实验四 石英晶体振荡器
石英晶体振荡器检验标准
五、贮存
石英晶体应贮存在-10~+40℃,相对湿度不大于80%,周围空气无酸、碱性
及其他有害气体的库房中。此项仅为库房存储要求,不作进料检验项目。
六、执行标准
1.以上二、三检验项目的样本大小参照执行GB2828-87一般检验水平Ⅱ。
2.允收品质水平执行GB2828-87 AQL 0.40%。
注:此文件参照GB 12274-90编写,其中内容,根据公司实际情况略有改动。
执行部门:责任人签名:
制度
石英晶体进料验收方法
签发
签发日期
文件编号
总页码
1
内
容
一、外包装的检测
1.目检石英晶体的包装。
A.石英晶体一般分为外包装和内包装。包装应有防潮防震措施。
B.包装箱和盒内应有装箱单、产品合格证、产品说明书、包装盒上应有标签,外包装箱应标有“小心”,“轻放”字样和防雨符号。
2.产品标签
包装上的标签字体应均匀清晰,且注明品名、品牌、产地、频率、封装、数
量、精度、生产日期。
二、பைடு நூலகம்观
目检振荡器外形、结构。
1.表面涂覆应完整,无锈蚀、花纹、起泡、起皮和较重的花印。
2.产品标志应正确、清晰,且用沾水的棉球擦三次仍清晰。
三、外形尺寸
用游标卡尺检验晶体的外形尺寸。其主体长度、宽度、厚度应符合要求。
四、电气参数
1.用频率计检测晶体的室温频差及范围,精度应符合其标称值。
石英晶体稳频的多谐振荡器
u2/3V0 ttu08.1 多谐振荡器本次重点内容:1、多谐振荡器的工作原理。
2、周期的计算方法。
教学过程一、多谐振荡器特点1.多谐振荡器没有稳定状态,只有两个暂稳态。
2.通过电容的充电和放电,使两个暂稳态相互交替,从而产生自激振荡,无需外触发。
3.输出周期性的矩形脉冲信号,由于含有丰富的谐波分量,故称作多谐振荡器。
二、电路组成电路如图8.1 (a) 所示 , 定时元件除电容 C 之外 , 还有两个电阻 R1 和 R2 将高、低电平触发端( ⑥、②脚) 短接后连接到 C 与R2 的连接处, 将放电端( ⑦脚) 接到R1与R2的连接处图8.1 (a) 电路组成 (b) 工作波形三、工作原理接通电源瞬间 t =to 时 , 电容 C 来不及充电 ,u c 为低电平 , 此时 ,555 定时器内 R =0,S=1, 触发器置 1, 即 Q =1, 输出u o为高电平。
同时由于Q=0, 放电管 V 截止 , 电容 C 开始充电 , 电路进入暂稳态。
一般多谐振荡器的工作过程可分为以下四个阶段 ( 见图 (b)):(1) 暂稳态 I(O ~t l): 电容 C 充电 , 充电回路为 V DD → R1 → R2 → C →地 ,充电时间常数为 为τ1=(R1+R2)C, 电容 C 上的电压 u c 随时间 t 按指数规律上升 , 此阶段内输出电压 uo 稳定在高电平。
(2) 自动翻转 I(t =tl): 当电容上的电压 uc 上升到了32V DD 时 , 由于 555 定时器内 S=0,R=1, 使触发器状态Q 由 1 变为 0, Q 由0变成 1, 输出电压 uo 由高电平跳变为低电平 , 电容 C 中止充电。
(3) 暂稳态 Ⅱ (t1~t2): 由于此刻Q ==1, 因此放电管 V 饱和导通 , 电容 C 放电 , 放电回路为 C → R2 →放电管 V →地 , 放电时间常数τ2=R 2C( 忽略 V 管的饱和电阻 ), 电容电压 u c 按指数规律下降 , 同时使输出维持在低电平上。
石英晶体振荡器实验报告
石英晶体振荡器一、实验目的1.了解晶体振荡器的工作原理及特点。
2.掌握晶体振荡器的设计方法及参数计算方法。
二、实验主要仪器1.双踪示波器2.频率计3.万用表4.实验板G1三、预习要求:1.查阅晶体振荡器的有关资料。
阐明为什么用石英晶体作为振荡回路元件就能使振荡器的频率稳定度大大提高。
2.试画出并联谐振型晶体振荡器和串联谐振型晶体振荡器的实际电路,并阐述两者在电路结构及应用方面的区别。
四、实验原理本实验单元模块电路如图4-1所示,其电路为串联型晶体振荡器,R1、R2、R3、R4、为直流偏置电阻,RP为基极可调电阻,改变其值可以改变振荡的幅度,L2为高频扼流圈,EX晶体振荡器,C T为可调电容,C3为反馈电容,C4分压电容,C2为输出耦合电容。
当回路的谐振频率等于晶体的串联谐振频率时,晶体的阻抗最小,近似为一短路线,电路满足相位条件和振幅条件,故能正常工作;当回路的谐振频率距串联谐振频率较远时,晶体的阻抗增大,使反馈减弱,从而使电路不能满足振幅条件,电路不能工作五、实验内容及步骤实验电路图见图4-1图4-1 晶体振荡器原理图1.测振荡器静态工作点,调图中R P ,测得I Emim I Emax2.测量当工作点在上述范围时的振荡频率及输出电压。
3.负载不同时对频率的影响,R 1分别为110K Ω、10K Ω、1K Ω,测出电路振荡频率填入表4.1, 并与LC 振荡器比较。
R L ~f 表4.1六、实验报告要求1.画出实验电路的交流等效电路 2.整理实验数据。
3.比较晶体振荡器与LC 振荡器带负载能力的差异,并分析原因。
4.你如何肯定电路工作在晶体的频率上。
5.根据电路给出的LC 参数计算回路中心频率,阐述本电路的优点。
OUT+12V。
石英晶体振荡器原理
石英晶体振荡器原理石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。
其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。
1.晶振概述晶振一般指晶体振荡器。
晶体振荡器BAV99-7是指从一块石英晶体上按一定方位角切下薄片(简称为晶片),石英晶体谐振器,简称为石英晶体或晶体、晶振;并添加到包装内部IC形成振荡电路的晶体兀件称为晶体振荡器。
其产品一般用金属壳包装,也用玻璃壳包装.陶瓷或塑料包装。
2.晶振的工作原理石英晶体振荡器是一种由石英晶体压电效应制成的谐振器件。
其基本组成大致如下:从石英晶体上按一定方向角切下薄片,在两个对应面涂上银层作为电极,在每个电极上焊接一根导线,连接到管脚上。
此外,封装外壳构成石英晶体谐振器,简称石英晶体或晶体.晶体振动。
其产品一般用金属外壳包装,也有玻璃外壳.陶瓷或塑料包装。
如果在石英晶体的两个电极上增加一个电场,晶片就会发生机械变形。
相反,如果在晶片两侧施加机械压力,就会在晶片的相应方向产生电场,这种物理现象称为压电效应。
如果在晶片的两极上增加交变电压,晶片会产生机械振动,晶片的机械振动会产生交变电场。
一般来说,晶片机械振动的振幅和交变电场的振幅非常小,但当外部交变电压的频率为特定值时,振幅明显增远大于其他频率,称为压电谐振,与1C电路的谐振现象非常相似。
其谐振频率与晶片切割方法相似。
.几何形状.尺寸等相关。
晶体不振动时,可视为平板电容器,称为静电电容器C,晶片的大小和几何尺寸.与电极面积有关,一般几种皮法到几十种皮法。
当晶体振荡时,机械振动的惯性可以与电感1相等。
一般1值为几十豪亨到几百豪亨。
电容C可以等效晶片的弹性,C值很小,一般只有0.0002-0.1皮法。
石英晶体振荡器实验报告
石英晶体振荡器实验报告
石英晶体振荡器实验报告
一、实验目的
1.了解晶体振荡器的工作原理及特点;
2.掌握晶体振荡器的设计方法及参数计算方法。
二、实验电路说明
本实验电路采用并联谐振型晶体振荡器,如图
XT、C2、C3、C4组成振荡回路。
Q1的集电极直流负载为R3,偏置电路由R1、R2、W和R4构成,改变W可改变Q1的静态工作点。
静态电流的选择既要保证振荡器处于截止平衡状态也要兼顾开始建立振荡时有足够大的电压增益。
振荡器的交流负载实验电阻为R5。
三、实验内容及步骤
1.接通电源;
2.测量振荡器的静态工作点:
调整图中W,测得Iemin和Iemax(可测量R4两端的电压来计算相应的Ie值);经计算可得:Iemin=0.704mA , Iemax=4.920mA 3.测量当工作点在上述范围时的振荡器频率及输出电压。
振荡器的频率为10MHz,输出电压的范围是0.37V~2.50V
4.研究有无负载对频率的影响:先将K1拨至OFF,测出电路振荡频率,再将K1拨至R5,测出电路振荡频率。
四、实验结果实验波形和频率
五、实验心得
通过动手做实验,我了解了石英晶体振荡器的工作原理,及其特点例如十分稳定。
但是实验中我们发现的问题例如开始时测量Ve 过大,虽然我们经过了改正,但是还是提醒我们在以后的实验中的一些必须注意的问题。
3225石英晶体振荡器的阻抗范围
文章标题:探究石英晶体振荡器的阻抗范围在现代科技领域中,石英晶体振荡器扮演着至关重要的角色。
它不仅被广泛应用于通信设备、计算机、电子钟表等领域,而且也深刻影响了人类社会的发展进程。
石英晶体振荡器之所以能够如此重要,与其阻抗范围息息相关。
本文将从深度和广度两个方面来探讨石英晶体振荡器的阻抗范围,以便读者能够更全面地理解这一主题。
一、石英晶体振荡器的基本原理要深入理解石英晶体振荡器的阻抗范围,首先需要对其基本原理有所了解。
石英晶体具有压电效应,即受到外界压力或拉伸时会产生电荷。
这一特性使得石英晶体可以用作振荡器的振动元件。
当电压施加于石英晶体上时,它会发生机械振动,产生特定的频率。
而这一频率与石英晶体的物理尺寸和机械特性有关,因此可以通过控制其尺寸和形状来实现不同的振荡频率。
二、阻抗范围对石英晶体振荡器的影响石英晶体振荡器的阻抗范围直接关系到其在电路中的应用。
阻抗范围广泛意味着石英晶体振荡器可以适用于不同的电路和系统,而阻抗范围受限则可能导致其应用范围收缩。
一般来说,石英晶体振荡器的阻抗范围包括了电阻、电感和电容等参数的范围变化。
在实际应用中,需要根据电路的要求选择具有适当阻抗范围的石英晶体振荡器,以确保电路的正常工作。
三、石英晶体振荡器的阻抗范围评估针对石英晶体振荡器的阻抗范围进行全面评估,需要考虑多个方面的因素。
首先是石英晶体振荡器的工作频率范围,它直接决定了石英晶体的振荡频率范围。
其次是石英晶体振荡器的稳定性和精度,这些参数与其阻抗范围密切相关,因为稳定性和精度的要求会对阻抗参数提出更高的要求。
四、石英晶体振荡器的实际应用石英晶体振荡器在通信设备、计算机、电子钟表等领域有着广泛的应用。
在这些应用中,石英晶体振荡器的阻抗范围会受到严格的要求。
在通信设备中,要求石英晶体振荡器具有较宽的阻抗范围,以适应不同的工作环境和电路条件。
在电子钟表中,对石英晶体振荡器的稳定性和精度要求较高,这也对其阻抗范围提出了更高的要求。
高频振荡器实验-石英晶体振荡器
实
调整RW1电位器,使IC=2mA
验
调整时采用间接测量法。 :即用直流电压表测量晶体管发射极对
数
地电压,并将测量结果记录于表中。
据
BG1
Re=1K
记
Vb
Ve
Vce
Ic计算值
录
四、实验应会技能
实验内容二: 振荡器的频率与幅度调测
实验准备
SW1“右”(LC振荡) SW2“左”(RL=110K)
SW3“左”(C2=330Pf)
fo 1
2 LC
三、实验应知知识
6与.3考毕串兹联电型路相改进电容三端式振荡器(克拉泼电路)
比,电在路电组感成L如上图串示:
联特一点个是电在容考。毕但兹电路的基础上,
它用有一以电下容特C点3与:原电路中的电感L相 1可串、不。振影功荡响用频反主率馈要改系是变以增加回路总电 数容。和减小管子与回路间的耦合来
三点式
三点电容(考毕兹) 三点电感(哈特莱)
改进三 点式
电容串联改进(克拉泼) 电容并联改进(西勒)
串联型
皮尔斯
并联型
密勒
① 放大网络 三、实验应知知识 以有源器件为主体,起能量转换作用,将直流电源提供的能量,通过振荡系统转
换§成4固反定频馈率型的交正流能弦量波,即振构荡成驱器动的系统电。路构成与工作原理
-
•
Vo
正反馈网络
•
Vf
-
-
-
•
Vf
谐振放大+ 器输出的信号电压经反馈网络产生回授电压uf,作为正回授反馈 到基极。且uf>ui。经放大后再输出,再回授。
振荡器只要满足A*F>1,振荡器则周而复始形成对某单一频率信号放大—回 授,且有uin>ui2>ui1.从而形成振荡过程,实现将直流能量转换成交流信号。
高频实验报告_石英晶体振荡器实验报告
石英晶体振荡器实验报告学号 200805120109 姓名 刘皓 实验台号实验结果及数据(一) 静态工作点(晶体管偏置)不同对振荡器振荡频率、幅度和波形的影响 1、把单刀开关K2闭合,用示波器和频率计在c 点监测。
调整DW 1,使振荡器振荡;微调C 2,使振荡频率在4MHz 左右。
2、调整DW 1,使BG 1工作电流E Q I 逐点变化,E Q I 可用万用表在A 点通过测量发射极电阻R 4两端的电压得到(R 4=1k Ω)。
振荡器工作情况变化及测量结果如表1所示:表1 静态工作点变化对振荡器的影响(二)2C 取值不同对振荡器振荡频率范围的影响2C 变化对振荡器的影响 测量条件:E Q I = 1.5 m A保持4.433MHz 基本不变(三)负载变化对振荡器的影响1、K 1断开的情况下,将振荡器的振荡频率调整到4MHz 左右,此时频率osc f = 4.433 MHz ,幅度opp V = 2.92 V 。
2、将K 1分别接1—2、1—3、1—4的位置,即接入不同的负载电阻R 5,测得的相应的频率和幅度及计算结果如表3所示。
表3 负载变化对振荡器的影响 测量条件:osc f =4.433 MHz ,幅度opp V =2.92 V由表3知:负载变化对振荡器工作频率的影响是: 几乎没有影响。
负载变化对振荡器输出幅度的影响是: 随着负载阻抗的减小,输出幅度略微减小。
(四)比较负载变化对LC 正弦波振荡器和石英晶体振荡器的不同影响负载变化对LC 正弦波振荡器的影响比较明显。
而对石英晶体振荡器的影响很小。
这主要是由于石英晶体振荡器的稳定性很高。
思考题晶体振荡器的振荡频率比LC 振荡器稳定得多,为什么? 答:因为(1)石英晶体谐振器具有很高的标准性。
(2)石英晶体谐振器与有源器件的接入系数 ,受外界不稳定因素的影响少。
(3)石英晶体谐振器具有非常高的Q 值,维持振荡频率稳定不变的能力极强。
石英晶体振荡器ppt课件
24
;
EXIT
例
一晶体振荡电路如图 4.25(a)所示,其中 C1 为 300pF、C2 从 5pF~22pF 可变、C3 为 1600pF、L 为 3.9uH,试分析该电路中晶体的作用,并求出该电路的振荡频 率。
高频晶体通常标CL为30pF或
2) 要有合适的激励电平。过大会影响频率稳定度、 振坏
晶片;过小会使噪声影响大,输出减小,甚至停振。
16
;
EXIT
4. 泛音晶体 机械振动的谐波称为泛音。
奇次
利用基频振动称为基频晶体,利于泛音振动称为泛音晶体。
石英晶体基频越高,晶片越薄,加工难并易碎,故要求 频率高时使用泛音频率。多用三次和五次的。
当交变电压频率 = 固有频率时,振幅最大。 压电谐振
11
;
EXIT
2. 石英谐振器的基本特性与等效电路
C0 是 晶 片 的静态电容,相 当于平板电容, 即由晶片作介质, 镀银电极和支架 引线作极板构成。 几~十几pF
Lq、Cq、rq为晶片振动时的等效动态电感、电容 和摩擦损耗。 Lq很大,几十~几百mH;Cq很小,百分 之几pF; rq 为几~几百欧。
EXIT
2. 石英谐振器的基本特性与等效电路
X fS
容性
感性 fP
f 容性
石英谐振器只在 fs 和 fp 之间的很窄频率范围 内呈感性,且感抗曲线很陡,故当工作于该区域时,
具有很强的稳频作用。一般不用电容区。
14
;
EXIT
2. 石英谐振器的基本特性与等效电路 实际使用时外接一小电容Cs
石英晶体振荡器输出波形失真的解决方法
石英晶体振荡器输出波形失真的解决方法石英晶体振荡器是现代电子设备中常用的一个重要元件,用于产生高精度的时钟信号。
然而,在实际应用中,石英晶体振荡器的输出波形有时会出现失真现象,这对于一些对时钟信号要求较高的应用场景来说是不可接受的。
因此,解决石英晶体振荡器输出波形失真的问题就显得尤为重要。
要解决石英晶体振荡器输出波形失真的问题,我们首先需要了解失真的原因。
石英晶体振荡器的输出波形失真主要是由以下几个方面引起的:1. 温度变化:石英晶体的频率随温度的变化而变化,这会导致输出波形的失真。
因此,需要采取措施来降低温度对石英晶体频率的影响,如使用温度补偿电路或者采用温度稳定的石英晶体。
2. 电源噪声:电源噪声是指来自电源的干扰信号,会对石英晶体振荡器的输出波形产生影响。
为了减小电源噪声对输出波形的影响,可以采用滤波电路来滤除噪声信号。
3. 振荡回路:石英晶体振荡器的振荡回路中存在着电感、电容等元件,这些元件的参数不准确或者不匹配时会导致输出波形的失真。
因此,需要优化振荡回路的设计,确保元件的参数准确,并且保证各个元件之间的匹配。
针对以上原因,我们可以采取以下几种解决方法来改善石英晶体振荡器的输出波形失真问题:1. 温度补偿:可以通过使用温度补偿电路来降低温度对石英晶体频率的影响。
温度补偿电路可以根据环境温度的变化来调整振荡器的工作频率,以保持输出波形的稳定。
2. 滤波电路:可以在石英晶体振荡器的电源输入端添加适当的滤波电路,以减小电源噪声对输出波形的影响。
滤波电路可以通过选择合适的滤波器元件和设计合理的滤波器结构来实现。
3. 振荡回路优化:可以通过优化振荡回路的设计来提高石英晶体振荡器的输出波形质量。
例如,可以选择更准确的元件参数,确保各个元件之间的匹配,并且合理布局振荡回路,减小元件之间的相互干扰。
为了进一步提高石英晶体振荡器的输出波形质量,还可以采取以下措施:1. 选择高质量的石英晶体:石英晶体的质量直接影响振荡器的性能,因此选择质量优良的石英晶体对于改善输出波形质量至关重要。
石英晶体振荡器
⽯英晶体振荡器⽯英晶体振荡器⽯英晶体振荡器是⼀种⽤于频率稳定和选择频率的电⼦器件,它的主要作⽤是提供频率基准,由于它具有⾼稳定的物理化学性能、极⼩的弹性震动损耗以及频率稳定度⾼的特点,因此被⼴泛⽤于远程通信、卫星通信、移动电话系统、全球定位系统(GPS)、导航、遥控、航空航天、⾼速计算机、精密计测仪器及消费类民⽤电⼦产品中,是⽬前其它类型的振荡器所不能替代的.⼀、⽯英晶体谐振器的结构、振荡原理1、⽯英晶体振荡器的结构⽯英晶体振荡器是利⽤⽯英晶体(⼆氧化硅的结晶体)的压电效应制成的⼀种谐振器件,它的基本构成⼤致是:从⼀块⽯英晶体上按⼀定⽅位⾓切下薄⽚(简称为晶⽚,它可以是正⽅形、矩形或圆形等),在它的两个对应⾯上涂敷银层作为电极,在每个电极上各焊⼀根引线接到管脚上,再加上封装外壳就构成了⽯英晶体谐振器,简称为⽯英晶体或晶体、晶振。
其产品⼀般⽤⾦属外壳封装,也有⽤玻璃壳、陶瓷或塑料封装的。
下图是⼀种⾦属外壳封装的⽯英晶体结构⽰意图。
2、压电效应若在⽯英晶体的两个电极上加⼀电场,晶⽚就会产⽣机械变形。
反之,若在晶⽚的两侧施加机械压⼒,则在晶⽚相应的⽅向上将产⽣电场,这种物理现象称为压电效应。
如果在晶⽚的两极上加交变电压,晶⽚就会产⽣机械振动,同时晶⽚的机械振动⼜会产⽣交变电场。
在⼀般情况下,晶⽚机械振动的振幅和交变电场的振幅⾮常微⼩,但当外加交变电压的频率为某⼀特定值时,振幅明显加⼤,⽐其他频率下的振幅⼤得多,这种现象称为压电谐振,它与LC回路的谐振现象⼗分相似。
它的谐振频率与晶⽚的切割⽅式、⼏何形状、尺⼨等有关。
⼆、⽯英晶体振荡器的等效电路与谐振频率1、等效电路⽯英晶体谐振器的等效电路如下图所⽰。
当晶体不振动时,可把它看成⼀个平板电容器称为静电电容Co,它的⼤⼩与晶⽚的⼏何尺⼨、电极⾯积有关,⼀般约⼏个PF到⼏⼗PF。
当晶体振荡时,机械振动的惯性可⽤电感L1来等效。
⼀般L1的值为⼏⼗mH 到⼏百mH。
石英晶振原理
石英晶体谐振器From:欧阳联铂石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。
一、石英晶体振荡器的基本原理1、石英晶体振荡器的结构石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。
其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的.为了防止Ag电极被氧化,一般在封装时充入N2。
下图是一种金属外壳封装的石英晶体结构示意图。
图12、压电效应若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。
反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应,如图2所示。
如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。
在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。
它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。
图23、符号和等效电路石英晶体谐振器的符号和等效电路如图3所示。
当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。
当晶体振荡时,机械振动的惯性可用电感L来等效。
一般L的值为几十mH 到几百mH。
晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1pF。
晶片振动时因摩擦而造成的损耗用R来等效(与晶片表面光滑度成反比,粗糙平整度影响R值,它决定了晶振80%的品质),它的数值约为100Ω。
高频实验报告_石英晶体振荡器实验报告
高频实验报告_石英晶体振荡器实验报告实验目的:1. 了解石英晶体的特性及应用;2. 掌握石英晶体振荡器的基本原理及实验方法;3. 熟悉实验中所用的仪器和设备。
实验器材:1. 石英晶体振荡器;2. 表示频率的数字频率计;3. 示波器及其探头;4. 直流电源;5. 手动变压器。
实验原理:石英晶体振荡器是一种微动振荡器,其基本原理是利用石英晶体的谐振频率来产生振荡信号,广泛应用于精密计时、频率合成、太赫兹波发生等领域。
石英晶体振荡器具有高精度、稳定性好、温度系数小、频率稳定时间短等特点,成为现代电子工业的基石之一。
石英晶体振荡器一般由石英晶体片、放大器和负载电路组成,其中石英晶体片的物理特性对振荡器的性能有重要影响。
实验步骤:1. 将数字频率计、示波器及其探头分别接好。
2. 将直流电源接到手动变压器的输入端,将变压器的输出接到石英晶体振荡器的电源输入端。
3. 调节手动变压器,逐渐调整石英晶体振荡器的电源电压,观察数字频率计及示波器的读数变化。
4. 记录不同电压下的数字频率计及示波器的读数,并绘制出石英晶体振荡器的频率特性曲线。
实验结果:图 2 石英晶体振荡器的频率特性曲线实验分析:石英晶体振荡器的频率特性曲线呈现出谐振频率附近的较大斜率,这是由于石英晶体本身的物理特性造成的。
石英晶体的谐振频率与其厚度、材料、晶面等因素有关,因此不同类型、不同工作条件的石英晶体振荡器的频率特性曲线会有所不同。
通过实验可以了解石英晶体的特性及应用,掌握石英晶体振荡器的基本原理及实验方法,熟悉实验中所用的仪器和设备。
同时,通过测量得到的石英晶体振荡器的频率特性曲线,可以为实际中石英晶体振荡器的选型和设计提供参考。
实验4 石英晶体振荡器
实验4 石英晶体振荡器—、实验准备1.做本实验时应具备的知识点:●石英晶体振荡器●串联型晶体振荡器●静态工作点、微调电容、负载电阻对晶体振荡器工作的影响2.做本实验时所用到的仪器:●晶体振荡器模块●双踪示波器●频率计●万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统。
2.掌握石英晶体振荡器、串联型晶体振荡器的基本工作原理,熟悉其各元件功能。
3.熟悉静态工作点、微调电容、负载电阻对晶体振荡器工作的影响。
4.感受晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的方法。
三、实验内容1.用万用表进行静态工作点测量。
2.用示波器观察振荡器输出波形,测量振荡电压峰-峰值V p-p,并以频率计测量振荡频率。
3.观察并测量静态工作点、微调电容、负载电阻等因素对晶体振荡器振荡幅度和频率的影响。
五、实验步骤1.实验准备在实验箱主板上插好晶振模块,接通实验箱上电源开关,按下开关4K01,此时电源指示灯点亮。
2.静态工作点测量改变电位器4W01可改变4Q01的基极电压V B,并改变其发射极电压V E。
记下V E的最大、最小值,并计算相应的I Emax、I Emin值(发射极电阻4R04=1KΩ)。
V E max=3.10V V E min=1.83V由Ie=Ve/4R04得,I E max=3.10mV、I E min=1.83mV3.静态工作点变化对振荡器工作的影响⑴实验初始条件:V EQ=2.5V(调4W01达到)。
⑵调节电位器4W01以改变晶体管静态工作点I E,使其分别为表4.1所示各值,且把示波器探头接到4TP02端,观察振荡波形,测量相应的振荡电压峰-峰值V p-p,并以频率计读取相应的频率值,填入表4.1。
表4.14.微调电容4C1变化对振荡器工作的影响⑴实验初始条件:同3⑴。
⑵用改锥(螺丝刀、起子)平缓地调节微调电容4C1。
与此同时,把示波器探头接到4TP02端,观察振荡波形,并以频率计测量其频率,看振荡频率有无变化。
实验四 石英晶体振荡器
东莞理工学院 实验报告
班级: 11通信1 班 姓名:钟伟纯 学号:201141302116 同组同学: 指导老师: 谭永明 日期: 2013-5-28 实验名称:实验四 石英晶体振荡器
一、实验目的
1.了解晶体振荡器的工作原理及特点
2.掌握晶体振荡器的设计方法及参数计算 二、实验仪器
1.双踪示波器
2.频率计
3.万用表
4.实验板G1 三、实验内容及步骤 实验电路见图4-1
1.测振荡器静态工作点,调图中R P ,测得I Emin 及I E max (R4为1.5k Ω)。
[实验测得I Emin =0.18mV ,I E max =0.327V]
2.测量当工作点在上述范围时的振荡频率及输出电压(V
V E 27.0m in =,00=f ,输出电压
0=-p p V ,不起振;,999.5,58.50m ax MHz f V V E ==输出电压V V p p 180.2=-
3.负载不同时对频率的影响,R L 分别为110K ,10K ,1K ,测出电路振荡频率,并填入表4-1并与振荡器比较
L2
OUT
图4-1 晶体振荡器原理图
R L -f :
表4-1
四实验分析
1写出静态工作点的表达式
CC B V R R R R V p 212++=
,c e I R V V I BE B E ≈-= ,β
C B I
I =
2画出直流通路、交流通路
3晶体在电路中的作用?
搭:晶体在电路中相当于短路元件。
4振荡频率等于晶体的谐振频率等于6MHz 。
LC 及石英晶体振荡器
实验报告课程名称通信电子线路实验名称 LC 及石英晶体振荡器实验类型综合(验证、综合、设计、创新)2013年11月29日星期五实验三 LC 及石英晶体振荡器一、实验目的1、掌握 LC 三点式振荡电路的基本工作原理及参数计算。
2、熟悉晶体振荡器基本工作原理及参数计算。
3、掌握静态工作点、反馈系数、振荡回路Q值等对振荡器起振条件、振荡幅度和振荡频率的影响。
4、验证晶体振荡器频率稳定度高的特点。
二、实验仪器1、示波器2、频率计3、万用表4、实验板 14、阐明为什么用石英谐振器作为振荡回路元件就能使振荡器的频率稳定大大提高。
四、实验内容1、用万用表测量两类振荡器的静态工作点。
用示波器观察振荡器的停振、起振现象。
2、用示波器观察两类振荡器输出波形,测量振荡电压峰峰值,并以频率计测量振荡频率。
3、观察并测量静态工作点、 耦合电容、 反馈系数、 负载 (Q 值)变化对 LC 振荡器幅度和频率的影响。
4、观察并测量静态工作点、负载变化对晶体振荡器幅度和频率的影响。
五、基本原理及实验电路振荡器的种类很多,本实验主要研究 LC 三点式振荡器及晶体振荡器。
1、基本原理(1)LC 三点式振荡器图 3-1 是电容反馈式三点式振荡器的原理图,这里Cie 和Coe 分别为晶体管的输入和输出电容。
其放大网络的放大倍数为iR K R εβ=(3-1)其中,Ri 为晶体管输入电阻,R ε为折合到集电极和射极间的总谐振电阻。
220111s iF R R n R R ε=++ (3-2) 212C n C C '=''+ 12C F C '=' 11oe C C C '=+ 22ie C C C '=+ 这里,Rs 为晶体管输出电阻,Ro 为折合到集电极和射极间的谐振回路的谐振电阻,n 为回路接入系数,F 为反馈网络的反馈系数。
加入负载时,该式变为220111(//)s L iF R R n R R R ε=++ (3-3) 起振条件为 1iR KF F R εβ=> (3-4)20111()(//)i i S L s R R F F F R n R R R Fβ⇒>++≈+ 振荡频率可近似写成00''''''12121212''''12121211111()()S ioe ie oe ieC C C C C C R R C C C C LC L L LC C C C C C C C εωω=+≈===+++++++ (3-5)即,振荡频率比谐振回路的谐振频率略高一点,Rs 、Ri 越小,振荡频率偏高越明显。
石英晶体振荡器实验报告【高振动石英晶体振荡器】
石英晶体振荡器实验报告【高振动石英晶体振荡器】石英晶体振荡器实验报告【高振动石英晶体振荡器】新的设备特性使苛刻应用中的频率控制更稳固。
我们通常认为在电子系统中,石英晶体振荡器是最易碎的元件之一,这并不奇怪,因为振荡器里的石英晶体谐振器是由一个很大的结晶体组成的,就像一个大的圆空AT-cut晶体被金属夹固定在一个金属壳里。
这种结构不能耐受高出50~100g太多的振动强度。
这类晶体振荡器非常适合大型台式仪器和类似的设备,但不太适用于对高振动性要求很高的应用领域,如掌上电脑和军需设备。
在这些设备中,加速度达到千个甚至万个g。
很明显,一般的晶体结构在此类应用中是不合适的。
推动石英晶体和振荡器结构变化的动力来自对电子器件小型化的不断追求。
伴随着照相机平版印刷的发展和加工石英晶体的化学工艺的进步,小型化在1970年迈出了关键的一步。
这种新的处理工艺来自曾用于硅工业的一些技术,能够精确地磨制出小于1mm尺寸的石英/晶体,并能精确到几微米。
在小型化进程中很重要的另一步是将晶体牢牢固定于一个粗糙机架的陶瓷封装技术得到发展。
由此,这种制造与构造工艺成为了石英晶体小型化不成文的标准。
“小型化”与“好处”幸运的是,石英晶体振荡器的小型化还带来了额外的好处,那就是大大提高了它们冲击与振动的耐受性。
因为尺寸小,谐振器质量较低,也因此对谐振器的力也较小。
如果使用强安装材料,谐振器就不会因为加速度太大掉下来,它会被牢牢固定在本来的位置上,进一步而言,由于它的小尺寸(短空白大小或短音叉齿)谐振器内的剪力很小,谐振器能抵抗高振动而不被破坏。
小尺寸的另一个附加的好处是,谐振器的最低弯曲型频率状态可达几千赫兹或更高。
这种情形至少会带来两个好处。
第一个,由于振动到来之前大约1mm或更长时间会出现振动,可作为类似静电噪声的脉冲处理,在任何指定时段内的振动可大致看做一个固定的加速度,而这个加速度太小,所以不能激活晶体的弯曲模式,第二,这种弯曲型对频率要求非常高,振动产生的频率通常低于2kHz,所以不会被其所激活。
石英晶体振荡器
实验四、石英晶体振荡器•实验目的•熟悉石英晶体振荡器的工作原理及特点。
•掌握石英晶体振荡器的设计方法和参数计算方法。
•实验仪器1 .数字万用表2 .双踪示波器3 .高频电路实验装置4 .无感起子•预习要求1. 预习电容反馈三点式振荡器和石英晶体振荡器的工作原理。
2. 分析图3.4-1 的工作原理及电路中各元件的作用,当L1=3.3 μH ,C=120Pf, C ' =680Pf,C T =50Pf 和L1=3.3 μ H ,C=120Pf, C ' =680Pf,C T =150Pf 时,计算电路的振荡频率。
3. 分析图3.4-2 的工作原理及电路中各元件的作用, 并说明串联型晶体振荡器和并联型晶体振荡器电路的区别.•实验电路及工作原理图 3.4-2 石英晶体振荡器图 3.4-2 为石英晶体振荡器,RP 、R1 、R2 、R4 为直流静态偏置电路,C1 、C2 为旁路电容,L2 、C6 、C7 为滤波电路,L1 为高频扼流圈,C5 为滤波电容,石英晶体EX 与电容C3 、C4 、CT 构成谐振电路,L 在电路中作为电感使用,RL 为负载。
此电路相当于电容反馈三点式的克拉泼电路。
•实验内容及步骤3. 测量当C 、C ˊ不同时,也就是当反馈系数不同时,起振点、振幅和工作电流I EQ 的关系。
( 1 )当RL=110K Ω时,取C=C3=100pf, C ˊ =C4=1200pf, 调电位器RP 使I EQ 分别为表 3.4-2 中所标各值, 用示波器测量输出振荡幅度V P-P , 填入表中.表 3.4-2(2) 取C=C5=120pf, C ˊ =C6=680pf 和C=C7=680pf, C ˊ =C8=120pf, 分别重复测量输出电压的振荡幅度, 填入表 3.4-2 中.4. 频率稳定度的影响(1) 负载阻抗的影响: 回路LC 参数不变, 当f=6.5MHZ,C/ C ˊ=100/1200pf,I EQ = 3m A, 改变L 的并联电阻R, 使其分别为1K Ω、10K Ω、110K Ω,分别记录电路的振荡频率,并填入表3.4-3 中.表 3.4-3R 1K Ω10K Ω110K Ωf(MHZ)(2) 回路LC 参数不变, 改变I EQ 对频率的影响: 当f=6.5MHZ,C/C ˊ =100/1200pf, RL=110K Ω , 改变I EQ 使其分别为表3.4-4 中的各值, 测量振荡频率的值填入表中。
石英实验报告
一、实验目的1. 了解石英晶体振荡器的基本原理和结构;2. 掌握石英晶体振荡器的性能测试方法;3. 分析石英晶体振荡器的频率稳定性和相位噪声等性能指标;4. 评估石英晶体振荡器在实际应用中的适用性。
二、实验原理石英晶体振荡器是一种利用石英晶体的压电特性产生稳定频率信号的电子元件。
当石英晶体受到机械振动时,会在其表面产生电荷,从而在晶体两端形成电场。
反之,当在晶体两端施加电场时,也会使晶体产生机械振动。
这种现象称为压电效应。
石英晶体振荡器的工作原理基于石英晶体的固有频率。
当外界施加的频率与晶体的固有频率相匹配时,晶体将产生共振现象,从而产生稳定的振荡信号。
石英晶体振荡器的频率稳定性和相位噪声等性能指标主要取决于晶体的质量、电路设计以及外部环境等因素。
三、实验仪器与材料1. 石英晶体振荡器;2. 数字频率计;3. 示波器;4. 信号发生器;5. 稳压电源;6. 连接线;7. 实验平台。
四、实验步骤1. 将石英晶体振荡器接入实验平台,连接好信号发生器、数字频率计和示波器;2. 调整信号发生器的输出频率,使其接近石英晶体振荡器的固有频率;3. 观察示波器显示的振荡波形,调整信号发生器的输出频率,使石英晶体振荡器产生共振;4. 记录此时石英晶体振荡器的输出频率;5. 调整信号发生器的输出频率,使石英晶体振荡器产生共振,重复步骤4;6. 比较不同频率下石英晶体振荡器的输出频率,分析其频率稳定性;7. 测量石英晶体振荡器的相位噪声,记录数据;8. 分析实验结果,评估石英晶体振荡器的性能。
五、实验结果与分析1. 频率稳定性实验中,我们记录了石英晶体振荡器在不同频率下的输出频率。
经过多次测量,得到石英晶体振荡器的频率稳定度为±0.01ppm。
这说明石英晶体振荡器具有较好的频率稳定性。
2. 相位噪声实验中,我们测量了石英晶体振荡器的相位噪声。
在10kHz带宽内,相位噪声为-100dBc/Hz。
这说明石英晶体振荡器具有较低的相位噪声,适用于对相位稳定性要求较高的场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四石英晶体振荡器
一、实验目的
1、熟悉石英晶体振荡器的基本工作原理;
2、掌握静态工作点对晶体振荡器工作的影响。
3、掌握晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的
方法。
二、实验原理
1、电路与工作原理
一种晶体振荡器的交流通路如图4-1所示。
若将晶体短路,则L1、C2、C3就构成了典型的电容三点式振荡器(考毕兹电路)。
因此,图4-1的电路是一种典型的串联型晶体振荡器电路(共基接法)。
若取L1=4.3μH、C2=820pF、C3=180pF,C4=20nF,则可算得LC并联谐振回路的谐振频率f≈6MHz,与晶体工作频率相同。
图中,C4是微调电容,用来微调振荡频率C5是耦合电容,R5是负载电阻。
很显然,R5越小,负载越重,输出振荡幅度将越小。
图4-1 晶体振荡器交流通路
2、实验电路
如图4-2所示。
1R03、1C02为去耦元件,1C01为旁路电容,并构成共基接法。
1W01用以调整振荡器的静态工作点(主要影响起振条件)。
1C05为输出耦合电容。
1Q02为射随器,用以提高带负载能力。
实际上,图4-2电路的交流通路即为图4-1所示的电路。
三、实验内容
1、观察振荡器输出波形,测量振荡频率和振荡电压峰值Vp-p。
2、观察静态工作点等因素对晶体振荡器振荡幅度和频率的影响。
四、实验步骤
(一)模块上电
将晶体振荡器模块⑤,接通电源,此时电源指示灯点亮。
(二)测量晶体振荡器的振荡频率
把示波器接到1P01端,顺时针调整电位器1W01,以改变晶体管静态工作点,读取振荡频率(应为6MHZ)。
(三)观察静态工作点变化对振荡器工作的影响
把示波器接到1P01端,观察顺时针调整电位器1W01是晶体振荡器振荡频
率和幅度的变化。
五、实验报告
1、根据实验测量数据,分析静态工作点对晶体振荡器工作的振荡频率和幅度影响,并阐述原因。
静态工作点影响三极管工作状态及稳定后输出电压幅值。
在线性区,静态工作点的变化对幅度影响较小(振荡频率基本不发生变化),对幅度影响较大(顺时针调节1W01,幅度逐渐增大)。
但过高的静态工作点会导致饱和失真,过低的静态工作点会导致截止失真。
一方面,合理的静态工作点使三极管处于小信号高增益状态,可以加速三极管从振荡进入平衡状态的过程。
另一方面,静态工作点的改变引起三极管平均跨导的改变,进一步引起反馈系数F的改变,从而改变最后稳定信号的输出幅值。
负载则影响品质因数Q,进而影响频率稳定度。
2、比较静态工作点对晶体振荡器与LC振荡器影响等,并分析其原因。
晶体振荡器相对LC振荡器受静态工作点影响小、带负载能力强,其主要原因就是石英晶体具有特殊的压电效应。
在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多。
这种现象称为压电谐振,它与LC回路的谐振现象十分相似。
它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。
压电效应:若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。
反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。
注意,这种效应是可逆的。
如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。
3、总结实验体会。
本实验学习了石英晶体振荡器及串联型晶体振荡器的结构和应用原理,对振荡器进行微调得到不同结果,进一步了解振荡器工作原理和在电路中的作用。
通过实验,可以发现,石英晶体振荡器时几种振荡器中最稳定的一种,其频率稳定,带负载能力强,优点突出。
这也是晶体振荡器被广泛采用的主要原因。