中考数学专题复习:分式

合集下载

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。

考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。

2023年中考数学《分式》专题知识回顾与练习题(含答案解析)

2023年中考数学《分式》专题知识回顾与练习题(含答案解析)

知识回顾微专题知识回顾微专题2023年中考数学《分式》专题知识回顾与练习题(含答案解析)考点一:分式之分式的概念1. 分式的概念:形如BA,B A 、都是整式的式子叫做分式。

简单来说,分母中含有字母的式子叫做分式。

1.(2022•怀化)代数式52x ,π1,422+x ,x 2﹣32,x 1,21++x x 中,属于分式的有( )A .2个B .3个C .4个D .5个【分析】根据分式的定义:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x ,,x 2﹣,分式有3个, 故选:B .考点二:分式之有意义的条件,分式值为0的条件1. 分式有意义的条件:分式的分母为能为0。

即BA中,0≠B 。

2. 分式值为0的条件:分式的分子为0,分母不为0。

即BA中,0=A ,0≠B 。

2.(2022•凉山州)分式x+31有意义的条件是( ) A .x =﹣3B .x ≠﹣3C .x ≠3D .x ≠0【分析】根据分式有意义的条件:分母不为0,可得3+x ≠0,然后进行计算即可解答. 【解答】解:由题意得: 3+x ≠0, ∴x ≠﹣3, 故选:B . 3.(2022•南通)分式22−x 有意义,则x 应满足的条件是 . 【分析】利用分母不等于0,分式有意义,列出不等式求解即可. 【解答】解:∵分母不等于0,分式有意义, ∴x ﹣2≠0, 解得:x ≠2, 故答案为:x ≠2. 4.(2022•湖北)若分式12−x 有意义,则x 的取值范围是 . 【分析】根据分式有意义的条件可知x ﹣1≠0,再解不等式即可. 【解答】解:由题意得:x ﹣1≠0, 解得:x ≠1, 故答案为:x ≠1.5.(2022•广西)当x = 时,分式22+x x的值为零. 【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x =0且x +2≠0,然后进行计算即可解答.【解答】解:由题意得: 2x =0且x +2≠0, ∴x =0且x ≠﹣2, ∴当x =0时,分式的值为零,故答案为:0.知识回顾6.(2022•湖州)当a =1时,分式aa 1+的值是 . 【分析】把a =1代入分式计算即可求出值. 【解答】解:当a =1时, 原式==2.故答案为:2.考点三:分式之分式的运算:1. 分式的性质:分式的分子与分母同时乘上(或除以)同一个不为0的式子,分式的值不变。

中考数学考点专题训练之分式方程精选卷

中考数学考点专题训练之分式方程精选卷

中考数学考点专题训练之分式方程精选卷一.选择题(共10小题)1.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( ) A .420x −420x−0.5=20 B .420x−0.5−420x =20C .420x−420x−20=0.5D .420x−20−420x=0.52. “五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x 人,则所列方程为( ) A .180x−2−180x =3 B .180x+2−180x =3 C .180x−180x−2=3D .180x−180x+2=33.解方程1x−1−2=3x 1−x去分母,两边同乘(x ﹣1)后的式子为( )A .1﹣2=﹣3xB .1﹣2(x ﹣1)=﹣3xC .1﹣2(1﹣x )=﹣3xD .1﹣2(x ﹣1)=3x4.市政府为了贯彻落实“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x 万平方米,则所列方程正确的是( ) A .90x−90(1+25%)x=30 B .90x−9025%x=30C .90(1+25%)x−90x=30D .90(1−25%)x−90x=305.现在5G 手机非常流行,5G 手机速度很快,比4G 下载速度每秒多120MB ,下载一部900MB 的电影,5G 比4G 要快200秒,那么5G 手机的下载速度是多少呢?若设5G 手机的下载速度为xMB 秒,则根据题意可列方程为( ) A .900x−900x−120=200 B .900x−120−900x=200C .900x+120+900x=200D .900x+200=900x+1206.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,能够刚好在规定时间送到,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求两匹马的速度.设慢马的速度为x 里/天,则可列方程为( ) A .900x =9002x +3 B .900x +3=9002xC .900x+3=9002xD .900x=9002x+37.习近平总书记指出,中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元,则符合题意的方程是( ) A .36000.8x −3600x =4 B .3600x −24000.8x =4 C .24000.8x −3600x =0D .24000.8x−2400x=48.方程2x−3=3x的解为( )A .x =﹣3B .x =3C .x =﹣9D .x =99.已知x =1是方程m 2−x−1x−2=3的解,那么实数m 的值为( )A .﹣2B .2C .﹣4D .410.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x 吨,则所列方程正确的是( ) A .75x−5=50xB .75x=50x−5C .75x+5=50xD .75x=50x+5二.填空题(共9小题)11.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?若设这批椽的数量为x 株,则可列分式方程为 . 12.分式方程4x−2=2x的解是 .13.关于x 的方程2x−1+5−a 1−x=−2的解为正数,则a 的取值范围为 .14.若关于x 的一元一次不等式组的解集{x −14(4a −2)≤123x−12<x +2是x ≤a ,且关于y 的分式方程2y−a y−1−y−41−y=1有非负整数解,则符合条件的所有整数a 的和为 .15.某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x 满足的分式方程为 . 16.关于x 的分式方程ax−3x−2+1=3x−12−x的解为正数,且使关于y 的一元一次不等式组{3y−22≤y −1y +3>a有解,则所有满足条件的整数a 的值之和是 .17.若关于x 的一元一次不等式组{x ≥−2x +72x −x−12<a 无解,且使关于y 的分式方程3−ay y−2+2=−12−y有整数解,则所有符合题意的整数a 的值之和是 .18.若关于x 的方程x+m x−3+3m 3−x=3的解为正数,则m 的取值范围是 . 19.(2023•武侯区校级模拟)分式方程k x 2−1=1x−1的解是x =0,则k = .三.解答题(共6小题)20.加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任.某社区为了增强社区居民的文明意识和环境意识,营造干净、整洁、舒适的人居环境,准备购买甲、乙两种分类垃圾桶.通过市场调研得知:乙种分类垃圾桶的单价比甲种分类垃圾桶的单价多40元,且用4800元购买甲种分类垃圾桶的数量与用6000元购买乙种分类垃圾桶的数量相同.(1)求甲、乙两种分类垃圾桶的单价;(2)该社区计划用不超过3600元的资金购买甲、乙两种分类垃圾桶共20个,则最少需要购买甲种分类垃圾桶多少个?21.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.22.近期,受俄乌局势影响,国内汽油价格不断上涨.请你根据下面的信息(如图),计算今年4月份汽油的价格.23.某汽车网站对两款价格相同,续航里程相同的汽车做了一次评测,一款为燃油车,另一款为纯电新能源车.得到相关数据如下:燃油车 纯电新能源车 油箱容积:48升 电池容量:90千瓦时 油价:8元/升电价:0.6元/千瓦时(1)设两款车的续航里程均为a 千米,请用含a 的代数式表示燃油车和纯电新能源车的每千米行驶费用;(2)若燃油车每千米行驶费用比纯电新能源车多0.55元.①请分别求出这两款车的每千米行驶费用;②若燃油车和纯电新能源车每年的其它费用分别为4800元和8100元.问:每年行驶里程超过多少千米时,新能源车的年费用更低?(年费用=年行驶费用+年其它费用)24.2022年10月16日,习总书记在第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B型汽车的进价的1.5倍,若用3000万元购进A型汽车的数量比2400万元购进B型汽车的数量少20辆.(1)A型和B型汽车的进价分别为每辆多少万元?(2)该公司决定用不多于3600万元购进A型和B型汽车共150辆,最多可以购买多少辆A型汽车?25.为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:m2)每天施工费用(单位:元)甲x+3003600乙x2200信息二甲工程队施工1800m2所需天数与乙工程队施工1200m2所需天数相等.(1)求x的值;(2)该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工22天,且完成的施工面积不少于15000m2.该段时间内体育中心至少需要支付多少施工费用?。

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程一.选择题1.(2022·天津)计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2a a + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则. 2.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( ) A .fvf v -B .f vfv-C .fvv f- D .v ffv-【答案】C【分析】利用分式的基本性质,把等式()111v f f u v =+≠恒等变形,用含f 、v 的代数式表示u .【详解】解:∵()111v f f u v =+≠,∵111f u ν=+,即111u f ν=-,∵1f uf νν-=,∵f u fνν=-,故选:C . 【点睛】本题考查分式的加、减法运算,关键是异分母通分,掌握通分法则. 3.(2022·四川眉山)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a -D .2a a + 【答案】B【分析】根据分式的混合运算法则计算即可.【详解】解:422a a +-+244=22-+++a a a 2=2+a a .故选:B【点睛】本题考查分式的混合运算法则,解题的关键是掌握分式的混合运算法则. 4.(2022·湖南怀化)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( ) A .2个 B .3个 C .4个 D .5个【答案】B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++,∵分式有3个,故选:B . 【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 5.(2022·四川凉山)分式13x+有意义的条件是( ) A .x =-3 B .x ≠-3 C .x ≠3 D .x ≠0【答案】B【分析】根据分式的分母不能为0即可得.【详解】解:由分式的分母不能为0得:30x +≠,解得3x ≠-, 即分式13x+有意义的条件是3x ≠-,故选:B . 【点睛】本题考查了分式有意义的条件,熟练掌握分式的分母不能为0是解题关键.6.(2022·四川南充)已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )AB .CD .【答案】B【分析】先将分式进件化简为a bb a+-,然后利用完全平方公式得出a b -=a b +,代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+-a b b a +=-,∵223a b ab +=,∵222a ab b ab -+=,∵()2a b ab -=, ∵a>b>0,∵a b -=∵223a b ab +=,∵2225a ab b ab ++=,∵()25a b ab +=,∵a>b>0,∵a b +=,∵原式=,故选:B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 7.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵.则下列方程正确的是( ) A .40030050x x=- B .30040050x x=- C .40030050x x=+ D .30040050x x=+ 【答案】B【分析】设实际平均每天植树x 棵,则原计划每天植树(x -50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可. 【详解】解:设现在平均每天植树x 棵,则原计划每天植树(x -50)棵, 根据题意,可列方程:30040050x x=-,故选:B . 【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.8.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中错误的是( ) A .2x1xx 3+=+ B .23x x 3=+ C .11x 221x x 3x 3-⎛⎫+⨯+= ⎪++⎝⎭ D .1x1x x 3+=+ 【答案】D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x 3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x 天,由题意可得,11x 221xx 3x 3-⎛⎫+⨯+= ⎪++⎝⎭, 整理得2x 1x x 3+=+,或2x 1x x 3=-+或23x x 3=+. 则ABC 选项均正确,故选:D .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 9.(2022·四川德阳)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2 【答案】D【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案. 【详解】方程左右两端同乘以最小公分母x -1,得2x+a=x -1.解得:x=-a -1且x 为正数.所以-a -1>0,解得a <-1,且a≠-2.(因为当a=-2时,方程不成立.) 【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息. 10.(2022·四川遂宁)若关于x 的方程221mxx =+无解,则m 的值为( ) A .0 B .4或6 C .6 D .0或4【答案】D【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =; 当40m -≠时,0x =或210x +=,此时,24x m =-,解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4;故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.11.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量 D .篮球的数量【答案】D 【分析】由50004000302x x=-的含义表示的是篮球单价比足球贵30元,从而可以确定x 的含义. 【详解】解:由50004000302x x=-可得: 由50002x 表示的是足球的单价,而4000x表示的是篮球的单价, x 表示的是购买篮球的数量,故选D【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键. 二.填空题12.(2022·湖北黄冈)若分式21x -有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x -有意义,∵10x -≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.13.(2022·浙江湖州)当a =1时,分式1a a+的值是______. 【答案】2【分析】直接把a 的值代入计算即可. 【详解】解:当a =1时,11121a a ++==.故答案为:2. 【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可. 14.(2022·湖南怀化)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.15.(2022·四川自贡)化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2a a + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++=2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++ 22222a a a a a -=+=+++故答案为2a a + 【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键. 16.(2022·四川泸州)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________. 【答案】1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=--去分母得:323x x -+-=-解得:1x = 经检验,1x =是分式方程的解 把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.17.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a ,b ,11ba b a⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________. 【答案】12-【分析】根据新定义可得221(1)x x x x x ++⊗=+,由此建立方程22121x x x x x++=+解方程即可. 【详解】解:∵11ba b a ⊗=+,∵()211121(1)11x x x x x x x x x x x ++++⊗=+==+++, 又∵21(1)++⊗=x x x x ,∵22121x x x x x++=+,∵()()()221210x x x x x ++-+=,∵()()2210x x x x +-+=,∵()2210x x +=,∵21(1)++⊗=x x x x即0x ≠,∵210x +=,解得12x =-, 经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-. 【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.18.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________. 【答案】16014010xx =- 【分析】先表示乙每小时采样(x -10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x -10)人,根据题意,得16014010xx =-. 故答案为:16014010xx =-. 【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键. 19.(2022·浙江金华)若分式23x -的值为2,则x 的值是_______. 【答案】4【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =- 去括号:226x =- 移项,合并同类项:28x = 系数化为1:4x =经检验,x =4是原方程的解, 故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键. 20.(2022·四川成都)分式方程31144x x x-+=--的解是_________. 【答案】3x =【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解. 【详解】解:31144x x x-+=-- 解:化为整式方程为:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是原方程的解, 故答案为:3x =.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.21.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 【答案】35【分析】适当引进未知数,合理转化条件,构造等式求解即可.【详解】设三座山各需香樟数量分别为4x 、3x 、9x .甲、乙两山需红枫数量2a 、3a . ∵425336x a x a +=+,∵3a x =,故丙山的红枫数量为()742955x a x x +-=,设香樟和红枫价格分别为m 、n .∵()()()()()16695161 6.25%120%695125%mx x x x n x m x x x n +++=-⋅-+++⋅+,∵:5:4m n =,∵实际购买香樟的总费用与实际购买红枫的总费用之比为()()()()161 6.25%120%3695125%5x mx x x n ⋅-⋅-=++⋅+,故答案为:35.【点睛】本题考查未知数的合理引用,熟练掌握未知数的科学设置,灵活构造等式计算求解是解题的关键.22.(2022·湖南衡阳)计算:2422a a a +=++_________. 【答案】2【分析】分式分母相同,直接加减,最后约分. 【详解】解:2422a a a +++242a a +=+()222a a +=+2= 【点睛】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键. 23.(2022·浙江台州)如图的解题过程中,第∵步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-【答案】5【分析】根据题意得到方程3114xx -+=--,解方程即可求解. 【详解】解:依题意得:3114x x -+=--,即3204xx -+=-, 去分母得:3-x +2(x -4)=0, 去括号得:3-x +2x -8=0, 解得:x =5,经检验,x =5是方程的解, 故答案为:5.【点睛】本题考查了解分式方程,一定要注意解分式方程必须检验. 24.(2022·四川成都)已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________. 【答案】72【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a --⎛⎫-÷ ⎪⎝⎭=22211a a a a a a ⎛⎫---÷ ⎪⎝⎭=22211a a a a a -+-÷ =22(1)1a a a a -⨯-=(1)a a -=2-a a . 2272a a -=,移项得2227a a -=,左边提取公因式得22()7a a -=, 两边同除以2得272a a -=, ∵原式=72.故答案为:72.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 25.(2022·湖南常德)方程()21522x x x x +=-的解为________. 【答案】4x =【分析】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解 故答案为:4x =【点睛】本题考查了解分式方程,解分式方程一定要注意检验. 三.解答题26.(2022·江苏宿迁)解方程:21122x x x =+--. 【答案】x =﹣1【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【详解】解:21122x x x =+--, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点睛】本题考查解分式方程,得出方程的解之后一定要验根.27.(2022·四川泸州)化简:22311(1).m m m m m-+-+÷ 【答案】11m m -+ 【分析】直接根据分式的混合计算法则求解即可.【详解】解:22311(1)m m m m m-+-+÷ ()()231`11m m m m m m m÷++=--+()()2211`1m m m mm m -+=⋅+-()()()21`11mm mm m +⋅--=11m m -=+. 【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.28.(2022·新疆)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =. 【答案】1【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a 值代入求解即可.【详解】解:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭()()()2331113121a a a a a a a ⎡⎤+--=⋅-⋅⎢⎥--+-⎢⎥⎣⎦311112a a a a +⎛⎫=-⋅⎪--+⎝⎭ 2112a a a +=⋅-+ 11a =-, ∵2a =, ∵原式111121a ===--. 【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键.29.(2022·四川乐山)先化简,再求值:211121xx x x ⎛⎫-÷ ⎪+++⎝⎭,其中x = 【答案】1x +1【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121xx x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+-+=⨯+ 1x =+,∵x∵原式=11x +=.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键. 30.(2022·湖南邵阳)先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭.【答案】11x + 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷⎪+--⎝⎭11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦1(1)(1)x x x x x-=⋅+-=11x +, ∵x +1≠0,x -1≠0,x ≠0,∵x ≠±1,x ≠0当x=【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.31.(2022·陕西)化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭. 【答案】1a +【分析】分式计算先通分,再计算乘除即可.【详解】解:原式211112a a a a a++--=⋅-2(1)(1)12a a a a a +-=⋅-1a =+. 【点睛】本题考查了分式的混合运算,正确地计算能力是解决问题的关键. 32.(2022·湖南株洲)先化简,再求值:2111144x x x x +⎛⎫+⋅ ⎪+++⎝⎭,其中4x =. 【答案】12x +,16 【分析】先将括号内式子通分,再约分化简,最后将4x =代入求值即可. 【详解】解:2221111111441114241(2)2x x x x x x x x x x x x x x +++⎛⎫+⋅=⋅=⋅= ⎪+++++++++⎝⎭+++, 将4x =代入得,原式1112426x ===++. 【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则和完全平方公式是解题的关键.33.(2022·江苏扬州)计算:(1)(02cos 45π︒+ (2)22221121m m m m +⎛⎫+÷⎪--+⎝⎭【答案】(1)1 (2)12m - 【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可; (2)先合并括号里的分式,再对分子和分母分别因式分解即可化简; (1)解:原式=21-1 (2)解:原式=()()21211121m m m m m --⎛⎫+⋅ ⎪--+⎝⎭=()()211121m m m m -+⋅-+=12m -. 【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.34.(2022·江西)以下是某同学化筒分式2113422x x x x +⎛⎫-÷⎪-+-⎭的部分运算过程: (1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程. 【答案】(1)∵(2)见解析【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可. (1)第∵步出现错误,原因是分子相减时未变号,故答案为:∵; (2)解:原式=112(2)(2)23x x x x x ⎡⎤+--⨯⎢⎥+-+⎣⎦122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⨯⎢⎥+-+-⎣⎦122(2)(2)3x x x x x +-+-=⨯+-32(2)(2)3x x x -=⨯+-12x =+ 【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键. 35.(2022·重庆)计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+. 【答案】(1)22x y -(2)22m - 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可; (2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可. (1)解:()()(2)x y x y y y +-+-=2222x y y y -+-=22x y -(2)解: 2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+ =()()()222222m m m m m m -+-÷++- =()()()222222m m m m +-⨯+- =22m - 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.36.(2022·江苏连云港)化简:221311x x x x -+--. 【答案】11x x -+ 【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式2221311x x xx x +-=+-- 22131x x x x ++-=-22211x x x -+=-22(1)1x x -=- 2(1)=(1)(1)x x x -+- 11x x -=+. 【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.37.(2022·四川达州)化简求值:222112111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭,其中31a.【答案】11a +【分析】先将分子因式分解,再进行通分,然后根据分式减法法则进行计算,最后再根据分式除法法则计算即可化简,再把a 的值代入计算即可求值.【详解】解:原式=()()()2211111a a a a a a a -+++÷+-- ()()()()2211111a a a a a +--=⋅-+1=1a +;当31a=. 【点睛】本题考查分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.38.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的. 【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n +1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n +1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明. (1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++, 第三个式子()11111452041441=+=+++,……∵第(n +1)个式子1111(1)n n n n =+++; (2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n++=+==+++++=左边, ∵1111(1)n n n n =+++. 【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.39.(2022·四川凉山)先化简,再求值:524(2)23m m m m-++⋅--,其中m 为满足-1<m <4的整数.【答案】26--m ,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【分析】先计算括号内的分式加法,再计算分式的乘法,然后根据分式有意义的条件确定m 的值,代入计算即可得.【详解】解:原式(2)(2)52(2)223m m m m m m+--⎡⎤=+⋅⎢⎥---⎣⎦ 2452(2)()223m m m m m --=+⋅---292(2)23m m m m--=⋅--(3)(3)2(2)23m m m m m +--=⋅--2(3)m =-+26m =--, 20,30m m -≠-≠,2,3m m ∴≠≠,又m 为满足14-<<m 的整数,0m ∴=或1m =,当0m =时,原式262066m =--=-⨯-=-, 当1m =时,原式262168m =--=-⨯-=-,综上,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.40.(2022·山东滨州)先化简,再求值:2344111a a a a a ++⎛⎫+-÷ ⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-【答案】22a a -+,0 【分析】先算括号内的减法,再将除法变成乘法进行计算,然后根据锐角三角函数,负指数幂和零次幂的性质求出a ,最后代入计算.【详解】解:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭()22213111a a a a a +⎛⎫-=-÷ ⎪---⎝⎭()222411a a a a +-=÷--()()()222112a a a a a +--=⋅-+22a a -=+; ∵101tan 45π122)2(1a -=︒+-=+-=,∵原式2220222a a --===++. 【点睛】本题考查了分式的化简求值,锐角三角函数,负指数幂和零次幂的性质,熟练掌握运算法则是解题的关键.41.(2022·重庆)计算:(1)()()224x x x ++-;(2)2212a a bb b -⎛⎫-÷ ⎪⎝⎭.【答案】(1)224x +(2)2a b+ 【分析】(1)先计算乘法,再合并,即可求解;(2)先计算括号内的,再计算除法,即可求解. (1)解:原式22444x x x x =+++-224x =+ (2)解:原式2()()a b b b a b a b -=⨯+-2a b=+ 【点睛】本题主要考查了整式的混合运算,分式的混合运算,熟练掌握相关运算法则是解题的关键.42.(2022·山东泰安)(1)若单项式14m n x y -与单项式33812m n x y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111xx x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =. 【答案】(1)m =2,n =-1;(2)21x +,4-【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m 和n 的值; (2)先通分算小括号里面的,然后算括号外面的,最后代入求值. 【详解】解:(1)由题意可得33814m n m n -=⎧⎨-=⎩①②,∵-∵3⨯,可得:55n -=,解得:1n =-, 把1n =-代入∵,可得:(1)3m --=,解得:2m =,m ∴的值为2,n 的值为1-;(2)原式(1)(1)[](1)(1)(1)(1)x x x x x x x -++=⋅+-+-21(1)(1)(1)(1)x x x x x x x -++=⋅+-+-21x =+,当1x 时,原式21)12114=+=-+=-【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式222()2a b a ab b +=++的结构是解题关键.43.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【详解】解:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时, 依题意,得:2020101.560x x -=,解得:x =40, 经检验,x =40是所列方程的根,且符合题意, 答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 44.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套 【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可; (2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论; (3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.(1)解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =, 经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;(2)解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩; (3)解:320270>,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈, 答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点睛】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.45.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24/千米时(2)18千米/时【分析】(1)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲、乙恰好同时到达B地列方程求解即可.(1)解:设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:0.5 1.20.52x x⨯=+,解得:20x,则1.224x=(千米/时),答:甲骑行的速度为24千米/时;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:301303 1.2x x-=,解得15x=,经检验15x=是分式方程的解,则1.218x=(千米/时),答:甲骑行的速度为18千米/时.【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.46.(2022·重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【答案】(1)100米(2)90米【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,根据工效问题公式:工作总量=工作时间×工作效率,列出关于x 的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y 的分式方程,解方程即可得出答案.(1)解:设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,则有()5202600x x -+=解得100x =∵甲施工队增加人员后每天修建灌溉水渠100米.(2)∵水渠总长1800米,完工时,两施工队修建长度相同∵两队修建的长度都为1800÷2=900(米)乙施工队技术更新后,修建长度为900-360=540(米)解:设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,即1.2y 米 则有5403609001.2100y y +=解得90y =经检验,90y=是原方程的解,符合题意∵乙施工队原来每天修建灌溉水渠90米.【点睛】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键.47.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【分析】实际应用题的解题步骤“设、列、解、答”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车的速度为x千米/小时,则汽车速度是3x千米/小时,根据题意得:454523x x=+,解之得15x=,经检验15x=是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.48.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,。

(中考考点梳理)分式与二次根式-中考数学一遍过

(中考考点梳理)分式与二次根式-中考数学一遍过

考点03 分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式.(2)分式AB中,A 叫做分子,B 叫做分母. 【注意】①若B ≠0,则AB有意义;②若B =0,则AB无意义;③若A =0且B ≠0,则AB=0.学=科网2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C⋅=≠⋅或(0)A A CC B B C ÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则 (1)约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. (2)约分法则把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式. 4.最简分式分子、分母没有公因式的分式叫做最简分式.【注意】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则(1)通分根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分.(2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分.【注意】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.最简公分母几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.7.分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:((nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的. 二、根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中符号叫做二次根号,二次根号下的数叫做被开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0. (2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 2.二次根式的性质 (1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)a b =≥≥;(50,0)a b ≥>. 3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2)二次根式的乘除0,0)a b =≥≥;0,0)a b ≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一 分式的有关概念1.分式的三要素: (1)形如AB的式子; (2),A B 均为整式;学科!网 (3)分母B 中含有字母. 2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即0B ≠. (2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例1 x 的取值范围是 A .x ≠1B .x ≠0C .x >﹣1且≠0D .x ≥﹣1且x ≠0【答案】D【解析】根据题意得:100x x +≥⎧⎨≠⎩,解得:x ≥-1且x ≠0.故选:D .1.若分式21xx-在实数范围内无意义,则x 的取值范围是 A .x ≠1 B .x =1C .x =0D .x >1考向二 分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例2 分式233x yxy+中的x 、y 的值都扩大到原来的2倍,则分式的值为 A .扩大为原来2倍 B .缩小为原来的12倍 C .不变D .缩小为原来的14倍【答案】B【名师点睛】本题考查了分式的基本概念和性质的相关知识.这类题目的一个易错点是:在没有充分理解题意的情况下简单地通过分式的基本性质得出分式值不变的结论.对照分式的基本性质和本题的条件不难发现,本题不符合分式基本性质所描述的情况,不能直接利用其结论.因此,在解决这类问题时,要注意认真理解题意.2.不改变分式的值,下列变形正确的是A .2233a ab b -=-- B .33a ab b -=-- C .55a a b b=--D .7744a a b b=- 考向三 分式的化简与求值约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值; 2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例3 把分式x x y -,y x y +,222x y-的分母化为x 2-y 2后,各分式的分子之和是 A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy −y 2+2D .x 2−2xy +y 2+2【答案】C【解析】由平方差公式将x 2−y 2可化简为(x +y )(x −y ), 故将xx y-的分母化为x 2−y 2后可得()22x x y x y +-,将y x y+的分母化为x 2−y 2后可得()22y x y x y --, 所以分式的x x y -,y x y +,222x y-的分母化为x 2−y 2后,各分式的分子之和为 x (x +y )+y (x -y )+2,展开得x 2+xy +xy −y 2+2合并同类项,得x 2+2xy −y 2+2, 故选C.【名师点睛】本题考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.求最简公分母的方法是: (i )将各个分母分解因式; (ii )找各分母系数的最小公倍数;(iii )找出各分母中不同的因式,相同因式中取次数最高的. 满足(ii )(iii )的因式之积即为各分式的最简公分母.3.下列分式中,是最简分式的是A .2xyx B .222x y -C .22x yx y+- D .22xx + 考向四 分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例4 计算(1-1x)÷221x x x -+的结果是A .x -1B .11x - C .1xx -D .1x x-【答案】B【解析】原式=(x x −1x )÷()21x x -=1x x -. •()21x x -=11x -, 故选B .4.先化简,再求值:2221()211x x x x x x+÷--+-,其中x =4.考向五 二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例5 下列各式: ①;②;③;;;.其中一定是二次根式的有 A .4个 B .3个 C .2个D .1个【答案】B5的取值范围是 A . B. C .D .典例6 下列二次根式是最简二次根式的是 ABCD【答案】Cx 1x ≠1x ≥>1x 0x ≥6;.其中是最简二次根式的有 A .2个 B .3个C .4个D .5个考向六 二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号). 2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较; (2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较.典例7 下列计算正确的是A =B 6=C 5+=D 4=【答案】A【解析】A 、原式-B 、原式,错误;C 为最简结果,错误;D 、原式,错误, 故选:A .7.已知x =,y =,则y xx y +=_____________.典例8 比较大小:______5(填“>,<,=”). 【答案】>【解析】因为2228,525==,28>25,所以>5.【名师点睛】比较二次根式的大小,可以转化为比较被开方数的大小,也可以将两个数平方,计算出结果,再比较大小.8.设a ,b -1,c ,则a ,b ,c 之间的大小关系是 A .c >b >a B .a >c >b C .b >a >cD .a >b >c1.下列根式中属于最简二次根式的是A BCD 2.若分式24x x-的值为0,则x 的值是A .2或﹣2B .2C .﹣2D .03.如果把分式xyx y+中的x 和y 都扩大2倍,则分式的值 A .扩大4倍B .扩大2倍C .不变D .缩小2倍4A BCD5.下列关于分式的判断,正确的是A .当x =2时,12x x +-的值为零 B .当x ≠3时,3x x-有意义C .无论x 为何值,31x +不可能得整数值D .无论x 为何值,231x +的值总为正数6.若x 、y 为实数,且|2|0x +=,则2019x y ⎛⎫⎪⎝⎭的值为A .2B .−2C .1D .−17的被开方数相同,则a 的值为 A .1B .2C .23D .328.下列运算中,错误的是 A .x y y xx y y x--=-++ B .a ba b--+=−1C −1D a9.已知 1x <,则 化简的结果是A .1x -B .1x -C .1x --D .1x +10.下列分式是最简分式的是A BCD .22121x x x --+11.若分式11x x -+的值为0,则x 的值为 A .1 B .−1 C .±1D .无解12 A .2B .21x - C .23x -D .41x x --13.若x 、y ()2210y +-=,则x y +的值等于A .1B .32 C .2D .5214a =,则1x x +的值为A .22a - B .2a C .24a -D .不确定15=_____________. 16.当x =_____________时,分式323xx -+的值为零.17.比较大小:(填“>、<、或=”)18.当a =2_____________.19.已知a ,b 互为倒数,代数式222a ab b a b+++÷11a b ⎛⎫+⎪⎝⎭的值为_____________.20.已知::2:3:4x y z =,则23x y zx y z+--+的值为_____________.21.计算:(1)|1|+(2018−π)0;(2+((.22.先化简,再求值:221a b a b a b⎛⎫-÷ ⎪--⎝⎭,其中1a =+,1b =-.23.先化简,再求值:2-,其中,.24.先化简,再求值:2212111121m m m m m -⎛⎫-÷- ⎪+--+⎝⎭,其中m 为一元二次方程230x x +-=的根.1.(2018·德阳市)下列计算或运算中,正确的是A .=B =C .÷=D .-=2.(2018·兰州市)下列二次根式中,是最简二次根式的是A BCD3.(2018·绥化市)若y =x 的取值范围是 A .12x ≤且0x ≠ B .12x ≠C .12x ≤D .0x ≠4.(2018·绥化市)下列运算正确的是A .2235a a a +=B 5=-C .3412a a a ⋅=D .0(π3)1-=5.(2018·曲靖市)下列二次根式中能与合并的是ABCD6.(2018·上海市)的结果是A.4 B.3C.D7.(2018·日照市)计算:(12)−1+tan30°•sin60°=A.﹣32B.2C.52D.728.(2018·莱芜市)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是A.2xx y+-B.22yxC.3223yxD.()222yx y-9.(2018·陇南市)有意义的x的取值范围是____________.10.(2018·毕节市)观察下列运算过程:1========-……请运用上面的运算方法计算:+=____________.11.(2018____________.12.(2018·莱芜市)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是和2,则图中阴影部分的面积是____________.13.(2018·镇江市)=____________.14.(2018·梧州市)在实数范围内有意义,则 x 的取值范围是____________.15.(2018·巴彦淖尔市)化简3m m ++269m -÷23m -的结果是____________. 16.(2018·绥化市)当2x =时,代数式211()x x x x x+++÷的值是____________.17.(2018·大连市)计算:+2)2+22-.18.(2018·百色市)已知a 2=19,求22211118a a a --+-的值.19.(2018·福建省b 卷)先化简,再求值:2211(1)m m m m+--÷,其中m .20.(2018·锦州市)先化简,再求值: 233212,322x x x x x x +-+-÷=++(其中.21.(2018·毕节市)先化简,再求值:22214244aa a a a a ⎛⎫-÷⎪--++⎝⎭,其中a 是方程a 2+a ﹣6=0的解.22.(2018·兰州市)计算:101()(π3)1tan452--+-+-.23.(2018·甘孜州)(1()03.144cos45--π- ;(2)化简:2211x xx x x ÷---.24.(2018·益阳市)化简:2()y x y x y x y x+-+⋅+.25.(2018·莱芜市)先化简,再求值:233(111a aa a a -+÷--+,其中a +1.26.(2018·曲靖市)先化简,再求值(1a b -﹣22b a b -)÷2222+a ab a ab b --,其中a ,b 满足a +b ﹣12=0.27.(2018·梧州市)解不等式组36451102x xx x -≤⎧⎪++⎨<⎪⎩,并求出它的整数解,再化简代数式2321x x x +-+•(3x x +﹣239x x --),从上述整数解中选择一个合适的数,求此代数式的值.28.(2018·抚顺市)先化简,再求值:(1﹣x +31x +)÷2441x x x +++,其中x =tan45°+(12)−1.1.【答案】B 【解析】∵分式21xx-在实数范围内无意义, ∴1﹣x =0,即x =1, 故选:B .3.【答案】D 【解析】A 、2xy x =yx,错误; B 、222x y -=1x y -,错误;C 、22x y x y +-=1x y -,错误;D 、22xx +是最简分式,正确. 故选D .4.【答案】21x x -;163.【解析】2221()211x x x x x x+÷--+- =2(+1)2(111)()()x x x x x x x --÷-- =2()(+1)111)(x x x x x x -⋅-+ =21x x -, 当x =4时,原式=2416413=-. 5.【答案】B【解析】根据二次根式被开方数必须是非负数的条件知,要使.故选B .6.【答案】B= =, =,∴. 故选:B .8.【答案】D【解析】a −1),b ,c ), >1,∴a >b >c .故选D . 101x x -≥⇒≥【解析】A、该二次根式符合最简二次根式的定义,故本选项正确;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项错误;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项错误;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项错误;故选A.【名师点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【答案】A【解析】∵分式24xx-的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.3.【答案】B【解析】把分式xyx y+中的x和y都扩大2倍,则22222x y xyx y x y⋅=++,故选B.5.【答案】D【解析】A选项:当x=2时,该分式的分母20x-=,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义.显然,x=0满足x≠3.由此可见,当x≠3时,该分式不一定有意义,故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0,该分式的分子3>0.由此可知,无论x为何值,该分式的值总为正数,故D选项正确.故本题应选D.【名师点睛】本题考查了与分式概念相关的知识.分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零.分式的值为零的条件是分式的分母不等于零且分式的分子等于零.在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.【解析】由非负数的性质可得:x+2=0,y−2=0,即x=−2,y=2,∴2019xy⎛⎫⎪⎝⎭=(−1)2019=−1.故选C.7.【答案】D【解析】31+4,2a a a=-=解得,故选D.8.【答案】D【解析】A.x y y xx y y x--=-++,正确,故不符合题意;B.a ba b--+=−1,正确,故不符合题意;C−1,正确,故不符合题意;D=|a|,错误,故符合题意.故选D.9.【答案】B【解析】∵x<1,∴x-1<0x-1|=1-x.故选:B.10.【答案】C【解析】A选项:化简该分式,得()222a ba ab bam am m+++==,故A选项不符合题意.B选项:化简该分式,得623xy xya a=,故B选项不符合题意.C选项:对该分式的分子进行因式分解,得()()222111x xxx x+--=.由此可见,该分式的分子与分母没有公因式,符合最简分式的定义,故C选项符合题意.D选项:化简该分式,得()()()22211112111x xx xx x xx+--+==-+--,故D选项不符合题意.故本题应选C.11.【答案】A【解析】∵分式11x x -+的值为0,∴|x |−1=0,且x +1≠0,解得:x =1.故选A . 12.【答案】B(13x -−11x -)•(x −3)=13x -•(x −3)−11x -•(x −3)=1−31x x --=21x -.故选B . 15==. 16.【答案】3【解析】依题意得:3﹣x =0且2x +3≠0.解得x =3,故答案为:3.17.【答案】<【解析】将两式进行平方可得:(2=12,(2=18,因为12<18,所以<18.【答案】3- 【解析】∵()()2121214122121a a a a a a +--==-++,∴当a =2时,原式=1223-⨯=-.故本题应填写:3-.19.【答案】1 【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ab =, ∵a ,b 互为倒数,∴ab =1,∴原式=1.故本题应填写:1.20.【答案】411【解析】根据分式的性质(分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变)解答.∵::2:3:4x y z =,∴可设234x k y k z k ===、、,∴226444323121111x y z k k k k x y z k k k k +-+-===-+-+, 故答案为:411.21.【答案】(1);(2)【解析】(1)原式−1−+1=.(2)原式=3−−5=2−.22.【答案】化简见解析,结果为. 【解析】221a b a b a b ⎛⎫-÷ ⎪--⎝⎭ ()()a b a b a a b a b b+--+=⋅- ()()a b a b b a b b+-=⋅- a b =+,当1a =+,1b =时,原式11++-=23.【答案】8-+.【解析】原式2(2)x y x y =---+22x y x y =--+-2y =-.当34x y ==,时,原式=2−2×4=4 −8. 24.【答案】化简见解析,结果为13. 【解析】原式=()()()22122111111m m m m m m m --+--÷++-- =()()()()21121112m m m m m m m ---⋅++-- =()1111m m m m --++=()()11m m m m --+ =()11m m + =21m m +. 由m 是方程230x x +-=的根,得到23m m +=,所以原式=13. 【名师点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.1.【答案】B【解析】A 、=,此选项错误; B =,此选项正确;C 、÷=D 、-=,此选项错误;故选:B .2.【答案】B【解析】A =不是最简二次根式,错误;B 是最简二次根式,正确;C =不是最简二次根式,错误;D =不是最简二次根式,错误,故选B .3.【答案】A【解析】由题意可知:1200x x -≥⎧⎨≠⎩,解得:12x ≤且0x ≠, 故选A .4.【答案】D 【解析】A. 23a a +=5a ,故A 选项错误;B. =5,故B 选项错误;C. 347a a a ⋅=,故C 选项错误;D. 0(π3)1-=,故D 选项正确,故选D.5.【答案】B【解析】A =,不能与B 合并,故该选项正确;C =不能与D 3不能与故选B .6.【答案】C【解析】,故选C .7.【答案】C【解析】(12)−1+tan30°•sin60°=2+12 =52, 故选C .9.【答案】x >3有意义, ∴x ﹣3>0,∴x >3, ∴x 的取值范围是x >3,故答案为:x >3.10.【解析】原式=12﹣1)+12+12+ (12)+12=12…). 11.【答案】6【解析】原式.故答案为:6.12.【答案】2【解析】设正三角形的边长为a ,则12a 2解得a .则图中阴影部分的面积.故答案是2.13.【答案】2,故答案为2. 14.【答案】x ≥3【解析】由题意可得:x ﹣3≥0,解得:x ≥3,故答案为:x ≥3.15.【答案】1 【解析】3m m ++269m -÷23m - =()()63·3332m m m m m -+++- =333m m m +++ =1,故答案为1.16.【答案】3【解析】原式221()1x x x x x x +=+⋅+ =2(1)1x x x x +⋅+ 1x =+,当2x =时,原式213=+=,故答案为:3.17.【答案】294【解析】原式﹣14=294. 18.【答案】16- 【解析】原式=22121a a a ---()﹣118 =221a ---118, ∵a 2=19,∴原式=2191--﹣118=﹣318=﹣16.19.【解析】2211(1)m m m m+--÷ =()()2111m m m m m m +-⋅+- =()()111m m m m m +⋅+- =11m -,当m +1时,原式==. 20.【答案】11;12x -- 【解析】原式=()23322)21x x x x ++-⨯+-( , ()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x =3时,原式=113-=12-. 21.【答案】13 【解析】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭ =()()()()222222a a a a a a -++⋅+-=2222a a a a a--+⋅- =222a a a a-+⋅-, =2a a +,由a 2+a ﹣6=0,得a =﹣3或a =2,∵a ﹣2≠0,∴a ≠2,∴a =﹣3,当a =﹣3时,原式=32133-+=-. 22.1.【解析】101()(π3)1tan 2--+-+-45°=2111-++1=.(2)2211x x x x x ÷--- =()()211·1x x x x x+---x =x (x +1)-x=x 2.24.【答案】x 【解析】原式=222x y y x y x y x-++⋅+ =2x x y x y x+⋅+ =x .25.【答案】【解析】当a +1时,原式=()()333111a a a a a a++-+⨯-+=()()4111a a a a a+⨯-+ =41a -. 26.【答案】原式=1a b+=2 【解析】(1a b -﹣22b a b -)÷2222+a ab a ab b -- =()()()()2•a b a b b a b a b a a b -+-+-- =1a b+, 由a +b ﹣12=0,得到a +b =12, 则原式=112=2. 27.【答案】原式=11x -,当x =2,原式=1. 【解析】解不等式 3x ﹣6≤x ,得:x ≤3, 解不等式4510x +<12x +,得:x >0, 则不等式组的解集为 0<x ≤3,所以不等式组的整数解为 1、2、3, 原式=()231x x +-•[()()2333x x x x --+- ()()333x x x -+-] =()231x x +-•()()()()1333x x x x --+- =11x -, ∵x ≠±3、1,∴x =2, 则原式=1.28.【答案】-1 5【解析】原式=(21311xx x-+++)÷()221xx++=()()()2 221·12x x xx x +-+++=22xx -+,当x=tan45°+(12)−1=1+2=3时,原式=231235-=-+。

中考数学复习专题综合过关检测—分式方程及应用(含解析)

中考数学复习专题综合过关检测—分式方程及应用(含解析)

中考数学复习专题综合过关检测—分式方程及应用(含解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。

1.(2023•天涯区一模)把分式方程﹣=1化为整式方程正确的是()A.1﹣(1﹣x)=1B.1+(1﹣x)=1C.1﹣(1﹣x)=x﹣2D.1+(1﹣x)=x﹣2【答案】D【解答】解:方程变形得:+=1,去分母得:1+(1﹣x)=x﹣2,故选:D.2.(宝应县二模)初三(1)班在今年的植树节领有平均每人植树6棵的任务,如果只由女同学完成,每人应植树15棵,如果只由男同学完成,每人应植树的棵数为()A.9B.10C.12D.14【答案】B【解答】解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:,解得:x=10.检验得x=10是方程的解.因此单独由男生完成,每人应植树10棵.故选:B.3.(2023•邵阳县一模)分式方程=的解是()A.x=3B.x=﹣1C.x=1D.x=﹣3【答案】D【解答】解:去分母得,3(x+1)=2x,去括号得,3x+3=2x,移项得,x=﹣3,检验:把x=﹣3代入x(x+1)=﹣3(﹣3+1)=6≠0,∴x=﹣3是原方程的解,故选:D.4.(2023•武威三模)在创建文明城市的进程中,某市为美化城市环境,计划种植树木50万棵,由于志愿者的加入,实际每天植树比原计划多30%,结果提前2天完成任务,设原计划每天植树x万棵,由题意得到的方程是()A.B.C.D.【答案】A【解答】解:由题意可得,=2,故选:A.5.(2023•龙江县校级三模)若关于x的分式方程无解,则a的值为()A.0B.1C.﹣1或0D.0或1【答案】D【解答】解:,方程两边同时乘以x﹣2,得1﹣a=2ax﹣4a,移项、合并同类项,得2ax =3a +1,∵方程无解,∴2a =0或=2,解得a =0或a =1.故选:D .6.(2023•环翠区一模)若关于x 的分式方程﹣1=有增根,则a 的值为()A .﹣3B .3C .2D .﹣【答案】A【解答】解:方程两边都乘以(x ﹣2)得:6﹣(x ﹣2)=﹣ax ,解得:x =,∵方程有增根,∴x ﹣2=0,∴x =2,∴=2,解得:a =﹣3.故选:A .7.(2023•东港区校级三模)某班级为做好疫情防控,班委会决定拿出班费中的a 元给同学们购买口罩,由于药店对学生购买口罩每包优惠2元,结果比原计划多买了5包口罩.设原计划购买口罩x 包,则依题意列方程为()A .B .C .D .【答案】B【解答】解:设原计划购买口罩x 包,则实际购买口罩(x +5)包,依题意得:=+2.故选:B.8.(2023•吴桥县校级模拟)“若关于x 的方程无解,求a的值.”尖尖和丹丹的做法如下:尖尖:去分母得:ax=12+3x﹣9,移项得:ax﹣3x=12﹣9,合并同类项得:(a﹣3)x=3,∵原方程无解,∴a﹣3=0,∴a=3.丹丹:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,解得:x=,∵原方程无解,∴x为增根,∴3x﹣9=0,解得x=3,∴=3,解得a=4.下列说法正确的是()A.尖尖对,丹丹错B.尖尖错,丹丹对C.两人都错D.两人的答案合起来才对【答案】D【解答】解:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,∵原方程无解,∴x为增根或a﹣3=0,当3x﹣9=0,解得x=3,此时=3,解得a=4;当a﹣3=0,解得a=3;综上所述:a的值为3或4,故选:D.9.(2023•义乌市模拟)若分式的值为1,则x的值是()A.5B.4C.3D.1【答案】A【解答】解:根据题意得:=1,去分母得:x﹣2=3,解得:x=5,检验:把x=5代入得:x﹣2≠0,∴分式方程的解为x=5.故选:A.10.(2023•黄埔区校级二模)在正数范围内定义一种运算“※”,其规定则为a※b=,如2※4=,根据这个规则,则方程3※(x+1)=1的解为()A.B.1C.﹣1D.﹣【答案】A【解答】解:由题意得:3※(x+1)=.∵3※(x+1)=1,∴.∴x+1+3=3(x+1).∴x+4=3x+3.∴﹣2x=﹣1.∴x=.当x=时,3(x+1)≠0.∴这个方程的解为x=.故选:A.二、填空题(本题共6题,每小题2分,共12分)11.(2023•柳州三模)分式方程的解是x=﹣2.【答案】x=﹣2.【解答】解:,方程两边都乘x(x﹣3),得2(x﹣3)=5x,解得:x=﹣2,检验:当x=﹣2时,x(x﹣3)≠0,所以x=﹣2是分式方程的解.故答案为:x=﹣2.12.(2023•梁山县模拟)“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x里,则可列方程为.【答案】.【解答】解:设学生步行的速度为每小时x里,则牛车的速度是每小时1.5x里,∵学生早出发1小时,孔子和学生们同时到达书院,∴,故答案为:.13.(2023•建湖县一模)关于x的分式方程=2的解为正数,则a的取值范围是a<4且a≠2.【答案】a<4且a≠2.【解答】解:去分母得:1﹣(a﹣1)=2(x﹣1),解得:x=2﹣a,由分式方程的解为正数,得到2﹣a>0,且2﹣a≠1,解得:a<4且a≠2,故答案为a<4且a≠2.14.(2023•盐田区二模)当x=﹣8时,分式的值为2.【答案】﹣8.【解答】解:根据题意得:=2,去分母得:x﹣2=2(x+3),解得:x=﹣8,检验:把x=﹣8代入得:x+3≠0,∴分式方程的解为x=﹣8,则当x=﹣8时,分式的值为2.故答案为:﹣8.15.(2023•市北区三模)甲、乙两人同时从学校出发,去距离学校15千米的农场参加劳动.甲的速度是乙的1.2倍,结果甲比乙早到10分钟,求甲和乙的速度各是多少?设乙的速度为x千米/小时,则根据题意可列方程为.【答案】.【解答】解:设乙的速度为x千米/小时,则甲的速度为1.2x千米/小时,根据题意得:.故答案为:.16.(2023•九龙坡区校级模拟)若关于x的不等式组有且仅有四个整数解,关于y的分式方程+=1有整数解,则符合条件的所有整数a的和是﹣10.【答案】﹣10,【解答】解:关于x的不等式组整理得,∵关于x的不等式组有且仅有四个整数解,∴1≤<2,∴﹣8<a≤﹣3,解分式方程得y=且≠2,∵关于y的分式方程有整数解,且a为整数,∴符合条件的所有整数a为﹣7,﹣3,∴符合条件的所有整数a的和为:﹣7﹣3=﹣10.故答案为:﹣10.三、解答题(本题共7题,共58分)。

2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

专题04分式、分式方程及一元二次方程复习考点攻略考点01 分式相关概念1、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式。

【注意】A 、B 都是整式,B 中含有字母,且B ≠0。

2、分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。

A A CB BC ⋅=⋅;A A CB B C÷=÷(C≠0)。

3、分式的约分和通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。

(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分。

(3)最简分式:分子与分母没有公因式的分式,叫做最简分式。

(4)最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母。

【注意1】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式。

【注意2】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母。

4、分式的乘除①乘法法则:db ca d cb a ⋅⋅=⋅。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。

分式乘方要把分子、分母分别乘方。

④整数负指数幂:1nn aa-=。

5、分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

①同分母分式的加减:a b a bc c c±±=;②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。

【注意】不论是分式的哪种运算,都要先进行因式分解。

6、分式的混合运算(1)含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.(2)混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【例1】若分式21xx-在实数范围内无意义,则x的取值范围是()A.x≠1 B.x=1 C.x=0 D.x>1【例2】若分式11x+的值不存在,则x=__________.【例3】分式52xx+-的值是零,则x的值为()A.5B.2C.-2D.-5 【例4】下列变形正确的是()A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考点02 分式方程相关概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母。

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。

中考数学专题复习四--分式方程和不等式

中考数学专题复习四--分式方程和不等式

中考数学专题复习四--分式方程和不等式(组)(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中考数学专题复习(四)分式方程和不等式(组)【知识梳理】1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否 . 5.易错知识辨析:(1)去分母时,不要漏乘没有分母的项.(2)解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.6.不等式的有关概念:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;一个含有的不等式的解的叫做不等式的解集.求一个不等式的的过程或证明不等式无解的过程叫做解不等式.7.不等式的基本性质:(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或ca cb ); (3)若a >b ,c <0则ac bc (或c a cb ). 8.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.9.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.10.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”; x a x b >⎧⎨>⎩的解集是x b >,即“大大取大”;x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”; x a x b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.11.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况.如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <); 当0a <时,b x a <(或b x a>); 当0a <时,b x a <(或b x a>). 12.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.13.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么为x );③找:找出能够表示应用题全部含义的一个不等关系;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥验:检验所求解是否符合题意;⑦答:写出答案(包括单位).14.易错知识辨析:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.【真题回顾】一、选择题1.(2010年山东菏泽全真模拟1)下列运算中,错误..的是( ) A.(0)a ac c b bc =≠ B.1a b a b--=-+2(4)4-= D.x y y x x y y x --=++ 2.(2010年江西省统一考试样卷)若分式21x x +有意义,则x 的取值范围是( )A .x >1B .x >-1C .x ≠0D .x ≠-13.(2009年孝感)关于x 的方程211x a x +=- 的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a≠0 C .a <-1 D .a <-1且a≠-24.(2011.鸡西)分式方程)2)(1(11+-=--x x m x x 产生增根,则m 的值是( ) A. 0和3 B. 1 C. 1和-2 D. 35.(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .5二、填空题1.(2010年西湖区月考)若分式22221x x x x --++的值为0,则x 的值等于 2.(2010年江苏省泰州市中考模拟题)使代数式43--x x 有意义的x 的取值范围是 . 3.(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 4.(2011襄阳)已知关于x 的分式方程1131=-+-xx m 的解是正数,则m 的取值范围为 5.(2010新疆乌鲁木齐)在数轴上,点A 、B 对应的数分别为2 ,15+-x x ,且A 、B 两点关于原点对称,则x 的值为 。

中考数学一轮复习专题解析—分式的运算

中考数学一轮复习专题解析—分式的运算

中考数学一轮复习专题解析—分式的运算复习目标1.了解分式的概念2.会利用分式的基本性质进行约分和通分。

3.会进行分式的加、减、乘、除、乘方运算4.能够根据具体问题数量关系列出简单的分式方程5.会解简单的可化为一元一次方程的分式方程;考点梳理一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.【归纳总结】分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B ≠0时,分式有意义;当分式有意义时,B ≠0.②当B =0时,分式无意义;当分式无意义时,B =0.③当B ≠0且A =0时,分式的值为零.例1、若把x ,y 的值同时缩小x 为原来的13倍,则下列分式的值保持不变的是()A .xy x y+B .22y x ++C .()22x y x +D .222x y x -【答案】C 【解析】A.1111333==11333x y xyxy x y x y x y⨯⨯+++,选项说法错误,不符合题意;B.61263=3616233y y x x y x +++=+++,选项说法错误,不符合题意;C.22222222111()()()33311()()33x y x y x y x x x ⎛⎫++ ⎪+⎝⎭==,选项说法正确,符合题意;D.22222213112261())(33()3xx xy x y x y x ⨯==---⨯,选项说法错误,不符合题意故选C二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.例2、计算22111m mm m----的结果是()A.1m+B.1m-C.2m-D.2m--【答案】B【解析】解:()222121211 1111mm m m m mm m m m---+-===-----;故选B.【归纳总结】约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.【特别提醒】通分注意事项(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.【特别提醒】1.解分式方程注意事项(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.2.列分式方程解应用题的基本步骤(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.例3、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周6000件提高到8400件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.6000x=840080x+B.6000x+80=8400xC.8400x=6000x﹣80D.6000x=840080x-【答案】A【解析】解:设原来平均每人每周投递快件x件,则更换交通工具后平均每人每周投递快件(x+80)件,依题意得:6000x=840080x+,故选:A.综合训练1.(2022·全国九年级课时练习)若代数式13x x -+有意义,则x 的取值范围是()A .3x ≠B .1x ≠C .3x ≥-D .3x ≠-【答案】D【分析】根据分式有意义的条件分析即可.【详解】 数式13x x -+有意义,30x ∴+≠,解得3x ≠-.故选D .2.(2022·老河口市教学研究室九年级月考)化简2b a ba a a ⎛⎫+-÷ ⎪⎝⎭的结果是()A .-a bB .a b +C .1a b-D .1a b+【答案】A【分析】直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.【详解】解:2b a ba a a ⎛⎫+-÷⎪⎝⎭=22a b aa a b-⨯+=()()a b a b aaa b+-⨯+=-a b .故选:A .3.(2022·厦门市第九中学九年级二模)港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程55千米.通车前需走水陆两路共约170千米,通车后,约减少时间3小时,平均速度是原来的2.5倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为()A .1705532.5x x-=B .5517032.5x x-=C .17055 2.53x x ⨯-=D .1705532.5x x-=【答案】D【分析】设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,根据它们行驶的时间差为3小时列出分式方程.【详解】解:设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,依题意得:1705532.5x x-=故选D .4.(2022·哈尔滨市第十七中学校)分式方程1x x +12x +-=1的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【答案】A【分析】观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可.【详解】解:112x x x ++-=1,去分母,方程两边同时乘以x (x ﹣2)得:(x +1)(x ﹣2)+x =x (x ﹣2),x 2﹣x ﹣2+x =x 2﹣2x ,x =1,经检验,x =1是原分式方程的解.故选:A .5.(2022·四川九年级期中)关于x 的方程244x ax x -=++有增根,则a 的值为()A .-4B .-6C .0D .3【答案】B【分析】将分式方程转化为整式方程,根据方程有增根求得4x =-,代入整式方程即可.【详解】解:244x ax x -=++两边同时乘4x +得:2x a -=①∵244x ax x -=++有增根∴4x =-代入方程①得:6a =-故答案为B .6.(2022·全国)已知实数a ,b 满足1a b ⋅=,那么221111a b +++的值为()A .14B .12C .1D .2【答案】C【分析】把所求分式通分,再把已知条件代入求解.【详解】解:∵•1a b =,∴()2221a b ab ==,∴22222222112111a b a b a b b a +++=+++++2222211a b b a ++=+++1=.故选:C .7.(2022·日照市田家炳实验中学九年级一模)已知关于x 的方程2222x mm x x+=--无解,则m 的值是___.【答案】12或1【分析】分方程有增根,增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值和方程没有增根两种情况进行讨论.【详解】解:①当方程有增根时方程两边都乘2x -,得22(2)x m m x -=-,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,②当方程没有增根时方程两边都乘2x -,得22(2)x m m x -=-,解得221mx m =-,当分母为0时,此时方程也无解,∴此时210m -=,解得12m =,∴综上所述,当12m =或1时,方程无解.故答案为:12或1.8.(2022·山东滨州市·九年级其他模拟)已知关于x 的分式方程3522x mx x=+--的解为非负数,则m 的取值范围为______.【答案】10m ≥-且6≠-m 【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.【详解】解:3522x m x x=+--去分母,得:35(2)x m x =-+-,移项、合并,得:210x m=+系数化为1得:102mx +=∵分式方程的解为非负数,∴1002m +≥且1022m +≠,解得:10m ≥-且6≠-m ,故答案为:10m ≥-且6≠-m .9.(2022·云南九年级期末)先化简,再求值:212(1)11x x x ++÷+-,其中2x =.【答案】x -1,1【分析】根据分式的混合运算法则化简原式然后代值计算即可.【详解】解:原式=2111()12x x x x ++-⨯++=2(1)(1)12x x x x x ++-⨯++=1x -,∵2x =,∴原式=211-=.10.(2022·河南三门峡市·)下面是小锐同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++()()()()23321233x x x x x +-+=-++…第一步()321323x x x x -+=-++…第二步()()()23212323x x x x -+=-++…第三步()()262123x x x --+=+…第四步()262123x x x --+=+…第五步526x =-+…第六步(1)填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是______;②第______步开始出现错误,这一步错误的原因是__________.(2)请从出现错误的步骤开始继续进行该分式的化简;(3)除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需注意的事项给其他同学提一条建议.【答案】(1)①三,分式的基本性质;②五,括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)见解析;(3)最后结果应化为最简分式或整式【分析】(1)①分式的通分是把异分母的分式化为同分母的分式,通分的依据是分式的基本性质,据此即可进行判断;②根据分式的运算法则可知:第五步开始出现错误,然后根据去括号法则解答即可;(2)根据分式的混合运算法则解答;(3)可从分式化简的最后结果或通分时应注意的事项等进行说明.【详解】解:(1)①在以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质(或分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变);②第五步开始出现错误,这一步错误的原因是:括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)原式()262172326x x x x ---==-++;(3)答案不唯一.如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆等.。

2024年全国各省市数学中考真题汇编 专题4分式与分式方程(34题)含详解

2024年全国各省市数学中考真题汇编 专题4分式与分式方程(34题)含详解

专题04分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川雅安·中考真题)计算()013-的结果是()A .2-B .0C .1D .43.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为()A .60601202x x -=+B .60601202x x -=-C .60601202x x -=+D .60601202x x -=-4.(2024·四川雅安·中考真题)已知()2110a b a b+=+≠.则a ab a b +=+()A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是.6.(2024·辽宁·中考真题)方程512x =+的解为.7.(2024·重庆·中考真题)计算:011(3)()2π--+=.8.(2024·重庆·中考真题)计算:023-+=.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是.11.(2024·四川甘孜·中考真题)分式方程11x 2=-的解为.12.(2024·内蒙古通辽·中考真题)分式方程322x x=-的解为.13.(2024·重庆·中考真题)若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y -=---的解为非负整数,则所有满足条件的整数a 的值之和为.14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭.15.(2024·江苏盐城·中考真题)使分式11x -有意义的x 的取值范围是.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是.17.(2024·四川自贡·中考真题)计算:31211a aa a +-=++.18.(2024·江苏常州·中考真题)计算:111x x x +=++.19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +++的值为.三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a a a a ++⎛⎫+÷⎪+⎝⎭,其中4a =.21.(2024·四川资阳·中考真题)先化简,再求值:221412x x x x x+-⎛⎫-÷ ⎪+⎝⎭,其中3x =.22.(2024·黑龙江大庆·中考真题)先化简,再求值:22391369x x x x -⎛⎫+÷ --+⎝⎭,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.24.(2024·四川遂宁·中考真题)先化简:2121121x x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:32222x x x x ---,其中x =26.(2024·青海·中考真题)先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x +⎛⎫-÷ ⎪⎝⎭.28.(2024·四川雅安·中考真题)(1()111525-⎛⎫-+-⨯- ⎪⎝⎭;(2)先化简,再求值:2221211a a aa a -+⎛⎫-÷⎪-⎝⎭,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.32.(2024·四川达州·中考真题)先化简:22224xx x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a-⎛⎫+÷ ⎪+⎝⎭.34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22422324x xx x x -⎛⎫+-÷+⎪+-⎝⎭,其中72x =-.专题04分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=【答案】A【分析】本题考查通过去分母将分式方程转化为整式方程,方程两边同乘各分母的最简公分母,即可去分母.【详解】解:方程两边同乘26x -,得()()152626263126x x x x x---⨯=-⨯---,整理可得:2625x -+=-故选:A .2.(2024·四川雅安·中考真题)计算()013-的结果是()A .2-B .0C .1D .4【答案】C【分析】本题考查零指数幂,掌握“任何不为零的零次幂等于1”是正确解答的关键.根据零指数幂的运算性质进行计算即可.【详解】解:原式0(2)1=-=.故选:C .3.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为()A .60601202x x -=+B .60601202x x -=-C .60601202x x -=D .60601202x x -=【答案】A【分析】本题主要考查了分式方程的应用.设慢车的速度为km /h x ,则快车的速度是()20km /h x +,再根据题意列出方程即可.【详解】解:设慢车的速度为km /h x ,则快车的速度为()20km /h x +,根据题意可得:60601202x x -=+.故选:A .4.(2024·四川雅安·中考真题)已知()2110a b a b+=+≠.则a ab a b +=+()A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是.6.(2024·辽宁·中考真题)方程12x =的解为.7.(2024·重庆·中考真题)计算:011(3)()2π--+=.8.(2024·重庆·中考真题)计算:023-+=.【答案】3【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是.11.(2024·四川甘孜·中考真题)分式方程1x 2=-的解为.【答案】x 3=【分析】首先去掉分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.12.(2024·内蒙古通辽·中考真题)分式方程2x x=-的解为.13.(2024·重庆·中考真题)若关于x 的不等式组()1321x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为.14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭.15.(2024·江苏盐城·中考真题)使分式1x -有意义的x 的取值范围是.【答案】x ≠1【详解】根据题意得:x -1≠0,即x ≠1.故答案为:x ≠1.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是.17.(2024·四川自贡·中考真题)计算:11a a +-=++.【答案】118.(2024·江苏常州·中考真题)计算:11x x +=.19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +的值为.三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a a a a ++⎛⎫+÷⎪+,其中4a =.21.(2024·四川资阳·中考真题)先化简,再求值:212x x x+-⎛⎫-÷ ⎪+,其中3x =.22.(2024·黑龙江大庆·中考真题)先化简,再求值:21369x x x -⎛⎫+÷ ,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.【答案】该市谷时电价0.3元/度【分析】本题考查了分式方程的应用,设该市谷时电价为x 元/度,则峰时电价()0.2x +元/度,根据题意列出分式方24.(2024·四川遂宁·中考真题)先化简:21121x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:22x x -,其中x =26.(2024·青海·中考真题)先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x ⎛⎫-÷ ⎪.28.(2024·四川雅安·中考真题)(1()111525-⎛⎫-+-⨯- ⎪⎝⎭;(2)先化简,再求值:2221211a a a a a -+⎛⎫-÷ ⎪-,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.【答案】上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、【分析】本题考查分式方程的应用,分别表示出,AB AD 的长,列出分式方程,进行求解即可.【详解】解:由题意,得: 1.2 1.22 1.24AB c d c a =++=+=+,0.80.82AD a b a =++=+,∵AB 与AD 的比是16:10,∴1.24160.8210a a +=+,解得:0.1a =,经检验0.1a =是原方程的解.∴上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、.32.(2024·四川达州·中考真题)先化简:2224x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.【答案】41x +,当1x =时,原式2=.【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x 的值,最后代值计算即可.【详解】解:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()()()()()()2212222x x x x x x x x x x +--+=÷-+-+()()()()()222222221x x x x x x x x x x -++-+=⋅-++()()()()()224221x x x x x x x -+=⋅-++41x =+,∵分式要有意义,∴()()()22010x x x x ⎧+-≠⎪⎨+≠⎪⎩,33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪.34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22324x x x -⎛⎫+-÷+ ⎪,其中2x =-.。

中考数学专题特训第五讲:分式(含详细参考答案)

中考数学专题特训第五讲:分式(含详细参考答案)

2013年中考数学专题复习第五讲:分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式【赵老师提醒:①:若则分式AB无意义②:若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。

1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=b3、约分:根据把一个分式分子和分母的约去叫做分式的约分。

约分的关键是确保分式的分子和分母中的约分的结果必须是分式4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分通分的关键是确定各分母的【赵老师提醒:①最简分式是指②约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的应用字母的当分母、分母是多项式时应先再进行约分③通分时确定最简公分母的方法,取各分母系数的相同字母分母中有多项式时仍然要先通分中有整式的应将整式看成是分母为的式子④约分通分时一定注意“都”和“同时”避免漏乘和漏除项】三、分式的运算:1、分式的乘除①分式的乘法:ba.dc=②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =【赵老师提醒:①分式乘除运算时一般都化为法来做,其实质是的过程②异分母分式加减过程的关键是】3、分式的乘方:应把分子分母各自乘方:即(ba)m =1、分式的混合运算:应先算再算最后算有括号的先算括号里面的。

2、分式求值:①先化简,再求值。

②由值的形式直接化成所求整式的值③式中字母表示的数隐含在方程的题目条件中【赵老师提醒:①实数的各种运算律也符合公式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先此类题目解决过程中要注意整体代入】【重点考点例析】考点一:分式有意义的条件例1 (2012•宜昌)若分式21a+有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠-1 D.a≠0思路分析:根据分母不等于0列式即可得解.解:∵分式有意义,∴a+1≠0,∴a≠-1.故选C.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.对应训练1.(2012•湖州)要使分式1x有意义,x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0 1.B考点二:分式的基本性质运用例2 (2012•杭州)化简216312mm--得;当m=-1时,原式的值为.思路分析:先把分式的分子和分母分解因式得出(4)(4)3(4)m mm+--,约分后得出43m+,把m=-1代入上式即可求出答案.解:216 312 mm--=(4)(4)3(4)m m m +-- =43m +。

2024年上海市初三中考数学冲刺复习专题3 分式与二次根式核心知识点精讲含答案

2024年上海市初三中考数学冲刺复习专题3  分式与二次根式核心知识点精讲含答案

专题03分式与二次根式核心知识点精讲1.了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2.利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.考点1:分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A=0时,分式的值为零.考点2:分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.考点3:分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.考点4:二次根式的主要性质0(0)a≥≥;2.2(0)a a=≥;(0)||(0)a aaa a≥⎧==⎨-<⎩;4.00)a b=≥≥,;5.00)a b=≥>,.>.1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.【题型1:分式的有关概念及性质】【题型2:分式的运算】【题型3:分式方程及其应用】【题型4:二次根式的主要性质】因数或因式;被开方数的因数是整数,因式是整式.【题型5:二次根式的运算】1.下列各式:3a ,7a b +,2212x y +,5,11x -,8x m 中,分式有().A .1个B .2个C .3个D .4个【答案】C【分析】根据分式的定义,逐一判断即可解答.本题主要考查了分式的定义,熟练掌握分式的定义是解题的关键.【详解】解:下列各式:3a ,7a b +,2212x y +,5,11x -,8x m 中,分式有:3a,11x -,8x m 故选:C .2.若分式2321x x x --+的值为正数,则x 的取值范围是()A .3x >B .3x <且1x ≠C .3x <D .13x <<【答案】B【分析】根据题意可得3010x x ->⎧⎨-≠⎩,然后解这两个不等式组即可求出结论.【详解】解∶()2233211x x x x x --=-+-,∵分式2321x x x --+的值为正数,∴3010x x ->⎧⎨-≠⎩,解得3x <且1x ≠.故选∶B .【点睛】此题考查的是根据分式的值的取值范围,求字母的取值范围,掌握两数相除,同号得正,异号得负,并把绝对值相除是解题的关键.3.若把分式3x y xy+中的x 与y 都扩大3倍,则所得分式的值()A .缩小为原来的13B .缩小为原来的19C .扩大为原来的3倍D .不变【答案】A 【分析】本题考查分式的基本性质.根据分式的基本性质即可求出答案.【详解】解:33333133333x y x y xy xyx y x y x y xy ++=⋅⨯⨯+⋅+==,故选:A .则()2820401000x x +-≤,解得25x ≤,故答案为围棋最多可买25副.。

中考复习分式整式化简求值初三

中考复习分式整式化简求值初三

一.教学目标:1、分式的化简求值,理解分式的化简步骤,以及在化简过程中的注意事项2、整式的化简求值,了解整式化简的步骤,以及在化过程中的注意事项1.教学重难点:1分式的约分和通分化简以及化简过程中的方法技巧2整式幂的运算,合并同类项以及化简过程中的方法技巧分式的化简求值一、分式的概念一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫作分式.分式会AB中A叫作分子,B叫作分母.注意:1判断一个式子是否为分式,关键是看分母中是否有字母.2分式与整式的根本区别:分式的分母中含有字母,如12,2x是整式,而2x是分式.3分式有无意义的条件:①若0B≠,则分式AB有意义;②若0B=,则分式AB无意义.4分式的值为零的条件:若{00A B=≠,则分式A B的值为零,反之也成立.二、分式的基本性质分式的基本性质:分式的分子与分母同乘或除以同一个不等于0的整式,分式的值不变.用式子表示是:A A MB B M⋅=⋅,()0A A MMB B M÷=≠÷,其中A,B,M是整式.课题分式整式的化简求值学生姓名年级初三日期注意:1分式的基本性质可类比分数的基本性质去理解记忆.利用分式的基本性质,可以在不改变分式的值的条件下,对分式作一系列的变形.2当分式的分子或分母是多项式,运用分式的基本性质时,要先把分式的分子或分母用括号括上.再将分子与分母同乘或除以相同的整式.三、约分、最简分式及通分的概念1.约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫作分式的约分.说明:约分的关键是准确找出分子与分母的公因式,找公因式的方法:1当分子和分母都是单项式时,先找出它们系数的最大公约数,再确定相同字母的最低次幂,它们的乘积就是分子与分母的公因式.2当分子、分母是多项式时,先将分子、分母因式分解,把分子、分母化为几个因式的积后,再找出分子、分母的公因式.约分应注意一定要把公因式约尽,还应注意分子、分母的整体都要除以同一个公因式.当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项.例如2233a x a b x b+=+是错误的. 2.最简分式分子与分母没有公因式的分式叫作最简分式.判断一个分式是否为最简分式,关键是确定其分子与分母是否有公因式1除外.分式的约分,一般要约去分子和分母的所有公因式,使所得结果成为最简分式或整式.注意:1最简分式与小学学过的最简分数类似.2最简分式是对一个独立的分式而言的,最大的特点是只有一条分数线.形如322x y ++,233ax y ++的分式都不是最简分式. 3.通分根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫作分式的通分.通分的关键是确定几个分式的最简公分母.4最简公分母:各分母所有因式的最高次幂的积,叫作最简公分母.注意:确定最简公分母的一般方法:1如果各分母都是单项式,确定最简公分母的方法是:①取各分母系数的最小公倍数;②凡单独出现的字母,连同它的指数作为最简公分母的一个因式;③同底数幂取次数最高的.这样得到的积就是最简公分母.学科网2如果各分母都是多项式,就要把它们分解因式,再按照分母是单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去求.方法技巧归纳方法技巧 一应用分式概念解题的规律1.分式的判别方法 根据定义判定式子A B 是否为分式要注意两点:一是A ,B 都是整式,二是B 中含字母且0B ≠.判断一个代数式是否为分式,还应注意不能把原式变形如约分等,而只能根据它的最初形式进行判断.如根据()()()()22222a b a b a b a b a b a b +---==++,判定()222a b a b -+不是分式,这是错误的. 2.对分式有无意义或值为0的条件判断二分式基本性质的应用分式的基本性质是分式恒等变形和分式运算的理论依据,正确理解和熟练掌握这一性质是学好分式的关键.利用分式的基本性质可将分式恒等变形,化简分式,简化计算等.1.约分参考三12.通分参考三3三分式值的特殊情况拓展1.分式的值为1或1-的讨论 若分成()10A B B =≠,则A B =,反之也成立;若分式()10A B B=-≠,则A 与B 互为相反数,反之也成立.2.分式的值为正数的讨论分式的值为正数时,分式的分子与分母同号,利用这一关系构造不等式组可求出待定字母的取值范围.3.分式的值为负数的讨论分式的值为负数时,分式的分子与分母异号,利用这一关系构造不等式组可求出待定字母的取值范范围.4.分式的值为整数的讨论若分式的值为整数,则分母必为分子的约数,利用这一关系可对分母进行讨论.四、分式的乘除法分式的乘除法与分数的乘除法类似,法则如下:1乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示是:a c a c b d b d⋅⋅=⋅. 2除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,用式子表示是:ac ad a d b d b c b c⋅÷=⋅=⋅. 3分式的乘方:分式乘方要把分子、分母分别乘方,用式子表示是:n n n a a b b ⎛⎫= ⎪⎝⎭n 是正整数.注意:1法则中的字母a ,b ,c ,d 所代表的可以是单项式,也可以是多项式. 2运算的结果必须是最简分式或整式.五、分式的加减法1.同分母分式加减法的法则与同分母的分数加减法类似,同分母分式相加减,分母不变,把分子相加减. 用式子表示是:a b a b c c c ±±=. 注意:1“同分母分式相加减”是把各个分式的“分子的整体”相加减,即当分子是多项式时,应将各分子加括号,括号不能省略,2运算结果必须化为最简分式或整式.2.异分母分式加减法的法则与异分母的分数加减法类似,异分母分式相加减,先通分,变为同分母的分式,再加减. 用式子表示是:ac ad bc ad bc b d bd bd bd±±=±=. 六、分式的混合运算分式的混合运算的顺序是:先乘方,再乘除,最后算加减;遇到括号,先算括号内的;在同级运算中,从左向右依次进行.注意:1实数的运算律对分式同样适用,注意灵活运用,提高解题的质量和速度.2结果必须化为最简分式或整式.3分子或分母的系数是负数时,要把“-”提到分数线的前边.4对于分式的乘除混合运算,应先将除法运算转化为乘法运算,分子、分母是多项式时,可先将分子、分母分解因式,再相乘.方法技巧归纳方法技巧 一分式的乘除法及乘方运算的解题技巧1.分式的乘除法分式的乘除运算可以统一成乘法运算,分式的乘法一般情况下是先约分再相乘,这样做省时简单易行,又不易出错;当除式或被除式是整式时,可以看作分母是1的式子,然后再按分式的乘除法则计算.2.分式的乘方做分式乘方时,一是注意养成先确定结果的符号,再做其他运算的良好习惯;二是注意运算顺序,先乘方,再乘除,最后加减.二分式加减运算的解题技巧 分式的加减法与分数的加减法的运算法则实质是相同的,分为同分母加减法和异分母加减法,所不同的是分式的加减运算比分数的加减运算要复杂得多,它是整式运算、因式分解和分式运算的综合运用.分式加减运算需要运用较多的基础知识,运算步骤增多,符号变换复杂,解题方法灵活多样.三分式化简、求值的解题技巧分式的化简、求值问题,一是化简要求值的分式,只要能化简就考虑化简;二是化简已知条件,化到最简后,再考虑代入求值. 四分式混合运算的解题技巧分式的混合运算,除了掌握运算顺序外,在运算过程中,可灵活运用交换律、结合律、分配律使运算简化,值得提醒的是最后结果必须是最简分式或整式.五分式通分的解题技巧分式的加减运算,分同分母分式相加减和异分母分式相加减,对于异分母分式的加减法,有时直接通分会很繁琐,我们可以根据式子的特点,灵活的采用不同的方法通分,从而起到事半功倍的效果.1.分组通分2.逐项通分3.公式()11111n n n n =-++的运用 核心考点 分式的化简求值分式化简求值是中考的热点,常以解答题的题型进行考查,主要考查分式的运算能力.在考查时经常运用分式的基本性质进行运算,解题时要充分运用分式运算法则进行求解.经典示例化简分式:2223442x x x x x ---+-÷234x x --,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.答题模板第一步,化简:化简运算过程中要注意约分、通分时分式的值保持不变.第二步,运算:由已知条件,根据分式的基本性质,适当把分式进行变形,使变形后的分式出现已知条件的形式,然后把已知条件代入变形后的分式,来求分式的值. 第三步,求解:分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.四步,反思:查看关键点、易错点,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算..模拟训练先化简,再求值:22214()244a a a a a a a a +--+÷--+,其中011(3)()2a -=π+. 1.2017·湖南常德先化简,再求值:243133x x x x -+---22212322x x x x x -+--+-,其中x =4. 2.2017·湖北襄阳先化简,再求值:2111()x y x y xy y +÷+-+,其中x 52,y 5-2.3.2017·吉林某学生化简分式21211x x ++-出现了错误,解答过程如下: 原式=12(1)(1)(1)(1)x x x x ++-+-第一步 =12(1)(1)x x ++-第二步 =231x -.第三步 1该学生解答过程是从 步开始出错的,其错误原因是 ; 2请写出此题正确的解答过程.4.先化简,再求值:22124)(1)442a a a a a a a -+-÷--+-,其中a 满足不等式组7223a a ->⎧⎨>⎩的整数解.5.先化简,再求值:221a a +-2142a a +÷1-2414a a +,其中a 是不等式x -413x ->1的最大整数解.6.已知1A x +-3B x -=5(1)(3)x x x ++- 其中A ,B 为常数,求A 2 018B 的值. 整式的化简求值一、整式的概念1.单项式和多项式1单项式的概念:由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或字母也叫做单项式,如0,1,a …2单项式的系数:单项式中的数字因数叫做这个单项式的系数;3单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数; 注①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或1,如ab 的系数是1,a 3b 的系数是1. 4多项式的概念:由几个单项式相加组成的代数式叫做多项式;5多项式的项:在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项;6多项式的次数:次数最高的项的次数就是这个多项式的次数;学科网 7常数项:代数式中不含字母的项叫做常数项,如6x 22x 7中的常数项是7. 2. 同类项多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项所有常数项也看做同类项.3.合并同类项1定义:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 2理论依据:逆用乘法分配律.3法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.注①如果两个同类项的系数互为相反数,合并同类项后结果为0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;③只要不再有同类项,就是最后结果,结果还是代数式.(4)合并同类项的步骤:第一步:观察多项式中各项,准确找出同类项,项数比较多时,不同的同类项可以给出不同的标记;第二步:利用乘法的分配律,把同类项的系数加在一起用小括号,字母和字母的指数不变;第三步:写出合并后的结果.4.去括号法则去括号规律要准确理解,去括号应对括号的每一项的符号都予以考虑,做到要变都变;要不变,则谁也不变;法则顺口溜:去括号,看符号,是“+”号,不变号;是“-”号,全变号.另外,括号内原有几项去掉括号后仍有几项.注如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.二、整式的计算1.整式的加减法整式的加减实质上就是合并同类项,若有括号,要先用“去括号法则”去掉括号,然后合并同类项.注1两个整式相减时,减数一定要先用括号括起来;2整式加减的最后结果中:不能含有同类项;一般按照某一字母的降幂或升幂排列;不能出现带分数,带分数要化成假分数.2.幂的运算1同底数幂的乘法同底数幂运算法则:同底数幂相乘,底数不变,指数相加,即()m n m n a a a m n +⋅=、为正整数m 、n 均为正整数.学科网推导公式:同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 ()m n p m n p a a a a m n p ++⋅⋅=、、为正整数.底数互换关系 22()()n n a b b a -=- ,2121()()n n b a a b ++-=--注同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.2幂的乘方的运算性质运算性质: 幂的乘方,底数不变,指数相乘,即()m n mn a a =m 、n 均为正整数. 注幂的乘方的底数是指幂的底数,而不是指乘方的底数.指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.3积的乘方的运算性质运算性质:积的乘方,把积中各个因式分别乘方,再把所得的幂相乘,即:()n n n ab a b =n 为正整数.补充:()p m n mp np a b a b = m 、n 、p 是正整数.注运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果.运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式.3.整式的乘除1 单项式乘单项式法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里的字母,则连同它的指数作为积的一个因式.注计算时要运用乘法交换律,乘法结合律2单项式乘多项式法则:单项式与多项式相乘,因单项式乘多项式的每一项,再把所得的积相加注运用乘法分配律转化成单项式乘单项式3多项式乘多项式法则:多项式与多项式相乘,先用多项式的每一项乘里一个多项式的每一项,再把所得的积相加.4.乘法公式1完全平方公式:a+b2=a2+2ab+b2, ab2=a22ab+b2解读:()222首尾首首尾尾,公式中的a、b可以是单独的数字,字母,单+=+⨯⨯+2项式或多项式2平方差公式:a+bab=a2b2核心考点整式的化简求值1.整式化简求值在广东省中考中,在解答题部分,大多以先化简再求值的题型出现,要求熟悉乘法公式的特点,看清项数及公式形式中的a、b,准确进行计算;2.要准确认识平方差和完全平方公式,可以结合面积法证明这两个公式,这种证明方法在初中数学中体现了数形结合的思想;3.在化简求值时要注意:当字母是负数时,代入后应加上括号;当字母是分数时,遇到乘方也要加括号.经典示例先化简,再求值:2()()2a b a b a +-+,其中1a =,2b =.答题模板第一步,计算:利用整式乘法和除法法则或乘法公式进行展开.第二步,化简:利用整式的加减法法则合并同类项化简. 第三步,求值:把字母的值代入化简结果计算.第四步,反思:反思回顾,查看关键点、易错点,对结果进行估算,检查规范性. 模拟训练1.计算:(3)(1)(2)a a a a +-+-.2. 先化简,再求值.()()223234(1)(2)x x x x x +---+-,其中3x =-.1.2017·浙江宁波先化简,再求值:2215x xx x ,其中32x . 2.2017·湖南怀化先化简,再求值:2212112a a a a a ,其中21a .3.2017·江苏无锡计算:a +ba ﹣b ﹣aa ﹣b4.2017·浙江嘉兴化简:(2)(2)33m m m m +--⨯. 5.2017·河南先化简,再求值: 2(2)()()5()x y x y x y x x y ++-+--,其中21x =,21y =.。

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯ B .8710m -⨯C .80.710m -⨯D .9710m -⨯【答案】D【分析】由题意易得nm 0.000000007m 7=,然后根据科学记数法可直接进行求解. 【详解】解:由题意得:nm 0.000000007m 7=, ∴7nm 用科学记数法表示为9710m -⨯;故选D .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =-C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化市·中考真题)定义12a b a b ⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可.【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+故选:B . 【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时 B .1.6小时C .1.8小时D .2小时【答案】C【分析】设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【详解】解:设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:()1803803x xxx-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤- B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】解:方程433x kx x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+≤,∴12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0, 经检验,m=0是原方程的解,并且满足m 2-2m≥0,当m 2-2m <0时,m -3=-6,解得m=-3,不满足m 2-2m <0,舍去.故输入的m 为0.故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3 B .4C .5D .6【答案】B【分析】将2x =代入原方程,即可求出k 值. 【详解】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.20.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 21.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5 B .5- C .2-D .2【答案】B【分析】利用分式值为零的条件可得50x +=,且20x -≠,再解即可. 【详解】解:由题意得:50x +=,且20x -≠,解得:5x =-,故选:B .【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.22.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 23.(2020·河北中考真题)若ab ,则下列分式化简正确的是( )A .22a ab b+=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【详解】∵a≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( )A .1x x+B .1x x -C .1x x-D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【详解】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B【分析】将所给分式的分母配方化简,再利用分式加减法化简,据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111xx x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②.故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯ B .9710m -⨯C .80.710m -⨯D .10710m -⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】7nm 用科学记数法表示为9710m -⨯.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =,把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 28.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【详解】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为xb小时, 则上、下山的平均速度22xabxxa b ab=++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)【答案】C【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(2019·广东中考真题)定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25【答案】B【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-,则25m =-,经检验,25m =-是方程的解,故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 二、填空题32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可.【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键. 38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【详解】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x -(x -2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【详解】解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+()()yx y x y x y y +=⋅+-1x y=-,故答案为:1x y -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).【答案】()12121n n n ++-+【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+,故答案为:21(1)21n n n a n ++-=+ 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 【答案】1m n -+,13【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=()2m n m n m m ⎡⎤++÷-⎢⎥⎢⎥⎣⎦=()2m n m m m n ⎡⎤+⨯-⎢⎥+⎢⎥⎣⎦=1m n -+,∵m+n=-3,代入,原式=13. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.【答案】66111.2x x+= 【分析】设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可. 【详解】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x +=,故答案为66111.2x x+=, 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数. 【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可.【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式=== 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值.【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5, ∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解。

人教版2023中考数学专题复习:分式方程精讲精练

人教版2023中考数学专题复习:分式方程精讲精练

分式方程精讲精练学校:___________姓名:___________班级:___________考号:___________知识点精讲1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.4.分式方程的应用(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.针对训练一、单选题1.下列方程中是分式方程的是( )A .212x x -=B .223x x =-C .122x =-D .312x π+=2.分式方程61222x x x -=---的解是( ) A .3x =- B .2x =- C .0x = D .3x =3.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2 4.若关于x 的方程221m x x =+无解,则m 的值为( ) A .0 B .4或6 C .4 D .0或45.已知关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是( ) A .4m ≥- B .4m ≥-且3m ≠- C .4m >-D .4m >-且3m ≠- 6.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x =-+B .72072054848x -=+C .72072054848x -=-D .72072054848x -=- 7.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .900900231x x =⨯+-B .900900231x x =⨯-+C .900900213x x =⨯-+D .900900213x x =⨯+- 8.某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x =-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量D .篮球的数量 9.《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程( )A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+ 10.若关于x 的不等式组52111322x a x x +≤⎧⎪⎨⎛⎫-<+ ⎪⎪⎝⎭⎩有且仅有四个整数解,关于y 的分式方程26121ay y y -=+--有整数解,则符合条件的所有整数a 的和是( )A .2B .5C .10D .12二、填空题11.解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 12.分式方程522x x=+的解为_______. 13.若关于x 的分式方程25k x x =+的解为10x =-,则k =_______. 14.代数式32x +与代数式21x -的值相等,则x =______. 15.设m ,n 为实数,定义如下一种新运算:39n m n m =-☆,若关于x 的方程()(12)1a x x x =+☆☆无解,则a 的值是______.16.若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是____________. 17.对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x 的值为 _____. 18.若关于x 的分式方程3211x m x x+=--的解为正数,则m 的取值范围是 ______. 19.甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km /h .若甲、乙两船在静水中的速度相同,则可求得两船在静水中的速度为___________km /h .20.开学之际,学校需采购部分课桌,现有A ,B 两个商家供货,A 商家每张课桌的售价比B 商家优惠20元,若该校花费1500元在A 商家购买课桌的数量与花费2500元在B 商家购买课桌的数量一样多,设A 商家每张课桌的售价为x 元,则可列方程为________.三、解答题21.解下列方程:(1)2131x x=+-(2)11222xx x-=---(3)2134412142xx x x+=--+-22.为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?23.我县教育局新建了一栋办公楼,需要内装修,甲工程队单独施工需要80天完工,由甲乙两工程队同时施工,那么16天完成了总工程的13 25.(1)如果乙工程队单独施工,则需要多少天完成?(2)如果甲工程队单独施工一天的工钱是5000元,乙工程队单独施工一天的工钱是8100元,为了节约工钱,应选用哪个工程队单独施工比较划算?24.某商场用5000元购进了一批服装,由于销路好,商场又用18600元购进了第二批这种服装,所购数量是第一批同进量的3倍,但单价贵了24元,商场在出售该服装时统一按照每件200元的标价出售,卖了部分后,对剩余的40件,商场按标价的6折进行了清仓处理并全部售完.求:(1)商场两次共购进了多少件服装?(2)两笔生意中商场共盈利多少元?25.小明的爸爸出差回家后,小明发现爸爸的通信大数据行程卡上显示爸爸去过西安、成都、重庆.已知西安到成都的路程为770公里,比西安到重庆的路程少230公里,小明爸爸驾车从西安到重庆的平均车速和西安到成都的平均车速比为8:7,从西安到重庆的时间比从西安到成都的时间多1.5 小时.(1)求小明爸爸从西安到重庆的平均车速;(2)从西安到成都时,若小明的爸爸比之前到达的时间至少要提前1小时,则平均车速应满足什么条件?26.金师傅近期准备换车,看中了价格相同的两款国产车.(1)用含a的代数式表示新能源车的每千米行驶费用.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习:分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式【名师提醒:①:若则分式AB无意义②:若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。

1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=b3、约分:根据把一个分式分子和分母的约去叫做分式的约分。

约分的关键是确保分式的分子和分母中的约分的结果必须是分式4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分通分的关键是确定各分母的【名师提醒:①最简分式是指②约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的应用字母的当分母、分母是多项式时应先再进行约分③通分时确定最简公分母的方法,取各分母系数的相同字母分母中有多项式时仍然要先通分中有整式的应将整式看成是分母为的式子④约分通分时一定注意“都”和“同时”避免漏乘和漏除项】三、分式的运算:1、分式的乘除①分式的乘法:ba.dc=②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =【名师提醒:①分式乘除运算时一般都化为法来做,其实质是的过程②异分母分式加减过程的关键是】3、分式的乘方:应把分子分母各自乘方:即(ba)m =1、分式的混合运算:应先算再算最后算有括号的先算括号里面的。

2、分式求值:①先化简,再求值。

②由值的形式直接化成所求整式的值③式中字母表示的数隐含在方程的题目条件中【名师提醒:①实数的各种运算律也符合公式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先此类题目解决过程中要注意整体代入】[]【重点考点例析】考点一:分式有意义的条件例1 (•宜昌)若分式21a有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠-1 D.a≠0思路分析:根据分母不等于0列式即可得解.解:∵分式有意义,∴a+1≠0,∴a≠-1.故选C.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.对应训练1.(•湖州)要使分式1x有意义,x的取值范围满足()A .x =0B .x ≠0C .x >0D .x <0 1.B考点二:分式的基本性质运用例2 (•杭州)化简216312m m --得 ;当m =-1时,原式的值为 .思路分析:先把分式的分子和分母分解因式得出(4)(4)3(4)m m m +--,约分后得出43m +,把m =-1代入上式即可求出答案.解:216312m m --=(4)(4)3(4)m m m +--=43m +。

当m =-1时,原式=143-+=1, 故答案为:43m +,1. 点评:本题主要考查了分式的约分,关键是找出分式的分子和分母的公因式,题目比较典型,难度适中. 对应训练2.(2011•遂宁)下列分式是最简分式的( )A .223aa bB .23a a a -C .22a b a b ++ D .222a ab a b -- 2.C考点三:分式的化简与求值例3 (•南昌)化简:2211a a a a a --÷+. 思路分析:将分式221a a a -+的分子、分母因式分解为(1)(1)(1)a a a a +-+,再把分式的除法变为乘法进行计算即可. 解:原式=1(1)(1)(1)a a a a a a -+-÷+=1(1)(1)(1)a a a a a a -+⨯+- =-1.点评:本题考查的是分式的乘除法,即分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.例4 (•安徽)化简211x xx x+-- 的结果是( ) A .x +1 B .x -1 C .-x D .x思路分析:将分母化为同分母,通分,再将分子因式分解,约分.解:211x x x x +--211x x x x =---21x x x -=-(1)1x x x -=-=x , 故选D .点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减. 例5 (•天门)化简221(1)11x x -÷+- 的结果是( ) A .21(1)x + B .21(1)x - C .2(1)x + D .2(1)x - 思路分析:将原式括号中的两项通分并利用同分母分式的减法法则计算,分子合并,同时将除式的分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后即可得到最简结果. 解:221(1)11x x -÷+- =1211(1)(1) x x x x +-÷++- =1(1)(1)1x x x x -+-+=2(1)x -. 故选D 。

点评:此题考查了分式的化简混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,同时注意最后结果必须为最简分式.例6 (•遵义)化简分式222()1121x x x x x x x x --÷---+,并从-1≤x ≤3中选一个你认为合适的整数x 代入求值.思路分析:先将括号内的分式通分,再按照分式的除法法则,将除法转化为乘法进行计算.解:原式=2(1)(1)[](1)(1)(1)(1)(1)x x x x x x x x x x +--⨯-+-+- =22(1) (1)(1)(1)x x x x x x -⨯-+-=1xx +,由于当x =-1或x =1时,分式的分母为0, 故取x 的值时,不可取x =-1或x =1, 不妨取x =2, 此时原式=22213=+. 点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分. 对应训练 3.(•河北)化简22111x x ÷--的结果是( ) A .21x - B .321x - C .21x - D .2(x +1)3.C4.(•绍兴)化简111x x --可得( )A .21x x -B .21x x --C .221x x x +-D .221x x x --4.B5.(•泰安)化简22()2-24m m mm m m -÷+-= . 5.m -66.(•资阳)先化简,再求值:2221(1)11a a a a a --÷---+,其中a 是方程x 2-x =6的根. 6.解:原式=22(1)(1)2111a a a a a a -+---÷-+=222211a a a a a --÷-+ =21(1)(1)(2)a a a a a a -++-- =21a a-.∵a 是方程x 2-x =6的根, ∴a 2-a =6,∴原式=16.考点四:分式创新型题目例7 (•凉山州)对于正数x ,规定1()1f x x =+,例如:11(4)145f ==+,114()14514f ==+,则111(2012)(2011)(2)(1)()()()220112012f f f f f f f ++⋅⋅⋅++++⋅⋅⋅++= .思路分析:当x =1时,1(1)2f =;当x =2时,1(2)3f =,当12x =时,12()23f =;当x =3时,1(3)4f =,当13x =时,13()34f =…,故11(2)()1,(3)()123f f f f +=+=,…,所以1()(1)()(1)(1)f n f f f n n +⋅⋅⋅++⋅⋅⋅+=+-,由此规律即可得出结论.解:∵当x =1时,1(1)2f =;当x =2时,1(2)3f =,当12x =时,12()23f =;当x =3时,1(3)4f =,当13x =时,13()34f =…,∴11(2)()1,(3)()123f f f f +=+=,…,∴1()(1)()(1)(1)f n f f f n n+⋅⋅⋅++⋅⋅⋅+=+-,∴111(2012)(2011)(2)(1)()()()(1)(20121)220112012f f f f f f f f ++⋅⋅⋅++++⋅⋅⋅++=+-120112011.52=+=. 故答案为:2011. 5.点评:本题考查的是分式的加减法,根据题意得出1()()1f n f n +=是解答此题的关键.对应训练7.(•临沂)读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,通过对以上材料的阅读,计算201211 (1)nn n==+∑.7.解:由题意得,201211111111 1(1)223342013nn n==-+-+-⋅⋅⋅-+∑1++201212012120132013=-=.故答案为:2012 2013.【聚焦山东中考】一、选择题1.(•潍坊)计算:2-2=()A.14B.2C.14-D.41.A.2.(•德州)下列运算正确的是()A.42=B.(-3)2=-9 C.2-3=8 D.20=0 2.A3.(•临沂)化简4(1)22aa a+÷--的结果是()A.2aa+B.2aa+C.2aa-D.2aa-3.A4.(•威海)化简的结果是()A.B.C.D.考点:分式的加减法。

810360专题:计算题。

分析:先把x2﹣9因式分解得到最简公分母为(x+3)(x﹣3),然后通分得到,再把分子化简后约分即可.解答: 解:原式=﹣===.故选B .点评: 本题考查了分式的加减法:先把各分母因式分解,确定最简公分母,然后进行通分化为同分母的分式,再把分母不变,分子相加减,然后进行约分化为最简分式或整式.二、填空题5.(•聊城)计算:24(1)42aa a +÷=-- . 5.2a a + 6.(2011•泰安)化简:22()224x x xx x x -÷+--的结果为 . 6.x -6 三、解答题7.(·济南)化简:2121224a a a a a --+÷--. 7.解:原式=212(2)2(1)a a a a --⨯-- =21a -. 8.(•烟台)化简:222844(1)442a a a a a a+--÷+++.8.解:原式=222(44)(28)24444a a a a a a a a ++-++++- =244(2)(2)44a a a a a -++- =2aa +。

相关文档
最新文档