P1=0xff;}}}void main(){while(1){if(temp<2600){shuma(control());}if((temp>=2600)&&(temp<2800)){shuma(control());warning(temp);}if(temp>=2800){dula=0;wela=0;P0=0xff;}}}。

数字温度传感器DS18B20中文资料(含读写程序)

数字温度传感器DS18B20中文资料(含读写程序)

数字温度传感器DS18B20中文资料(含读写程序)数字温度传感器__中文资料(含读写程序)的学习供参考数字温度传感器__中文资料(含读写程序)__特点1.单线结构,只需一根信号线和CPU相连。

2. 不需要外部元件,直接输出串行数据。

3. 可不需要外部电源,直接通过信号线供电,电源电压范围为3.3V~5V。

4.测温精度高,测温范围为:一55℃~+125℃,在-10℃~+85℃范围内,精度为±O.5℃。

5.测温分辨率高,当选用12位转换位数时,温度分辨率可达0.0625℃。

6.数字量的转换精度及转换时间可通过简单的编程来控制:9位精度的转换时间为93.75 ms:10位精度的转换时间187.5ms:12位精度的转换时间750ms。

7.具有非易失性上、下限报警设定的功能,用户可方便地通过编程修改上、下限的数值。

8.可通过报警搜索命令识别哪片DS__采集的温度超越上、下限。

__引脚及管脚功能介绍__的常用封装有3脚、8脚等几种形式,如图1所示。

各脚含义如下:DQ:数字信号输入/输出端。

GND:电源地端。

VDD:外接供电电源输入端(在寄生电源接线时此脚应接地)。

__内部结构简要介绍:DS__的内部结构如图3所示:主要有64位光刻ROM、温度传感器、非易失性温度报警触发器TH和TL、配置寄存器等组成。

1.64位光刻ROM是生产厂家给每一个出厂的DS__命名的产品序列号,可以看作为该器件的地址序列号。

其作用是使每一个出厂的DS__地址序列号都各不相同,这样,就可以实现一根总线上挂接多个DS__的目的。

2.DS__中的温度传感器完成对温度的测量,输出格式为:16位符号扩展的二进制补码。

当测温精度设置为12位时,分辨率为O.0625℃,即O.0625℃/LSB。

其二进制补码格式如图2所示。

其中,S为符号位,S=1,表示温度为负值;S=0,表示温度为正值。

例如+125℃的数字输出为07D0H,-55℃的数字输出为FC90H。

ds18b20温度程序

ds18b20温度程序

;---------------------------------------------------------------------;数字温度计;晶振12MHz;用数字温度传感器DS18B20测量温度、显示温度。

;显示段码接P0口,显示位码接P2.2、P2.3、P2.4。

;数字温度传感器DS18B20的数据引脚接单片机的P3.7口。

;显示格式是:百十个.小数c;设计:;日期:2009年12月26日;----------------------------------------------------------------------- DAT BIT p3.7 ;数据通信口TEMPER_L DATA 30H ;读出的温度低字节TEMPER_H DATA 31H ;读出的温度高字节TEMPER EQU 32H ;温度的整数单元T_DOT EQU 33H ;温度的小数点单元ORG 0000HLJMP MAINORG 000BHSJMP TIMER0 ;定时显示;主程序:ORG 0030HMAIN:LCALL INITIAL ;初始化模块LOOP: LCALL DSWD ;调用读出DS18B20温度程序SJMP LOOP ;读出DS18B20温度程序;----------------------------------------------------------------;定时显示子程序,采用循环扫描方式;显示缓冲区40H~47H;----------------------------------------------------------------TIMER0:push acc ;入栈mov dptr,#tabmov a,TEMPER ;将温度的百位分离出来。

mov b,#100div abmovc a,@a+dptr ;查百位的段码。

mov p0,a ;显示在最高位的数码管上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DS18B20智能温度控制器DALLAS最新单线数字温度传感器DS18B20简介新的“一线器件”体积更小、适用电压更宽、更经济 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

DS18B20、 DS1822 “一线总线”数字化温度传感器同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS1822的精度较差为± 2°C 。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V 的电压范围,使系统设计更灵活、方便。

而且新一代产品更便宜,体积更小。

DS18B20、 DS1822 的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。

可选更小的封装方式,更宽的电压适用范围。

分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20的性能是新一代产品中最好的!性能价格比也非常出色! DS1822与 DS18B20软件兼容,是DS18B20的简化版本。

省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。

继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。

DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。

DS18B20的内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的管脚排列如下:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。

64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。

光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。

DS18B20温度传感器的存储器DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。

暂存存储器包含了8个连续字节,前两个字节是测得的温度信息,第一个字节的内容是温度的低八位,第二个字节是温度的高八位。

第三个和第四个字节是TH、TL的易失性拷贝,第五个字节是结构寄存器的易失性拷贝,这三个字节的内容在每一次上电复位时被刷新。

第六、七、八个字节用于内部计算。

第九个字节是冗余检验字节。

该字节各位的意义如下:TM R1 R0 1 1 1 1 1低五位一直都是1 ,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。

在DS18B20出厂时该位被设置为0,用户不要去改动。

R1和R0用来设置分辨率,如下表所示:(DS18B20出厂时被设置为12位)分辨率设置表:R1R0分辨率温度最大转换时间009位93.75ms 0110位187.5ms 1011位375ms 1112位750ms根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。

复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。

DS1820使用中注意事项DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:(1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。

在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。

(2)在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个DS1820,在实际应用中并非如此。

当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。

(3)连接DS1820的总线电缆是有长度限制的。

试验中,当采用普通信号电缆传输长度超过50m时,读取的测温数据将发生错误。

当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正常通讯距离进一步加长。

这种情况主要是由总线分布电容使信号波形产生畸变造成的。

因此,在用DS1820进行长距离测温系统设计时要充分考虑总线分布电容和阻抗匹配问题。

(4)在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS1820的返回信号,一旦某个DS1820接触不好或断线,当程序读该DS1820时,将没有返回信号,程序进入死循环。

这一点在进行DS1820硬件连接和软件设计时也要给予一定的重视。

测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接地。

这是我们用AT89C51实验开发板做的温度测量试验,DS18B20的正电源就是红线接+5伏,兰线接地,棕色线接P2.2,(注意:四位拨码开关的第3位不能处于ON的位置,否则实验无法成功!)+5V和信号线之间有一个4.7K的上拉电阻,硬件这么简单就能使用。

软件如下:;这是关于DS18B20的读写程序,数据脚P2.2,晶振12MHZ;温度传感器18B20汇编程序,采用器件默认的12位转化,最大转化时间750微秒;可以将检测到的温度直接显示到AT89C51开发实验板的两个数码管上;显示温度00到99度,很准确哦~~无需校正!ORG 0000H;单片机内存分配申明!TEMPER_L EQU 29H;用于保存读出温度的低8位TEMPER_H EQU 28H;用于保存读出温度的高8位FLAG1 EQU 38H;是否检测到DS18B20标志位a_bit equ 20h ;数码管个位数存放内存位置b_bit equ 21h ;数码管十位数存放内存位置MAIN:LCALL GET_TEMPER;调用读温度子程序;进行温度显示,这里我们考虑用网站提供的两位数码管来显示温度;显示范围00到99度,显示精度为1度;因为12位转化时每一位的精度为0.0625度,我们不要求显示小数所以可以抛弃29H的低4位;将28H中的低4位移入29H中的高4位,这样获得一个新字节,这个字节就是实际测量获得的温度;这个转化温度的方法可是我想出来的哦~~非常简洁无需乘于0.0625系数MOV A,29HMOV C,40H;将28H中的最低位移入CRRC AMOV C,41HRRC AMOV C,42HRRC AMOV C,43HRRC AMOV 29H,ALCALL DISPLAY;调用数码管显示子程序CPL P1.0AJMP MAIN; 这是DS18B20复位初始化子程序INIT_1820:SETB P2.2NOPCLR P2.2;主机发出延时537微秒的复位低脉冲MOV R1,#3TSR1:MOV R0,#107DJNZ R0,$DJNZ R1,TSR1SETB P2.2;然后拉高数据线NOPNOPNOPMOV R0,#25HTSR2:JNB P2.2,TSR3;等待DS18B20回应DJNZ R0,TSR2LJMP TSR4 ; 延时TSR3:SETB FLAG1 ; 置标志位,表示DS1820存在CLR P1.7;检查到DS18B20就点亮P1.7LEDLJMP TSR5TSR4:CLR FLAG1 ; 清标志位,表示DS1820不存在CLR P1.1LJMP TSR7TSR5:MOV R0,#117TSR6:DJNZ R0,TSR6 ; 时序要求延时一段时间TSR7:SETB P2.2RET; 读出转换后的温度值GET_TEMPER:SETB P2.2LCALL INIT_1820;先复位DS18B20JB FLAG1,TSS2CLR P1.2RET ; 判断DS1820是否存在?若DS18B20不存在则返回TSS2:CLR P1.3;DS18B20已经被检测到!!!!!!!!!!!!!!!!!!MOV A,#0CCH ; 跳过ROM匹配LCALL WRITE_1820MOV A,#44H ; 发出温度转换命令LCALL WRITE_1820;这里通过调用显示子程序实现延时一段时间,等待AD转换结束,12位的话750微秒LCALL DISPLAYLCALL INIT_1820;准备读温度前先复位MOV A,#0CCH ; 跳过ROM匹配LCALL WRITE_1820MOV A,#0BEH ; 发出读温度命令LCALL WRITE_1820LCALL READ_18200; 将读出的温度数据保存到35H/36HCLR P1.4RET;写DS18B20的子程序(有具体的时序要求)WRITE_1820:MOV R2,#8;一共8位数据CLR CWR1:CLR P2.2MOV R3,#6DJNZ R3,$RRC AMOV P2.2,CMOV R3,#23DJNZ R3,$SETB P2.2NOPDJNZ R2,WR1SETB P2.2RET; 读DS18B20的程序,从DS18B20中读出两个字节的温度数据READ_18200:MOV R4,#2 ; 将温度高位和低位从DS18B20中读出MOV R1,#29H ; 低位存入29H(TEMPER_L),高位存入28H(TEMPER_H) RE00:MOV R2,#8;数据一共有8位RE01:CLR CSETB P2.2NOPNOPCLR P2.2NOPNOPNOPSETB P2.2MOV R3,#9RE10:DJNZ R3,RE10MOV C,P2.2MOV R3,#23RE20:DJNZ R3,RE20RRC ADJNZ R2,RE01MOV @R1,ADEC R1DJNZ R4,RE00RET;显示子程序display: mov a,29H;将29H中的十六进制数转换成10进制mov b,#10 ;10进制/10=10进制div abmov b_bit,a ;十位在amov a_bit,b ;个位在bmov dptr,#numtab ;指定查表启始地址mov r0,#4dpl1: mov r1,#250 ;显示1000次dplop: mov a,a_bit ;取个位数MOVC A,@A+DPTR ;查个位数的7段代码mov p0,a ;送出个位的7段代码clr p2.7 ;开个位显示acall d1ms ;显示1mssetb p2.7mov a,b_bit ;取十位数MOVC A,@A+DPTR ;查十位数的7段代码mov p0,a ;送出十位的7段代码clr p2.6 ;开十位显示acall d1ms ;显示1mssetb p2.6djnz r1,dplop ;100次没完循环djnz r0,dpl1 ;4个100次没完循环ret;1MS延时(按12MHZ算)D1MS: MOV R7,#80DJNZ R7,$RET;实验板上的7段数码管0~9数字的共阴显示代码numtab: DB 0CFH,03H,5DH,5BH,93H,0DAH,0DEH,43H,0DFH,0DBHend;这是关于DS18B20的读写程序,数据脚P2.2,晶振11.0592mhz;温度传感器18B20汇编程序,采用器件默认的12位转化,最大转化时间750微秒;可以将检测到的温度直接显示到AT89C51开发实验板的两个数码管上;显示温度00到99度,很准确哦~~无需校正!ORG 0000H;单片机内存分配申明!TEMPER_L EQU 29H;用于保存读出温度的低8位TEMPER_H EQU 28H;用于保存读出温度的高8位FLAG1 EQU 38H;是否检测到DS18B20标志位a_bit equ 20h ;数码管个位数存放内存位置b_bit equ 21h ;数码管十位数存放内存位置LCALL GET_TEMPER;调用读温度子程序;进行温度显示,这里我们考虑用网站提供的两位数码管来显示温度;显示范围00到99度,显示精度为1度;因为12位转化时每一位的精度为0.0625度,我们不要求显示小数所以可以抛弃29H的低4位;将28H中的低4位移入29H中的高4位,这样获得一个新字节,这个字节就是实际测量获得的温度;这个转化温度的方法可是我想出来的哦~~非常简洁无需乘于0.0625系数MOV A,29HMOV C,40H;将28H中的最低位移入CRRC AMOV C,41HRRC AMOV C,42HRRC AMOV C,43HRRC AMOV 29H,ALCALL DISPLAY;调用数码管显示子程序CPL P1.0AJMP MAIN; 这是DS18B20复位初始化子程序INIT_1820:SETB P2.2NOPCLR P2.2;主机发出延时537微秒的复位低脉冲MOV R1,#3TSR1:MOV R0,#107DJNZ R0,$DJNZ R1,TSR1SETB P2.2;然后拉高数据线NOPNOPNOPMOV R0,#25HTSR2:JNB P2.2,TSR3;等待DS18B20回应DJNZ R0,TSR2LJMP TSR4 ; 延时SETB FLAG1 ; 置标志位,表示DS1820存在CLR P1.7;检查到DS18B20就点亮P1.7LEDLJMP TSR5TSR4:CLR FLAG1 ; 清标志位,表示DS1820不存在CLR P1.1LJMP TSR7TSR5:MOV R0,#117TSR6:DJNZ R0,TSR6 ; 时序要求延时一段时间TSR7:SETB P2.2RET; 读出转换后的温度值GET_TEMPER:SETB P2.2LCALL INIT_1820;先复位DS18B20JB FLAG1,TSS2CLR P1.2RET ; 判断DS1820是否存在?若DS18B20不存在则返回TSS2:CLR P1.3;DS18B20已经被检测到!!!!!!!!!!!!!!!!!!MOV A,#0CCH ; 跳过ROM匹配LCALL WRITE_1820MOV A,#44H ; 发出温度转换命令LCALL WRITE_1820;这里通过调用显示子程序实现延时一段时间,等待AD转换结束,12位的话750微秒LCALL DISPLAYLCALL INIT_1820;准备读温度前先复位MOV A,#0CCH ; 跳过ROM匹配LCALL WRITE_1820MOV A,#0BEH ; 发出读温度命令LCALL WRITE_1820LCALL READ_18200; 将读出的温度数据保存到35H/36HCLR P1.4RET;写DS18B20的子程序(有具体的时序要求)WRITE_1820:MOV R2,#8;一共8位数据CLR CWR1:CLR P2.2MOV R3,#5DJNZ R3,$RRC AMOV P2.2,CMOV R3,#21DJNZ R3,$SETB P2.2NOPDJNZ R2,WR1SETB P2.2RET; 读DS18B20的程序,从DS18B20中读出两个字节的温度数据READ_18200:MOV R4,#2 ; 将温度高位和低位从DS18B20中读出MOV R1,#29H ; 低位存入29H(TEMPER_L),高位存入28H(TEMPER_H) RE00:MOV R2,#8;数据一共有8位RE01:CLR CSETB P2.2NOPNOPCLR P2.2NOPNOPNOPSETB P2.2MOV R3,#8RE10:DJNZ R3,RE10MOV C,P2.2MOV R3,#21RE20:DJNZ R3,RE20RRC ADJNZ R2,RE01MOV @R1,ADEC R1DJNZ R4,RE00RET;显示子程序display: mov a,29H;将29H中的十六进制数转换成10进制mov b,#10 ;10进制/10=10进制div abmov b_bit,a ;十位在amov a_bit,b ;个位在bmov dptr,#numtab ;指定查表启始地址mov r0,#4dpl1: mov r1,#250 ;显示1000次dplop: mov a,a_bit ;取个位数MOVC A,@A+DPTR ;查个位数的7段代码mov p0,a ;送出个位的7段代码clr p2.7 ;开个位显示acall d1ms ;显示1mssetb p2.7mov a,b_bit ;取十位数MOVC A,@A+DPTR ;查十位数的7段代码mov p0,a ;送出十位的7段代码clr p2.6 ;开十位显示acall d1ms ;显示1mssetb p2.6djnz r1,dplop ;100次没完循环djnz r0,dpl1 ;4个100次没完循环ret;1MS延时D1MS: MOV R7,#80DJNZ R7,$RET;实验板上的7段数码管0~9数字的共阴显示代码numtab: DB 0CFH,03H,5DH,5BH,93H,0DAH,0DEH,43H,0DFH,0DBH end。

相关文档
最新文档