2020江苏省高考数学学科考试说明
2020年江苏省高考数学试卷 试题+答案详解
![2020年江苏省高考数学试卷 试题+答案详解](https://img.taocdn.com/s3/m/ac92eca4e87101f69f31957f.png)
E 为 AC 的中点. (1)求直线 AB 与 DE 所成角的余弦值;
1
(2)若点 F 在 BC 上,满足 BF= BC,
4
设二面角 F—DE—C 的大小为θ,求 sinθ的值.
25.甲口袋中装有 2 个黑球和 1 个白球,乙口袋中装有 3 个白球.现从甲、乙两口袋中各任 取一个球交换放入另一口袋,重复 n 次这样的操作,记甲口袋中黑球个数为 Xn,恰有 2 个 黑球的概率为 pn,恰有 1 个黑球的概率为 qn. (1)求 p1·q1 和 p2·q2; (2)求 2pn+qn 与 2pn-1+qn-1 的递推关系式和 Xn 的数学期望 E(Xn)(用 n 表示) .
a1
d 2
q 2
1
aq120
,∴
d
q
4
.
b1 1 q
1
b1 1
12【答案】 4 5
【解析】∵
5x2
y2
y4
1,∴
y
0
且
x2
1 y4 5y2
∴
x2
y2
1 y4 5y2
y2
1 5y2
+
4y2 5
2
1 4y2 4 , 5y2 5 5
当且仅当
1 5y2
4y2 5
,即
x2
3 , y2 10
等差数列 an 的前 n 项和公式为 Pn
na1
nn 1
d 2
d n2 2
a1
d 2
n
,
等比数列bn 的前
n
2020年江苏省高考数学试卷 试题详解
![2020年江苏省高考数学试卷 试题详解](https://img.taocdn.com/s3/m/99e61c913968011ca200917f.png)
2020年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上... 1.已知集合{1,0,1,2},{0,2,3}A B =-=,则AB =_____. 【答案】{}0,2【解析】∵{}1,0,1,2A =-,{}0,2,3B =,∴{}0,2AB =. 2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.【答案】3【解析】∵复数()()12z i i =+-,∴2223z i i i i =-+-=+∴复数的实部为3.故答案为3.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.【答案】2【解析】∵数据4,2,3,5,6a a -的平均数为4∴4235620a a ++-++=,即2a =.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19 【解析】根据题意可得基本事件数总为6636⨯=个. 点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个.∴出现向上的点数和为5的概率为41369P ==. 5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】由于20x >,所以12y x =+=-,解得3x =-.6.在平面直角坐标系xOy 中,若双曲线()222105x y a a-=>的一条渐近线方程为5y x =,则该双曲线的离心率是____. 【答案】32 【解析】∵双曲线22215x y a -=,∴5b =. 由于双曲线的一条渐近线方程为52y x =,即522b a a =⇒=, ∴22453c a b =+=+=,∴双曲线的离心率为32c a =. 7.已知()y f x =是奇函数,当0x ≥时()23 f x x =,则()8f -的值是____.【答案】4-【解析】23(8)84f ==,∵()f x 为奇函数,∴(8)(8)4f f -=-=-.8.已知2sin ()4πα+ =23,则sin2α的值是____. 【答案】13【解析】∵22221sin ()(cos sin )(1sin 2)42παααα+=+=+, ∴12(1sin 2)23α+=,∴1sin 23α=. 9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】1232π【解析】正六棱柱体积为23622=1234⨯⨯,圆柱体积为21()222ππ⋅= ∴所求几何体体积为1232π.10.将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.【答案】524x π=- 【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 令2()122x k k Z πππ-=+∈,得7()242k x k Z ππ=+∈。
2020年江苏省高考数学试卷(文科)-含详细解析
![2020年江苏省高考数学试卷(文科)-含详细解析](https://img.taocdn.com/s3/m/50b2899d0912a2161579297f.png)
2020年江苏省高考数学试卷(文科)副标题题号一二总分得分一、填空题(本大题共14小题,共70.0分)1.已知集合A={−1,0,1,2},B={0,2,3},则A∩B=______.2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是______.3.已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图,若输出y的值为−2,则输入x的值是______.6.在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是______.7.已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)的值是______.8.已知sin2(π4+α)=23,则sin2α的值是______.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是______cm3.10. 将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是______.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______. 12. 已知5x 2y 2+y 4=1(x,y ∈R),则x 2+y 2的最小值是______.13. 在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9.若PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ (m 为常数),则CD 的长度是______.14. 在平面直角坐标系xOy 中,已知P(√32,0),A 、B 是圆C :x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是______. 二、解答题(本大题共6小题,共90.0分)15. 在三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a =3,c =√2,B =45°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos∠ADC =−45,求tan∠DAC 的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?18.在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1、F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f(x),y =g(x)与ℎ(x)=kx +b(k,b ∈R)在区间D 上恒有f(x)≥ℎ(x)≥g(x).(1)若f(x)=x 2+2x ,g(x)=−x 2+2x ,D =(−∞,+∞),求ℎ(x)的表达式; (2)若f(x)=x 2−x +1,g(x)=klnx ,ℎ(x)=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f(x)=x 4−2x 2,g(x)=4x 2−8,ℎ(x)=4(t 3−t)x −3t 4+2t 2(0<|t|≤√2),D =[m,n]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k =λa n+11k成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.答案和解析1.【答案】{0,2}【解析】解:集合B ={0,2,3},A ={−1,0,1,2}, 则A ∩B ={0,2}, 故答案为:{0,2}.运用集合的交集运算,可得所求集合.本题考查集合的交集运算,考查运算能力,属于基础题. 2.【答案】3【解析】解:复数z =(1+i)(2−i)=3+i , 所以复数z =(1+i)(2−i)的实部是:3. 故答案为:3.利用复数的乘法的运算法则,化简求解即可.本题考查复数的乘法的运算法则以及复数的基本概念的应用,是基本知识的考查. 3.【答案】2【解析】解:一组数据4,2a ,3−a ,5,6的平均数为4, 则4+2a +(3−a)+5+6=4×5, 解得a =2. 故答案为:2.运用平均数的定义,解方程可得a 的值.本题考查平均数的定义的运用,考查方程思想和运算能力,属于基础题.4.【答案】19【解析】解:一颗质地均匀的正方体骰子先后抛掷2次,可得基本事件的总数为6×6=36种,而点数和为5的事件为(1,4),(2,3),(3,2),(4,1),共4种, 则点数和为5的概率为P =436=19. 故答案为:19.分别求得基本事件的总数和点数和为5的事件数,由古典概率的计算公式可得所求值. 本题考查古典概率的求法,考查运算能力,属于基础题. 5.【答案】−3【解析】解:由题意可得程序框图表达式为分段函数y ={2x ,x >0x +1,x ≤0,若输出y 值为−2时,由于2x >0, 所以解x +1=−2, 即x =−3,故答案为:−3,由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.【答案】32【解析】解:双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,可得√5a=√52,所以a=2,所以双曲线的离心率为:e=ca =√4+52=32,故答案为:32.利用双曲线的渐近线方程,求出a,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,是基本知识的考查.7.【答案】−4【解析】【分析】本题考查函数的奇偶性的定义和运用:求函数值,考查转化思想和运算能力,属于基础题.由奇函数的定义可得f(−x)=−f(x),由已知可得f(8),进而得到f(−8).【解答】解:y=f(x)是奇函数,可得f(−x)=−f(x),当x≥0时,f(x)=x23,可得f(8)=823=4,则f(−8)=−f(8)=−4,故答案为:−4.8.【答案】13【解析】解:因为sin2(π4+α)=23,则sin2(π4+α)=1−cos(π2+2α)2=1+sin2α2=23,解得sin2α=13,故答案为:13根据二倍角公式即可求出.本题考查了二倍角公式,属于基础题.9.【答案】12√3−π2【解析】【分析】本题考查柱体体积公式,考查了推理能力与计算能力,属于基础题.通过棱柱的体积减去圆柱的体积,即可推出结果.【解答】解:六棱柱的体积为:6×12×2×2×sin60°×2=12√3,圆柱的体积为:π×(0.5)2×2=π2,所以此六角螺帽毛坯的体积是:(12√3−π2)cm3,故答案为:12√3−π2.10.【答案】x =−5π24【解析】【分析】本题考查三角函数的平移变换,对称轴方程,属于中档题.利用三角函数的平移可得新函数g(x)=f(x −π6),求g(x)的所有对称轴x =7π24+kπ2,k ∈Z ,从而可判断平移后的图象中与y 轴最近的对称轴的方程, 【解答】解:因为函数y =3sin(2x +π4)的图象向右平移π6个单位长度可得 g(x)=f(x −π6)=3sin(2x −π3+π4)=3sin(2x −π12),则y =g(x)的对称轴为2x −π12=π2+kπ,k ∈Z , 即x =7π24+kπ2,k ∈Z ,当k =0时,x =7π24,当k =−1时,x =−5π24,所以平移后的图象中与y 轴最近的对称轴的方程是x =−5π24, 故答案为:x =−5π24.11.【答案】4【解析】解:因为{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),因为{a n }是公差为d 的等差数列,设首项为a 1;{b n }是公比为q 的等比数列,设首项为b 1, 所以{a n }的通项公式a n =a 1+(n −1)d ,所以其前n 项和:n[a 1+a 1+(n−1)d]2=d2n 2+(a 1−d 2)n ,{b n }中,当公比q =1时,其前n 项和S n =nb 1,所以{a n +b n }的前n 项和S n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1, 则{b n }的前n 项和为:b 1(q n −1)q−1=b 1q n q−1+b 1q−1,所以S n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4, 故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值.本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.12.【答案】45【解析】解:方法一、由5x 2y 2+y 4=1,可得x 2=1−y 45y 2,由x 2≥0,可得y 2∈(0,1], 则x 2+y 2=1−y 45y 2+y 2=1+4y 45y 2=15(4y 2+1y 2)≥15⋅2√4y 2⋅1y 2=45,当且仅当y 2=12,x 2=310, 可得x 2+y 2的最小值为45; 方法二、4=(5x 2+y 2)⋅4y 2≤(5x 2+y 2+4y 22)2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310时取得等号, 可得x 2+y 2的最小值为45. 故答案为:45.方法一、由已知求得x 2,代入所求式子,整理后,运用基本不等式可得所求最小值; 方法二、由4=(5x 2+y 2)⋅4y 2,运用基本不等式,计算可得所求最小值.本题考查基本不等式的运用:求最值,考查转化思想和化简运算能力,属于中档题.13.【答案】0或185【解析】解:如图,以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,则B(4,0),C(0,3),由PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ ,得PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ), 整理得:PA ⃗⃗⃗⃗⃗ =−2m AB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =−2m(4,0)+(2m −3)(0,3)=(−8m,6m −9).由AP =9,得64m 2+(6m −9)2=81,解得m =2725或m =0.当m =0时,PA ⃗⃗⃗⃗⃗ =(0,−9),此时C 与D 重合,|CD|=0; 当m =2725时,直线PA 的方程为y =9−6m 8mx ,直线BC 的方程为x4+y3=1,联立两直线方程可得x =83m ,y =3−2m . 即D(7225,2125),∴|CD|=√(7225)2+(2125−3)2=185.∴CD 的长度是0或185. 故答案为:0或185.以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,求得B 与C 的坐标,再把PA ⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP =9列式求得m 值,然后分类求得D 的坐标,则CD 的长度可求.本题考查向量的概念与向量的模,考查运算求解能力,利用坐标法求解是关键,是中档题.14.【答案】10√5【解析】解:圆C :x 2+(y −12)2=36的圆心C(0,12),半径为6,如图,作PC 所在直径EF ,交AB 于点D ,因为PA =PB ,CA =CB =R =6,所以PC ⊥AB ,EF 为垂径,要使面积S △PAB 最大,则P ,D 位于C 的两侧,并设CD =x ,可得PC =√14+34=1,故PD =1+x ,AB =2BD =2√36−x 2,可令x =6cosθ,S △PAB =12|AB|⋅|PD|=(1+x)√36−x 2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ,0<θ≤π2,设函数f(θ)=6sinθ+18sin2θ,0<θ≤π2, f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ−6),由f′(θ)=6(12cos 2θ+cosθ−6)=0,解得cosθ=23(cosθ=−34<0舍去), 显然,当0≤cosθ<23,f′(θ)<0,f(θ)递减;当23<cosθ<1时,f′(θ)>0,f(θ)递增,结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos 2θ=√53,故f(θ)max =6×√53+36×√53×23=10√5,则△PAB 面积的最大值为10√5. 故答案为:10√5.求得圆的圆心C 和半径,作PC 所在直径EF ,交AB 于点D ,运用垂径定理和勾股定理,以及三角形的面积公式,由三角换元,结合函数的导数,求得单调区间,计算可得所求最大值.本题考查圆的方程和运用,以及圆的弦长公式和三角形的面积公式的运用,考查换元法和导数的运用:求单调性和最值,属于中档题.15.【答案】证明:(1)E ,F 分别是AC ,B 1C 的中点. 所以EF//AB 1,因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1;(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABB 1, 所以B 1C ⊥AB ,又因为AB ⊥AC ,AC ∩B 1C =C ,AC ⊂平面AB 1C ,B 1C ⊂平面AB 1C , 所以AB ⊥平面AB 1C , 因为AB ⊂平面ABB 1,所以平面AB 1C ⊥平面ABB 1.【解析】(1)证明EF//AB 1,然后利用直线与平面平行的判断定理证明EF//平面AB 1C 1;(2)证明B 1C ⊥AB ,结合AB ⊥AC ,证明AB ⊥平面AB 1C ,然后证明平面AB 1C ⊥平面ABB 1. 本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用,直线与平面平行的判断定理的应用,是中档题.16.【答案】解:(1)因为a =3,c =√2,B =45°.,由余弦定理可得:b =√a 2+c 2−2accosB =√9+2−2×3×√2×√22=√5,由正弦定理可得csinC =bsinB ,所以sinC =cb ⋅sin45°=√2√5⋅√22=√55, 所以sinC =√55;(2)因为cos∠ADC =−45,所以sin∠ADC =√1−cos 2∠ADC =35, 在三角形ADC 中,易知C 为锐角,由(1)可得cosC =√1−sin 2C =2√55, 所以在三角形ADC 中,sin∠DAC =sin(∠ADC +∠C)=sin∠ADCcos∠C +cos∠ADCsin∠C =2√525,因为∠DAC ∈(0,π2),所以cos∠DAC =√1−sin 2∠DAC =11√525,所以tan∠DAC =sin∠DAC cos∠DAC =211.【解析】(1)由题意及余弦定理求出b 边,再由正弦定理求出sin C 的值;(2)三角形的内角和为180°,cos∠ADC =−45,可得∠ADC 为钝角,可得∠DAC 与∠ADC +∠C 互为补角,所以sin∠DAC =sin(∠ADC +∠C)展开可得sin∠DAC 及cos∠DAC ,进而求出tan∠DAC 的值.本题考查三角形的正弦定理及余弦定理的应用,及两角和的正弦公式的应用,属于中档题.17.【答案】解:(1)ℎ2=−1800b 3+6b ,点B 到OO′的距离为40米,可令b =40, 可得ℎ2=−1800×403+6×40=160, 即为|O′O|=160,由题意可设ℎ1=160, 由140a 2=160,解得a =80, 则|AB|=80+40=120米; (2)可设O′E =x ,则CO′=80−x ,由{0<x <400<80−x <80,可得0<x <40,总造价为y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)] =k800(x 3−30x 2+160×800), y′=k 800(3x 2−60x)=3k 800x(x −20),由k >0,当0<x <20时,y′<0,函数y 递减;当20<x <40时,y′>0,函数y 递增,所以当x =20时,y 取得最小值,即总造价最低.答:(1)桥|AB|长为120米;(2)O′E 为20米时,桥墩CD 与EF 的总造价最低.【解析】(1)由题意可令b =40,求得ℎ2,即O′O 的长,再令ℎ1=|OO′|,求得a ,可得|AB|=a +b ;(2)可设O′E =x ,则CO′=80−x ,0<x <40,求得总造价y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)],化简整理,应用导数,求得单调区间,可得最小值. 本题考查函数在实际问题中的应用,考查导数的应用:求最值,考查运算能力和分析问题与解决问题的能力,属于中档题.18.【答案】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2−b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A(1,32),设P(t,0),则直线AP 方程为y =321−t(x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q(4,32⋅4−t1−t ),OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ =(t,0)⋅(t −4,0−32⋅4−t1−t )=t 2−4t =(t −2)2−4≥−4,当t =2时,(OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ )min =−4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB|×d 2=12×|AB|×d 1,即d 2=3d 1,A(1,32),F 1(−1,0),可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95,由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以9+16=95,即m =−6或12, 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2),联立{y =34(x −2)x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127, 所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36−56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127).【解析】(1)由椭圆标准方程可知a ,b ,c 的值,根据椭圆的定义可得△AF 1F 2的周长=2a +2c ,代入计算即可.(2)由椭圆方程得A(1,32),设P(t,0),进而由点斜式写出直线AP 方程,再结合椭圆的右准线为:x =4,得点Q 为(4,32⋅4−t1−t ),再由向量数量积计算最小值即可.(3)在计算△OAB 与△MAB 的面积时,AB 可以最为同底,所以若S 2=3S 1,则O 到直线AB 距离d 1与M 到直线AB 距离d 2,之间的关系为d 2=3d 1,根据点到直线距离公式可得d 1=35,d 2=95,所以题意可以转化为M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,根据两平行直线距离公式可得,m =−6或12,然后在分两种情况算出M 点的坐标即可.本题考查椭圆的定义,向量的数量积,直线与椭圆相交问题,解题过程中注意转化思想的应用,属于中档题.19.【答案】解:(1)由f(x)=g(x)得x =0,又f′(x)=2x +2,g′(x)=−2x +2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图象为过原点,斜率为2的直线,所以ℎ(x)=2x , 经检验:ℎ(x)=2x ,符合任意, (2)ℎ(x)−g(x)=k(x −1−lnx), 设φ(x)=x −1−lnx ,设φ′(x)=1−1x =x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0,令p(x)=f(x)−ℎ(x)所以p(x)=x2−x+1−(kx−k)=x2−(k+1)x+(1+k)≥0,得,当x=k+1≤0时,即k≤−1时,f(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥−1,所以k=−1,当k+1>0时,即k>−1时,△≤0,即(k+1)2−4(k+1)≤0,解得−1<k≤3,综上,k∈[0,3].423所以函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)(x−x0)+(x04−2x03)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.由函数y=f(x)的图象可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2],又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0,,设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t2−8)=√t6−5t4+3t2+8,t2=λ,则λ∈[1,2],由图象可知,n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√7,即n−m≤√7.【解析】(1)由f(x)=g(x)得x=0,求导可得f′(0)=g′(0)=2,能推出函数ℎ(x)的图象为过原点,斜率为2的直线,进而可得ℎ(x)=2x,再进行检验即可.(2)由题可知ℎ(x)−g(x)=k(x−1−lnx),设φ(x)=x−1−lnx,求导分析单调性可得,φ(x)≥φ(1)=0,那么要使的ℎ(x)−g(x)≥0,则k≥0;令p(x)=f(x)−ℎ(x)为二次函数,则要使得p(x)≥0,分两种情况,当x=k+1≤0时,当k+1>0时进行讨论,进而得出答案.(3)因为f(x)=x4−2x2,求导,分析f(x)单调性及图象得函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)x−3x04+2x02,可推出直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.进而f(x)≥ℎ(x)在区间D上恒成立;在分析g(x)−ℎ(x)=0,设4x2−4(t3−t)x+3t4−2t2−8=0,两根为x1,x2,由韦达定理可得x1+ x2,x1x2,所以n−m=|x1−x2|=√t6−5t4+3t2+8,再求最值即可得出结论.本题考查恒成立问题,参数的取值范围,导数的综合应用,解题过程中注意数形结合思想的应用,属于中档题.20.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ), 从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ), 由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0, ①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n }; ②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n 2+(1−t)p n +1=0有两解α,β, 设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β,则对任意n ∈N ∗,S n+1Sn=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n={1,n =1,2β3,n ≥3均符合条件. 对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4, 则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值;(2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则Sn+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.。
江苏省2020年高考考试说明解读
![江苏省2020年高考考试说明解读](https://img.taocdn.com/s3/m/14e63b1683d049649a66588e.png)
江苏省2020年高考考试说明解读昨天,江苏省教育考试院发布2020年“江苏高考考试说明”。
考点内容有什么变化?复习需要注意什么?本报特邀江苏九科名师,第一时间对高考说明进行解读,并提出复习建议。
扬子晚报网记者王璟张琳语文删繁就简推陈出新解读人:南京市教研室徐晓彬【变化】初步分析,2020年江苏高考语文考试说明有五大变化。
其一,删去了原说明考试内容每条下的解说。
在全国众多考试说明的体例中,考查内容条目下再加解说的,本不多见;再加上解说文字,有的切实,有的空疏,未必尽能与条目相吻合;在各地高三复习实践中,也颇多将解说文字零敲碎打、机械切割,使复习更加僵化的,因此,斫去桂婆娑,清光应更多,复习的要点反而更明晰了。
其二,现代文阅读将几种文本的考试内容整合表达。
原说明在“现代文阅读”部分,分A类“文学类文本”和B类“论述类文本和实用类文本”,先后各有数条从理解到探究不同能力层级的考查内容,其中不乏重合牵扯之处。
此次将三种文本等量齐观,将考查能力层级统一合并,强调了现代文阅读教学和考查的异中之同,可称得上是清通的认识。
其三,“考试形式及试卷结构”部分删掉题型限制。
原说明试题类型分类值得商榷。
如“表述题”“要点归纳题”与“简答题”并列,难以区分;修订后,只保留“简答题”。
在原说明“试题内容、题量、赋分”之下还规定了考查题型,如加考内容“文言文阅读”中规定“古文断句题6分,简答题4分”,略欠灵活,修订后只规定大致的题量和分值,给复习和命题都留下了空间。
其四,附录部分加星号的篇目、作品有调整。
名句名篇默写,初中篇目去掉《生于忧患死于安乐》《过零丁洋》,增加《蒹葭》《鱼我所欲也》《雁门太守行》《渔家傲》《山坡羊·潼关怀古》。
附加卷名著阅读去掉《女神》,增加泰戈尔《飞鸟集》、茅盾《子夜》,达11部。
其五,典型题示例有大幅改动。
较之以往,所选试题不仅试题代表性有所增强;而且与考纲前后呼应更为密切,每一考点均有示例;同时各考点题量分布更为合理;另外兼收并蓄,吸纳了全国卷及各地试卷佳制。
2020年江苏高考数学试题解析
![2020年江苏高考数学试题解析](https://img.taocdn.com/s3/m/baed956583d049649a6658d9.png)
绝密★启用前2020年一般高等学校招生全国统一考试(江苏卷)数学I参考公式: (1)样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑(2)直柱体的侧面积S ch =,其中c 为底面周长,h 是高 (3)柱体的体积公式V Sh =,其中S 为底面面积,h 是高一、填空题:本大题共14小题,每题5分,共70分。
请把答案填写在答题卡相应位置上........。
一、已知集合{1,1,2,4},{1,0,2},A B =-=- 那么_______,=⋂B A 答案:{}1-,2解析:考察简单的集合运算,容易题。
二、函数)12(log )(5+=x x f 的单调增区间是__________答案:+∞1(-)2解析:考察函数性质,容易题。
3、设复数i 知足i z i 23)1(+-=+(i 是虚数单位),那么z 的实部是_________ 答案:1解析:简单考察复数的运算和概念,容易题。
4、依照如下图的伪代码,当输入b a ,别离为2,3时,最后输出的m 的值是________答案:3解析:考察算法的选择结构和伪代码,是容易题。
五、从1,2,3,4这四个数中一次随机取两个数,那么其中一个数是另一个的两倍的概率是______★此卷上交考点保存★ 姓名___________________ 准考证号___________________9第题图答案:13解析:简单考察古典概型的概率计算,容易题。
六、某教师从礼拜一到礼拜五收到信件数别离是10,6,8,5,6,那么该组数据的方差___2=s 答案:165解析:考察方差的计算,能够先把这组数都减去6再求方差,165,容易题。
7、已知,2)4tan(=+πx 那么xx2tan tan 的值为__________答案:49解析:考察正切的和差角与倍角公式及其运用,中档题。
22tan()11tan tan 1tan 44tan tan(),2tan 443tan 229tan()141tan x x x x x x x x x xππππ+-+-===++(-)===-八、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,那么线段PQ长的最小值是________ 答案:4解析:考察函数与方程,两点间距离公式和大体不等式,中档题。
江苏省2020高考数学 科考试说明及典型题示例 苏教版
![江苏省2020高考数学 科考试说明及典型题示例 苏教版](https://img.taocdn.com/s3/m/cfc67125af1ffc4fff47ac49.png)
2020年江苏省高考说明-数学科一、命题指导思想根据普通高等学校对新生文化素质的要求,2020年普通高等学校招生全国统一考试数学学科(江苏卷)命题将依据中华人民共和国教育部颁发的《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲(课程标准实验版)》,结合江苏普通高中课程教学要求,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算. (5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够综合,灵活运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题. 具体考查要求如下:2.附加题部分(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大 致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大 致为5:4:1.四、典型题示例 A.必做题部分 1. 设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_____ 【解析】本题主要考查复数的基本概念,基本运算.本题属容易题. 【答案】12. 设集合}3{},4,2{},3,1,1{2=++=-=B A a a B A I ,则实数a 的值为_ 【解析】本题主要考查集合的概念、运算等基础知识.本题属容易题. 【答案】1. 3. 右图是一个算法流程图,则输出的k 的值是 . 【解析】本题主要考查算法流程图的基础知识, 本题属容易题. 【答案】54. 函数)12(log )(5+=x x f 的单调增区间是 【解析】本题主要考查对数函数的单调性,本题属容易题. 【答案】,+∞1(-)25.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为 3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中 随机抽取一个数,则它小于8的概率是 .结束k ←k +1开始 k ←1 k 2-5k +4>0 N 输出k Y【解析】本题主要考查等比数列的定义,古典概型.本题属容易题.【答案】0.6.7. 如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm 3.【解析】本题主要考查四棱锥的体积,考查空间想象能力和运算能力.本题属容易题.【答案】6.8.设n S 为等差数列}{n a 的前n 项和.若11=a ,公差24,22=-=+k k S S d , 则正整数=k【解析】本题主要考查等差数列的前n 项和及其与通项的关系等基础知识.本 题属容易题. 【答案】5 9.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln21-.10.函数ϕωϕω,,(),sin()(A x A x f +=是常数,)0,0>>ωA 的部分图象如图所示,则____)0(=f【解析】本题主要考查三角函数的图象与性质,考查特殊角的三角函数值.本题属中等题. 【答案611. 已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则实数k 的值为【解析】本题主要考查用坐标表示的平面向量的加、减、数乘及数量积的运算等基础知识. 本题属中等题. 【答案】45=k . 12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存 在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 【解析】本题主要考查圆的方程、圆与圆的位置关系、点到直线的距离等基础知识,考查灵活运用相关知识解决问题的能力.本题属中等题DA BC 1C1D 1A1B【答案】34 13. 已知函数⎩⎨⎧<≥+=0,10,1)(2x x x x f ,则满足不等式)2()1(2x f x f >-的x 的取值范围是__【解析】本题主要考查函数的单调性和奇偶性,简单不等式的解法,以及数形结合与分类讨论的思想;考查灵活运用有关的基础知识解决问题的能力. 本题属难题. 【答案】)12,1(--.14.满足条件2,AB AC ==的三角形ABC 的面积的最大值是____________.【解析】本题主要考查灵活运用有关的基础知识解决问题的能力.本题属难题.【答案】二、解答题15.在ABC ∆中,2C A π-=, 1sin 3B =. (1)求A sin 值;(2)设AC =,求ABC ∆的面积.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)由π=++C B A 及2π=-A C ,得,22B A -=π故,40π<<A并且.sin )2cos(2cos B B A =-=π即,31sin 212=-A 得⋅=33sin A (2)由(1)得36cos =A .又由正弦定理得ABC B AC sin sin = 所以.23sin sin =⋅=B A AC BC 因为,2A C +=π所以⋅==+=36cos )2sin(sin A A C π因此,23621cos 21sin 21⨯⨯=⋅⋅=⋅⋅=∆A BC AC C BC AC S ABC .2336=⨯16.如图,在直三棱柱111C B A ABC -中,1111C A B A =,D E ,分别是棱1,CC BC 上的点(点D 不同于点C ),且⊥AD F DE ,为11C B 的中点. 求证:(1)平面ADE ⊥平面11B BCC ;(2)直线//1F A 平面ADE .【解析】本题主要考查直线与平面、平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】 证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC , 又∵AD ⊂平面ABC ,∴1CC AD ⊥.又∵1AD DE CC DE ⊥⊂,,平面111BCC B CC DE E =I ,, ∴AD ⊥平面11BCC B ,又∵AD ⊂平面ADE , ∴平面ADE ⊥平面11BCC B .(2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥. 又∵1CC ⊥平面111A B C ,且1A F ⊂平面111A B C ,∴11CC A F ⊥.又∵111 CC B C ⊂,平面11BCC B ,1111CC B C C =I ,∴1A F ⊥平面111A B C . 由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD .又∵AD ⊂平面1, ADE A F ⊄平面ADE ,∴直线1//A F 平面ADE .17. 请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得D C B A ,,,四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,F E ,在AB 上是被切去的一个等腰直角三角形斜边的两个端点,设cm x FB AE ==.(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。
2020年江苏卷数学高考试题(精编解析版)
![2020年江苏卷数学高考试题(精编解析版)](https://img.taocdn.com/s3/m/1df3a3d37fd5360cba1adbf1.png)
0.5cm,则此六角螺帽毛坯的体积是 ▲ cm3 .
(第 9 题)
【答案】12 3 2
【解】V 6 1 2 2 3 2 ( 1 )2 2 12 3 .
2
2
2
2
10.将 函 数 y 3sin(2x ) 的 图 象 向 右 平 移 个 单 位 . 则 平 移 后 的 图 象 中 与 y 轴 最 近 的
【答案】4
【解】 n 1 时, a1 b1 1 , n 2 时, an bn 2n 2 2n1 , a1 b1 适用上式,所以
an bn 2n 2 2n1 dn a1 d b1qn1 ,对 n N 恒成立,所以 d 2, q 2 ,所以 d q 4 .
12.在已知 5x2 y 2 y 4 1(x, y R) ,则 x2 y 2 的最小值是 ▲ .
输出y
【答案】 2 4. 将一颗质地均匀的正方体骰子先后抛掷两次,观察向上的点数,
结束 (第 5 题)
则点数和为 5 的概率是 ▲ .
玩转高中数学交流群(7211441S29)数旨在学打I造试课卷外辅第导专1用页讲义(,共更多11资页料)关注公众号玩转高中数学研讨
【答案】 1 9
5. 右图是一个算法流程图,若输出 y 的值为 2 ,则输入 x 的值是 ▲ .
2 y (d 1)2 (36 d 2 ) ,0 d 6 , y 2(d 1)(2d 9)(d 4) 0 , d 4 ,所以 S 在 d 4 时取得最
【答案】 -3
6.
在平面直角坐标系
xOy
中,若双曲线
x2 a2
y2 5
1(a 0)
的一条渐近线方程为
y
5x, 2
则双曲线的离心率是 ▲ .
【答案】 2 3
2020年江苏省高考数学试卷(含答案详解)
![2020年江苏省高考数学试卷(含答案详解)](https://img.taocdn.com/s3/m/ebd74159941ea76e58fa04ca.png)
绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.8.已知2sin ()4πα+=23,则sin 2α的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+- (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知(0)2P ,A ,B 是圆C :221(362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;(2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ∈R ,解不等式2|1|||4x x ++≤.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD =,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
江苏省2020年高考考试说明公布牛津版
![江苏省2020年高考考试说明公布牛津版](https://img.taocdn.com/s3/m/40f0ca6c3169a4517723a3f2.png)
江苏省2020年高考考试说明公布作为2020年高考命题的主要依据,由省教育考试院组织编写的我省《2020年普通高校招生全国统一考试说明》昨天公布。
《考试说明》包括语文、数学、外语3门必修科目和物理、化学、生物、历史、地理、政治6门选修科目。
我省2020年高考方案是在国家实施新课程标准下进行的,与传统模式比较,在考查、评价、选拔等方面的理念、方法上有较大发展,试卷的结构、题型和内容要求也有较大不同。
《考试说明》在突出考查考生基础知识、基本理论、基本技能的同时,更加注重考查考生综合运用所学知识解决实际问题的能力。
语文。
注重语文应用能力、审美能力和探究能力的考查,贴近现实生活,富有时代气息。
考试内容分为必考内容、选考内容和加试内容。
加试内容由选考历史科目的考生解答,其他考生不做。
考试时间150分钟,满分160分,选考历史科目的考生要做加试题,延时30分钟。
试卷内容包括:甲、必考内容:现代文阅读4题20分,古代诗文阅读6题34分,语言文字运用5题18分,写作1题70分。
乙、选考内容:论述类文本阅读4题18分或实用类文本阅读4题18分。
加试内容包括文言文阅读2题10分、名著名篇阅读3题15分、文本材料要点归纳与分析1题15分。
数学。
重视基本能力和综合能力的考查,注重应用意识和创新意识的考查。
试卷由必做题和附加题两部分组成。
选修测试历史的考生只需做必做题,选修测试物理的考生两部分都做。
必做题满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间为30分钟。
必做题部分由填空题和解答题两种题型组成,其中填空题14小题约占70分,解答题6小题约占90分。
附加题部分由解答题组成,共4小题。
外语。
考试时间120分钟,满分为120分,总计81题。
其中,听力20题20分,单项填空15题15分,完形填空20题20分,阅读理解15题30分,任务型阅读10题10分,书面表达1题25分。
历史。
考试范围涉及《普通高中历史课程标准(实验)》所规定的必修内容和选修内容。
解析2020年普通高等学校招生全国统一考试(江苏卷)数学
![解析2020年普通高等学校招生全国统一考试(江苏卷)数学](https://img.taocdn.com/s3/m/7a171ede7fd5360cbb1adb63.png)
机密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:,其中S是柱体的底面积,h是柱体的高.柱体的体积V Sh一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合A={-1,0,1,2},B={0,2,3},则A∩B=.【命题意图】本题考查集合中的简单的交集计算.【解析】由集合A={-1,0,1,2},B={0,2,3},所以A∩B={0,2}.答案:{0,2}2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是.【命题意图】本题主要考查复数的四则运算.【解析】z=(1+i)(2−i)=3+i,则实部为3.答案:33.已知一组数据4,2a,3-a,5,6的平均数为4,则a的值是.【命题意图】本题主要考查数据特征中的平均数的计算.=4可知a=2.【解析】由4+2a+(3-a)+5+65答案:24.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是.【命题意图】本题主要考查古典概型.【解析】总事件数为6×6=36,满足条件的事件有(1,4),(2,3),(3,2),(4,1)共4种,则点数和为5的概率为436=19.答案:195.如图是一个算法流程图,若输出y 的值为-2,则输入x 的值为 .【命题意图】本题主要考查流程图选择问题,注意选择条件. 【解析】由题可知y ={2x ,x>1,x+1,x≤1,当y =-2时,得x +1=-2,则x =-3. 答案:-36.在平面直角坐标系xOy 中,若双曲线x 2a 2 -y 25=1(a >0)的一条渐近线方程为y =√52x ,则该双曲线的离心率是 .【命题意图】本题主要考查双曲线的性质,渐近线问题. 【解析】由x 2a2−y 25=0得渐近线方程为y =±√5ax , 又a >0,则a =2,由c 2=a 2+5=9,c =3,得离心率e =c a =32. 答案:32【光速解题】e =√1+(√52)2=32.答案:327.已知y =f (x )是奇函数,当x ≥0时,f (x )=x 23,则f (-8)的值是 . 【命题意图】本题主要考查函数性质,利用奇偶性求函数值. 【解析】y =f (x )是奇函数,当x ≥0时,f (x )=x 23, 则f (-8)=-f (8)=-823=-4.答案:-48.已知sin 2(π4+α)=23,则sin 2α的值是 .【命题意图】本题主要考查三角函数恒等变换,利用整体思想求值. 【解析】方法一:因为sin 2(π4+α)=23, 由sin 2(π4+α)=12[1−cos (π2+2α)] =12(1+sin 2α)=23,解得sin 2α=13. 方法二:sin 2α=-cos (π2+2α) =2sin 2(π4+α)-1=13.答案:139.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是 cm 3.【命题意图】本题主要考查正棱柱、圆柱的体积计算,要求学生要熟记公式.【解析】记此六角螺帽毛坯的体积为V ,正六棱柱的体积为V 1,圆柱的体积为V 2,则V 1=6×12×2×2×sin 60°×2=12√3(cm 3),V 2=π×(0.5)2×2=π2(cm 3), 所以V =V 1-V 2=12√3-π2(cm 3).答案:12√3-π210.将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象与y 轴最近的对称轴方程是 .【命题意图】本题主要考查三角函数的图象的平移变换和性质.重点考查直观想象的数学核心素养. 【解析】设f (x )=y =3sin (2x +π4),将函数f (x )=3sin (2x +π4)的图象向右平移π6个单位长度得g (x )=f (x -π6)= 3sin (2x -π3+π4)=3sin (2x -π12),则y =g (x )的图象的对称轴为2x - π12=π2+k π,k ∈Z,即x =7π24+kπ2,k ∈Z,k =0时,x =7π24,k =-1时,x =-5π24,所以平移后的图象与y 轴最近的对称轴的方程是x =-5π24. 答案:x =-5π24【误区警示】解决本题时一定要看清要求的对称轴方程是平移后的图象与y 轴最近的对称轴方程.求出平移后的图象的对称轴方程为x =7π24+kπ2(k ∈Z),不要误认为k =0时,x =7π24就是本题的答案,还应验证k =-1时,x =-5π24,两者进行比较,才能得出答案.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列,已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是 .【命题意图】本题主要考查根据前n 项和求数列的通项公式,多写一项,进行作差运算,根据结构得到数列通项.重点考查学生数学运算的核心素养.【解析】设数列{a n },{b n }的首项分别为a 1,b 1,前n 项和分别为A n ,B n ,则A n =d2n 2+(a 1-d2)n ,B n =b1q -1q n +b11−q ,结合S n =n 2-n +2n -1,得{d2=1,q =2,解得{d =2,q =2,所以d +q =4.答案:412.已知5x 2y 2+y 4=1(x ,y ∈R),则x 2+y 2的最小值是 .【命题意图】本题主要考查不等式,利用消元法结合基本不等式求最值. 【解析】因为5x 2y 2+y 4=1(x ,y ∈R),所以y ≠0, 所以x 2=1−y 45y 2,则x 2+y 2=15y 2+45y 2≥2√425=45, 当且仅当15y 2=45y 2时,即y 2=12, x 2=310时,x 2+y 2的最小值是45.答案:45【光速解题】4=(5x 2+y 2)·4y 2≤[(5x 2+y 2)+4y 22]2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即x 2=310,y 2=12时,取等号.所以(x 2+y 2)min =45. 答案:4513.在△ABC中,AB=4,AC=3,∠BAC=90°,D在边BC上,延长AD到P,使得AP=9,若=m+(32-m)(m 为常数),则CD的长度是.【命题意图】本题主要考查平面向量共线的应用.重点考查直观想象及数学运算的核心素养.【解析】作AE⊥BC,交BC于点E.设=λ=λm+λ(32-m),因为C,D,B三点共线,所以λm+λ(32-m)=1,解得λ=23,所以AD=3=AC,所以CD=2·AC·cos C=185.答案:18514.在平面直角坐标系xOy中,已知P(√32,0),A,B是圆C:x2+(y-12)2=36上的两个动点,满足P A=PB,则△P AB面积的最大值是.【命题意图】本题主要考查直线与圆相交问题,通过设圆心角表示面积,利用导数求最值.突出考查数学运算的核心素养.【解析】方法一:如图,作PC所在直径EF,交AB于点D,因为P A=PB,CA=CB=R=6,所以PC⊥AB.要使面积S△P AB最大,则P,D位于C的两侧,并设CD=x,计算可知PC=1,故PD=1+x,AB=2BD=2√36−x2,故S△P AB=12AB·PD=(1+x)√36−x2,设∠BCD=θ,则x=6cos θ,S△P AB=(1+x)√36−x2=(1+6cos θ)·6sin θ=6sin θ+18sin 2θ,0<θ<π2, 记函数f (θ)=6sin θ+18sin 2θ,则f'(θ)=6cos θ+36cos 2θ=6(12cos 2θ+cos θ-6), 令f'(θ)=6(12cos 2θ+cos θ-6)=0, 解得cos θ=23(cos θ=-34<0舍去),显然,当0<cos θ<23时,f'(θ)<0,f (θ)单调递减;当23<cos θ<1时,f'(θ)>0,f (θ)单调递增; 结合cos θ在(0,π2)上单调递减,故cos θ=23时,f (θ)最大,此时sin θ=√1−cos 2θ=√53, 故f (θ)max =6×√53+36×√53×23=10√5,即△P AB 面积的最大值是10√5.方法二:由已知PC =1,设12∠ACB =α(α∈(0,π2)),则△P AB 的面积S =12·(6cosα+1)·12sin α=6sin α(6cos α+1), 令S'=6(12cos 2α+cos α-6) =6(4cos α+3)(3cos α-2)=0,解得cos α0=23(负值舍去),所以S 在(0,α0)上单调递增,在(α0,π2)上单调递减,所以S max =6×√53×5=10√5. 答案:10√5二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【命题意图】本题主要考查立体几何线面平行、面面垂直的证明,考查学生空间想象能力和推理能力.【证明】(1)因为E,F分别是AC,B1C的中点,所以EF∥AB1,因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB,又因为AB⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以AB⊥平面AB1C,因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.16.(本小题满分14分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=√2,B=45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=-45,求tan∠DAC的值.【命题意图】本题主要考查正余弦定理及两角和差公式的应用,考查学生解题的严谨性.【解析】(1)由余弦定理,得cos B=cos 45°=a 2+c2-b22ac=26√2=√22,因此b2=5,即b=√5,由正弦定理csinC =bsinB,得√2sinC=√5√22,因此sin C=√55.(2)因为cos∠ADC=-45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2,π),所以C∈(0,π2),所以cos C=√1−sin2C=2√55,所以sin∠DAC=sin(π-∠DAC)=sin(∠ADC+∠C)=sin∠ADC cos C+cos∠ADC sin C=2√525,因为∠DAC ∈(0,π2),所以cos ∠DAC =√1−sin 2∠DAC =11√525, 故tan ∠DAC =sin∠DACcos∠DAC =211. 17.(本小题满分14分)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO'为铅垂线(O'在AB 上),经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO'的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO'的距离b (米)之间满足关系式h 2=-1800b 3+6b.已知点B 到OO'的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO'的桥墩CD 和EF .且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元),桥墩CD 每米造价32k (万元)(k >0),问O'E 为多少米时,桥墩CD 与EF 的总造价最低?【命题意图】本题主要考查实际生活问题中的模型建立及导数的实际应用.重点考查数学建模的核心素养. 【解析】(1)过A ,B 分别作MN 的垂线,垂足为A',B', 则AA'=BB'=-1800×403+6×40=160(米).令140a 2=160,得a =80,所以AO'=80,AB =AO'+BO'=80+40=120(米). (2)设O'E =x ,则CO'=80-x ,由{0<x <400<80−x <80,得0<x <40.设总造价为y ,则y =3k2[160−140(80-x )2]+k [160−(-1800x 3+6x)] =k800(x 3-30x 2+160×800), y'=k800(3x 2-60x )=3k800x (x -20),因为k >0,所以令y'=0,得x =0或x =20, 所以当0<x <20时,y'<0,y 单调递减;当20<x <40时,y'>0,y 单调递增.所以,当x =20时,y 取最小值,即当O'E 为20米时,造价最低. 18.(本小题满分16分)在平面直角坐标系xOy 中,若椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B. (1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求·的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别是S 1,S 2,若S 2=3S 1,求M 的坐标.【命题意图】本题考查了(1)利用椭圆的定义求焦点三角形的周长;(2)求平面向量数量积最值问题;(3)面积比值转化为高之比,从而转化为平行线间的距离求出直线方程.考查数学运算、直观想象的核心素养. 【解析】(1)△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A (1,32),设点P (t ,0),则直线AP 方程为y =321−t (x -t ),令x =a 2c =4得y Q =6−32t 1−t =12−3t 2(1−t ), 即Q (4,12−3t 2−2t),=(t -4,12−3t 2t -2),·=t 2-4t =(t -2)2-4≥-4, 即·的最小值为-4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2, 若S 2=3S 1,则12×|AB |×d 2=12×|AB |×d 1×3,即d 2=3d 1, 由题意可得直线AB 的方程为y =34(x +1), 即3x -4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x -4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =-6或12.当m =-6时,直线l 为3x -4y -6=0, 即y =34(x -2),联立{y =34(x -2)x 24+y 23=1,可得(x -2)(7x +2)=0,即{x M =2y M =0,或{x M =−27y M =−127, 所以M (2,0)或(-27,-127).当m =12时,直线l 为3x -4y +12=0, 即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,Δ<0,所以无解.综上所述,M 点坐标为(2,0)或(-27,-127).19.(本小题满分16分)已知关于x 的函数y =f (x ),y =g (x )与h (x )=kx +b (k ,b ∈R)在区间D 上恒有f (x )≥h (x )≥g (x ). (1)若f (x )=x 2+2x ,g (x )=-x 2+2x ,D =(-∞,+∞).求h (x )的表达式; (2)若f (x )=x 2-x +1,g (x )=k ln x ,h (x )=kx -k ,D =(0,+∞).求k 的取值范围;(3)若f (x )=x 4-2x 2,g (x )=4x 2-8,h (x )=4(t 3-t )x -3t 4+2t 2(0<|t |≤√2),D =[m ,n ]⊆[-√2,√2],求证:n -m ≤√7.【命题意图】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.【解析】(1)由f (x )=g (x )得x =0.又f'(x )=2x +2,g'(x )=-2x +2,所以f'(0)=g'(0)=2,所以,函数h (x )的图象为过原点,斜率为2的直线,所以h (x )=2x.经检验:h (x )=2x 符合题意. (2)h (x )-g (x )=k (x -1-ln x ), 设φ(x )=x -1-ln x ,则φ'(x )=1-1x =x -1x , φ(x )≥φ(1)=0,所以当h (x )-g (x )≥0时,k ≥0.设m (x )=f (x )-h (x )=x 2-x +1-(kx -k )=x 2-(k +1)x +(1+k )≥0, 当x =k+12≤0时,m (x )在(0,+∞)上递增,所以m(x)>m(0)=1+k≥0,所以k=-1.>0时,Δ≤0,当x=k+12即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤√2时,≤0.(*)由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+3t4-2t2-84令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤√2),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立,所以φ(t)在[1,√2]上是减函数,则φ(√2)≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为{x|x1≤x≤x2},因此n-m≤x2-x1=√Δ≤√7.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),.令v'(t)=0,得t=√33)时,v'(t)<0,v(t)是减函数;当t∈(0,√33,1)时,v'(t)>0,v(t)是增函数;当t∈(√33v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-√2,√2],所以n-m≤√2+1<√7.③当-√2≤t <0时,因为f (x ),g (x )均为偶函数, 因此n -m ≤√7也成立. 综上所述,n -m ≤√7. 20.(本小题满分16分)已知数列{a n }(n ∈N *)的首项a 1=1,前n 项和为S n ,设λ与k 是常数,若对一切正整数n ,均有S n+11k-S n 1k=λa n+11k成立,则称此为“λ-k ”数列.(1)若等差数列{a n }是“λ-1”数列,求λ的值;(2)若数列{a n }是“√33-2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ-3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.【命题意图】本题以数列为载体,综合考查等差数列的基本性质,及解决数列综合问题的能力,综合考查代数推理、转化化归及综合运用数学知识探究与解决问题的能力. 【解析】(1)k =1时,a n +1=S n +1-S n =λa n +1,所以λ=1. (2)√S n+1-√S n =√33√a n+1,a n +1=S n +1-S n =√33√a n+1(√S n+1+√S n ), 因此√S n+1+√S n =√3√a n+1.√S n+1=23√3a n+1,S n +1=43a n +1=43(S n +1-S n ). 从而S n +1=4S n .又S 1=a 1=1,所以S n =4n -1,a n =S n -S n -1=3·4n -2,n ≥2. 综上,a n ={1,n =13·4n -2,n ≥2.(3)设各项非负的数列{a n }(n ∈N *)为“λ-3”数列, 则S n+113-S n 13=λa n+113,即√S n+13-√S n 3=λ√S n+1-S n 3.因为a n ≥0,且a 1=1,所以S n +1≥S n >0, 则√S n+1S n3-1=λ√S n+1S n-13.令√S n+1S n3=c n ,则c n -1=λ√c n 3-13(c n ≥1),即(c n -1)3=λ3(c n 3-1)(c n ≥1).(*)①若λ≤0或λ=1,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…) ②若λ>1,则(*)化为(c n -1)(c n2+λ3+2λ3-1c n +1)=0,因为c n ≥1,所以c n 2+λ3+2λ3-1c n +1>0,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)③若0<λ<1,则c n 2+λ3+2λ3-1c n +1=0的两根分别在(0,1)与(1,+∞)内,则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t ). 所以S n +1=S n 或S n +1=t 3S n .由于数列{S n }从任何一项求其后一项均有两种不同结果, 所以这样的数列{S n }有无数多个,则对应的{a n }有无数多个.综上所述,能存在三个各项非负的数列{a n }为“λ-3”数列,λ的取值范围是0<λ<1. 21.【选做题】A .平面上点A (2,-1)在矩阵M =[a 1-1b]对应的变换作用下得到点B (3,-4). (1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵M -1.【命题意图】本题主要考查矩阵的基本运算及对应变换. 【解析】(1)[a1-1b ][2-1]=[2a -1-2-b] =[3-4], 所以{2a -1=3,-2-b =−4.解得{a =2,b =2.(2)由(1)知M =[21-12]. |M |=2·2+1·1=5,所以M -1=[25-151525].B.在极坐标系中,已知点A (ρ1,π3)在直线l :ρcos θ=2上,点B (ρ2,π6)在圆C :ρ=4sin θ上(其中ρ≥0,0≤θ<2π). (1)求ρ1,ρ2的值;(2)求直线l 与圆C 的公共点的极坐标.【命题意图】本题主要考查极坐标公式及极坐标的意义、极坐标的求法.【解析】(1)ρ1=2cosπ3=4,ρ2=4sin π6=2.(2)联立得4sin θcos θ=2得sin 2θ=1, 因为ρ≥0,0≤θ<2π, 所以θ=π4,ρ=2√2,所以公共点的极坐标为(2√2,π4). C.设x ∈R,解不等式2|x +1|+|x |<4.【命题意图】本题主要考查含有绝对值的不等式的解法. 【解析】当x >0时,2x +2+x <4,解得0<x <23;当-1≤x ≤0时,2x +2-x <4,解得-1≤x ≤0;当x <-1时,-2x -2-x <4,解得-2<x <-1. 综上,解集为(-2,23).22.在三棱锥A -BCD 中,已知CB =CD =√5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点. (1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.【命题意图】本题主要考查利用空间向量法求异面直线所成的角及二面角.重点考查如何建立空间直角坐标系,求出相应点的坐标,再利用公式求角.【解析】建立如图所示的空间直角坐标系,则A (0,0,2),B (1,0,0),C (0,2,0),D (-1,0,0),E (0,1,1).(1)=(1,0,−2),=(1,1,1),则cos<,>==√1515.故直线AB 与DE 所成角的余弦值为√1515. (2)由已知得F (34,12,0),=(74,12,0),=(1,1,1),设平面DEF 的一个法向量为n 1=(x 1,y 1,z 1),则{x 1+y 1+z 1=0,74x 1+12y 1=0, 令x 1=2,得{y 1=−7,z 1=5,所以n 1=(2,-7,5).设平面DEC 的一个法向量为n 2=(x 2,y 2,z 2), 又=(1,2,0),则{x 2+y 2+z 2=0,x 2+2y 2=0, 令x 2=2,得{y 2=−1,z 2=−1,所以n 2=(2,-1,-1), 所以|cos θ|=|n 1·n 2||n 1||n 2|=√6×√78=√1313, 所以sin θ=√1−cos 2θ=√1−113=2√3913. 23.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1,q 1和p 2,q 2;(2)求2p n +q n 与2p n -1+q n -1的递推关系式和X n 的数学期望E (X n )(用n 表示).【命题意图】本题主要考查概率的求法及数学期望的求法.重点考查学生利用所学知识解决实际问题的能力.【解析】(1)p 1=13×1=13,q 1=23×1=23.p 2=13p 1+23×13q 1=727, q 2=23p 1+(23×23+13×13)q 1=1627. (2)当n ≥2时,p n =13p n -1+23×13q n -1=13p n -1+29q n -1,q n =23p n -1+(23×23+13×13)q n -1+23×(1-p n -1-q n -1)=-19q n -1+23, 所以2p n +q n =13(2p n -1+q n -1)+23, 则2p n +q n -1=13(2p n -1+q n -1-1), 又2p 1+q 1-1=13,所以2p n +q n =1+(13)n. X n 的概率分布如下:X n 0 1 2 P1-p n -q nq np n则E (X n )=q n +2p n =1+(13)n.。
2020年高考数学江苏卷附答案解析版
![2020年高考数学江苏卷附答案解析版](https://img.taocdn.com/s3/m/d6f9bfb2f5335a8103d220af.png)
绝密★启用前
在
2020 年普通高等学校招生全国统一考试(江苏卷)
数学
注意事项 此
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共 6 页,均为非选择题(第 1 题~第 20 题,共 20 题).本卷满分为 160
分,考试时间为 120 分钟.考试结束后,请将本试卷和答题卡一并交回. 卷
2.答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试
数学试卷 第 3 页(共 6 页)
(1)求△AF1F2 的周长;
(2)在 x 轴上任取一点 P ,直线 AP 与椭圆 E 的右准线相交于点 Q ,求 OPQP 的最
小值;
数学试卷 第 4 页(共 6 页)
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
题
第Ⅰ卷
一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答.题.卡.相.应.位.
置.上..
1.已知集合 A {1,0,1,2} , B {0,2,3} ,则 A B
.
无
2.已知 i 是虚数单位,则复数 z 1 i2 i 的实部是
.
3.已知一组数据 4, 2a , 3 a , 5 , 6的平均数为 4,则 a 的值是
a2 5
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- ------------------- ------------------- ------------------- ------------------- ------------------- ------------------- ------------------- ---------------
2020年江苏卷数学高考试题文档版(含答案)
![2020年江苏卷数学高考试题文档版(含答案)](https://img.taocdn.com/s3/m/1e71ab932cc58bd63186bd6a.png)
或演算步骤.
15.(本小题满分 14 分)
高考真题
在三棱柱 ABC-A1B1C1 中,AB⊥AC,B1C⊥平面 ABC,E,F 分别是 AC,B1C 的中点. (1)求证:EF∥平面 AB1C1; (2)求证:平面 AB1C⊥平面 ABB1.
16.(本小题满分 14 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 a 3,c 2, B 45 . (1)求 sin C 的值; (2)在边 BC 上取一点 D,使得 cos ADC 4 ,求 tan∠DAC 的值. 5
3 3
~2
”数列,且
an
0
,求数列 an 的通项公式;
(3)对于给定的λ,是否存在三个不同的数列 an 为“λ~3”数列,且 an 0 ?若存在,求λ的取值范
围;若不存在,说明理由.
数学Ⅰ试题参考答案
一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题 5 分,共计 70 分.
1.{0, 2}
43 则 a2 4,b2 3, c2 1 .
所以 △AF1F2 的周长为 2a 2c 6 .
高考真题
(2)椭圆 E 的右准线为 x 4 .
设 P(x, 0),Q(4, y) ,
则 OP (x, 0),QP (x 4, y) ,
OP QP x(x 4) (x 2)2 4 4,
2
高考真题
与 EF 的总造价最低?
18.(本小题满分 16 分)
在平面直角坐标系 xOy 中,已知椭圆 E : x2 y2 1 的左、右焦点分别为 F1,F2,点 A 在椭圆 E 上且 43
在第一象限内,AF2⊥F1F2,直线 AF1 与椭圆 E 相交于另一点 B.
(新课标全国卷)2020年高考数学考试说明 理
![(新课标全国卷)2020年高考数学考试说明 理](https://img.taocdn.com/s3/m/3f967069482fb4daa48d4b12.png)
2020年高考考试说明——数学(理)根据教育部考试中心《2020年普通高等学校招生全国统一考试大纲(理科)》(以下简称《大纲》),结合基础教育的实际情况,制定了《2020年普通高等学校招生全国统一考试大纲的说明(理科)》(以下简称《说明》)的数学科部分。
制定《说明》既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考查考生进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》和《普通高中课程方案(实验)》的要求,符合教育部考试中心《大纲》的要求,符合本省(自治区、直辖市)普通高等学校招生全国统一考试工作指导方案和普通高中课程改革试验的实际情况,又要利用高考命题的导向功能,推动新课程的课堂教学改革。
Ⅰ.命题指导思想1.普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.2.命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求.3.命题注重试题的创新性、多样性和选择性,具有一定的探究性和开放性.既要考查考生的共同基础,又要满足不同考生的选择需求.合理分配必考和选考内容的比例,对选考内容的命题应做到各选考专题的试题分值相等,力求难度均衡.4.试卷应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.二、试卷结构全卷分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为12个选择题,全部为必考内容.第Ⅱ卷为非选择题,分为必考和选考两部分.必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的第一题给分.1.试题类型试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右.2.难度控制试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.Ⅲ.考核目标与要求一、知识要求知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.1.知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.2.理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,能够利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.2.抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.3.推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题。
2024江苏高考数学科考试说明浅读
![2024江苏高考数学科考试说明浅读](https://img.taocdn.com/s3/m/3267b75242323968011ca300a6c30c225901f0a5.png)
《2024江苏高考数学科考试说明》浅读盐城市高三数学教研中心组一、关于命题指导思想新的命题指导思想可概括为七个字:“三基五能两意识”,即基础学问,基本技能,基本思想方法;空间想象,抽象概括,推理论证,运算实力,数据处理的实力;应用意识,创新意识.1.明确了“一个遵循,两个依据,两个考查”即遵循教化部考试中心颁发的《2024年一般高等学校招生全国统一考试(数学科)大纲》精神;依据教化部《一般中学数学课程标准(试验)》和江苏省《一般中学课程标准教学要求》;既考查中学数学的基础学问和方法,又考查考生进入高等学校接着学习所必需的基本实力.变更:增加了《省教学要求》.理解:复习时要紧扣《省教学要求》.2.突出三基没有变突出三基的考查仍处于指导思想的第一条.变更:去掉了“对支撑数学学科学问体系的主干学问,考查时保证较高的比例”以及“留意从整体的高度和思维价值的高度设计问题,使考查达到必要的深度”等表述.理解:08高考为有利于推动新课程的实施,新增加的算法、复数等内容要基本覆盖,分值达30分左右,因此,一些主干学问考查的比例可能会有所下降,试卷更留意考查学问的全面性与系统性,在深度与广度两个方面而言,可能会更留意学问的广度,出综合题的可能性增大,一个题目可能会涉及到多个章节的内容.3.实力表述有变更留意对学生数学基本实力和综合实力的考查仍放到了其次条.变更:实力的构成与排序由以前的“思维实力、运算实力、空间想象实力以及分析问题、解决问题的实力”改为“空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的实力”,且新增了“数据处理”的实力要求,新提了“数学综合实力”.理解:(1)为何去掉“思维实力”这一数学实力的核心,可能是依据于《课程标准》,使两者间的说法相统一.事实上,抽象概括、推理论证等方面的实力都从属于思维实力,故而不再单独列出“思维实力”.(2)在空间想象实力中加上了“能够依据平面直观图形想象出空间图形”是为了顺应三视图的内容;(3)新增“数据处理”的实力要求,会使统计学问与方法的考查得到加强;(4)数学综合实力的提法,涵盖了以前的“分析问题与解决问题的实力”,要求能够综合地运用有关的学问与方法,解决较为困难的或综合性的问题,这意味着压轴题会更留意综合性.4.应用意识会增加留意数学的应用意识和创新意识的考查列为第三条.变更:特殊明确了“应用意识”的考查.理解:运用所学学问、思想和方法来解决实际问题的数学建模实力将再度是考查的重点.二、关于考试结构形式1.考试形式闭卷、笔试.试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.2.考试题型(1)必做题:必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.(2)附加题:附加题部分由解答题组成,共4小题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4—1、4—2、4—4、4—5这4个专题的内容,考生只须从中选2个小题作答.填空题只要求干脆写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.3.难易比例必做题部分由简洁题、中等题和难题组成.卷中的比例大致为4:4:2.附加题部分由简洁题、中等题和难题组成.卷中的比例大致为5:4:1.4.变更状况(1)高考试卷文理是有差别的,理科多了附加题,从而导致考试时间与试卷分值都作了变更.(2)高考试卷的题型发生了较大的变更,取消了选择题,只有填空题与解答题这两种题型了,变更的幅度是很大的.(3)难易比例由以前的3:5:2,调整为必做题的4:4:2与附加题的5:4:1.理解:①简洁题的比例增大,试卷的总体难度会降低;②附加题几乎没有难题;③难题比例没有下降,试卷的区分度仍会很明显;④懂多少学问,会多少方法才有可能得到相应的分数,不再有碰运气的成份;同时对运算的精确性、答题的规范性等方面的要求提高了.三、关于考试内容与要求1.学问的三个能级要求了解:只要求对学问的含义有最基本的相识,能解决相关的简洁问题,因此,与A层次对应的学问点的考查应以简洁题为主.理解:要求对学问有深刻的相识,并能解决有确定综合性的问题,中等题是考查、覆盖这部分学问点的主要题型,由于对综合性提出了要求,因此对这部分学问的考查也有可能出难题.驾驭:要求系统驾驭学问的内在联系,并能解决综合性较强的或较为困难的问题.自不待言,对这部分学问的考查,出难题便顺理成章,由于高一级层次的要求包括低一级层次要求,因此在这些学问点上也可以出简洁题或中等题.变更:A级了解要求由“知道与识别”上升为“能解决相关的简洁问题”;B级理解要求由“能利用学问解决有关问题”上升为“能解决有确定综合性的问题”.理解:新课程的第一次命题,难免会出现把握不准的现象,如此表述,若A级出了中等题,B级出了难题,也无话可说.2、八个C级要求的学问点C级要求的学问点全在必做题部分,详细内容如下:(1)两角和与差的正弦余弦和正切;(2)平面对量的数量积;(3)等差数列;(4)等比数列;(5)基本不等式;(6)一元二次不等式;(7)直线方程;(8)圆的标准方程和一般方程.这8个C级要求的学问点无疑将成为新高考的热点和命题的难点.而一些传统考查重点学问的能级要求有所降低,如圆锥曲线(要求最高的椭圆为B级,其余均为A级)、函数(B级要求)、空间几何体(A级要求)等.3.各块的详细分析与对比(一)必做题部分(共17块76个学问点)1.集合:与07年考试要求完全相同,对集合的关系的证明不作要求.思索:(1)接着在小题中考查;(2)协作函数、不等式在解答题中考查;(3)规范集合的书写,适应填空题.2.函数:(1)新增内容—幂函数、二分法(A级);(2)降低要求的有函数的基本性质(由C降到B),表现在对复合函数的要求上;(3)提高要求的有指数和对数(由A增到B),表现在运算求解实力的考查;(4)对函数的综合运用(C级)已着落到函数模型(B级)及其应用上.思索:(1)新增内容及函数的性质以填空题干脆考查;(2)以二次函数为载体考查不等式、方程及其他代数论证题(中高档);(3)函数应用题值得重视.3-4.三角:(1)降低要求内容有同角三角函数的基本关系式(由C降到B),表现在关系式削减和对知值求值的简化;函数y=Asin(ωx+φ)的图像和性质(由B降到A),应当表现在考查更干脆,删去了反三角函数;(2)几个三角恒等式不要求记忆和应用,不必复习.思索:(1)三角变换求值及三角函数的图像和性质以填空题形式出现;(2)以解三角形为直观表现,整合实际应用、三角恒等变换甚至平面对量组合成一道解答题(中低档).5.平面对量:(1)平面对量的应用要求不高,但其它要求都不低,特殊是数量级是C级要求;(2)向量平移、定比分点不作要求.6.数列:(1)数列的有关概念要求降低了(由B级降为A级),意味着对递推关系的考查要求降低,基本经过一次变换就可以转化成等差、等比数列;(2)等差、等比数列为C级,虽然没出现数列的综合运用,但不排斥在两大数列之间的综合,也不排斥与函数、方程、不等式的综合,这块内容应当没有降低;(3)推理论证实力的考查在数列上可以得到体现.(小大题并举,中高档并行)7.不等式:(1)线性规划(由B降到A),意味着相关考查来得更干脆,有关区域的转换问题不应出现;(2)一般的最优整数解问题不作要求,不必复习;(3)一元二次不等式、一元二次方程、二次函数的关系仍需重视.8.复数:复数是新增内容,必考,但应当以小题出现,主要抓住复数相等和复数的四则运算求解,定出简洁题.9.导数及其应用:教材中新增的几种函数的导数,这些没有必要拓展复习,可以紧扣书本.其它要求与07同,考查方式也应当不会有大的变更,应特殊留意导数与函数、数列相结合的题目.10.算法初步: 3个小节均为A级要求.请留意:本块删除了教材中的“算法案例”一节.这块内容的复习应留意课本学问,了解相关内容,试卷中若出现本块学问应是简洁题.11.常用逻辑用语:除“必要条件、充分条件、充分必要条件”是B级要求外,其它3个小节均为A级要求.因此,我们在复习本块学问时应在“充要条件”这一节上多花一点时间.以前的高考试卷中,“充要条件”的内容几乎年年都有,经常以选择题形式出现.有的老师认为,不考选择题就意味着不考充要条件问题了,这个观点不确定正确,事实上,也有选择性的填空题的.08年高考中以填空题出现的可能性仍很大.当然,“全称量词与存在量词”是新增内容,不容忽视.12.推理与证明: 本块有3个小节,其中“合情推理与演绎推理”是B级要求,而“分析法和综合法”、“反证法”均为A级要求.请留意:这里对“反证法”给出了A级要求,而不是对“间接证明”的要求(教材中一小节是“间接证明”),因此,我们要留意这个界定.13.概率、统计:除了“总体分布的估计”和“古典概型”是B级要求外,其余均为A级要求.值得留意的是:“几何概型”是新增内容,也给出了A级要求.思索:近几年概率解答题是应用实力考查的首选,但在2024年高考数学前两个小时的文理合卷中,由于缺乏排列组合的支撑,概率出现解答题的可能性不大,所以前几年古典概型的高考大题不再重要,取而代之的是,2024年高考数学后半小时的理科附加试卷中,随机变量的概率分布列题型将是重中之重,而这却与文科无关;那么对于前160分,统计与统计案例的教学课时不少,又是应用实力考查的重要载体,所以统计问题只在小题中出现的状况也将会变更,08年以后的新课程高考,统计内容出现在解答中有很大的可能性.这样文理合卷的解答题中少了概率,多了统计,这也是一种平衡.14.空间几何体: 3个小节均属A级要求,只要学生了解即可.当然“三视图与直观图”是新增内容,应多加重视.15.点、线、面之间的位置关系:平面及其基本性质是A级要求,其余2个小节都是B级要求.删去了“三垂线定理”及“空间角与距离的计算”.因此,本块的复习应侧重在“直线与平面平行、垂直的判定与性质”、“两平面平行、垂直的判定与性质”这两个小节内容上.有专家指出:立几解答题的基本模式是“一题三问,一证两算,以算为主”;08年的文理合卷中确定淡化空间角与距离的计算,代之以“平行、垂直关系的证明或探求”,难度上有所降低,作为低档题前移到第一大题位置(此类题由旧题改造的可能性也很大).在理科加试卷中,用向量方法求空间角仍很重要.例如《考试说明》中“典型题示例”必做题部分的第14题、附加题部分的第2题,是对本块学问的很好解读.16.平面解析几何初步:除空间直角坐标系是A级要求外,其余的均为B级或C级要求,可见得本块学问的重要性.特殊强调的是:“直线方程”、“圆的标准方程和一般方程”这两小节的要求是:系统地驾驭学问的内在联系,并能解决综合性较强的或较为困难的问题.因此,这方面学问的考查以难题、中档题出现都有可能.17. 圆锥曲线与方程:《考试说明》中给出了3个小节,仅对“椭圆的标准方程和几何性质(中心在坐标原点)”给出了B级要求,而“双曲线的标准方程和几何性质(中心在坐标原点)”“抛物线的标准方程和几何性质(中心在坐标原点)”只是A级要求,可见弱化了圆锥曲线的学问;“删去了直线与圆锥曲线的关系”.思索:以前解析几何在高考中的地位一贯重要,每每考查直线与圆锥曲线的关系.08年由于文理合卷的须要,只能考单一的圆锥曲线问题(此类题在以往试题中虽有但不多),难度下降也成必定,至多为中档题.在前160分中,考题可以求圆锥曲线的标准方程,但求轨迹方程的可能性很小,所以以往试题中大量探讨直线与圆锥曲线关系、求轨迹方程的题型都不显得重要了,因此,复习中要紧扣圆锥曲线的定义及其几何性质,理清曲线中相关特征量之间的关系,充分挖掘学问内部间的联系.(二)附加题部分(共10块48个学问点)附加题部分全部学问都是了解或是理解层次.1.增加的学问点:直线的方向向量与平面的法向量的应用、复合函数的导数、定积分、数学归纳法、随机变量的概率分布及选修系列4中的内容.2.以前有的内容在要求上发生变更的学问点有:(1)圆锥曲线与方程中:曲线与方程由“理解”调整为“了解”.抛物线的标准方程和几何性质由“驾驭”调整为“理解”.(2)原立几(B)空间向量与立体几何中:空间向量的有关概念由“理解”调整为“了解”.[话絮:抛物线的标准方程和几何性质(顶点在坐标原点)这个学问点在必做题部分是A 级要求,而在附加题中却是B给要求.明显,同一个学问点内容一样,但在两部分中的考查要求不同.]3.复习建议(1)强化1—6部分的复习,这部分学问可能会出附加题中的中等题及难题.复习时重点对圆锥曲线中的抛物线;空间向量中的共线、共面、数量积、直线的方向向量和平面的发向量及应用;导数中的定积分;推理中的数学归纳法;计数原理中的两个原理及二项式定理;概率中的n次独立重复试验的模型及二项分布、离散性随机变量的均值与方差等内容.复习中要重视学问的应用意识,引导学生构造数学模型,将一些简洁的实际问题转化为数学问题,并加以解决.考试说明中的“典型题示例”列出了两道中等题.(2)淡化7—10部分的复习,这部分学问出简答题,复习时紧扣课本即可.考试说明中的“典型题示例”中所列的选修4系列也都是简洁题.(3)因本届高三在初中已学过平面几何,所以可以在选修系列4中的《平面几何选讲》中选择一些例题发给学生看看,或许能对学生做这部分附加题时起到作用.四、关于题型示例1.题例的构成必做题供应12道填空题(5道简洁题,7道中等题),3道解答题(1道简洁题,1道中等题,1道难题);附加题供应6道解答题(2道中等题(选修2系列中),4道简洁题(选修4系列中)).2.题例的导向作用题例中的题目绝大多数来源于08年高考试题的江苏卷、全国卷、山东卷、广东卷、海南与宁夏卷.如必做题中的第4题是07江苏卷第2题、第5题是07广东卷第2题、第7题是广东卷(理)第5题,第10题是宁夏海南卷的第5题,第12题是07江苏卷的第15题,第13题是07全国1卷(文)第17题,第14题是07山东卷(文)第20题,第15题是07江苏卷第20题等;又如附加题中第1题是07山东卷(理)第18题的变式、第3题是07宁夏海南卷第22题,第5题是07宁夏海南卷第22题等;也有一些题目源于教材,如必做题中的第1题是必修4第44页习题1.3第1题第(3)小题的变式、第9题是选修2-2第34页习题1.3第2题的第(2)小题、第11题是必修3第112页复习题第5题的变式;附加题中的第2题是选修2-1第98页习题3.2的第11题等.这体现了题例的一个导向性,引导我们老师要去细致地探讨上述几份高考试卷,并留意回来课本.3.由题例获得的感受与启示对比07与08两年《考试说明》中的题例,有两点感受:(1)在去掉选择题这种题型后,08题例里前几道简洁题几乎都是干脆运用基本概念或基本公式,通过一步运算即可以算出结果;而中等题的难度总体上也小于07题例里中等题的难度.由此得到的启示是08高考中简洁题会变得更简洁,要把分数送到学生的口袋里(否则得零分的考生可能会有许多),同时中等题的难度也会减小些,以确保试卷整体难度较07年有所下降;(2)08题例的探究性增加了,如解答题第14题的第(2)小问与第15题的第(3)小问都是探究性问题,这与07题例有明显的区分.五、通过解读得到的启示1.重新相识《省教学要求》《省教学要求》是两年前针对新授课颁布的,高三复习时仍要依此为纲,但运用时要以高三老师的眼光从整体上来看待它,把前后联系起来看,否则在理解上可能会出现误差.案例1:在必修1函数部分,《省教学要求》中有这样的一段话“在教学中,应强调对函数概念本质的理解,避开在求函数定义域、值域及探讨函数性质时出现过于繁琐的技巧训练,避开人为地编制一些求定义域和值域的偏题.求简洁函数的定义域和值域中的简洁函数,指下列函数:2,,,,log (),sin ,cos x a cx d y ax b y ax bx c y y y a y mx n y x y x ax b+=+=++====+==+.”而《08考试说明》中的题例3却是“函数y =的定义域是_________________.”这样的题目.能不能说它超纲呢?假如我们把这个要求与必修5的不等式联系起来看,就知道它不超纲了.2.对必做题部分文理同一要求的思索早在两年前,市教科院召开新课程教学研讨会确定教学进度时,就有老师提出“高二理科学生先上文科内容,到高二的最终半学期再补充附加题考查的内容”的想法,但因为当时谁也没有底,所以这一想法遭到大家的推翻.现在有些二星级学校准备这样去操作,这种做法好不好,现在还不能下定论,但至少对这样层次的学校来说,也是一个能值得试验的做法.针对现在的高三,值得思索的一个问题是:在前160分完全一样的前提下,如何尽量的统一文理科的复习进度与复习内容,理科适当加快,文科适当减慢,两者不宜拉得太远,以便于集中群体才智,提高对高考的探讨水平,保证二轮复习讲义的编写质量.建议:在其次轮复习中,前160分文、理科尽量合在一起来集体备课,对于课时划分与教学案设计上应尽量做到同步(可用个别题目相区分),当然,详细上课的进度可依据学生的实际状况而有所区分.附加题部分由理科备课组单独备课与编写教学案.3.切实把握好题目的难度复习中要想不做无用功,就得靠船插篙.(1)以《课程标准》、《08考试说明》、《省教学要求》为纲,以教材为本.只有重视课本,反复探讨,才可达到通一例,会一片,活学活用.(2)强化三基教学.一轮复习中要留意基础学问的梳理、基本数学思想与方法的归纳与提炼.不仅要熟识有关公式与结论,还要知道它们的推导过程.(3)强化重点内容复习.学问点许多,重点学问要重点对待,不要平均用力,易错点确定要做到心中有数,切实作好训练与强化工作,尤其要突出对8个C级要求的学问点的考查力度.(4)保证试卷质量(周练试卷,课外练习),教案质量(教案审批制度),围绕考试说明的要求来命题与编制教案.(5)从一些旧资料中选题目留意不要超纲,确定要留意取舍.如要大胆删去算法案例,结构流程图,淡化“直线与圆锥曲线,立体几何中的几何体的问题”等.。
2020江苏高考数考试说明解读素材 苏教版 精品
![2020江苏高考数考试说明解读素材 苏教版 精品](https://img.taocdn.com/s3/m/9db6e469fab069dc5122016e.png)
2020江苏高考数学科考试说明解读【专家解读1】变化分析2020年数学高考考试内容及要求到考试形式及试卷结构基本上保持稳定,只是在考查内容上删除两个A级要求的知识点:一是必做题三角变换部分的积化和差,和差化积及半角公式;另一个是理科附加题导数及其应用部分的定积分。
由于这两部分内容去年实际上已经不作要求,因此这一变化对2020的命题与复习基本上没有影响。
2020年高考数学科(江苏卷)考试说明中对知识的考查要求依次分为了解(A)、理解(B)、掌握(C)三个层次。
必做题部分A级考点29个,B级考点36个,C级考点8个。
附加题部分A级考点11个,B级考点36个,无C级考点。
复习建议1、重视A级知识点的复习。
A级知识点是出容易题的载体,填空题的容易题多数考查A级知识点,要力争做到容易题不丢分;2、重视三基的复习。
基础知识、基本技能与基本方法仍然是高考考查的重点,所以要争取拿足基本分;3、加强灵活运用基本方法的训练。
高考试题与平时训练题有联系,也有区别。
要善于将复杂问题转化为简单问题,要善于从陌生问题中分离出熟悉的问题,进而找到解决方法。
为此要强化基本方法灵活运用的训练。
【专家解读2】2020年,数学高考基本上保持稳定,建议大家注重基础知识、基本技能与基本方法的训练,牢牢把握基础题。
2020年高考《考试说明》数学学科考查内容删除两个A级要求的知识点,对2020的命题与复习基本上没有影响。
针对去年数学较难的状况,建议广大考生, A级知识点是出容易题的载体,填空题的容易题多数考查A级知识点,要力争做到容易题不丢分;基本技能与基本方法仍然是考查的重点,要争取拿足基本分;要善于将复杂问题转化为简单问题,从陌生问题中分离出熟悉的问题,进而找到解决方法。
用平和心态对待考试,平时学习中还是以课本和抓基础为重点,就把基础打扎实了,那题目再难,我也能做好了,题目容易,我也能考好。
(新课标)2020年高考数学考试说明文
![(新课标)2020年高考数学考试说明文](https://img.taocdn.com/s3/m/01038599c850ad02df804170.png)
2020 年高考文科数考试大纲(新课标)I. 考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩.按己确定的招生计划。
德、智、体全面衡量.择优录取.因此. 高考应具有较高的信度,效度,必要的区分度和适当的难度.Ⅱ. 考试内容根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2020 年颁布的《普通搞好总课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1 和系列4 的内容,确定文史类高考数学科考试内容。
数学科考试,要发挥数学作为主要基础学科的作用,要考察考生对中学的基础知、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考察考生进入高等学校继续学习的潜能。
一、考核目标与要求1. 知识要求知识是指《普通高中数学课程标准(实脸)》(以卜简称《课程标准》)中所规定的必修课程、选修课程系列1 和系列4 中的数学概念、性质、法期、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步孩进行运其。
处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明对知识的要求依次是了解、理解、掌握三个层次。
(1)了解: 要求对所列知识的含义有初步的、感性的认识. 知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有: 了解,知道、识别,模仿,会求、会解等.(2)理解: 要求对所列知识内容有较深刻的理性认识. 知道知知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象。
比较、判断,初步应用等。
(3)掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。
2020年全国高考数学-江苏卷解析(Word域、极致精编版)
![2020年全国高考数学-江苏卷解析(Word域、极致精编版)](https://img.taocdn.com/s3/m/c6e637ac5f0e7cd1852536b7.png)
2020年普通高等学校招生全国统一考试——江苏数学Ⅰ参考公式:柱体的体积V =Sh ,其中S 是柱体的底面积,h 是柱体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合A ={-1,0,1,2},B ={0,2,3},则A ∩B =▲________. 答案:{0,2}2.已知i 是虚数单位,则复数z =(1+i )(2-i )的实部是▲________. 答案:3解析:因为复数z =(1+i )(2-i )=2-i +2i -i 2=3+i ,所以复数的实部为3.3.已知一组数据4,2a ,3-a ,5,6的平均数为4,则a 的值是▲________. 答案:2解析:由题得4+2a +3-a +5+6=20,解得a =2.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲________. 答案:19解析:基本事件总数为6×6=36个,点数和为5的基本事件有(1,4),(4,1),(2,3),(3,2),共4个,所以概率为436=19.5.如图是一个算法流程图,若输出y 的值为-2,则输入x 的值是▲________. 答案:-3解析:由于2x >0,所以y =x +1=-2,得x =-3.6.在平面直角坐标系xOy 中,若双曲线x 2a 2-y 25=1(a >0)的一条渐近线方程为y =52x ,则该双曲线的离心率是▲________. 答案:32解析:由题得5a =52,得a =2,所以c =a 2+b 2=3,所以双曲线的离心率为c a =32.7.已知y =f (x )是奇函数,当x ≥0时,f (x )=x 23,则f (-8)的值是▲________.答案:-4解析:f (-8)=-f (8)=-823=-4.8.已知sin 2(π4+α)=23,则sin2α的值是▲________.答案:13解析:因为sin 2(π4+α)=(22cos α+22sin α)2=12(1+sin2α)=23,所以sin2α=13.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲________cm . 答案:123-π2解析:正六棱柱体积为6×34×22×2=123,圆柱体积为π(12)2·2=π2,所求几何体体积为123-π2.10.将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是▲________. 答案:x =-5π24解析:平移得y =3sin[2(x -π6)+π4]=3sin(2x -π12),令2x -π12=π2+k π,得x =7π24+k π2(k ∈Z ).当k =-1时,x =-5π24是与y 轴最近的对称轴.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是▲________. 答案:4解析:易知等差数列{a n }的前n 项和为n 2-n ,故d =2.等比数列{b n }的前n 项和为2n -1,故q =2. 故d +q =4.12.已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是▲________. 答案:45解析:因为5x 2y 2+y 4=1,所以y ≠0且x 2=1-y 45y2.于是x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即x 2=310,y 2=12时取等号.所以x 2+y 2的最小值为45.法二:4=(5x 2+y 2)4y 2≤(5x 2+y 2+4y 22)2=25(x 2+y 2)24,得x 2+y 2≥45.13.在△ABC 中,AB =4,AC =3,∠BAC =90º,D 在边BC 上,延长AD 到P ,使得AP =9.若P A →=m PB →+(32-m )PC →(m 为常数),则CD 的长度是▲________.答案:0或185解析:设P A →=λPD →(λ>0),因为P A →=m PB →+(32-m )PC →,所以λPD →=m PB →+(32-m )PC →,即PD →=mλPB →+(32-m )λPC →.因为B ,D ,C 三点共线,所以m λ+(32-m )λ=1,故λ=32.因为AP =9,所以AD =3,因此△ACD 为等腰三角形或C ,D 重合.若△ACD 为等腰三角形,作AE ⊥BC 于E ,故E 为CD 中点,由等面积法得AE =125,由勾股定理得CE =DE =95,所以CD =185.若C ,D 重合,则CD =0. 所以,CD 的长度为0或185.14.在平面直角坐标系xOy 中,已知P (32,0),A ,B 是圆C :x 2+(y -12)2=36上的两个动点,满足P A =PB ,则△P AB 面积的最大值是▲________. 答案:10 5解析:因为P A =PB ,易得PC ⊥AB .设圆心C 到直线AB 距离为d ,则|AB |=236-d 2,|PC |=34+14=1,S △P AB =12·AB ·d P -AB ≤12·236-d 2·max{d -1,1-d ,d +1}=12·236-d 2·(d +1)=(36-d 2)(d +1)2. 令y =(36-d 2)(d +1)2(0≤d <6),由y'=2(d +1)(-2d 2-d +36)=0,得d =4. 当0≤d <4时,y'>0,y (x )递增;当4<d <6时,y'<0,y (x )递减. 因此当d =4时,y max =500,故(S △P AB )max =105.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.解析:(1)因为E ,F 分别是AC ,B 1C 的中点,所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1,所以EF ∥平面AB 1C 1. (2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC ,所以B 1C ⊥AB .又AB ⊥AC ,AC ∩B 1C =C ,所以AB ⊥平面AB 1C . 因为AB ⊂平面ABB 1,所以平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =3,c =2,B =45º.(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠ADC =-45,求tan ∠DAC 的值.解析:(1)由余弦定理得b 2=a 2+c 2-2ac cos B =9+2-2×3×2×22=5,所以b =5.由正弦定理得c sin C =b sin B ,故sin C =c sin B b =55.(2)由于cos ∠ADC =-45,∠ADC ∈(π2,π),所以sin ∠ADC =1-cos 2∠ADC =35.易知C ∈(0,π2),所以cos C =1-sin 2C =255.所以sin ∠DAC =sin(π-∠DAC )=sin(∠ADC +∠C )=sin ∠ADC ·cos C +cos ∠ADC ·sin C =35×255+(-45)×55=2525. 因为∠DAC ∈(0,π2),所以cos ∠DAC =1-sin 2∠DAC =11525.于是,tan ∠DAC =sin ∠DAC cos ∠DAC =211.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO'为铅垂线(O'在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO'的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO'的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO'的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO'的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k>0).问O'E 为多少米时,桥墩CD 与EF 的总造价最低?解析:(1)当b =40时,OO'=-1800×403+6×40=160,又140|O'A |2=OO'=160,所以|O'A |=80.所以|AB |=|O'A |+|O'B |=80+40=120米. (2)设|O'E |=x ,总造价为f (x )万元.f (x )=k (160+1800x 3-6x )+32k [160-140(80-x )2]=k (160+1800x 3-380x 2)(0<x <40),由f'(x )=k (3800x 2-680x )=0,得x =20(0舍去).当0<x <20时,f'(x )<0,f (x )递减;当20<x <40时,f'(x )>0,f (x )递增.因此当x =20时,f (x )取最小值.答:当O'E =20米时,桥墩CD 与EF 的总造价最低.18.在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →·QP →的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.解析:(1)因为椭圆E 的方程为x 24+y 23=1,所以a =2,c =1,所以△AF 1F 2的周长为2a +2c =6.(2)设P (x 0,0),x 0≠1,Q (4,y Q ).易得A (1,32).所以OP →·QP →=(x 0,0)·(x 0-4,-y Q )=(x 0-4)x 0=(x 0-2)2-4≥-4,当且仅当x 0=2时取等号. 所以OP →·QP →的最小值为-4.(3)设M (x 1,y 1),点M 到直线AB 的距离为d .因为A (1,32),F 1(-1,0),所以直线AF 1的方程为y =34(x +1),即3x -4y +3=0,因此点O到直线AB 的距离为35.因为S 2=3S 1,12|AB |·d M -AB =3×12×|AB |×35,所以d M -AB =95=|3x 1-4y 1+3|5,得3x 1-4y 1+12=0或3x 1-4y 1-6=0.由⎩⎪⎨⎪⎧3x 1-4y1+12=0,x 124+y 123=1,得7x 2+24x +32=0,此方程无解;由⎩⎪⎨⎪⎧3x 1-4y 1-6=0,x 124+y 123=1,得7x 2-12x -4=0,解得M (2,0)或(-27,-127).19.已知关于x 的函数y =f (x ),y =g (x )与h (x )=kx +b (k ,b ∈R )在区间D 上恒有f (x )≥h (x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=-x 2+2x ,D =(-∞,+∞),求h (x )的表达式; (2)若f (x )=x 2-x +1,g (x )=k ln x ,h (x )=kx -k ,D =(0,+∞),求k 的取值范围;(3)若f (x )=x 4-2x 2,g (x )=4x 2-8,h (x )=4(t 3-t )x -3t 4+2t 2(0<|t |≤2),D =[m ,n ]⊆[-2,2],求证:n -m ≤7.解析:(1)由题得-x 2+2x ≤kx +b ≤x 2+2x 对任意的x ∈R 恒成立.令x =0,则0≤b ≤0,所以b =0.由kx ≤x 2+2x ,即x 2+(2-k )x ≥0对任意的x ∈R 恒成立,所以Δ=(2-k )2≤0,因此k =2. 此时也满足-x 2+2x ≤2x 对任意的x ∈R 恒成立. 所以h (x )=2x .(2)令F (x )=h (x )-g (x )=k (x -1-ln x )(x >0),则F (1)=0,由题得F (x )≥F (1)恒成立.易得F'(x )=k ·x -1x.若k <0,则F (x )在(0,1)上递增,在(1,+∞)上递减,则F (x )≤F (1)=0,不合题意. 当k =0时,F (x )=F (1)=0,h (x )=g (x ),符合题意.当k >0时,F (x )在(0,1)上递减,在(1,+∞)上递增,则F (x )≥F (1)=0,符合题意. 综上,k ≥0.又f (x )-h (x )=x 2-x +1-(kx -k )=x 2-(k +1)x +(k +1)≥0.当x =k +12<0,即k <-1时,y =x 2-(k +1)x +k +1在(0,+∞)为增函数,因为y (0)=k +1<0,不合题意.当x =k +12=0,即k =-1时,f (x )-h (x )=x 2≥0,符合题意.当x =k +12>0,即k >-1时,应有Δ=(k +1)2-4(k +1)≤0,解得-1<k ≤3.综上,k 的取值范围是k ∈[0,3].(3)由题得x 4-2x 2≥4(t 3-t )x -3t 4+2t 2≥4x 2-8对任意x ∈[m ,n ]⊆[-2,2]恒成立.x 4-2x 2≥4(t 3-t )x -3t 4+2t 2对任意x ∈[m ,n ]⊆[-2,2]恒成立, 等价于(x -t )2(x 2+2tx +3t 2-2)≥0对任意x ∈[m ,n ]⊆[-2,2]恒成立, 故x 2+2tx +3t 2-2≥0对任意x ∈[m ,n ]⊆[-2,2]恒成立.令M (x )=x 2+2tx +3t 2-2.当Δ=-8t 2+8>0,即0<t 2<1时,对称轴x =-t ∈(-1,1),记M (x )的两个零点为x 1<x 2,此时n -m ≤max{2-x 2,x 1-(-2)}≤max{2-(-t ),(-t )-(-2)}=max{2±t }≤2+|t |<2+1<7.当Δ=-8t 2+8≤0,即1≤t 2≤2时,M (x )≥0对x ∈R 恒成立. 而4x 2-8≤4(t 3-t )x -3t 4+2t 2对任意的x ∈[m ,n ]⊆[-2,2]恒成立, 等价于4x 2-4(t 3-t )x +(3t 2+4)(t 2-2)≤0对任意的x ∈[m ,n ]⊆[-2,2]恒成立.记4x 2-4(t 3-t )x +(3t 2+4)(t 2-2)=0的两根为x 1,x 2,则x 1+x 2=t 3-t ,x 1·x 2=3t 4-2t 2-84,所以n -m =|x 1-x 2|=(x 1+x 2)2-4x 1x 2=t 6-5t 4+3t 2+8.令λ=t 2∈[1,2],则n -m =λ3-5λ2+3λ+8.记P (λ)=λ3-5λ2+3λ+8,λ∈[1,2],P'(λ)=3λ2-10λ+3=(λ-3)(3λ-1),所以当λ∈[1,2]时,P'(λ)<0,P (λ)递减,所以P (λ)max =P (1)=7.所以(n -m )max =7,即n -m ≤7.20.已知数列{a n }(n ∈N *)的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有Sn +11k -S n 1k=λa n +11k 成立,则称此数列为“λ-k ”数列.(1)若等差数列{a n }是“λ-1”数列,求λ的值; (2)若数列{a n }是“33-2”数列,且a n >0,求数列{a n }的通项公式; (3)对于给定的λ,是否存在三个不同的数列{a n }为“λ-3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.解析:(1)若等差数列{a n }是“λ-1”数列,则S n +1-S n =λa n +1,即a n +1=λa n +1.因为a n 不恒为0,所以λ=1. (2)因为S n +112-S n 12=33a n +112,所以(S n +112-S n 12)2=13(S n +1-S n )=13(S n +112-S n 12)(S n +112+S n 12). 因为a n >0,所以S n +1>S n ,因此S n +112-S n 12>0,于是S n +112-S n 12=13(S n +112+S n 12),即S n +112=2S n 12,所以S n +1=4S n .因为S 1=a 1=1,所以S n =4n -1,a n =4n -1-4n -2=3·4n -2,n ≥2.所以a n =⎩⎨⎧1,n =1,3·4n -2,n ≥2.(3)假设存在三个不同的数列{a n }为“λ-3”数列,且a n ≥0.由S n +113-S n 13=λa n +113,得(S n +113-S n 13)3=λ3(S n +1-S n ),所以S n +113=S n 13或(S n +113-S n 13)2=λ3(S n +123+S n 23+S n +113S n 13),即S n +1=S n 或(λ3-1)Sn +123+(λ3-1)S n 23+(λ3+2)S n +113S n 13=0.由S n +1=S n ,得a n =⎩⎨⎧1,n =1,0,n ≥2.因为存在三个不同的数列{a n }为“λ-3”数列,且a n ≥0,所以(λ3-1)S n +123+(λ3-1)S n 23+(λ3+2)S n +113S n 13=0(λ≠1)有两个不等的正根.(λ3-1)S n +123+(λ3-1)S n 23+(λ3+2)S n +113S n 13=0(λ≠1)可转化为(λ3-1)S n +123S n 23+(λ3-1)+(λ3+2)S n +113S n 13=0(λ≠1),不妨设(S n +1S n )13=x (x >0),则(λ3-1)x 2+(λ3+2)x +(λ3-1)=0(λ≠1)有两个不等正根,设f (x )=(λ3-1)x 2+(λ3+2)x +(λ3-1)=0(λ≠1).①当λ<1时,令Δ=(λ3+2)2-4(λ3-1)2>0,得0<λ3<4,故0<λ<1,此时f (0)=λ3-1<0,对称轴x =-(λ3+2)2(λ3-1)>0,满足题意.②当λ>1时,令Δ=(λ3+2)2-4(λ3-1)2>0,得0<λ3<4,故1<λ<34,此时f (0)=λ3-1>0,对称轴x =-(λ3+2)2(λ3-1)<0,此情况有两个不等负根,不满足题意,舍去.综上,0<λ<1.数学Ⅱ(附加题)[选做题]本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换] 21.平面上点A (2,-1)在矩阵M =⎣⎡⎦⎤a 1 -1b 对应的变换作用下得到点B (3,-4).(1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵M -1.解析:(1)由题得⎣⎡⎦⎤ a 1 -1 b ⎣⎡⎦⎤2-1=⎣⎡⎦⎤ 3-4,所以⎩⎨⎧2a -1=3,-2-b =-4,解得a =2,b =2.(2)设M -1=⎣⎡⎦⎤m n c d ,则MM -1=⎣⎡⎦⎤2m +c 2n +d -m +2c -n +2d =⎣⎡⎦⎤1 00 1,所以⎩⎨⎧2m +c =1,2n +d =0,-m +2c =0,-n +2d =1,解得m =25,n =-15,c =15,d =25,所以M -1=⎣⎢⎡⎦⎥⎤25 -1515 25.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点A (ρ1,π3)在直线l :ρcos θ=2上,点B (ρ2,π6)在圆C :ρ=4sin θ上(其中ρ≥0,0≤θ<2π).(1)求ρ1,ρ2的值;(2)求出直线l 与圆C 的公共点的极坐标.解析:(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系。
2020年江苏省高考数学试卷及答案详解,
![2020年江苏省高考数学试卷及答案详解,](https://img.taocdn.com/s3/m/eb4d8e02b0717fd5370cdc52.png)
2020年江苏省高考数学试卷一、填空题1. 已知集合B={0,2,3},A={−1,0,1,2},则A∩B=________.2. 已知i是虚数单位,则复数z=(1+i)(2−i)的实部是________.3. 已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是________.4. 将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.5. 下图是一个算法流程图,若输出y值为−2,则输入x的值是________.6. 在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是________.7. 已知y=f(x)是奇函数,当x≥0时,f(x)=x 23,则f(−8)的值是________.8. 已知sin2(π4+α)=23,则sin2α的值是________.9. 如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正________cm 2.10. 将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是________.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是________.12. 已知5x 2y 2+y 4=1(x,y ∈R ),则x 2+y 2的最小值是________.13. 在△ABC 中,AB =4, AC =3, ∠BAC =90∘,D 在边BC 上,延长AD 到P ,使得AP =9.若PA →=mPB →+(32−m)PC →(m 为常数),则CD 的长度是________.14. 在平面直角坐标系xOy 中,已知P (√32,0),A ,B 是圆C:x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是________. 二、解答题15. 在三棱柱ABC −A 1B 1C 1中, AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证: EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC中,角A,B,C的对边分别为a,b,c,己知a=3,c=√2,∠B=45∘.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=−45,求tan∠DAC的值.17. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF. 且CE为80米,其中C,E在AB上(不包括端点). 桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?18. 在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →⋅QP →的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f (x ) ,y =g (x )与ℎ(x )=kx +b (k,b ∈R )在区间D 上恒有f (x )≥ℎ(x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=−x 2+2x ,D =(−∞,+∞),求ℎ(x )的表达式;(2)若f (x )=x 2−x +1,g (x )=k ln x ,ℎ(x )=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f (x )=x 4−2x 2,g (x )=4x 2−8,ℎ(x )=4(t 3−t )x −3t 4+2t 2(0<|t|≤√2),D =[m,n ]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k=λa n+11k成立,则称此数列为“λ−k ”数列. (1)若等差数列是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.参考答案与试题解析2020年江苏省高考数学试卷一、填空题1.【答案】{0,2}【考点】交集及其运算【解析】集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素组成的集合,叫做集合A与集合B的交集,记作A∩B.【解答】解:集合B={0,2,3},A={−1,0,1,2},则A∩B={0,2}.故答案为:{0,2}.【点评】此题暂无点评2.【答案】3【考点】复数代数形式的混合运算复数的基本概念【解析】此题暂无解析【解答】解:z=(1+i)(2−i)=3+i,则实部为3.故答案为:3.【点评】此题暂无点评3.【答案】2【考点】众数、中位数、平均数【解析】此题暂无解析【解答】=4,解:由4+2a+(3−a)+5+65可知a=2.故答案为:2.此题暂无点评4.【答案】19【考点】列举法计算基本事件数及事件发生的概率【解析】此题暂无解析【解答】解:总事件数为6×6=36,满足条件的事件为(1, 4),(2, 3),(3, 2),(4, 1)为共4种,则点数和为5的概率为436=19.故答案为:19.【点评】此题暂无点评5.【答案】−3【考点】程序框图【解析】此题暂无解析【解答】解:由题可知当y=−2时,当x>0时,y=2x=−2,无解;当x<0时,y=x+1=−2,解得:x=−3. 故答案为:−3.【点评】此题暂无点评6.【答案】32【考点】双曲线的渐近线双曲线的离心率【解析】此题暂无解析【解答】解:由x 2a2−y25=1得渐近线方程为y=±√5ax.∴c2=a2+5=9,∴c=3,∴离心率e=ca =32.故答案为:32. 【点评】此题暂无点评7.【答案】−4【考点】函数奇偶性的性质函数的求值【解析】此题暂无解析【解答】解:y=f(x)是奇函数,当x≥0时,f(x)=x 2 3,则f(−8)=−f(8)=−823=−4.故答案为:−4.【点评】此题暂无点评8.【答案】13【考点】二倍角的余弦公式运用诱导公式化简求值【解析】此题暂无解析【解答】解:因为sin2(π4+α)=23,由sin2(π4+α)=12[1−cos(π2+2α)]=12(1+sin2α)=23,解得sin2α=13.故答案为:13.9.【答案】12√3−π2【考点】柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】解:记此六角螺帽毛坯的体积为V,正六棱柱的体积为V1,内孔的体积为V2,则V1=6×12×2×2×sin60∘×2=12√3,V2=π×(0.5)2×2=π2,所以V=V1−V2=12√3−π2.故答案为:12√3−π2.【点评】此题暂无点评10.【答案】x=−5π24【考点】函数y=Asin(ωx+φ)的图象变换正弦函数的对称性【解析】此题暂无解析【解答】解:因为f(x)=3sin(2x+π4),将函数f(x)=3sin(2x+π4)的图象向右平移π6个单位长度得:g(x)=f(x−π6)=3sin(2x−π3+π4)=3sin(2x−π12),则y=g(x)的对称轴为2x−π12=π2+kπ,k∈Z,即x=7π24+kπ2,k∈Z.当k=0时,x=7π24,当k=−1时,x=−5π24,故答案为:x =−5π24. 【点评】 此题暂无点评 11.【答案】 4【考点】等差数列与等比数列的综合 数列的求和【解析】 此题暂无解析 【解答】解:因为{a n +b n }的前n 项和为: S n =n 2−n +2n −1(n ∈N ∗), 当n =1时,a 1+b 1=1,当n ≥2时,a n +b n =S n −S n−1 =2n −2+2n−1, 所以当n ≥2时,a n =2(n −1),b n =2n−1,且当n =1时,a 1+b 1=0+1=1成立, 则d =a 2−a 1=2−0=2, q =b 2b 1=21=2,则d +q =4. 故答案为:4. 【点评】 此题暂无点评 12. 【答案】45【考点】基本不等式在最值问题中的应用 【解析】 此题暂无解析 【解答】解:4=(5x 2+y 2)⋅4y 2≤[(5x 2+y 2)+4y 22]2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2, 即x 2=310,y 2=12时取(x 2+y 2)min =45.【点评】 此题暂无点评 13. 【答案】 185【考点】二倍角的正弦公式 正弦定理 向量的共线定理 【解析】 此题暂无解析 【解答】解:由向量系数m +(32−m)=32为常数, 结合等和线性质可知|PA →||PD →|=321,故PD =23PA =6,AD =PA −PD =3=AC ,故∠C =∠CDA ,故∠CAD =π−2C . 在△ABC 中,cos C =ACBC =35.在△ADC ,由正弦定理CDsin ∠CAD =ADsin C , 即CD =sin (π−2C)sin C⋅AD =sin 2C sin C⋅AD =2AD cos C=2×35×3=185.故答案为:185. 【点评】 此题暂无点评 14. 【答案】10√5 【考点】与圆有关的最值问题 利用导数研究函数的最值【解析】 此题暂无解析 【解答】解:如图,作PC 所在直径EF ,交AB 于点D ,∵PA=PB,CA=CB=R=6,∴PC⊥AB.∵EF为直径,要使面积S△PAB最大,则P,D位于C点两侧,并设CD=x,计算可知PC=1,故PD=1+x, AB=2BD=2√36−x2,故S△PAB=12AB⋅PD=(1+x)⋅√36−x2.令x=6cosθ,其中θ∈(0, π2),S△PAB=(1+x)√36−x2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ.记函数f(θ)=6sinθ+18sin2θ,则f′(θ)=6cosθ+36cos2θ=6(12cos2θ+cosθ−6).令f′(θ)=6(12cos2θ+cosθ−6)=0,解得cosθ=23或cosθ=−34<0(舍去),显然,当0≤cosθ<23时,f′(θ)<0,f(θ)单调递减;当23<cosθ<1时,f′(θ)>0,f(θ)单调递增.结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos2θ=√53,故f(θ)max=6×√53+36×√53×23=10√5,即△PAB面积的最大值是10√5.故答案为:10√5.【点评】此题暂无点评二、解答题15.【答案】证明:(1)因为E,F分别是AC,B1C的中点,所以EF//AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF//平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂面ABC,所以B1C⊥AB.又因为AB⊥AC,AC∩B1C=C,AC⊂面AB1C,B1C⊂面AB1C,所以AB⊥面AB1C.因为AB⊂面ABB1,所以平面AB1C⊥平面ABB1.【考点】平面与平面垂直的判定直线与平面平行的判定【解析】此题暂无解析【解答】证明:(1)因为E,F分别是AC,B1C的中点,所以EF//AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF//平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂面ABC,所以B1C⊥AB.又因为AB⊥AC,AC∩B1C=C,AC⊂面AB1C,B1C⊂面AB1C,所以AB⊥面AB1C.因为AB⊂面ABB1,所以平面AB1C⊥平面ABB1.【点评】此题暂无点评16.【答案】解:(1)由余弦定理,得cos B=cos45∘=a2+c2−b22ac=26√2=√22,因此b2=5,即b=√5.由正弦定理csin C =bsin B,得√2sin C=√5√22,因此sin C=√55.(2)因为cos∠ADC=−45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2, π),所以C∈(0, π2),所以cos C=√1−sin2∠C=2√55,所以sin∠DAC=sin(π−∠DAC)=sin(∠ADC+∠C) =sin∠ADC cos C+cos∠ADC sin C=2√525.因为∠DAC∈(0, π2),所以cos∠DAC=√1−sin2∠DAC=11√525,故tan∠DAC=sin∠DACcos∠DAC =211.【考点】两角和与差的正弦公式余弦定理正弦定理同角三角函数间的基本关系【解析】此题暂无解析【解答】解:(1)由余弦定理,得cos B=cos45∘=a2+c2−b22ac=26√2=√22,因此b2=5,即b=√5.由正弦定理csin C =bsin B,得√2sin C=√5√22,因此sin C=√55.(2)因为cos∠ADC=−45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2, π),所以C∈(0, π2),所以cos C=√1−sin2∠C=2√55,所以sin∠DAC=sin(π−∠DAC)=sin(∠ADC+∠C) =sin∠ADC cos C+cos∠ADC sin C=2√525.因为∠DAC∈(0, π2),所以cos∠DAC=√1−sin2∠DAC=11√525,故tan∠DAC=sin∠DACcos∠DAC =211.【点评】此题暂无点评17.【答案】解:(1)过A,B分别作MN的垂线,垂足为A1,B1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x , 由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k800(3x 2−60x )=3k800x (x −20).因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【考点】利用导数研究函数的最值 函数模型的选择与应用【解析】 此题暂无解析 【解答】解:(1)过A ,B 分别作MN 的垂线,垂足为A 1,B 1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x , 由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k800(3x 2−60x )=3k800x (x −20).因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【点评】 此题暂无点评 18.【答案】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32), 设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OF →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3, 即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0, 所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点.设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =−6或12. 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0,或{x M =−27,y M =−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4). 联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127).【考点】圆锥曲线中的定点与定值问题 椭圆中的平面几何问题 直线与椭圆结合的最值问题【解析】 此题暂无解析 【解答】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32),设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t 2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OF →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3, 即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点. 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =−6或12. 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0或{x M =−27,y M=−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4).联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127). 【点评】 此题暂无点评 19. 【答案】(1)解:由f(x)=g(x),得x=0,f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图像为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x符合题意.(2)解:ℎ(x)−g(x)=k(x−1−ln x),设φ(x)=x−1−ln x,则φ′(x)=1−1x =x−1x,可得φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0.令p(x)=f(x)−ℎ(x)=x2−x+1−(kx−k) =x2−(k+1)x+(1+k)≥0,得当x=k+1≤0时,f(x)在(0,+∞)上递增,所以p(x)>p(0)=1+k≥0,所以k=−1;当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为由函数y=f x的图像可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84,所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t4−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【考点】利用导数研究不等式恒成立问题函数与方程的综合运用利用导数研究曲线上某点切线方程利用导数研究函数的单调性导数的几何意义【解析】此题暂无解析【解答】(1)解:由f(x)=g(x),得x=0,f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图像为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x符合题意.(2)解:ℎ(x)−g(x)=k(x−1−ln x),设φ(x)=x−1−ln x,则φ′(x)=1−1x =x−1x,可得φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0.令p(x)=f(x)−ℎ(x)=x2−x+1−(kx−k) =x2−(k+1)x+(1+k)≥0,得当x=k+1≤0时,f(x)在(0,+∞)上递增,所以p(x)>p(0)=1+k≥0,所以k=−1;当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t4−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【点评】此题暂无点评20.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1.(2)√S n+1−√S n=√3√a n+1,3a n+1=S n+1−S n=√3√a n+1(√S n+1+√S n),3因此√S n+1+√S n=√3√a n+1,√3a n+1,即√S n+1=23S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2.综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗) (3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n )13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1,则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n }; λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解,则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0, 则p n =1,同理不存在三个不同的数列{a n }; ④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β. 设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β, 则对任意n ∈N ∗,S n+1S n =1或S n+1S n =α3或S n+1S n =β3,此时S n =1,S n ={1,n =1,α3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件, 对应a n ={1,n =1,0,n ≥2,a n ={1,n =1,α3−1,n =2,0,n ≥3,a n ={1,n =1,β3−1,n =3,0,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【考点】数列递推式一元二次方程的根的分布与系数的关系 等比数列的通项公式等差数列的性质【解析】此题暂无解析【解答】解:(1)k =1时,a n+1=S n+1−S n =λa n+1, 由n 为任意正整数,且a 1=1,a n ≠0, 可得λ=1.(2)√S n+1−√S n =√33√a n+1, a n+1=S n+1−S n =√33√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3√a n+1, 即√S n+1=23√3a n+1, S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2.综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗) (3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n )13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1,则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n }; λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解,则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0, 则p n =1,同理不存在三个不同的数列{a n };④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β. 设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β,则对任意n ∈N ∗,S n+1S n =1或S n+1S n =α3或S n+1S n =β3,此时S n =1,S n ={1,n =1,α3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件, 对应a n ={1,n =1,0,n ≥2,a n ={1,n =1,α3−1,n =2,0,n ≥3,a n ={1,n =1,β3−1,n =3,0,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【点评】此题暂无点评。
2022年江苏高考考试说明数学
![2022年江苏高考考试说明数学](https://img.taocdn.com/s3/m/d54348791fb91a37f111f18583d049649b660e47.png)
2022年江苏高考考试说明数学江苏省教育考试院公布2020年九科“江苏高考考试说明”,包括三科高考计分科目语文、数学、英语,以及学业水平测试选修科目物理、化学、生物、历史、地理、思想政治六科。
据悉,“考试说明”将于近期下发到考生手中。
数学考试说明变化如下典型题示例加入高考原题出场名师:金陵中学高三把关教师殷涛[要紧变化]数学从考试内容及要求到考试形式及试卷结构与去年差不多上保持一致,只是在典型题示例上发生一定变化,加入了最近两年的高考原题。
2020年高考数学科(江苏卷)考试说明中对知识的考查要求依次分为了解(A)、明白得(B)、把握(C)三个层次。
必做题部分A级考点29个,B级考点36个,C级考点8个。
附加题部分A级考点11个,B级考点36个,无C级考点。
[备考建议]第一依据考试说明把握好深度和难度。
合理研判A、B、C三级考点是关键,比如C级考点未必一定在难题中考查2011年江苏数学高考中对平面向量的数量积和两角和与差的正弦、余弦及正切的考查便是例证;又如圆锥曲线中的双曲线和抛物线仅是必做题中的A级考点,无需拓展和拔高。
狠抓基础注重通性和通法。
复习中不搞“偏题”和“怪题”,切实领会教材中的差不多解题思想和方法。
比如2011年江苏高考17题考查了最差不多的在应用题中建模和解模的能力。
培养能力渗透数学思想方法。
复习中需切实加强以下能力的训练和培养:阅读明白得能力、书面表达交流能力、运算能力等等。
比如2010年江苏高考16题中对“点面距”的考查,尽管在考试说明中未列出这一考点,事实上考查的是“转化与化归”的数学思想方法。
加强专题复习,关注高中与大学衔接内容。
合理安排各模块的训练难度,要重视附加题,但不要盲目地增加附加题的训练难度。
应用题每年均考查,可认真研究到底考查建立哪些数学模型,还有哪些模型没有考查等等,可考虑进行专题复习和训练。
考试说明含样题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省高考说明-数学学科(2018版)
一、命题指导思想
2018年普通高等学校招生全国统一考试数学学科(江苏卷)命题将依据《普通高中数学课程标准》,参照《普通高等学校招生全国统一考试大纲(课程标准实验版)》,结合江苏普通高中课程教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力。
试卷保持较高的信度、效度以及必要的区分度和适当的难度。
1.突出数学基础知识、基本技能、基本思想方法的考查
对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点。
支撑学科知识体系的重点内容在试卷中要占有较大的比例。
注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查。
2.重视数学基本能力和综合能力的考查
数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.
(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.
(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.
(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,
运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.
(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.
(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.
数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.
3.注重数学的应用意识和创新意识的考查
数学的应用意识的考查,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决.
创新意识的考查要求是:能够综合,灵活运用所学的数学知识和思想方法,创造性地解决问题.
二、考试内容及要求
数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).
了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.
理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.
掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.。