高考物理牛顿运动定律考点复习

合集下载

高考物理力学知识点之牛顿运动定律知识点总复习含答案解析(5)

高考物理力学知识点之牛顿运动定律知识点总复习含答案解析(5)

高考物理力学知识点之牛顿运动定律知识点总复习含答案解析(5)一、选择题1.如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图像如图(乙)所示,则A.1t时刻小球动能最大B.2t时刻小球动能最大C.2t~3t这段时间内,小球的动能先增加后减少D.2t~3t这段时间内,小球增加的动能等于弹簧减少的弹性势能2.起重机通过一绳子将货物向上吊起的过程中(忽略绳子的重力和空气阻力),以下说法正确的是()A.当货物匀速上升时,绳子对货物的拉力与货物对绳子的拉力是一对平衡力B.无论货物怎么上升,绳子对货物的拉力大小都等于货物对绳子的拉力大小C.无论货物怎么上升,绳子对货物的拉力大小总大于货物的重力大小D.若绳子质量不能忽略且货物匀速上升时,绳子对货物的拉力大小一定大于货物的重力3.在匀速行驶的火车车厢内,有一人从B点正上方相对车厢静止释放一个小球,不计空气阻力,则小球()A.可能落在A处B.一定落在B处C.可能落在C处D.以上都有可能m,弹簧及挂钩的质量忽略不计,挂钩吊着一质量4.如图所示,弹簧测力计外壳质量为0为m的重物,现用一竖直向上的拉力F拉着弹簧测力计,使其向上做匀加速直线运动,弹簧测力计的读数为0F,则拉力F大小为()A .0m mmg m + B .00m m F m+ C .00m m mg m +D .000m m F m + 5.如图所示,质量m =1kg 、长L =0.8m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F =5N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为( )(g 取10m/s 2)A .1JB .1.6JC .2JD .4J6.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( )A .B .C .D .7.一物体放置在粗糙水平面上,处于静止状态,从0t =时刻起,用一水平向右的拉力F 作用在物块上,且F 的大小随时间从零均匀增大,则下列关于物块的加速度a 、摩擦力f F 、速度v 随F 的变化图象正确的是( )A .B .C .D .8.如图所示,有一根可绕端点B 在竖直平面内转动的光滑直杆AB ,一质量为m 的小圆环套在直杆上。

高考复习 第三章 牛顿运动定律

高考复习 第三章  牛顿运动定律

第三章 牛顿运动定律知识网络:第1单元 牛顿运动三定律一、牛顿第一定律(内容):(1)保持匀速直线运动或静止是物体的固有属性;物体的运动不需要用力来维持(2)要使物体的运动状态(即速度包括大小和方向)改变,必须施加力的作用,力是改变物体运动状态的原因1.牛顿第一定律导出了力的概念 力是改变物体运动状态的原因。

(运动状态指物体的速度)又根据加速度定义:t v a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。

(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。

)2.牛顿第一定律导出了惯性的概念惯性:物体保持原来匀速直线运动状态或静止状态的性质。

惯性应注意以下三点:(1)惯性是物体本身固有的属性,跟物体的运动状态无关,跟物体的受力无关,跟物体所处的地理位置无关(2)质量是物体惯性大小的量度,质量大则惯性大,其运动状态难以改变(3)外力作用于物体上能使物体的运动状态改变,但不能认为克服了物体的惯性3.牛顿第一定律描述的是理想化状态牛顿第一定律描述的是物体在不受任何外力时的状态。

而不受外力的物体是不存在的。

物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例。

4、不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。

它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。

5、牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。

【例1】在一艘匀速向北行驶的轮船甲板上,一运动员做立定跳远,若向各个方向都用相同的力,则 ( )A .向北跳最远B .向南跳最远C .向东向西跳一样远,但没有向南跳远D .无论向哪个方向都一样远【例2】某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动,可见( )A .力是使物体产生运动的原因B .力是维持物体运动速度的原因C .力是使物体速度发生改变的原因D .力是使物体惯性改变的原因【例3】如图中的甲图所示,重球系于线DC下端,重球下再系一根同样的线BA,下面说法中正确的是()A.在线的A端慢慢增加拉力,结果CD线拉断B.在线的A端慢慢增加拉力,结果AB线拉断C.在线的A端突然猛力一拉,结果AB线拉断D.在线的A端突然猛力一拉,结果CD线拉断二、牛顿第三定律(12个字——等值、反向、共线同时、同性、两体、)1.区分一对作用力反作用力和一对平衡力一对作用力反作用力和一对平衡力的共同点有:大小相等、方向相反、作用在同一条直线上。

3.高考物理复习专题 牛顿运动定律

3.高考物理复习专题 牛顿运动定律

高考物理专题复习 力和运动 牛顿运动定律1. 一斜面AB 长为5m ,倾角为30°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止释放,如图所示.斜面与物体间的动摩擦因数为63,求小物体下滑到斜面底端B 时的速度及所用时间.(g 取10 m/s 2)2. 如图所示,A 、B 两物体之间用轻质弹簧连接,用水平恒力F 拉A ,使A 、B 一起沿光滑水平面做匀加速直线运动,这时弹簧长度为L 1;若将A 、B 置于粗糙水平面上,用相同的水平恒力F 拉A ,使A 、B 一起做匀加速直线运动,此时弹簧长度为L 2。

若A 、B 与粗糙水平面之间的动摩擦因数相同,则下列关系式正确的是 ( )A .L 2<L 1B .L 2>L 1C .L 2=L 1D .由于A 、B 质量关系未知,故无法确定L 1、L 2的大小关系3.如图所示,在光滑的桌面上叠放着一质量为m A =2.0kg 的薄木板A 和质量为m B =3 kg 的金属块B .A 的长度L =2.0m .B 上有轻线绕过定滑轮与质量为m C =1.0 kg 的物块C 相连.B 与A 之间的滑动摩擦因数 µ =0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B 位于A 的左端(如图),然后放手,求经过多长时间t 后 B 从 A 的右端脱离(设 A 的右端距滑轮足够远)(取g =10m/s 2).4.某人在地面上最多可举起60 kg 的物体,在竖直向上运动的电梯中可举起80 kg 的物体,则此电梯的加速度的大小、方向如何?电梯如何运动?(g =10 m/s 2)四、考点精炼1.手提一根不计质量的、下端挂有物体的弹簧上端,竖直向上作加速运动。

当手突然停止运动后的极短时间内,物体将 ( )A .立即处于静止状态B .向上作加速运动C .向上作匀速运动D .向上作减速运动2.如图所示,质量为m 的木块在推力F 作用下,沿竖直墙壁匀加速向上运动,F 与竖直方向的夹角为θ.已知木块与墙壁间的动摩擦因数为µ,则木块受到的滑动摩擦力大小是 ( )A .µmgB .F cos θ -mgC .F cos θ+mgD .µF sin θ3.倾角为θ的光滑斜面上有一质量为m 的滑块正在加速下滑,如图所示。

高中物理牛顿定律知识点

高中物理牛顿定律知识点

高中物理牛顿定律知识点高中物理牛顿定律知识点在平日的学习中,说起知识点,应该没有人不熟悉吧?知识点就是学习的重点。

还在苦恼没有知识点总结吗?以下是店铺为大家整理的高中物理牛顿定律知识点,仅供参考,欢迎大家阅读。

1、牛顿第一定律:(1)内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

(2)理解:①它说明了一切物体都有惯性,惯性是物体的固有性质、质量是物体惯性大小的量度(惯性与物体的速度大小、受力大小、运动状态无关)。

②它揭示了力与运动的关系:力是改变物体运动状态(产生加速度)的原因,而不是维持运动的原因。

③它是通过理想实验得出的,它不能由实际的实验来验证。

2、牛顿第二定律:内容:物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m成反比,加速度的方向跟合外力的方向相同。

3、牛顿第三定律:(1)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。

(2)理解:①作用力和反作用力的同时性。

它们是同时产生,同时变化,同时消失,不是先有作用力后有反作用力。

②作用力和反作用力的性质相同。

即作用力和反作用力是属同种性质的力。

③作用力和反作用力的相互依赖性。

它们是相互依存,互以对方作为自己存在的前提。

④作用力和反作用力的不可叠加性。

作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两力的作用效果不能相互抵消。

4、牛顿运动定律的适用范围:对于宏观物体低速的运动(运动速度远小于光速的运动),牛顿运动定律是成立的,但对于物体的`高速运动(运动速度接近光速)和微观粒子的运动,牛顿运动定律就不适用了,要用相对论观点、量子力学理论处理。

怎样才能理解一条物理规律1、明确形成规律的依据、方法和过程。

这不仅对可以帮助我们体会人类的科学发展规律,对我们形成合理的知识体系也是及其重要的。

2、明确规律的物理意义及其表述。

包括:该规律在物理学中的地位和作用,明确该规律所反映的物理本质,明确规律表达中的关键词句,明确规律的数学公式的物理含义等等。

高考一轮专题:牛顿运动定律(有答案)

高考一轮专题:牛顿运动定律(有答案)

专题:牛顿运动定律考点一对牛顿第一定律的理解1.指出了物体的一种固有属性牛顿第一定律揭示了物体所具有的一个固有属性——惯性,即物体总保持原有运动状态不变的一种性质.2.揭示了力的本质牛顿第一定律明确了力是改变物体运动状态的原因,而不是维持物体运动的原因,物体的运动不需要力来维持.3.揭示了不受力作用时物体的运动状态牛顿第一定律描述的只是一种理想状态,而实际中不受力作用的物体是不存在的,当物体受外力作用但所受合力为零时,其运动效果跟不受外力作用时相同,物体将保持静止或匀速直线运动状态.1.关于惯性,以下说法中正确的选项是( )A.磁悬浮列车能高速行驶是因为列车浮起后惯性小了B.卫星内的仪器由于完全失重惯性消失了C.铁饼运发动在掷出铁饼前快速旋转可增大铁饼的惯性,使铁饼飞得更远D.月球上物体的重力只有在地球上的1/6,但是惯性没有变化2.(多项选择)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有以下说法,其中正确的选项是( )A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.行星在圆周轨道上保持匀速率运动的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动考点二对牛顿第三定律的理解1.作用力与反作用力的“三同、三异、三无关”2.应用牛顿第三定律时应注意的问题(1)定律中的“总是”二字说明对于任何物体,在任何条件下牛顿第三定律都是成立的.(2)牛顿第三定律说明了作用力和反作用力中,假设一个产生或消失,则另一个必然同时产生或消失.(3)作用力、反作用力不同于平衡力1.(多项选择)关于牛顿第三定律,以下说法正确的选项是( )A.对重力、弹力、摩擦力等都适用B.当相互作用的两个物体相距很远时不适用C.当相互作用的两个物体做加速运动时不适用D.相互作用的两个物体没有直接接触时也适用2.(2017·吉林实验中学二模)两人的拔河比赛正在进行中,两人均保持恒定拉力且不松手,而脚下开始移动.以下说法正确的选项是( )A.两人对绳的拉力大小相等、方向相反,是一对作用力和反作用力B.两人对绳的拉力是一对平衡力C.拔河的胜利与否取决于谁的力量大D.拔河的胜利与否取决于地面对人的摩擦力大小3.如下图,甲、乙两人在冰面上“拔河”,两人中间位置处有一分界线,约定先使对方过分界线者为赢.假设绳子质量不计,冰面可看成光滑,则以下说法正确的选项是( )A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.假设甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.假设乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利考点三牛顿第二定律瞬时性的理解1.两种模型:牛顿第二定律F=ma,其核心是加速度与合外力的瞬时对应关系,两者总是同时产生,同时消失、同时变化,具体可简化为以下两种模型:2.求解瞬时加速度的一般思路分析瞬时变化前、后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度1.(2017·山东大学附中检测)如下图,A、B两小球分别连在轻线两端,B球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A、B两小球的质量分别为m A、m B,重力加速度为g,假设不计弹簧质量,在线被剪断瞬间,A、B两球的加速度大小分别为( )A.都等于g2B.g2和0 C.g2和m Am B·g2D.m Am B·g2和g22.如下图,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B. 233g C.g D.33g3.如下图,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,物块2、4质量为M,两个系统均置于水平放置的光滑木板上.并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有( )A.a1=a2=a3=a4=0 B.a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MMg D.a1=g,a2=m+MMg,a3=0,a4=m+MMg4.如下图,在光滑水平面上,A、B两物体用轻弹簧连接在一起,A、B的质量分别为m1、m2,在拉力F作用下,A、B共同做匀加速直线运动,加速度大小为a,某时刻突然撤去拉力F,此瞬间A和B 的加速度大小分别为a1、a2,则( )A.a1=0,a2=0 B.a1=a,a2=m2m1+m2aC .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=m 1m 2a 考点四 动力学的两类基本问题1.求解两类问题的思路,可用下面的框图来表示:2.分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.考向1:由受力情况求运动情况1、如下图,工人用绳索拉铸件,铸件的质量是20 kg ,铸件与地面间的动摩擦因数是0.25.工人用80 N 的力拉动铸件,从静止开始在水平面上前进,绳与水平方向的夹角为α=37°并保持不变,经4 s 后松手.(g =10 m/s 2)求:(1)松手前铸件的加速度;(2)松手后铸件还能前进的距离.考向2:由运动情况求受力情况2.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以a =2.5 m/s 2匀加速下滑.如右图所示,假设用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m .求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ;(2)恒力F 的大小.3.如下图,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上A 点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m(滑块经过B点时没有能量损失,g取10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.考点五超重和失重问题1.不管超重、失重或完全失重,物体的重力都不变,只是“视重”改变.2.在完全失重的状态下,一切由重力产生的物理现象都会完全消失.3.尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重状态.1.(2017·福建莆田模拟)关于超重和失重现象,以下描述中正确的选项是( )A.电梯正在减速上升,在电梯中的乘客处于超重状态B.磁悬浮列车在水平轨道上加速行驶时,列车上的乘客处于超重状态C.荡秋千时秋千摆到最低位置时,人处于失重状态D.“神舟”飞船在绕地球做圆轨道运行时,飞船内的宇航员处于完全失重状态考点六连接体问题1.处理连接体问题常用的方法为整体法和隔离法.2.涉及隔离法与整体法的具体问题类型(1)涉及滑轮的问题假设要求绳的拉力,一般都必须采用隔离法.例如,如下图,绳跨过定滑轮连接的两物体虽然加速度大小相同,但方向不同,故采用隔离法.(2)水平面上的连接体问题①这类问题一般多是连接体(系统)各物体保持相对静止,即具有相同的加速度.解题时,一般采用先整体、后隔离的方法.②建立坐标系时也要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度.(3)斜面体与上面物体组成的连接体的问题当物体具有沿斜面方向的加速度,而斜面体相对于地面静止时,解题时一般采用隔离法分析.3.解题思路(1)分析所研究的问题适合应用整体法还是隔离法.①处理连接体问题时,整体法与隔离法往往交叉使用,一般的思路是先用整体法求加速度,再用隔离法求物体间的作用力;②对于加速度大小相同,方向不同的连接体,应采用隔离法进行分析.(2)对整体或隔离体进行受力分析,应用牛顿第二定律确定整体或隔离体的加速度.(3)结合运动学方程解答所求解的未知物理量.1、如下图,物块A 和B 的质量分别为4m 和m ,开始A 、B 均静止,细绳拉直,在竖直向上拉力F =6mg 作用下,动滑轮竖直向上加速运动.已知动滑轮质量忽略不计,动滑轮半径很小,不考虑绳与滑轮之间的摩擦,细绳足够长,在滑轮向上运动过程中,物块A 和B 的加速度分别为( )A .a A =12g ,aB =5g B .a A =a B =15gC .a A =14g ,a B =3g D .a A =0,a B =2g 考点七 动力学中的图象问题1.常见的图象有v -t 图象,a -t 图象,F -t 图象,F -a 图象等.2.图象间的联系加速度是联系v -t 图象与F -t 图象的桥梁.3.图象的应用(1)已知物体在一过程中所受的某个力随时间变化的图线,要求分析物体的运动情况.(2)已知物体在一运动过程中速度、加速度随时间变化的图线,要求分析物体的受力情况.(3)通过图象对物体的受力与运动情况进行分析.4.解答图象问题的策略(1)弄清图象坐标轴、斜率、截距、交点、拐点、面积的物理意义.(2)应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”、“图象与物体”间的关系,以便对有关物理问题作出准确判断.1.(多项选择)如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示.假设重力加速度及图中的v0、v1、t1均为已知量,则可求出( )A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度2.(2017·广东佛山二模)广州塔,昵称小蛮腰,总高度达600 m,游客乘坐观光电梯大约一分钟就可以到达观光平台.假设电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t图象如下图.则以下相关说法正确的选项是( )A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零3.(多项选择)将一个质量为1 kg的小球竖直向上抛出,最终落回抛出点,运动过程中所受阻力大小恒定,方向与运动方向相反.该过程的v-t图象如下图,g取10 m/s2.以下说法中正确的选项是( )A.小球所受重力和阻力大小之比为5∶1B.小球上升过程与下落过程所用时间之比为2∶3C.小球落回到抛出点时的速度大小为8 6 m/sD.小球下落过程中,受到向上的空气阻力,处于超重状态4.如图甲所示,某人通过动滑轮将质量为m的货物提升到一定高处,动滑轮的质量和摩擦均不计,货物获得的加速度a与竖直向上的拉力F T之间的函数关系如图乙所示.则以下判断正确的选项是( )A.图线与纵轴的交点的绝对值为g B.图线的斜率在数值上等于物体的质量mC.图线与横轴的交点N的值F TN=mg D.图线的斜率在数值上等于物体质量的倒数1m考点八“板—块”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,假设滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题方法整体法、隔离法.4.解题思路(1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出滑块和滑板的加速度.(2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都是相对地的位移.1.(2017·安徽芜湖模拟)质量为m0=20 kg、长为L=5 m的木板放在水平面上,木板与水平面的动摩擦因数为μ1=0.15.将质量m=10 kg 的小木块(可视为质点),以v0=4 m/s的速度从木板的左端被水平抛射到木板上(如下图),小木块与木板面的动摩擦因数为μ2=0.4(最大静摩擦力等于滑动摩擦力,g =10 m/s2).则以下判断中正确的选项是( )A.木板一定静止不动,小木块不能滑出木板B.木板一定静止不动,小木块能滑出木板C.木板一定向右滑动,小木块不能滑出木板D.木板一定向右滑动,小木块能滑出木板2. (2017·山东德州质检)长为L=1.5 m的长木板B静止放在水平冰面上,小物块A以某一初速度v0从木板B的左端滑上长木板B,直到A、B的速度到达相同,此时A、B的速度为v=0.4 m/s,然后A、B又一起在水平冰面上滑行了s=8.0 cm后停下.假设小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数μ1=0.25,取g=10 m/s2.求:(1)木板与冰面的动摩擦因数μ2;(2)小物块A的初速度v0;(3)为了保证小物块不从木板的右端滑落,小物块滑上木板的最大初速度v0m应为多少?考点九水平传送带问题滑块在水平传送带上运动常见的三个情景项目图示滑块可能的运动情况情景一(1)可能一直加速(2)可能先加速后匀速情景二(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景三(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v 返回时速度为v01.如下图,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.假设从小物块滑上传送带开始计时,小物块在传送带上运动的v-t 图象(以地面为参考系)如图乙所示.已知v2>v1,则( )A.t2时刻,小物块离A处的距离到达最大B.t2时刻,小物块相对传送带滑动的距离最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用2.(多项选择)如下图是某工厂所采用的小型生产流水线示意图,机器生产出的物体源源不断地从出口处以水平速度v0滑向一粗糙的水平传送带,最后从传送带上落下装箱打包.假设传送带静止不动时,物体滑到传送带右端的速度为v,最后物体落在P处的箱包中.以下说法正确的选项是( )A.假设传送带随皮带轮顺时针方向转动起来,且传送带速度小于v,物体仍落在P点B.假设传送带随皮带轮顺时针方向转动起来,且传送带速度大于v0,物体仍落在P点C.假设传送带随皮带轮顺时针方向转动起来,且传送带速度大于v,物体仍落在P点D.假设由于操作不慎,传送带随皮带轮逆时针方向转动起来,物体仍落在P点3、如下图,足够长的水平传送带,以初速度v0=6 m/s顺时针转动.现在传送带左侧轻轻放上质量m=1 kg的小滑块,与此同时,启动传送带制动装置,使得传送带以恒定加速度a=4 m/s2减速直至停止;已知滑块与传送带间的动摩擦因数μ=,滑块可以看成质点,且不会影响传送带的运动,g=10 m/s2.试求:(1)滑块与传送带共速时,滑块相对传送带的位移;(2)滑块在传送带上运动的总时间t.考点十倾斜传送带问题滑块在倾斜传送带上运动常见的四个情景项目图示滑块可能的运动情况情景一①可能一直加速②可能先加速后匀速情景二①可能一直加速②可能先加速后匀速③可能先以a1加速后以a2加速情景三①可能一直加速②可能先加速后匀速③可能一直匀速④可能先以a1加速后以a2加速情景四①可能一直加速②可能一直匀速③可能先减速后反向加速1、如下图,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,在传送带顶端A处无初速度的释放一个质量为m=0.5 kg的物体,已知物体与传送带间的动摩擦因数μ=0.5,g取10 m/s2.求:(sin 37°=0.6,cos 37°=0.8)(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.2.如下图为上、下两端相距L=5 m、倾角α=30°、始终以v=3 m/s的速率顺时针转动的传送带(传送带始终绷紧).将一物体放在传送带的上端由静止释放滑下,经过t=2 s到达下端,重力加速度g 取10 m/s2,求:(1)传送带与物体间的动摩擦因数多大?(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?3.(多项选择)如下图,三角形传送带以1 m/s的速度逆时针匀速转动,两边的传送带长都是2 m,且与水平方向的夹角均为30°.现有两质量相同的小物块A、B从传送带顶端都以1 m/s的初速度沿传送带下滑,物块与传送带间的动摩擦因数均为,以下说法正确的选项是( )A.下滑相同距离内物块A、B机械能的变化一定不相同B.下滑相同时间内物块A、B机械能的变化一定相同C.物块A、B一定不能同时到达传送带底端D.物块A、B在传送带上的划痕长度相同专题:牛顿运动定律 答案1、解析:选D.惯性只与质量有关,与速度无关,A 、C 错误;失重或重力加速度发生变化时,物体质量不变,惯性不变,所以B 错误、D 正确.2、解析:选AD.物体保持原来匀速直线运动状态或静止状态的性质叫惯性,即物体抵抗运动状态变化的性质,A 正确.没有力的作用,物体也可能保持匀速直线运动状态,B 错误,D 正确.行星在圆周轨道上保持匀速率运动而不是匀速直线运动,所以不能称为惯性,C 错误.1、解析:选AD.对于牛顿第三定律,适用于重力、弹力、摩擦力等所有的力,而且不管相互作用的两物体的质量如何、运动状态怎样、是否相互接触都适用,例如,地球吸引地球外表上的石块,石块同样以相同大小的力吸引地球,且不管接触不接触,都互相吸引,所以B 、C 错误,A 、D 正确.2、解析:选D.人拉绳的力与绳拉人的力是一对作用力与反作用力,大小相等,选项A 错误;两人对绳的拉力不一定是一对平衡力,要根据绳子所处的运动状态进行判断,选项B 错误;拔河的胜利与否取决于地面对人的摩擦力大小,选项D 正确,C 错误.3、解析:选C.甲对绳的拉力与绳对甲的拉力是一对作用力与反作用力,故选项A 错误;甲对绳的拉力与乙对绳的拉力作用在同一物体上,不是作用力与反作用力,故选项B 错误;设绳子的张力为F ,则甲、乙两人受到绳子的拉力大小相等,均为F ,假设m 甲>m 乙,则由a =F m 得,a 甲<a 乙,由x =12at 2得,在相等时间内甲的位移小,因开始时甲、乙距分界线的距离相等,则乙会过分界线,所以甲能赢得“拔河”比赛的胜利,故选项C 正确;收绳速度与“拔河”比赛胜负无关,故选项D 错误.1、解析:选C.由整体法知,F 弹=(m A +m B )g sin 30° 剪断线瞬间,弹力瞬间不发生变化,由牛顿第二定律可得:对B :F 弹-m B g sin 30°=m B a B ,得a B =m A m B ·g2对A :m A g sin 30°=m A a A ,得a A =12g所以C 正确.2、解析:选B.开始小球处于平衡态,受重力mg 、支持力F N 、弹簧拉力F 三个力作用,受力分析如下图,由平衡条件可得F N =mg cos 30°+F sin 30°,F cos 30°=mg sin 30°,解得F N =233mg ,重力mg 、弹簧拉力F 的合力的大小等于支持力F N ,当木板AB 突然向下撤离的瞬间,小球受力不再平衡,此时的合力与F N 等大反向,由牛顿第二定律得此时小球的加速度大小为233g ,B 正确.3、解析:选C.在抽出木板的瞬时,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g :而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上的弹力大小和对物块4向下的弹力大小仍为mg ,因此物块3满足mg =F ,a 3=0;由牛顿第二定律得物块4满足a 4=F +Mg M =M +mMg ,所以C 对. 4、解析:选D.撤去拉力F 前,设弹簧的劲度系数为k 、形变量为x ,对A 由牛顿第二定律得kx =m 1a ;撤去拉力F 瞬间,弹簧的形变量保持不变,对A 由牛顿第二定律得kx =m 1a 1,对B 由牛顿第二定律kx =m 2a 2,解得a 1=a ,a 2=m 1m 2a ,D 正确.1、解析 (1)松手前,对铸件由牛顿第二定律得 a =Fcos 37°-μmg -Fsin 37°m =1.3 m/s 2(2)松手时铸件的速度v =at =5.2 m/s 松手后的加速度大小a′=μmgm=μg=2.5 m/s 2 则松手后铸件还能滑行的距离x =v 22a′=5.4 m答案 (1)1.3 m/s 2 (2)5.4 m2、解析:(1)以物块为研究对象受力分析如图甲所示,根据牛顿第二定律可得:mgsin 30°-μmgcos 30°=ma 解得:μ=36. (2)使滑块沿斜面做匀加速直线运动,有加速度向上和向下两种可能.当加速度沿斜面向上时,受力分析如图乙所示,Fcos 30°-mgsin 30°-μ(Fsin 30°+mgcos 30°)=ma 1,根据题意可得a 1=2 m/s 2,代入数据得:F =7635 N当加速度沿斜面向下时(如图丙):mgsin 30°-Fcos 30°-μ(Fsin 30°+mgcos 30°)=ma 1 代入数据得:F =437N.答案:(1)36 (2)7635 N 或437N 3、解析:(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B 点时速度最大为v m ,设滑块在斜面上运动的加速度大小为a 1,由牛顿第二定律得:mgsin 30°=ma 1v 2m=2a 1hsin 30°,解得v m =4 m/s.(2)滑块在水平面上运动的加速度大小为a 2,由牛顿第二定律得:μmg=ma 2 v 2m =2a 2L ,解得μ=0.4.(3)滑块在斜面上运动的时间为t 1,有v m =a 1t 1,解得 t 1=v ma 1=0.8 s 由于t >t 1,故滑块已经经过B 点,做匀减速运动的时间为t -t 1=0.2 s 设t =1.0 s 时速度大小为v ,有 v =v m -a 2(t -t 1),解得v =3.2 m/s. 答案:(1)4 m/s (2)0.4 (3)3.2 m/s1、解析:选D.物体是否超重或失重取决于加速度方向,当加速度向上时物体处于超重状态,当加速度向下时物体处于失重状态,当加速度向下且大小等于重力加速度时物体处于完全失重状态.电梯正在减速上升,加速度向下,乘客失重,选项A 错误;列车加速时加速度水平向前,乘客既不超重也不失重,选项B 错误;荡秋千到最低位置时加速度向上,人处于超重状态,选项C 错误;飞船绕地球做匀速圆周运动时,其加速度等于飞船所在位置的重力加速度,宇航员处于完全失重状态,选项D 正确.1、解析 对滑轮由牛顿第二定律得F -2F T =m′a,又滑轮质量m′忽略不计,故m′=0,所以F T =F 2=6mg 2=3mg ,对A 由于F T <4mg ,故A 静止,a A =0,对B 有a B =F T -mg m =3mg -mg m=2g ,故D 正确.答案 D1、解析:选ACD.由题图(b)可以求出物块上升过程中的加速度为a 1=v 0t 1,下降过程中的加速度为a 2=v 1t 1.物块在上升和下降过程中,由牛顿第二定律得mgsin θ+f =ma 1,mgsin θ-f =ma 2,由以上各式可求得sin θ=v 0+v 12t 1g ,滑动摩擦力f =m v 0-v 12t 1,而f =μF N =μmgcos θ,由以上分析可知,选项A 、C 正确.由v -t 图象中横轴上方的面积可求出物块沿斜面上滑的最大距离,可以求出物块沿斜面向上滑行的最大高度,选项D 正确.2、解析:选D.利用a­t 图象可判断:t =4.5 s 时,电梯有向上的加速度,电梯处于超重状态,则A 错误;0~5 s 时间内,电梯处于超重状态,拉力>重力,5 s ~55 s 时间内,电梯处于匀速上升过程,拉力=重力,55 s ~60 s 时间内,电梯处于失重状态,拉力<重力,综上所述,B 、C 错误;因a­t 图线与t 轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t =60 s 时为零,D 正确.3、解析:选AC.上升过程中mg +F f =ma 1,代入a 1=12 m/s 2,解得F f =2 N ,小球所受重力和阻力之比为5∶1,选项A 正确;下落过程中mg -F f =ma 2,可得a 2=8 m/s 2,根据h =12at 2可得t 1t 2=a 2a 1=23,选项B 错误;根据v =a 2t 2,t 2= 6 s 可得v =8 6 m/s ,选项C 正确;小球下落过程中,加速度方向竖直向下,小球处于失重状态,选项D 错误.4、解析:选A.由牛顿第二定律可得:2F T -mg =ma ,则有a =2m F T -g ,由a -F T 图象可判断,纵轴截距的绝对值为g ,图线的斜率在数值上等于2m ,则A 正确,B 、D 错误,横轴截距代表a =0时,F TN=mg2,C 错误. 1、解析:f1=μ1(m 0+m)g =0.15×(20+10)×10 N=45 N ,小木块与木板之间的摩擦力为F f2=μ2mg =0.4×10×10 N=40 N ,F f1>F f2,所以木板一定静止不动;设小木块在木板上滑行的距离为x ,v 20=2μ2gx ,解得x =2 m<L =5 m ,所以小木块不能滑出木板,A 正确.2、解析 (1)小物块和木板一起运动时,受冰面的滑动摩擦力,做匀减速运动,则加速度 a =v 22s=1.0 m/s 2由牛顿第二定律得μ2mg =ma 解得μ2=0.10.(2)小物块相对木板滑动时受木板对它的滑动摩擦力,做匀减速运动,其加速度 a 1=μ1g =2.5 m/s 2小物块在木板上滑动,木板受小物块的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,则有 μ1mg -μ2(2m)g =ma 2 解得a 2=0.50 m/s 2.设小物块滑上木板经时间t 后小物块、木板的速度相同为v ,则 对于木板v =a 2t 解得t =va 2=0.8 s小物块滑上木板的初速度v 0=v +a 1t =2.4 m/s.(3)小物块滑上木板的初速度越大,它在木板上相对木板滑动的距离越大,当滑动距离等于木板长时,小物块到达木板B 的最右端,两者的速度相等(设为v′),这种情况下小物块的初速度为保证其不从木板上滑落的最大初速度v 0m ,则v 0m t -12a 1t 2-12a 2t 2=Lv 0m -v′=a 1t v′=a 2t由以上三式解得v 0m =3.0 m/s.答案 (1)0.10 (2)2.4 m/s (3)3.0 m/s1、解析:选B.物块滑上传送带后将做匀减速运动,t 1时刻速度为零,此时小物块离A 处的距离到达最大,选项A 错误;然后在传送带滑动摩擦力的作用下向右做匀加速运动,t 2时刻与传送带到达共同速度,此时小物块相对传送带滑动的距离最大,选项B 正确;0~t 2时间内,小物块受到的摩擦力方向始终向右,选项C 错误;t 2~t 3时间内小物块不受摩擦力,选项D 错误.2、解析:选AD.假设传送带静止,物体滑到传送带右端的过程中,物体一直减速,其加速度a =μg,v 2-v 20=2aL ,当传送带顺时针转且速度小于v 时,物体仍一直减速,到达传送带右端速度仍为v ,因而物体仍落在P 点,A 正确;当传送带顺时针转且速度大于v 0时,物体应先加速,因而到达右端时速度一定大于v ,应落在P 点右侧,B 错误;当传送带顺时针转且速度大于v 时,物体在传送带上应先减速,当速度到达传送带速度时便和传送带一起匀速运动,到达右端时速度大于v ,应落在P 点右侧,C 错误;当传送带逆时针转时,物体一直减速,到达右端时速度为v ,仍落在P 点,D 正确.。

2025届高考物理一轮复习资料第三章牛顿运动定律第2讲牛顿第二定律的基本应用

2025届高考物理一轮复习资料第三章牛顿运动定律第2讲牛顿第二定律的基本应用

第2讲牛顿第二定律的基本应用学习目标 1.会用牛顿第二定律分析计算物体的瞬时加速度。

2.掌握动力学两类基本问题的求解方法。

3.知道超重和失重现象,并会对相关的实际问题进行分析。

1.2.3.4.1.思考判断(1)已知物体受力情况,求解运动学物理量时,应先根据牛顿第二定律求解加速度。

(√)(2)运动物体的加速度可根据运动速度、位移、时间等信息求解,所以加速度由运动情况决定。

(×)(3)加速度大小等于g的物体一定处于完全失重状态。

(×)(4)减速上升的升降机内的物体,物体对地板的压力大于物体的重力。

(×)(5)加速上升的物体处于超重状态。

(√)(6)物体处于超重或失重状态时其重力并没有发生变化。

(√)(7)根据物体处于超重或失重状态,可以判断物体运动的速度方向。

(×)2.(2023·江苏卷,1)电梯上升过程中,某同学用智能手机记录了电梯速度随时间变化的关系,如图所示。

电梯加速上升的时段是()A.从20.0 s到30.0 sB.从30.0 s到40.0 sC.从40.0 s到50.0 sD.从50.0 s到60.0 s答案A考点一瞬时问题的两类模型两类模型例1 (多选)(2024·湖南邵阳模拟)如图1所示,两小球1和2之间用轻弹簧B相连,弹簧B与水平方向的夹角为30°,小球1的左上方用轻绳A悬挂在天花板上,绳A与竖直方向的夹角为30°,小球2的右边用轻绳C沿水平方向固定在竖直墙壁上。

两小球均处于静止状态。

已知重力加速度为g,则()图1A.球1和球2的质量之比为1∶2B.球1和球2的质量之比为2∶1C.在轻绳A突然断裂的瞬间,球1的加速度大小为3gD.在轻绳A突然断裂的瞬间,球2的加速度大小为2g答案BC解析对小球1、2受力分析如图甲、乙所示,根据平衡条件可得F B=m1g,F B sin30°=m2g,所以m1m2=21,故A错误,B正确;在轻绳A突然断裂的瞬间,弹簧弹力未来得及变化,球2的加速度大小为0,弹簧弹力F B=m1g,对球1,由牛顿第二定律有F合=2m1g cos 30°=m1a,解得a=3g,故C正确,D错误。

牛顿定律高中全题型归纳(全)

牛顿定律高中全题型归纳(全)

牛顿运动定律--(第一定律第三定律)一、牛顿第一定律:1.内容:一切物体总保持匀速直线运动运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.理解:①定律的前一句话揭示了物体所具有的一个重要属性,即“保持匀速直线运动状态或静止状态”,这种性质叫惯性.牛顿第一定律指出了一切物体在任何情况下都具有惯性.②定律的后一句话“除非作用在它上面的力迫使它改变这种状态”这实际上是给力下的定义,即力是改变运动状态的原因(力并不是产生和维持物体运动的原因).③牛顿第一定律指出了物体不受外力作用时的运动规律.实际上,不受外力作用的物体是不存在的.物体所受到的几个力的合力为零时,其运动效果就跟不受外力相同,这时物体的运动状态是匀速直线运动或静止状态.二、牛顿第三定律1.内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上.2.表达式:F甲对乙=-F乙对甲,负号表示方向相反.3.意义:揭示了力的作用的相互性,即两个物体间只要有作用就必然会出现一对作用力和反作用力.4.特点:(1).是同种性质的力如G与G/、F N与F N/、f与f/.(2).作用在两个物体上,如G作用于人,G/作用于地球.(3).同时产生、同时消失(甲对乙无作用、乙对甲也无作用).(4).不管静止或运动,作用力和反作用力总是大小相等,方向相反.(5).与物体是否平衡无关.题型1:怎样判断物体运动状态是否发生变化?例1关于运动状态的改变,下列说法正确的是()A.速度方向不变,速度大小改变的物体,运动状态发生了变化B.速度大小不变,速度方向改变的物体,运动状态发生了变化C.速度大小和方向同时改变的物体,运动状态一定发生了变化D.做匀速圆周运动的物体,运动状态没有改变1. 在以下各种情况中,物体运动状态发生了改变的有()A.静止的物体 B.物体沿着圆弧运动,在相等的时间内通过相同的路程C.物体做竖直上抛运动,到达最高点过程 D.跳伞运动员竖直下落过程,速率不变2.跳高运动员从地面上跳起,是由于()A.地面给运动员的支持力大于运动员给地面的压力 B.运动员给地面的压力大于运动员受的重力C.地面给运动员的支持力大于运动员受的重力 D.运动员给地面的压力等于地面给运动员的支持力3.某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动。

高中物理重难点及高考题解 牛顿运动定律

高中物理重难点及高考题解 牛顿运动定律

高中物理重难点及高考题解牛顿运动定律一.牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止,这就是牛顿第一定律,又叫惯性定律。

这种保持原来的匀速直线运动或静止状态的性质叫做惯性。

1.牛顿第一定律牛顿第一定律揭示了宇宙中一切物体(或物质)的存在形式,即一切物体在不受外力作用时处于匀速直线运动状态,或处于静止状态,并且运动是绝对的,而静止是相对的。

同时牛顿第一定律也说明了力不是维持物体速度的原因,而是改变物体速度的原因。

2.惯性(1)惯性是物体本身的固有属性,不论物体处于怎样的运动状态,物体均具有惯性。

(2)质量是物体惯性大小的量度。

质量越大,惯性也就越大。

【难点突破】惯性是物体最基本的属性。

表现为:当物体不受外力或所受合外力为零时,惯性表现为物体运动状态不改变;当物体所受合外力不为零时,惯性表现为改变物体运动状态的难易程度。

【例题】如图所示,水平放置的小瓶内有水,其中有一气泡。

当瓶从静止状态突然向右运动时,小气泡在瓶内将向何方运动?(1)甲同学认为:在瓶内的小气泡由于惯性将向左运动,你认为这个结论正确吗?并说明理由。

(2)乙同学认为:瓶中的水由于惯性保持原来的静止状态,相对于瓶子来说向左运动,而瓶中的气泡就向右移动,你认为这个结论正确吗,请说明理由。

【分析】【题解】【答案】二.牛顿第二定律物体的加速度跟作用力成正比,跟物体的质量成反比。

1.牛顿第二定律(1)牛顿第二定律揭示了物体的加速度跟它受到的合外力及物体本身质量之间的定量关系,其数学表达式为a ∝mF 式中各物理量取国际单位制中的单位后可以写为F 合=ma(2)牛顿第二定律反映了合外力的方向决定加速度的方向,而加速度的方向和速度改变量的方向一致,所以速度改变量的方向也就决定于合外力的方向。

(3)作用在物体上的每一个力都会使物体产生一个加速度,物体最终表现出来的加速度是这些加速度的矢量和,由此可以提供计算物体加速度的两条途径,即可以先求合外力,再求合外力产生的加速度;可以先求所有外力产生的加速度,再求这些加速度的矢量和。

2024高考物理一轮复习牛--顿三大定律(解析版)

2024高考物理一轮复习牛--顿三大定律(解析版)

2024年高考物理一轮大单元综合复习导学练专题14 牛顿三大定律导练目标导练内容目标1牛顿第一定律和惯性目标2牛顿第三定律目标3牛顿第二定律及瞬时加速度问题【知识导学与典例导练】一、牛顿第一定律和惯性1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。

(1)揭示了物体的惯性:不受力的作用时,一切物体总保持匀速直线运动状态或静止状态。

(2)揭示了力的作用对运动的影响:力是改变物体运动状态的原因。

2.对惯性的理解(1)保持“原状”:物体在不受力或所受合外力为零时,惯性表现为使物体保持原来的运动状态(静止或匀速直线运动)。

(2)反抗改变:物体受到外力时,惯性表现为抗拒运动状态改变。

惯性越大,物体的运动状态越难以被改变。

(3)惯性的量度:质量是物体惯性大小的唯一量度,质量越大,惯性越大,与物体的速度和受力情况无关。

3.牛顿第一、第二定律的关系(1)牛顿第一定律是以理解实验为基础,经过科学抽象、归纳推理总结出来的,牛顿第二定律是实验定律。

(2)牛顿第一定律不是牛顿第二定律的特例,它揭示了物体运动的原因和力的作用对运动的影响;牛顿第二定律则定量指出了力和运动的联系。

【例1】如图所示,小华坐在一列正在行驶的火车车厢里,突然看到原来静止在水平桌面上的小球向后滚动,假设桌面是光滑的,则下列说法错误..的是()A.小球在水平方向受到了向后的力使它向后运动B.小球所受的合力为零,以地面为参考系,小球的运动状态并没有改变C .火车一定是在向前加速D .以火车为参考系,此时牛顿第一定律已经不能适用【答案】A【详解】A .小球在水平方向上没有施力物体,所以不受力。

A 错误,符合题意;B .小球水平方向不受力,所受的合力为零,以地面为参考系,小球的运动状态并没有改变。

B 正确,不符合题意;C .小球因为有惯性,要保持原来的匀速直线运动状态,若突然看到原来静止在水平桌面上的小球向后滚动,是小球相对于火车向后运动,说明火车正在向前做加速运动。

高考物理考点分类解析三、牛顿运动定律

高考物理考点分类解析三、牛顿运动定律

中国最大的教育门户网站 E 度高考网高考物理考点分类解析三、牛顿运动定律★1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止.(1)运动是物体的一种属性,物体的运动不需要力来维持.(2)定律说明了任何物体都有惯性.(3)不受力的物体是不存在的.牛顿第一定律不能用实验直接验证.但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的.它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律.(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系.2.惯性:物体保持匀速直线运动状态或静止状态的性质.(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关.因此说,人们只能“利用”惯性而不能“克服”惯性.(2)质量是物体惯性大小的量度.★★★★3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F 合 =ma(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础.(2)对牛顿第二定律的数学表达式F 合 =ma ,F 合 是力,ma 是力的作用效果,特别要注意不能把ma 看作是力.(3)牛顿第二定律揭示的是力的瞬间效果.即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度.(4)牛顿第二定律F 合 =ma ,F 合是矢量,ma 也是矢量,且ma 与F 合 的方向总是一致的.F 合 可以进行合成与分解,ma 也可以进行合成与分解.4. ★牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失.(2)作用力和反作用力总是同种性质的力.(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加.5.牛顿运动定律的适用范围:宏观低速的物体和在惯性系中.6.超重和失重(1)超重:物体有向上的加速度称物体处于超重.处于超重的物体对支持面的压力F N (或对悬挂物的拉力)大于物体的重力mg ,即F N =mg+ma.(2)失重:物体有向下的加速度称物体处于失重.处于失重的物体对支持面的压力FN (或对悬挂物的拉力)小于物体的重力mg.即FN=mg-ma.当a=g 时F N =0,物体处于完全失重.(3)对超重和失重的理解应当注意的问题①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力.②超重或失重现象与物体的速度无关,只决定于加速度的方向.“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重.③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等. 6、处理连接题问题----通常是用整体法求加速度,用隔离法求力。

高考物理牛顿运动定律知识点整理汇总1篇

高考物理牛顿运动定律知识点整理汇总1篇

高考物理牛顿运动定律知识点整理汇总1篇高考物理牛顿运动定律知识点整理 12、牛顿第一定律的意义:说明了力不是维持物体运动的原因,而是改变物体运动状态的原因。

3、惯性:物体保持原来的匀速直线运动或静止状态的性质。

惯性是物体的固有属性,与物体的运动状态无关,只与物体的质量有关,质量越大,惯性越大。

4、物体运动状态的改变:物体速度的大小或方向发生变化,或两者都发生变化,运动状态都将发生改变。

5、力是使物体产生加速度的原因6、惯性的运用和防止:当要求物体的运动状态容易改变时,应尽量减小质量;当要求物体的运动状态不容易改变时,应尽量增大物体的质量。

7、牛顿第二定律:(1)内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比,加速度方向与合外力方向相同。

(2)公式:F=ma(3)意义:在物体的受力与运动之间建立了一座联系的桥梁。

(4)力的单位:牛顿,简称牛,符号:N(5)力的单位牛顿(N)的定义:使质量为1千克的物体产生1米每秒的平方加速度的力,叫做1牛。

8、作用力和反作用力:物体之间力的作用是相互的,物体间相互作用的这一对力通常叫做作用力和反作用力,把其中一个叫作用力,则另一个就叫反作用力。

9、牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。

10、力学单位制基本单位:可以推导出其它单位的最基本的单位。

导出单位:根据基本单位和物理公式推导出来的单位。

国际单位制(SI)中力学的基本物理量为:长度,质量,时间;基本单位为:长度的'单位米(m),质量的单位千克(kg),时间的单位秒(s)。

11、牛顿运动定律的应用:(1)根据物体的受力,判定物体的运动情况。

(2)根据物体的运动情况确定物体的受力情况。

12、超重和失重(1)超重:物体对支持物的压力(或对悬挂物的拉力)大于自身重力的现象。

(2)失重:物体对支持物的压力(或对悬挂物的拉力)小于自身重力的现象。

(3)完全失重:物体对支持物的压力(或对悬挂物的拉力)等于0的现象。

高中物理必修一:牛顿运动定律知识点总结

高中物理必修一:牛顿运动定律知识点总结

高中物理必修一:牛顿运动定律知识点总结一、对牛顿运动定律的理解基础知识汇总1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质。

(1)惯性大小只与物体的质量有关;(2)惯性是物体的固有属性,不是力。

3.牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

作用力和反作用力的性质相同,作用在两个物体上。

4.作用力和反作用力与平衡力的区别:作用力和反作用力“异体、同存、同性质”,而平衡力是“同体”。

5.牛顿第二定律:a=F/m。

6.牛顿第二定律具有“四性”:矢量性、瞬时性、同体性、独立性。

对牛顿第一定律、第三定律的考查1.考查对牛顿第一定律和惯性的理解(1)惯性是物体保持原有运动状态不变的一种性质。

物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。

(2)牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关。

2.考查对力与运动的关系的理解(1)力是改变物体运动状态的原因(运动状态指物体的速度),不是维持物体运动的原因。

(2)产生加速度的原因是力。

3.考查牛顿第三定律区别作用力和反作用力与平衡力:一对平衡力作用在同一物体上,一对作用力和反作用力作用在两个物体上。

1.合成法求合外力物体只受两个力的作用而产生加速度,利用矢量合成法则;两个力方向相同或相反时,加速度与物体运动方向在同一直线上,合成法更简单。

2.正交分解法与牛顿第二定律的结合应用物体受到两个以上的力的作用而产生加速度时,常用正交分解法解题。

(1)分解力求物体受力问题把力正交分解在沿加速度方向和垂直于加速度方向上,在沿加速度的方向列方程Fx=ma,在垂直于加速度方向列方程Fy=0求解。

(2)分解加速度求解受力问题分析物体受力,建立直角坐标系,将加速度a分解为ax和ay,根据牛顿第二定律得Fx=max,Fy=may求解。

高三物理必背知识点归纳与总结

高三物理必背知识点归纳与总结

高三物理必背知识点归纳与总结在高中物理学习的过程中,高三阶段无疑是最为关键的时期。

高三物理知识点的掌握和总结,对于高考的成绩和理科类专业的选择都具有至关重要的影响。

因此,本文将针对高三物理必背的知识点进行归纳与总结,帮助同学们更好地复习和掌握这些重要的内容。

一、力学知识点力学是物理学的基础,也是高考物理中的重要内容。

在高三物理的学习中,重点掌握以下几个知识点,对于解题具有很大帮助。

1. 牛顿运动定律牛顿运动定律是物体力学运动规律的基础。

必须要熟记的是:第一定律(惯性定律)、第二定律(运动方程)、第三定律(相互作用定律)和它们的应用。

2. 力的合成与分解力的合成与分解是解决斜面、平面运动等问题的关键。

考察这个知识点时,要熟悉力的合成与分解的几何方法和力的平衡条件。

3. 力与加速度关系力与加速度之间的关系是牛顿第二定律最基本的应用之一。

要了解质点受力情况下的运动规律,需要掌握加速度与外力、质量之间的关系式。

二、电学知识点电学是高中物理学习中的另一个重要内容,是理解电路和电器工作原理的基础。

以下是在高三物理中需要掌握的一些知识点。

1. 电路的基本概念电路中的导体、电流、电压、电阻等概念是电学学习的基础。

需要掌握欧姆定律以及串联和并联电路的电压和电流分配规律。

2. 电阻与电阻率了解电阻与电阻率的关系,以及串、并联电阻的计算方法。

同时要掌握功率和电能的计算公式。

3. 电容与电感掌握电容和电感的基本概念,并了解带电体、电容器、电感器的性质与应用。

三、光学知识点光学是高考物理中相对较重要的部分,需要特别注意的知识点如下。

1. 光的直线传播和反射理解光的直线传播和光的反射定律,能够应用光的反射定律解决镜子和平面镜相关问题。

2. 光的折射和透镜掌握光的折射定律和薄透镜成像公式,理解透镜成像原理,并可以进行透镜成像的计算和分析。

3. 光波的干涉和衍射了解光的干涉和衍射现象,掌握双缝干涉和单缝衍射的计算和分析方法。

四、热学知识点热学是高考物理考试中的一部分,其中一些重要的知识点如下。

牛顿运动定律高考复习教案

牛顿运动定律高考复习教案

牛顿运动定律高考复习教案第一章:牛顿运动定律概述1.1 牛顿运动定律的定义和意义1.2 牛顿运动定律的发现和发展历程1.3 牛顿运动定律在物理学中的地位和作用第二章:牛顿第一定律(惯性定律)2.1 牛顿第一定律的表述和理解2.2 惯性的概念和性质2.3 牛顿第一定律的应用和实例分析第三章:牛顿第二定律(动力定律)3.1 牛顿第二定律的表述和理解3.2 力、质量和加速度之间的关系3.3 牛顿第二定律的计算和应用3.4 牛顿第二定律的实验验证第四章:牛顿第三定律(作用与反作用定律)4.1 牛顿第三定律的表述和理解4.2 作用力和反作用力的概念和性质4.3 牛顿第三定律的应用和实例分析第五章:牛顿运动定律的综合应用5.1 牛顿运动定律在不同情境下的应用5.2 牛顿运动定律与其他物理学定律的关联5.3 牛顿运动定律在实际问题中的解决方案第六章:非惯性参考系和牛顿定律6.1 非惯性参考系的定义和重要性6.2 惯性力和非惯性力的概念6.3 牛顿定律在非惯性参考系中的应用第七章:牛顿定律与曲线运动7.1 曲线运动的基本概念和条件7.2 牛顿定律在曲线运动中的应用7.3 实例分析:抛体运动和圆周运动第八章:牛顿定律与动力学系统8.1 动力学系统的概念和分类8.2 多自由度系统的牛顿定律应用8.3 外力作用下的动力学系统分析第九章:牛顿定律与碰撞9.1 碰撞的基本概念和类型9.2 牛顿定律在碰撞过程中的应用9.3 碰撞的规律和能量守恒第十章:牛顿定律在现代物理学中的应用10.1 相对论与牛顿定律的关系10.2 牛顿定律在量子力学中的应用10.3 牛顿定律在其他物理学领域的延伸重点和难点解析一、牛顿运动定律的定义和意义难点解析:理解牛顿运动定律的普遍性和适用范围,以及在不同情境下的应用。

二、牛顿第一定律(惯性定律)难点解析:理解和解释惯性的本质,以及惯性在实际情境中的体现。

三、牛顿第二定律(动力定律)难点解析:掌握牛顿第二定律的数学表达式和计算方法,以及在复杂情境下的应用。

高考物理复习冲刺压轴题专项突破—牛顿运动定律(含解析)

高考物理复习冲刺压轴题专项突破—牛顿运动定律(含解析)

高考物理复习冲刺压轴题专项突破—牛顿运动定律(含解析)一、选择题(1-3题为单项选择题,4-10为多项选择题)1.光滑水平地面上有两个叠放在一起的斜面体A、B,两斜面体形状大小完全相同,质量分别为M、m.如图甲、乙所示,对上面或下面的斜面体施加水平方向的恒力F1、F2均可使两斜面体相对静止地做匀加速直线运动,已知两斜面体间的摩擦力为零,则F1与F2之比为()A.M∶mB.m∶MC.m∶(M+m)D.M∶(M+m)【答案】A【解析】F1作用于A时,设A和B之间的弹力为N,对A有:N cosθ=Mg对B有:N sinθ=ma对A和B组成的整体有:F1=(M+m)a=()M m Mm+g tanθ;F2作用于A时,对B有:mg tanθ=ma′对A和B组成的整体有:F 2=(M +m )a ′=(M +m )·g tan θ,12F M F m.故选A 。

2.如图所示,斜劈A 静止放置在水平地面上,木桩B 固定在水平地面上,弹簧k 把物体与木桩相连,弹簧与斜面平行.质量为m 的物体和人在弹簧k 的作用下沿斜劈表面向下运动,此时斜劈受到地面的摩擦力方向向左.则下列说法正确的是()A .若剪断弹簧,物体和人的加速度方向一定沿斜面向下B .若剪断弹簧,物体和人仍向下运动,A 受到的摩擦力方向可能向右C .若人从物体m 离开,物体m 仍向下运动,A 受到的摩擦力可能向右D .若剪断弹簧同时人从物体m 离开,物体m 向下运动,A 可能不再受到地面摩擦力【答案】A【解析】剪断弹簧前,对斜面分析,受重力、地面的支持力和静摩擦力、滑块对斜面体的力(滑块对斜面体的滑动摩擦力和压力的合力),斜劈受到地面的摩擦力方向向左,故根据平衡条件,滑块对斜面体的力向右下方;根据牛顿第三定律,斜面对滑块的力向左上方;若剪断弹簧,滑块和人整体还要受重力,故合力偏左,根据牛顿第二定律,加速度是沿斜面向下,故A 正确;若剪断弹簧,物体和人仍向下运动,故物体和人整体对斜面体的力不变,故斜面体受力情况不变,故地面摩擦力依然向左,故B 错误;若人从物体m 离开,由于惯性,物体m 仍向下运动;动摩擦因数是不变的,故滑块对斜面体压力和滑动摩擦力正比例减小,故压力和滑动摩擦力的合力依然向右下方,故地面对斜面体的静摩擦力依然向左,故C错误;若剪断弹簧同时人从物体m离开,由于惯性,物体m仍向下运动;动摩擦因素是不变的,故滑块对斜面体压力和滑动摩擦力正比例减小,故压力和滑动摩擦力的合力依然向右下方,故地面对斜面体的静摩擦力依然向左,故D错误;故选A3.如图,小球A置于固定在水平面上的光滑半圆柱体上,小球B用水平轻弹簧拉着,弹簧固定在竖直板上.两小球A、B通过光滑滑轮O用轻质细线相连,两球均处于静止状态.已知球B质量为m,O点在半圆柱体圆心O1的正上方,OA与竖直方向成30°角.OA长度与半圆柱体半径相等,OB与竖直方向成45°角,现将轻质细线剪断的瞬间(重力加速度为g)()AB.球B的加速度为gC.球A受到的支持力为D.球A的加速度为1 2 g【答案】D【解析】A、隔离对B分析,根据共点力平衡得:水平方向有:0sin45FB T ︒=竖直方向有:0cos45mg B T ︒=,则0B T =,弹簧弹力F mg =,A 错误;B 、轻绳剪断后,00B T =,另两个力不变,此时:a F m 合==,B 错误;C 、轻绳剪断后,0OA T =,沿圆弧切线和沿半径方向处理力,瞬间速度为零,沿半径方向合力为零,有:1N gsin60g 2A A m m =︒=,C 错误;D 、沿切线方向,0gcos601a 2A A m g m ==,D 正确;故选D .4.如图甲所示,一足够长的传送带倾斜放置,倾角为θ,以恒定速率v =4m/s 顺时针转动。

高中物理《牛顿运动定律》知识梳理

高中物理《牛顿运动定律》知识梳理

高中物理《牛顿运动定律》知识梳理【牛顿第一定律】1.牛顿第一定律内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。

适用条件:惯性参考系。

2.惯性(1)惯性:物体具有保持原来匀速直线运动状态或静止状态的性质(2)惯性大小的量度:质量(3)注意:惯性大小是在运动状态改变的过程中表现出来。

反抗改变也是表现了保持的性质。

【牛顿第二定律】1.牛顿第二定律内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同数学表达式:F合=ma适用条件与范围:惯性参考系与宏观低速物体2.物体的平衡(1)平衡状态:如果一个物体在力的作用下保持静止或匀速直线运动状态,我们就说这个物体处于平衡状态。

(2)在共点力作用下物体的平衡条件:合力为0。

(3)运用共点力平衡条件解题思路与运用牛顿第二定律解题思路相同。

但在选择研究对象这个环节上有一些技巧。

3.超重与失重(1)超重:当系统具有竖直向上的加速度a(加速上升,减速下降)时,物体对支持物的压力(或对悬挂物体的拉力)大于物体所受的重力的现象称为超重现象。

超重了ma。

(2)失重与完全失重:当系统具有竖直向下的加速度a(加速上下降,减速上升)时,物体对支持物的压力(或对悬挂物体的拉力)小于物体所受的重力的现象称为失重现象。

失重了ma。

如果系统正好以大于等于g的加速度竖直下落,这时物体支持物、悬挂物完全没有了作用力,好像完全没有了重力作用,这种状态是完全失重状态。

【牛顿第三定律】1.作用力与反作用力概念:物体间相互作用的一对力2.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。

3.一对作用力与反作用力与一对平衡力的区别一对作用力与反作用力:这两个力一定是同时产生,同时消失,性质相同的力;这两个力是作用在不同物体上,效果不可以抵消;一对平衡力:这两个力不一定同时产生,同时消失,性质不一定相同;但这两个力是作用在同一物体,效果可以抵消,达到平衡。

高考物理牛顿定律知识点总结

高考物理牛顿定律知识点总结

高考物理牛顿定律知识点总结一、牛顿第一定律牛顿第一定律:理想实验的魅力牛顿物理学的基石——惯性定律牛顿第一定律(惯性定律)定义:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它变这种状态。

惯性定义:物体所具有的保持匀速直线运动状态或静止状态的性质。

惯性与质量:描述物体惯性的物理量是它们的质量。

质量是标量,只有大小,没有方向。

质量单位:千克(kg)实验:探究加速度与力、质量的关系加速度与力的关系基本思路:保持物体质量不变,测量物体在不同的力的作用下的加速度,分析加速度与力的关系。

加速度与质量的关系基本思路:保持物体所受的力相同,测量不同质量的物体在该力作用下的加速度,分析加速度与质量的关系。

制定实验方案时的两个问题怎样由实验结果得出结论 a&prop;F,a&prop;1/m二、牛顿第二定律牛顿第二定律定义:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。

公式:F=kma k是比例系数,F指的是物体所受的合力。

牛顿年第二定律的数学表达式:F=ma力的单位:千克米每二次方秒。

力学单位制基本量:被选定的、可以利用物理量之间的关系推导出其他物理量的物理量。

基本单位:基本量的单位。

导出单位:由基本量根据物理关系推导出来的其它物理量的单位。

单位制:由基本单位和导出单位组成。

国际单位制(SI):1960年第11届国际计量大会制订的一种国际通用的、包括一切计量领域的单位制。

三、牛顿第三定律作用力和反作用力定义:物体间相互作用的这一对力。

作用力和反作用力总是互相依存、同时存在的。

牛顿第三定律定义:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

用牛顿运动定律解决问题(一)从受力确定运动情况从运动情况确定受力用牛顿运动定律解决问题(二)共点力的平衡条件平衡状态:一个物体在力的作用下保持静止或匀速直线运动状态时所处的状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考物理牛顿运动定律考点复习
考点一:对牛顿运动定律的理解
1.对牛顿第一定律的理解
(1)揭示了物体不受外力作用时的运动规律
(2)牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关
(3)肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因
(4)牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例
(5)当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律
2.对牛顿第二定律的理解
(1)揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性(2)牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态
(3)加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度
3.对牛顿第三定律的理解
(1)力总是成对出现于同一对物体之间,物体间的这对力一个
是作用力,另一个是反作用力
(2)指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同
考点二:应用牛顿运动定律时常用的方法、技巧
1.理想实验法
2.控制变量法
3.整体与隔离法
4.图解法
5.正交分解法
6.关于临界问题
处理的基本方法是:
根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件(更多类型见错题本) 考点三:应用牛顿运动定律解决的几个典型问题
1.力、加速度、速度的关系
(1)物体所受合力的方向决定了其加速度的方向,合力与加速度的关系,合力只要不为零,无论速度是多大,加速度都不为零
(2)合力与速度无必然联系,只有速度变化才与合力有必然联系
(3)速度大小如何变化,取决于速度方向与所受合力方向之间
的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小
2.关于轻绳、轻杆、轻弹簧的问题
(1)轻绳
①拉力的方向一定沿绳指向绳收缩的方向
②同一根绳上各处的拉力大小都相等
③认为受力形变极微,看做不可伸长
④弹力可做瞬时变化
(2)轻杆
①作用力方向不一定沿杆的方向
②各处作用力的大小相等
③轻杆不能伸长或压缩
④轻杆受到的弹力方式有:拉力、压力
⑤弹力变化所需时间极短,可忽略不计
(3)轻弹簧
①各处的弹力大小相等,方向与弹簧形变的方向相反
②弹力的大小遵循的关系
③弹簧的弹力不能发生突变
3.关于超重和失重的问题
(1)物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力
(2)物体超重或失重与速度方向和大小无关。

根据加速度的方
向判断超重或失重:加速度方向向上,则超重;加速度方向向下,则失重
(3)物体出于完全失重状态时,物体与重力有关的现象全部消失:
①与重力有关的一些仪器如天平、台秤等不能使用
②竖直上抛的物体再也回不到地面
③杯口向下时,杯中的水也不流出。

相关文档
最新文档