一级倒立摆物理建模、传递函数和状态方程的推导

合集下载

(完整版)一级倒立摆系统分析

(完整版)一级倒立摆系统分析

一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。

其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。

图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。

合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。

用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。

一级倒立摆的建模及控制分析

一级倒立摆的建模及控制分析

直线一级倒立摆的建模及控制分析摘要:本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。

在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。

此外,用MATLAB 仿真绘制了相应的曲线并做了分析。

一、问题描述倒立摆控制系统是机器人技术、控制理论、计算机控制等多个领域和多种技术的有机结合,其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,是控制理论研究中较为理想的实验对象。

它为控制理论的教学、实验和科研构建了一个良好的实验平台,促进了控制系统新理论、新思想的发展。

倒立摆系统可以采用多种理论和方法来实现其稳定控制,如PID,自适应、状态反馈、智能控制等方法都己经在倒立摆控制系统上得到实现。

由于直线一级倒立摆的力学模型较简单,又是研究其他倒立摆的基础,所以本文利用所学的矩阵论知识对此倒立摆进行建模和控制分析。

二、方法简述本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。

在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。

此外,用MATLAB 仿真绘制了相应的曲线并做了分析。

三、模型的建立及分析3.1 微分方程的推导在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示。

图1 直线一级倒立摆系统假设 M 为小车质量;m 为摆杆质量;b 为小车摩擦系数;l 为摆杆转动轴心到杆质心的长度;I 为摆杆惯量;F 为加在小车上的力;x 为小车位置;φ为摆杆与垂直向上方向的夹角;θ为摆杆与垂直向下方向的夹角。

图2是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

值得注意的是: 在实际倒立摆系统中检测和执行装置的正负方向已确定, 因而矢量方向定义如图2所示, 图示方向为矢量正向。

(a) (b)图2 小车和摆杆的受力分析图分析小车水平方向所受的合力,可以得到以下方程:N x b F x M --= (1)由摆杆水平方向的受力进行分析可以得到下面等式:θθθθs i n c o s 2ml ml x m N -+= (2) 把这个等式代入上式中,就得到系统的第一个运动方程:()F ml ml x b x m M =-+++θθθθsin cos 2 (3)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:θθθθc o s s i n 2 ml ml mg P --=- (4) 力矩平衡方程如下:θθθI Nl Pl =--cos sin (5)合并这(4)、(5)两个方程,约去P 和N ,得到第二个运动方程:()θθθc o s s i n 2x ml mgl ml I -=++ (6) 假设φ与1(单位是弧度)相比很小,即φ《1,则可以进行近似处理:0d d s i n 1c o s 2=⎪⎭⎫ ⎝⎛-=-=t θφθθ,, (7) 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:()()⎩⎨⎧=-++=-+u ml x b x m M xml mgl ml I φφφ 2 (8) 3.2 状态空间方程方程组(8)对φ,x 解代数方程,整理后的系统状态空间方程为: ()()()()()()()()u Mm l m M I m l Mm l m M I m lI x x Mm l m M I m M m gl Mm l m M I m lbMm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡222222222200001000000010φφφφ u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ 对于质量均匀分布的摆杆有:3/2ml I =,于是可得:()x ml mgl ml ml =-+φφ223/ 化简得:xll g 4343+=φφ设}{x u x x X ==1,,,,φφ ,则有:14301004300100000000010u l x x l g x x⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.3 实际系统模型实际系统模型参数: M =1.096 Kg ;m =0.109 Kg ;b =0.1 N/m/s ; l =0.25 m ;I =0.0034 kg ·m ·m ;采样频率 T =0.005 s 。

倒立摆系统的建模(拉格朗日方程)

倒立摆系统的建模(拉格朗日方程)

系统的建模及性能分析倒立摆系统的构成及其参数1倒立摆系统的基本结构本设计所用到的倒立摆模型直线一级倒立摆系统。

整个系统是由6大部分所组成的一个闭环系统,包括计算机、数据采集卡、电源及功率放大器、直流伺服电机、倒立摆本体和两个光电编码器等模块。

如图2.1所示:图2.1 倒立摆系统的结构组成示意图Fig 2.1 Structure of the linear single inverted pendulum system2系统主要组成部分简介直线一级倒立摆装置如图2.2所示[13]:图2.2直线一级倒立摆装置Fig 2.2 Straight linear 1-stage inverted pendulum device Quanser倒立摆系统包含倒立摆本体、数据采集电控模块以及控制平台等三大部分,其中控制平台是由装有Quanser专用实时控制软件的通用PC机组成。

1.直线倒立摆主体倒立摆主体是由Quanser直线运动控制伺服单元IP02与直线一级摆杆组成,并配有专用的小车直线轨道。

这里主要介绍下Quanser直线运动控制伺服单元IP02(即倒立摆运动小车)及导轨的组成:图2.3伺服单元IP02的组成Fig 2.3 Servo unit IP02 parts编号名称英文(01)IP02小车IP02 Cart(02)不锈钢滑轨Stainless Steel Shaft(03)齿轮导轨Rack(04)小车位移齿轮Cart Position Pinion(05)小车电机传动齿轮Cart Motor Pinion(06)小车电机传动齿轮轴Cart Motor Pinion Shaft(07)摆杆传动轴Pendulum Axis(08)IP02小车位移编码器IP02 Cart Encoder(09)IP02摆杆角度编码器IP02 Pendulum Encoder(10)IP02小车位移编码器接口IP02 Cart Encoder Connector(11)IP02摆杆角度编码器接口IP02 Pendulum Encoder Connector(12)电机接口Motor Connector(13)直流伺服电机DC Motor(14)变速器Planetary Gearbox(15)直线滑轨支撑轴Linear Bearing(16)摆杆连接套Pendulum Socket(17)IP02配重模块IP02 Weight图2.4系统导轨结构图Fig 2.4 System guide rail structure编号名称英文(22)导轨末端挡板Rack End Plate(23)导轨固定螺丝Rack Set Screw(24)小车运动限位Track Discontinuity直线一级倒立摆系统的倒立摆的摆杆连接在IP02小车的摆杆连接套上,IP02小车由电机通过齿轮传动机构在导轨上来回运动,保持摆杆平衡。

一级直线倒立摆系统模糊控制器设计---实验指导书精讲

一级直线倒立摆系统模糊控制器设计---实验指导书精讲

一级直线倒立摆系统模糊控制器设计---实验指导书精讲第一篇:一级直线倒立摆系统模糊控制器设计---实验指导书精讲一级直线倒立摆系统模糊控制器设计实验指导书目录实验要求........................................................................................................................... ...................3 1.1 实验准备........................................................................................................................... ................3 1.2 评分规则........................................................................................................................... ................3 1.3 实验报告内容........................................................................................................................... ........3 1.4 安全注意事项........................................................................................................................... ........3 2 倒立摆实验平台介绍..........................................................................................................................4 2.1 硬件组成........................................................................................................................... ................4 2.2 软件结构........................................................................................................................... ................4 3 倒立摆数学建模(预习内容)............................................................................................................6 4 模糊控制实验........................................................................................................................... ............8 4.1 模糊控制器设计(预习内容).......................................................................................................8 4.2 模糊控制器仿真........................................................................................................................... ...12 4.3 模糊控制器实时控制实验..............................................................................................................12 5 附录:控制理论中常用的MATLAB 函数.......................................................................................13 6 参考文献........................................................................................................................... .................14 实验要求1.1 实验准备实验准备是顺利完成实验内容的必要条件。

哈工大一阶倒立摆

哈工大一阶倒立摆
二.直线一阶倒立摆数学模型的推导
2.1
倒立摆系统其本身是自不稳定系统,实验建模存在一些问题和困难,在忽略掉一些次要的因素后,倒立摆系统是一个典型的运动的刚体系统,可以再惯性坐标系中运用经典力学对它进行分析,来建立系统动力学方程。
在忽略掉了空气阻力和各种摩擦力之后,可以讲一阶倒立摆系统抽象成小车和均匀杆组成的系统,一阶倒立摆系统的结构示意图如下:
四预防和控制轰燃的灭火救援对策一全面侦查火情注意轰燃征兆在处置建筑室内火灾时应全面侦查火情快速掌握起火房间位置火势大小人员被困情况室内可燃物数量与类别建筑结构特点周围毗邻建筑情况等尤其对于通风不好且室内可燃物数量较多时应提高警惕密切监视谨防轰燃突发造成恶性事故
哈尔滨工业大学
控制科学与工程系
控制系统设计课程设计报告
(2-8)
微分方程的建立:
因为 ,假设φ<<1弧度,则可以进行近似处理: 来实现线性化。
用上述近似进行线性化得直线一阶倒立摆的微分方程为:
一阶倒立摆的传递函数模型:
对上式进行拉普拉斯变换,得:
推导传递函数时假设初始条件为0。
由于输出为角度φ,求解方程组的第一个方程,可得:

如果令 ,则有:
把上式代入方程组(2-1)的第二个方程,得:
该系统的输出为
其中: num——被控对象传递函数的分子项
den——被控对象传递函数的分母项
numPID——PID控制器传递函数的分子项
denPID——PID控制器传递函数的分母项
通过分析上式就可以得到系统的各项性能。
由(2-13)可以得到摆杆角度和小车加速度的传递函数:
PID控制器的传递函数为:
只需调节PID控制器的参数,就可以得到满意的控制效果。

直线一级倒立摆的建模及性能分析

直线一级倒立摆的建模及性能分析

直线一级倒立摆的建模及性能分析1 直线一级倒立摆数学模型的建立 (1)2 直线一级倒立摆系统的实际模型 (5)3 直线一级倒立摆系统的性能分析 (6)相关理论的介绍 (6)倒立摆系统的性能分析 (7)1 直线一级倒立摆数学模型的建立所谓系统的数学模型,是指利用数学结构来反映实际系统内部之间、系统内部与外部某些主要相关因素之间的精确的定量表示。

数学模型是分析、设计、预测以及控制一个系统的理论基础。

因此,对于实际系统的数学模型的建立就显得尤为重要。

系统数学模型的构建可以分为两种:实验建模和机理建模。

实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对像并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。

机理建模就是在了解研究对象的运动规律的基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。

对于倒立摆系统,由于其本身是不稳定的系统,无法通过测量频率特性的方法获取其数学模型,实验建模存在一定的困难。

但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统是一个典型的机电一体化系统,其机械部分遵守牛顿运动定律,其电子部分遵守电磁学的基本定律,因此可以通过机理建模得到系统较为精确的数学模型。

为了简单起见,在建模时忽略系统中的一些次要的难以建模的因素,例如空气阻力、伺服电机由于安装而产生的静摩擦力、系统连接处的松弛程度、摆杆连接处质量分布不均匀、传动皮带的弹性、传动齿轮的间隙等。

将小车抽象为质点,摆杆抽象为匀质刚体,摆杆绕转轴转动,这样就可以通过力学原理建立较为精确的数学模型。

我们可以应用牛顿力学的分析方法或者欧拉-拉格朗日原理建立系统的动力学模型。

对于直线一级倒立摆这样比较简单的系统,我们采用通俗易懂的牛顿力学分析法建模。

为了建立直线一级倒立摆的数学模型,采用如下的坐标系:图1直线一级倒立摆的物理模型其中,F 为加在小车上的力,M 为小车质量,m 为摆杆质量,I 为摆杆惯量, l 为摆杆转动轴心到杆质心的长度,x 为小车位移,φ为摆杆与垂直向上方向的夹角,b 为小车在滑轨上所受的摩擦力,N 和P 为摆杆相互作用力的水平和垂直方向的分量。

一级倒立摆的可视化建模与稳定控制设计

一级倒立摆的可视化建模与稳定控制设计

1966年
1976年
1995年
倒立摆的应用
倒立摆的分类
直线倒立摆 一级倒立摆
基座运动
环形倒立摆
摆杆
二级倒立摆
平面倒立摆
多级倒立摆
另外根据材料分类:刚体摆杆倒立摆系统和柔性摆杆倒立摆系统 „„
根据不同的分类方法,我们可以将倒立摆进行不同的分类。
倒立摆的特点
特性:非线性、多变量、强耦合、不稳定性
倒立摆系统拥有低投入、简易的结构、直观 的形象、方便仿真等特点。
设计演示界面
保存文件,命名为 fangzhenjieguo.fig ,同时会自动生成一 个fangzhenjieguo.m 文件
将摆角、小车位 移和时间参量, 导入到工作区中 ,供GUI编程使 用。
打开之前保存演示界面是生成的fangzhenjieguo.m文件,找到 “仿真开始”按钮所对应的回调函数,在函数下方加入程序: sim('daolibaimoxing');%运行仿真模型
初始条件设为[0.1rad,0.5rad/s,0,0],仿真曲线如 图所示,上面图线为摆角,下面为小车位移。
右图为未加控制器前的系统 阶跃响应曲线,可以看出, 摆角和小车位移的曲线都是 发散的。通过与仿真结果比 较,可以看出,加了BP神经 网络控制器的倒立摆系统, 摆角和小车位移曲线趋于稳 定,说明所设计的BP神经网 络控制器能够起到有效的控 制作用。验证了控制器设计 的正确性和可行性。
四、GUI设计
图形用户界面(Graphical User Interface, 简称 GUI,又称图形用户接口)是指采用图形 方式显示的计算机操作用户界面。
GUI具有下面几个方面的基本要求:轻型、 占用资源少、高性能、高可靠性、便于移 植、可配置等特点。

直线一级倒立摆的牛顿—欧拉方法建模

直线一级倒立摆的牛顿—欧拉方法建模

直线一级倒立摆的牛顿—欧拉方法建模首先,我们需要定义系统的坐标和状态变量。

在这个问题中,我们可以选择将质点的位置和角度作为系统的状态。

令x表示质点的水平位置,θ表示摆杆与竖直方向的夹角。

其次,我们需要确定系统的动力学方程。

根据牛顿第二定律和欧拉定理,可以得到如下的动力学方程:m * x'' = -m * g * sin(θ) - c * x';I * θ'' = m * g * cos(θ) * L - J * θ'其中,m是质点的质量,g是重力加速度,c是摩擦系数,L是摆杆的长度,I是质点关于摆杆固定点的转动惯量,J是摆杆的转动惯量。

最后,我们可以采用数值方法来求解这个动力学方程。

牛顿-欧拉方法是一种常用的数值方法,它基于一阶泰勒级数展开近似,并使用离散时间步长来进行数值计算。

具体步骤如下:1.将时间t离散化为n个时间步长Δt的序列:t_0,t_1,...,t_n。

2.初始化系统的状态变量:x(0),θ(0),x'(0),θ'(0)。

3.对于每个时间步长i,计算状态变量的更新:a. 计算加速度:x''(i) = (1/m) * (-m * g * sin(θ(i)) - c * x'(i))θ''(i) = (1/I) * (m * g * cos(θ(i)) * L - J * θ'(i))b.使用泰勒级数展开逼近位置和速度:x(i+1)=x(i)+Δt*x'(i)+0.5*Δt^2*x''(i)θ(i+1)=θ(i)+Δt*θ'(i)+0.5*Δt^2*θ''(i)c.使用泰勒级数展开逼近速度和加速度:x'(i+1)=x'(i)+Δt*x''(i)θ'(i+1)=θ'(i)+Δt*θ''(i)d.根据实际情况对状态进行调整,如质点位置不能超过摆杆范围等。

直线一级倒立摆控制器设计(自动控制理论课程设计)

直线一级倒立摆控制器设计(自动控制理论课程设计)

H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:自动控制理论课程设计设计题目:直线一级倒立摆控制器设计院系:电气工程及其自动化学院班级:设计者:学号:指导教师:**哈尔滨工业大学哈尔滨工业大学课程设计任务书*注:此任务书由课程设计指导教师填写。

1、理论模型建立和分析1.1直线一级倒立摆数学模型的推导对于忽略空气阻力和各种摩擦之后,直线一级倒立摆系统抽象为小车和匀质杆组成的系统。

xbp图1-1 倒立摆系统小车和摆杆的受力分析本系统参数定义如下:M——小车质量;m——摆杆质量。

b——小车摩擦系数;l——摆杆转动轴心到杆质心的长度;I——摆杆惯量;F——加在小车上的力;x——小车位置;φ——摆杆与垂直向上方向的夹角。

θ——摆杆与垂直向下方向的夹角方程为:Mx F bx N=--(1-1)因此主动控制力可近似线性化地表示为:()22sin d N m x l dtθ=+ (1-2)即:2cos sin N mx ml ml θθθθ=+- (1-3)代入前面式子:()2cos sin M m x bx ml ml F θθθθ+++-= (1-4)垂直方向上:()22cos d P mg m l dt θ-=- (1-5)即:2sin cos P mg ml ml θθθθ-=+ (1-6) 力矩平衡方程:sin cos Pl Nl I θθθ--= (1-7)注意等式前面的负号,由于,cos cos ,sin sin θπφφθφθ=+=-=-()22sin cos I ml mgl mlxθθθ++=- (1-8)1.微分方程模型 设θπφ=+,近似处理:2cos 1,sin ,()0d dtθθθφ=-=-= 设u=F ,则:()()2M m x bx ml u I ml mgl mlx φφφ⎧++-=⎪⎨+-=⎪⎩ (1-9)2.传递函数模型对上式拉氏变换处理,设初始条件为0,则:()()22222()()()()()()()M m X s s bX s ml s s U s I ml s s mgl s mlX s s ⎧++-Φ=⎪⎨+Φ-Φ=⎪⎩(1-10) 输出为角度为φ,由第二式得到()22()()I ml g X s s ml s ⎡⎤+⎢⎥=-Φ⎢⎥⎣⎦ (1-11)或者()222()()s mls X s I ml s mglΦ=+- (1-12)如果令x ν=,则有()22()()s mlV s I ml s mglΦ=+- (1-13)把上式代入10式,则有:()()()22222()()()()I ml I ml g g M m s s b s s ml s s U s ml s ml s ⎡⎤⎡⎤++⎢⎥⎢⎥+-Φ++Φ-Φ=⎢⎥⎢⎥⎣⎦⎣⎦(1-14)整理:()()212432()()()ml s s q G s U s b I ml M m mgl bmgl s s s sqqqΦ==+++--(1-15)其中()()()22q M m I ml ml ⎡⎤=++-⎣⎦从而,有()()()()()222222432222432()()()()()X s s G s s U s ml s I ml s mglq mlsb I ml M m mgl bmgl s s s s qqqI ml mgls q q b I ml M m mgl bmgl s s s sqqqΦ=⨯Φ+-=⨯+++--+-=+++--(1-16)3.状态空间数学模型X AX BuY CX Du=+=+,可得状态方程()()()()()()()()()2222222222x x I ml b I ml m gl x x u I M m Mml I M m Mml I M m Mml mgl M m mlb ml x u I M m Mml I M m Mml I M m Mml φφφφφ=⎧⎪-++⎪=++⎪++++++⎪⎨=⎪⎪+-⎪=++⎪++++++⎩()()()()()()()()()22222222220100000000100010000010x x I ml b I ml m gl x x I M m Mml I M m Mml I M m Mml u mlb mgl M m ml I M m Mml I M m Mml I M m Mmlx y φφφφφ-++++++++=+-+++++++==⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎣⎦⎣⎦00x x uφφ+⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎡⎤⎪⎢⎥⎡⎤⎪⎢⎥⎥⎢⎥⎪⎢⎥⎣⎦⎪⎢⎥⎩⎣⎦1.2系统阶跃响应分析1.2.1、阶跃响应源程序:参考模型 %实际系统参数M=0.5; m=0.2; b=0.1; l=0.3; I=0.006; g=9.8; T=0.005;%求传递函数gs(输出为摆杆角度)和gspo(输出为小车位置)q=(M+m)*(I+m*l^2)-(m*l)^2; num=[m*l/q 0];den=[1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q]; gs=tf(num,den);numpo=[(I+m*l^2)/q 0 -m*g*l/q];denpo=[1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q 0]; gspo=tf(numpo,denpo);%求状态空间sys(A,B,C,D)p=I*(M+m)+M*m*l^2;A=[0 1 0 0;0 -(I+m*l^2)*b/p m^2*g*l^2/p 0;0 0 0 1;0 -m*b*l/p m*g*l*(M+m)/p 0]; B=[0;(I+m*l^2)/p;0;m*l/p]; C=[1 0 0 0;0 0 1 0]; D=0;sys=ss(A,B,C,D);%通过传递函数求系统(摆杆角度和小车位置)的开环阶越响应t=0:T:5; y1=step(gs,t); y2=step(gspo,t); figure(1);plot(t,y2,'b',t,y1,'r'); axis([0 2.5 0 80]);legend('Car Position','Pendulum Angle'); 1.2.2、仿真结果:通过传递函数求系统(摆杆角度和小车位置)的开环阶越响应01020304050607080图1-2 摆杆和小车位置的开环阶跃响应注:左边红色代表小车位置,右边蓝色代表摆杆角度响应。

倒立摆系统传递函数

倒立摆系统传递函数

倒立摆系统传递函数倒立摆是一种具有稳定性能的控制系统,在机械控制领域有着广泛的应用。

通过分析倒立摆系统的传递函数,我们可以深入理解其控制原理和性能特征。

本文将详细介绍倒立摆系统的传递函数推导过程,并讨论其在控制系统设计中的应用。

一、倒立摆系统简介倒立摆系统是由一个悬挂在水平轴上的杆和一个连接在杆上的质量球组成的。

质量球可以在水平面上任意移动,而杆可以绕轴旋转。

倒立摆系统的目标是通过控制杆的角度,使得质量球保持在竖直上方,即使受到外部干扰或扰动。

二、传递函数推导为了推导倒立摆系统的传递函数,我们首先需要建立该系统的动力学模型。

假设杆的质量和摩擦忽略不计,可以得到如下动力学方程:I*θ'' = -m*g*l*sin(θ) + u*l*cos(θ)其中,I代表杆的转动惯量,θ为杆的角度,m为质量球的质量,g 为重力加速度,l为杆的长度,u为施加在杆上的控制力。

为了简化计算,在小角度范围内可以将θ近似为sin(θ),则上述方程可以简化为:I*θ'' = -m*g*l*θ + u*l通过拉普拉斯变换,将上述微分方程转换为频域方程,得到传递函数的表达式:θ(s)/u(s) = 1/(s²*(I/(m*l²) - g/l))其中,s代表复频域变量,θ(s)和u(s)分别为角度和控制力的拉普拉斯变换。

三、传递函数分析为了更好地理解倒立摆系统的控制特性,我们可以对传递函数进行分析。

根据传递函数的表达式可以得知:1. 角度响应:传递函数的分母具有二阶特性,可以通过控制分母的根来调节系统的阻尼比、自然频率和超调量。

较大的阻尼比可以使系统的响应较为平缓,较小的阻尼比则容易产生震荡。

自然频率决定了系统的快速响应能力,较高的自然频率可以使系统更快速地抵消干扰。

超调量则表示系统的阻尼特性,较小的超调量表示系统的稳定性能较好。

2. 稳定性分析:传递函数的分母根的实部均小于零时,系统处于稳定状态。

一阶倒立摆动力学方程推导

一阶倒立摆动力学方程推导

x
J ml2 M m m2l2 cos2




ml cos.F m2l2 sin cos. 2 M m m lg sin m2l2 cos2 M m J ml2
式中 J 为摆杆的转动惯量:
J ml2 3
梅科尔工作室
若取小车质量 M=2kg,摆杆质量 m=1kg,摆杆长度 2 l =1m,重力加速度取 g= 10m / s2 ,则可以得 一阶倒立摆简化模型:

..
x

0.44F

3.33
..
0.4F 12
拉氏变换
(s) F (s)

0.4 s2 12

x(s)
(s)

1.1s2 s2
10
(3) 简单的二阶动力学方程如何化为传递函数
y

Jy

ku


x y

Ax Cx

Bu Du
x 为 n 维状态向量; y 为 m 维输出向量; u 为 r 维输入向量; A 为
n n 维系统矩阵,由系统参数决定;B 为 n r 维输入矩阵;C 为 m n
维输出矩阵; D 为 m r 维矩阵,直接联系输入量、输出量的前向传递
(前馈)系数,又称前馈系数

x1 x2

y y



x2
x1 x2 Jx2
ku
x


x1 x2



y y

u
为标量;
A

0 0
1

一阶倒立摆系统模型分析状态反馈与观测器设计

一阶倒立摆系统模型分析状态反馈与观测器设计

一阶倒立摆系统模型分析状态反馈与观测器设计一阶倒立摆系统是控制工程中常见的一个具有非线性特点的系统,它由一个摆杆和一个质点组成,质点在摆杆上下移动,而摆杆会受到重力的作用而产生摆动,需要通过控制来实现倒立的功能。

以下是一阶倒立摆系统的模型分析、状态反馈与观测器设计的详细介绍。

一、系统模型分析:一阶倒立摆系统是一个非线性动力学系统,可以通过线性化的方式来进行模型分析。

在进行线性化之前,首先需要确定系统的状态变量和输入变量。

对于一阶倒立摆系统,可以将摆杆角度和质点位置作为状态变量,将水平推力作为输入变量。

在对系统进行线性化之后,可以得到系统的状态空间表达式:x_dot = A*x + B*uy=C*x+D*u其中,x是状态向量,u是输入向量,y是输出向量。

A、B、C和D是系统的矩阵参数。

二、状态反馈设计:状态反馈是一种常用的控制方法,通过测量系统状态的反馈信号,计算出控制输入信号。

在设计状态反馈控制器之前,首先需要确定系统的可控性。

对于一阶倒立摆系统,可以通过可控性矩阵的秩来判断系统是否是可控的。

如果可控性矩阵的秩等于系统的状态数量,则系统是可控的。

在确定系统可控性之后,可以通过状态反馈控制器来实现控制。

状态反馈控制器的设计可以通过选择适当的反馈增益矩阵K来实现。

具体的设计方法是,根据系统的状态空间表达式,将状态反馈控制器加入到系统模型中。

状态反馈控制器的输入是状态变量,输出是控制输入变量。

然后,通过调节反馈增益矩阵K的值,可以实现对系统的控制。

三、观测器设计:观测器是一种常用的状态估计方法,通过测量系统的输出信号,估计系统的状态。

在设计观测器之前,首先需要确定系统的可观性。

对于一阶倒立摆系统,可以通过可观性矩阵的秩来判断系统是否是可观的。

如果可观性矩阵的秩等于系统的状态数量,则系统是可观的。

在确定系统可观性之后,可以通过观测器来实现状态估计。

观测器的设计可以通过选择适当的观测增益矩阵L来实现。

具体的设计方法是,根据系统的状态空间表达式,将观测器加入到系统模型中。

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现一阶倒立摆是一种常见的控制系统模型,它由一个垂直的支柱和一个质量为m 的物体组成,物体通过支柱与地面相连。

在控制系统中,我们需要设计一个控制器来控制物体的位置和速度,使其保持在垂直位置上。

本文将介绍一阶倒立摆控制设计与实现的相关内容。

一、一阶倒立摆模型一阶倒立摆模型可以用以下方程描述:m*d^2y/dt^2 = -mg*sin(y) + u其中,y是物体的位置,u是控制器的输出,m是物体的质量,g是重力加速度,t是时间。

该方程可以通过拉普拉斯变换转换为传递函数:G(s) = Y(s)/U(s) = 1/(ms^2 + mg)二、控制器设计为了控制一阶倒立摆,我们需要设计一个控制器来产生控制信号u。

常见的控制器包括比例控制器、积分控制器和微分控制器,它们可以组合成PID控制器。

在本文中,我们将使用比例控制器来控制一阶倒立摆。

比例控制器的输出与误差成正比,误差越大,输出越大。

比例控制器的传递函数为:Gc(s) = Kp其中,Kp是比例增益。

三、闭环控制系统将控制器和一阶倒立摆模型组合起来,得到闭环控制系统的传递函数:G(s) = Y(s)/R(s) = Kp/(ms^2 + mg + Kp)其中,R(s)是参考信号,表示我们期望物体保持的位置。

四、控制系统实现在实现控制系统之前,我们需要对一阶倒立摆进行建模和仿真。

我们可以使用MATLAB等工具进行建模和仿真。

在MATLAB中,我们可以使用Simulink模块来建立一阶倒立摆模型和控制器模型。

在建立模型之后,我们可以进行仿真,观察系统的响应和稳定性。

在实现控制系统时,我们需要选择合适的硬件平台和控制器。

常见的硬件平台包括Arduino和Raspberry Pi等,常见的控制器包括PID控制器和模糊控制器等。

在实现控制系统之后,我们需要进行调试和优化,以达到最佳控制效果。

五、总结本文介绍了一阶倒立摆控制设计与实现的相关内容,包括一阶倒立摆模型、控制器设计、闭环控制系统和控制系统实现。

单级倒立摆的模糊控制以及在MATLAB中的仿真

单级倒立摆的模糊控制以及在MATLAB中的仿真

单级倒立摆的模糊控制以及在MATLAB中的仿真摘要倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。

因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。

本文围绕一级倒立摆系统,采用模糊控制理论研究倒立摆的控制系统仿真问题。

仿真的成功证明了本文设计的模糊控制器有很好的稳定性。

主要研究工作如下:(1)使用了牛顿力学和Lagrange方程对倒立摆进行数学建模,推导出倒立摆系统传递函数和状态空间方程。

(2)分析了模糊控制理论的数学基础,对模糊控制的方法进行了研究:介绍了模糊子集、模糊关系和模糊推理等相关知识。

(3)介绍了如何利用Simulink建立倒立摆系统模型,特别是利用Mask封装功能,使模型更具灵活性,给仿真带来很大方便。

(4)进行一级倒立摆系统的控制器设计与仿真。

通过matlab的Simulink实现倒立摆模糊控制系统的仿真。

说明仿真结果的趋向。

关键词:倒立摆模糊控制仿真MATLAB第一章绪论1.1 倒立摆系统的重要意义倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强藕合特性的不稳定系统。

在控制过程中,它能有效地反映诸如可镇定性、鲁棒性、随动性以及跟踪等许多控制中的关键问题,是检验各种控制理论的理想模型。

迄今人们已经利用经典控制理论、现代控制理论以及各种智能控制理论实现了多种倒立摆系统的控制稳定。

倒立摆主要有:有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆;倒立摆的级数有一级、二级、三级、四级乃至多级;倒立摆的运动轨道可以是水平的,也可以是倾斜的:倒立摆系统己成为控制领域中不可或缺的研究设备和验证各种控制策略有效性的实验平台。

同时倒立摆研究也具有重要的工程背景:如机器人的站立与行走类似双倒立摆系统;火箭等飞行器的飞行过程中,其姿态的调整类似于倒立摆的平衡等等。

一阶倒立摆模型建立与正确性分析实验报告

一阶倒立摆模型建立与正确性分析实验报告

一阶倒立摆模型建立与正确性分析【实验目的】学会建立一阶倒立摆模型建立,并结合物理现象与数值结果分析模型的正确性。

【实验设备与软件】MATLAB/Simulink【实验原理】对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难但是经过假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程下面我们采用其中的牛顿欧拉方法建立直线型一阶倒立摆系统的数学模型.微分方程的推导:在忽略了空气阻力和各种摩擦之后,可将直线一阶倒立摆系统抽象成小车和匀质杆组成的系统.图一直线一阶倒立摆系统图取小车质量M=1.096kg,摆杆质量m=0.109kg,摆杆与小车间的摩擦系数b1=0.001N.m.s.,小车水平运动的摩擦系数b2=0.1N.m.s.,摆杆转动轴心到摆杆质心的长度l=0.25m,加在小车上的力F,小车位置X,摆的角度θ摆杆惯量J。

一.忽略摩擦摆杆绕其重心的转动方程为:J=—l (1)摆杆重心的水平运动可描述为:=m(x+) (2)摆杆重心在垂直方向上的运动可描述为:—mg= m(x+l) (3)小车水平方向运动可描述为:F—=M (4)由式(2)和式(4)得到:(M+m )x+ml (—)=F (5)由式(1)式(2)和式(3)得:J+mml=mgl (6)整理式(5)和式(6)得:(7)若只考虑θ=0 在其工作点附近(0*<θ<10)的细微变化,这时可近似认为 , sin θ=θ,cos θ=1,J=由此得到的简化近似模型为:代入数值得本实验中倒立摆的简化模型:二.有摩擦定义逆时针转动为正方向。

设摆杆的重心为(),则(1)根据牛顿定律建立系统垂直和水平运动力学方程:(1) 摆杆绕其重心转动的力学方程为:J=l+l b1 (2)式中,J 为摆杆绕其重心的转动惯量:2312123J mL L ml ==。

这里,杆重力的转动力矩为0,小车运动引起的杆牵连运动的惯性力的转矩也为0。

毕业设计(论文)-基于matlab的一级倒立摆控制器设计与仿真[管理资料]

毕业设计(论文)-基于matlab的一级倒立摆控制器设计与仿真[管理资料]

摘要倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的高阶不稳定系统,它是检验各种新型控制理论和方法有效性的典型装置。

近年来,许多学者对倒立摆系统进行广泛地研究。

本文研究了直线一级倒立摆的控制问题。

首先阐述了倒立摆系统控制的研究发展过程和现状,接着介绍了倒立摆系统的结构并详细推导了一级倒立摆的数学模型。

本文分别用极点配置、LQR最优控制设计了不同的控制器,极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足要求的瞬态和稳态性能指标。

最优控制理论主要是依据庞特里亚金的极值原理,通过对性能指标的优化寻找可以使目标极小的控制器。

若取状态变量的二次型函数的积分做为系统的性能指标,则称为线性系统二次型性能指标的最优控制。

通过比较和MATLAB仿真,验证了所设计的控制器的有效性、稳定性和抗干扰性。

关键词:单级倒立摆;MATLAB;控制器设计;极点配置;LQRABSTRACTInverted pendulum is a typical multi-variable, non-linear, strong coupling and rapid movement of high-end system instability, It is testing various new control theory and methods of the effectiveness of the typical devices. In recent years, many scholars of the inverted pendulum extensive study.In this paper, a straight two inverted pendulum control on the inverted pendulum control of the development process and the status quo, then introduced the inverted pendulum system and the detailed structure of the two inverted pendulum is derived a mathematical model. In this paper, with pole placement, LQR optimal control design a different controller, By comparing and MATLAB simulation, verified the effectiveness ,stability and anti-jamming of the controller.Pole-zero configuration can configure the closed-loop system poles of multi-variable system in the desired position, by designing of the state feedback controller,so that to make the system meets the requirements of the transient and steady state performance indicators.Optimal control theory is mainly based on the Pontryagin maximum principle, by the optimization of the performance indicators to find the minimal goal of the taking the integral of the quadratic function of state variables as the system of performance indicators, called the as the linear quadratic performance index of optimal control.Key words : Single stage Inverted pendulum; MATLAB; Controller design; Zero-pole ; LQR目录摘要 (1)ABSTRACT (2)1 绪论 0控制理论的发展 0倒立摆系统简介及其研究意义 0倒立摆研究的发展现状及其主要控制方法 (1)研究目标 (2)2 直线一阶倒立摆数学模型的建立 (4)倒立摆系统的物理结构与建模 (4)系统参数设定 (7)系统能控性与能观性 (8)3 极点配置控制方案的设计 (9)极点配置理论 (9)极点配置算法 (10)极点配置控制方案的设计 (11)4 线性二次型最优控制(LQR)方案的设计 (15)最优控制的起源和发展 (15)线性二次型最优控制原理 (15)最优控制矩阵的设计 (18)5 控制系统的MATLAB仿真 (22)MATLAB软件介绍 (22)极点配置控制方案的仿真 (23)线性二次型最优控制(LQR)方案的仿真 (26)干扰条件下控制系统的仿真 (27)S函数模拟动画设计 (28) (31)6 总结与展望 (32)参考文献 (35)致谢 (36)附录 (37)1 绪论控制理论的发展控制理论发展至今已有100多年的历史,随着现代科学技术的发展,它的应用也越来越广泛。

一阶倒立摆系统模型分析、状态反馈与观测器设计

一阶倒立摆系统模型分析、状态反馈与观测器设计
v
u b +
x
+
y

A G
c
b
+ +
ˆ x

A-GC
ˆ x
K
5.仿真分析
• 基于全维状态观测器下的倒立摆控制系统仿真:
• 仿真结果
• 状态估计值与系统状态比较
• 从仿真结果看,控制性能满足系统要求的性能指 标。
• 全维观测器状态跟踪误差仿真结果:
降维观测器设计
• 在实际工程实践中,系统的输出是能够测量的, 因此可以考虑用输出量直接产生响应的部分状态 变量,其余状态变量则通过构造观测器来实现, 所构造的观测器为降维观测器。本实验的倒立摆 系统采用P变换方法设计降维观测器。

• 知系统是完全能控的,满足特征值可任意配置的 极点配置定理。
• (3)可观测性分析 • 由
1 0 0 C CA 0 rank rank 2 0 CA 3 CA 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 4 0 0 0 0 58.6118 0.6747 0 0 0 0 39.5454 59.067
• (2)取期望的特征值为 30,30 ,则特征多项 式为a (s) s 2 10s 37 ,解方程 det(sI A A K ) a (s) 0 • 得 K 30
T T 22 12
0
29.3253
• 进一步计算 • 30 LK
T
0
u x m gl sin c m l u cos J J J
• 根据以上系统方程可以看出倒立摆模型是非线性 的。为了应用线性系统理论,可在倒立摆平衡位 置附近对系统进行线性化,取 - ,令 • sin , cos 1 并忽略高次项,可得如下方程: u x • m gl c mlu J J J

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究一阶倒立摆系统是一种典型的非线性控制系统,具有多种状态和复杂的运动特性。

在实际生活中,倒立摆被广泛应用于许多领域,如机器人平衡控制、航空航天、制造业等。

因此,对一阶倒立摆系统进行建模与仿真研究具有重要的理论价值和实际意义。

ml''(t) + b*l'(t) + k*l(t) = F(t)其中,m为质量,b为阻尼系数,k为弹簧常数,l(t)为摆杆的位移,l'(t)为摆杆的加速度,l''(t)为摆杆的角加速度,F(t)为外界作用力。

在仿真过程中,需要设定摆杆的初始位置和速度。

一般而言,初始位置设为0,初始速度设为0。

边界条件则根据具体实验需求进行设定,如限制摆杆的最大位移、最大速度等。

利用MATLAB/Simulink等仿真软件进行建模和实验,可以方便地通过改变输入信号的参数(如力F)或系统参数(如质量m、阻尼系数b、弹簧常数k)来探究一阶倒立摆系统的性能和反应。

通过仿真实验,我们可以观察到一阶倒立摆系统在受到不同输入信号的作用下,会呈现出不同的运动规律。

在适当的输入信号作用下,摆杆能够达到稳定状态;而在某些特定的输入信号作用下,摆杆可能会出现共振现象。

在仿真过程中,我们可以发现一阶倒立摆系统具有一定的鲁棒性。

在一定范围内,即使输入信号发生变化或系统参数产生偏差,摆杆也能够保持稳定状态。

然而,当输入信号或系统参数超过一定范围时,摆杆可能会出现共振现象,导致系统失稳。

因此,在实际应用中,需要对输入信号和系统参数进行合理控制,以保证系统的稳定性。

为了避免共振现象的发生,可以通过优化系统参数或采用其他控制策略来实现。

例如,适当增加阻尼系数b能够减小系统的振荡幅度,有利于系统尽快达到稳定状态。

可以采用反馈控制策略,根据摆杆的实时运动状态调整输入信号,以抑制系统的共振响应。

本文对一阶倒立摆系统进行了建模与仿真研究,通过观察不同参数设置下的系统性能和反应,对其运动规律、鲁棒性及稳定性进行了分析。

一级倒立摆物理建模、传递函数和状态方程的推导

一级倒立摆物理建模、传递函数和状态方程的推导

一级倒立摆物理建模和传递函数的推导设定:M 小车质量 m 摆杆质量 b 小车摩擦系数l摆杆转动轴心到杆质心的长度 I摆杆惯量 F 加在小车上的力 x 车位置φ 摆杆与垂直向上方向的夹角图1、2是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用。

分析小车水平方向所受的合力,可以得到以下方程:N x b F x M --=••• (1)由摆杆水平方向的受力进行分析可以得到下面等式:)sin (22θl x dtd m N += (2)即:θθθθsin cos 2•••••-+=ml ml x m N (3)把这个等式代入式(3)中,就得到系统的第一个运动方程:F ml ml x b x m M =-+++••••••θθθθsin cos )(2(4)对摆杆垂直方向上的合力进行分析,可以得到下面方程:)cos (22θl dtd m mg P =- (5) θθθθcos sin 2•••--=-ml ml mg P (6)力矩平衡方程:••=--θθθI Nl Pl cos sin(7)此方程中力矩的方向,由于φπθ+=,θφcos cos -=,θφsin sin -=,故等式前面有负号。

合并这两个方程,约去 P 和N ,得到第二个运动方程:θθθcos sin )(2••••-=++x ml mgl ml I (8)设θ =π +φ, 假设φ 与1(单位是弧度)相比很小,即c <<1,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dtd θ。

用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:{uml x b x m M x ml mgl ml I =-++=-+•••••••••φφφ)()(2(9)假设初始条件为0,对式(9)进行拉普拉斯变换:{)()()()()()()()()(22222s U s s ml s s bX s s X l M s s mlX s mgl s s ml I =Φ-++=Φ-Φ+ (10)由于输出为角度φ ,求解方程组的第一个方程,可以得到:)(])([)(22s sgml ml I s X Φ-+= (11)或mgl s ml I mls s X s -+=Φ222)()()( (12)令••=x v ,则有:mgls ml I mls V s -+=Φ22)()()( (13) 把上式代入方程组的第二个方程,得到:)()()(])([)(])()[(222222s U s s ml s s sg ml ml I b s s s g ml ml I m M =Φ-Φ+++Φ-++ (14)整理后得到传递函数:qbmgls q mgl m M s q ml I b s sqmls U s -+++=Φ2223)()()()( (15) 其中 ])())([(22ml ml I m M q -++=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一级倒立摆物理建模和传递函数的推导
设定:
M 小车质量 m 摆杆质量 b 小车摩擦系数
l
摆杆转动轴心到杆质心的长度 I
摆杆惯量 F 加在小车上的力 x 车位置
φ 摆杆与垂直向上方向的夹角
图1、2是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用。

分析小车水平方向所受的合力,可以得到以下方程:
N x b F x M --=•
•• (1)
由摆杆水平方向的受力进行分析可以得到下面等式:
)sin (22
θl x dt
d m N += (2)
即:
θθθθsin cos 2
••
•••-+=ml ml x m N (3)
把这个等式代入式(3)中,就得到系统的第一个运动方程:
F ml ml x b x m M =-+++••
••••θθθθsin cos )(2
(4)
对摆杆垂直方向上的合力进行分析,可以得到下面方程:
)cos (2
2
θl dt
d m mg P =- (5) θθθθcos sin 2
••
•--=-ml ml mg P (6)
力矩平衡方程:

•=--θθθI Nl Pl cos sin
(7)
此方程中力矩的方向,由于φπθ+=,θφcos cos -=,θφsin sin -=,故等式前面有负号。

合并这两个方程,约去 P 和N ,得到第二个运动方程:
θ
θθcos sin )(2

•••-=++x ml mgl ml I (8)
设θ =π +φ, 假设φ 与1(单位是弧度)相比很小,即c <<1,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2
=dt
d θ。

用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:
{
u
ml x b x m M x ml mgl ml I =-++=-+•
••

••
•••φφφ)()(2
(9)
假设初始条件为0,对式(9)进行拉普拉斯变换:
{
)
()()()()()()()()(22222s U s s ml s s bX s s X l M s s mlX s mgl s s ml I =Φ-++=Φ-Φ+ (10)
由于输出为角度φ ,求解方程组的第一个方程,可以得到:
)(])([)(22s s
g
ml ml I s X Φ-+= (11)

mgl s ml I mls s X s -+=Φ2
22)()()( (12)
令•
•=x v ,则有:
mgl
s ml I ml
s V s -+=Φ22)()()( (13) 把上式代入方程组的第二个方程,得到:
)()()(])([)(])()[(22222
2s U s s ml s s s
g ml ml I b s s s g ml ml I m M =Φ-Φ+++Φ-++ (14)
整理后得到传递函数:
q
bmgl
s q mgl m M s q ml I b s s
q
ml
s U s -
+++=Φ2223)()()()( (15) 其中 ])())([(22ml ml I m M q -++=。

系统物理参数: M
小车质量
1.096Kg m 摆杆质量
0.109Kg b 小车摩擦系数
0.1N/m/sec l 摆杆转动轴心到杆质心的长度 0.25m
I
摆杆惯量
0.0034Kg*m*m
设系统状态空间方程为:
Du
CX Y Bu AX X +=+=•
对•
•x ,•
•φ解代数方程,得到解如下:
⎪⎪⎪⎪⎭

⎪⎪⎪⎬⎫⎪⎪⎪
⎪⎩
⎪⎪⎪⎪⎨⎧++++++-==+++++++-=
=••
••••••••u Mml m M I ml Mml m M I m M mg x Mml m M I mlb u Mml m M I ml I Mml m M I gl m x Mml m M I b ml I x x x 2222222222)()()()()()
()()()(φφφφφ (17) 整理后得到系统状态空间方程:
⎥⎥⎥⎥⎥⎥


⎢⎢⎢⎢⎢⎢⎣⎡++++⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣
⎡+++-+++-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡••••••••2222
2
2
2
2
2
2)(0)()(00)()()(010
000)()()(0001
Mml m M I ml Mml m M I ml I x x Mml m M I m M mg Mml m M I mlb Mml m M I gl m Mml m M I b ml I x x φφφφu u x x x y ⎥⎦⎤
⎢⎣⎡+⎥⎥⎥⎥⎥

⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢
⎣⎡=⎥⎦⎤⎢⎣⎡=••0001
00
0001
φφφ (18)
对于质量均匀分布的摆杆有: 23
1
ml I =,由(9)的第一个方程

••
•=-+x ml mgl ml I φφ)(2
,可得到:
)31(2
2ml ml +••φ- mgl ml =φ••x 化简:

•φ=l
l g 4343+φ•
•x
(19)
设X=,,,,⎭
⎬⎫⎩⎨⎧••φφx x '
u =•
•x ,有:
'430100430
0100
000000010
u l x x l g x x ⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣
⎡=⎥⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎢⎣⎡••••••••φφφφ
'
0001000001u x x x y ⎥⎦
⎤⎢⎣⎡+⎥⎥⎥⎥⎥

⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=••φφφ (20)
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。

相关文档
最新文档