高二数学空间向量与立体几何测试题
2024-2025学年上学期高二数学章末(空间向量与立体几何)测试卷
2024-2025学年上学期高二数学章末测试卷选择性必修第一册空间向量与立体几何姓名:___________班级:___________一、单选题1.已知空间向量()6,2,1a =,()2,,3b x =- ,若()2a b a -⊥ ,则x =()A .4B .6C .234D .2142.平面α的一个法向量是1(2n = ,1-,1)3,平面β的一个法向量是(3m =- ,6,2)-,则平面α与平面β的关系是()A .平行B .重合C .平行或重合D .垂直3.如图,四棱锥P OABC -的底面是矩形,设OA a = ,OC b = ,OP c =,E 是棱PC 上一点,且2PE EC =,则BE =()A .111333a b c--+ B .1133a b c--+C .1133a b c-++ D .1133a b c--- 4.如图,在空间直角坐标系O xyz -中,正方形ABCD 与矩形ACEF 所在平面互相垂直(C 与原点O 重合),2,1,AB AF M ==在EF 上,且//AM 平面BDE ,则M 点的坐标为()A .(1,1,1)B .22,,133⎛⎫⎪ ⎪⎝⎭C .22,,122⎛⎫ ⎪ ⎪⎝⎭D .22,,144⎛⎫⎪ ⎪⎝⎭5.在一直角坐标系中,已知(1,6),(3,8)A B --,现沿x 轴将坐标平面折成60︒的二面角,则折叠后,A B 两点间的距离为A .241B .41C .17D .2176.已知平行六面体1111ABCD A B C D -的各棱长均为1,1160A AB A AD ∠=∠=︒,90DAB ∠=︒,则1AC =()A .3B .5C .2D .21+7.鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F 是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 4C .118D .48.在下图所示直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,π1,3AB DAB =∠=,12AA =,动点P 在体对角线1BD 上,则顶点B 到平面APC 距离的最大值为()A .12B C D 二、多选题9.(多选)下面关于空间直角坐标系的叙述正确的是()A .点(1,1,0)P -与点(1,1,0)Q 关于z 轴对称B .点(3,1,4)A --与点(3,1,4)B --关于y 轴对称C .点(3,1,4)A --与点(3,1,4)B --关于平面xOz 对称D .空间直角坐标系中的三条坐标轴组成的平面把空间分为八个部分10.已知空间中三点()2,1,1A -,()1,0,2B ,()0,3,1C -,则()A .AB =B .AB AC⊥C .cos 19ABC ∠=D .A ,B ,C 三点共线11.在正方体1111ABCD A B C D -中,1M AD ∈,N BD ∈,且满足113AM AD =,23BN BD =,则下列说法正确的是()A .1AD MN⊥B .1MN A C∥C .MN ∥平面11DCC D D .MN 为1AD 与BD 的公垂线三、填空题12.在Rt ABC △中,90BAC ∠=︒,(2,1,1)A ,(1,1,2)B ,(,0,1)C x ,则x =.13.已知向量()()2,4,5,4,,a b x y ==,分别是直线12l l 、的方向向量,若12//l l ,则x y +=.14.如图所示,若P 为平行四边形ABCD 所在平面外一点,H 为棱PC 上的点,且12PH HC =,点G 在AH 上,且AGm AH=,若G ,B ,P ,D 四点共面,则实数m 的值是.四、解答题15.如图,在棱长为2的正方体中,,E F 分别是1,DD DB 的中点,G 在棱CD 上,且13CG CD =,H 是1C G 的中点.建立适当的空间直角坐标系,解决下列问题:(1)求证:1EF B C ⊥;(2)求异面直线EF 与1C G 所成角的余弦值.16.如图,在直三棱柱111ABC A B C -中,D ,E ,F 分别为AB ,BC ,1B B 的中点.(1)证明:11//AC 平面1B DE ;(2)若1AB =,AB AC ⊥,11B D A F ⊥,求点E 到平面11A FC 的距离.17.在平行六面体1111ABCD A B C D -中,设AB a =,AD b =,1AA c = ,E ,F 分别是1AD ,BD 的中点.(1)用向量a ,b ,c表示1D B ,EF ;(2)若1D F xa yb zc =++,求1D F 在基{},,a b c 下的坐标.18.如图,在平面四边形ABCD 中,//AB DC ,ABD △是边长为2的正三角形,3,DC O =为AB 的中点,将AOD △沿OD 折到POD 的位置,PC =.(1)求证:PO BD ⊥;(2)若E 为PC 的中点,求直线BE 与平面PDC 所成角的正弦值.19.如图,将等腰直角△ABC 沿斜边AC 旋转,使得B 到达B ′的位置,且BB ′=A B .(1)证明:平面AB ′C ⊥平面ABC ;(2)求二面角B -AB ′-C 的余弦值;(3)若在棱CB ′上存在点M ,使得14,,55CM CB μμ⎡⎤'=∈⎢⎥⎣⎦,在棱BB ′上存在点N ,使得BN BB λ'= ,且BM ⊥AN ,求λ的取值范围.参考答案题号12345678910答案C CBCDBBABDAB题号11答案ABD1.【详解】因为()()()26,2,122,,32,22,7a b x x -=--=- ,因为()2a b a -⊥ ,所以124470x +-+=,解得234x =.故选:C.2.【详解】 平面α的一个法向量是1(2n = ,1-,1)3,平面β的一个法向量是(3m =- ,6,2)-,∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .3.【详解】由已知2()()3BE OE OB OP PE OA OC OP PC OA OC =-=+-+=+-+2()()3OP OC OP OA OC =+--+ 11113333OP OC OA a b c =--=--+.故选:B .4.【详解】设AC ,BD 交于点O ',连接O E ',因为正方形ABCD 与矩形ACEF 所在的平面互相垂直,点M 在EF 上,且//AM 平面BDE ,又平面BDE ⋂平面ACEF EO =',AM ⊂平面ACEF ,所以//AM O E ',又//AO EM ',所以O AME '是平行四边形,故1122FM O A AC EF '===,所以M 是EF 的中点,因为2,1AB AF ==,所以(0,0,1),(2,2,1)E F ,所以22,,122M ⎛⎫⎪ ⎪⎝⎭.故选:C 5.【详解】如图为折叠后的图形,其中作,AC CD BD CD ⊥⊥则6,8,4AC BD CD ===,∴0,0AC CD BD CD ⋅=⋅=沿x 轴将坐标平面折成60︒的二面角∴两异面直线,CA DB 所成的角为60︒.可得:.cos 6024CA DB CA DB ︒⋅=⋅=故由AB AC CD DB =++ 得22||||AB AC CD DB =++ 2222+22AC CD DB AC CD CD DB AC DB +++⋅⋅+⋅= 2222+22AC CD DB AC CD CD DB CA DB+++⋅⋅-⋅= 36166448=++-68=||AB ∴= D.6.【详解】取{}1,,AB AD AA 为空间向量的基底,因为11AB AD AA === ,90DAB ∠=︒,1160A AB A AD ∠=∠=︒,所以0AB AD ⋅=uuu r uuu r,1112AB AA AD AA ⋅=⋅= .因为11AC AB AD AA =++,所以()2211AC AB AD AA =++ 222111222AB AD AA AB AD AB AA AD AA =+++⋅+⋅+⋅1110115=+++++=,所以1AC =故选:B7.【详解】因为AB BC =,且ABC V 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC,BA的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎝⎭ .故点F 到直线AC的距离d =故点F 到直线AC故选:B8.【详解】连接AC 交BD 于点O ,由题意,得AC BD ⊥,1122OB OD AB ===,OA OC ====,如图,以O 为原点建立如图所示的空间直角坐标系,则1110,,,0,0,0,,,0,22222A B C D ⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()()11,,1,0,22AC AB BD ⎛⎫===- ⎪ ⎪⎝⎭,设()101BP BD λλ=≤≤ ,所以()1111,0,2222AP AB BP AB BD λλλλ⎛⎫⎛⎫=+=+=+-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ,设平面APC 的一个法向量为(),,n x y z = ,则n ACn AP⎧⊥⎪⎨⊥⎪⎩,所以001120222y n AC x n AP x z z λλλλ=⎧⎧⋅==⎪⎪⎪⎛⎫⇒-⎨⎨⎛⎫ ⎪⋅=-+++=⎝⎭⎪⎪ ⎪=⎝⎭⎩⎪⎩ ,取4x λ=,则()4,0,21n λλ=-,设顶点B 到平面APC 距离为d ,则AB n d n ⋅== 当0λ=时0d =,当01λ<≤时,d ===所以当12λ=即12λ=时点B 到平面APC 12=.故选:A.9.【详解】点(1,1,0)P -与点(1,1,0)Q 关于x 轴对称,故A 错误;点(3,1,4)A --与(3,1,4)B --关于y 轴对称,故B 正确;点(3,1,4)A --与(3,1,4)B --不关于平面xOz 对称,故C 错误;空间直角坐标系中的三条坐标轴组成的平面把空间分为八个部分,故D 正确.故选:BD .10.【详解】易得()1,1,3AB =-- ,()2,2,0AC =- ,()1,3,3CB =-,AB ∴= A 正确;因为0AB AC ⋅=,所以AB AC ⊥,B 正确,D 错误;而cos AB CB ABC AB CB⋅∠==⋅,C 错误.故选:AB.11.【详解】设正方体1111ABCD A B C D -的棱长为1,分别以1,,DA DC DD 为,,x y z 轴,建立空间直角坐标系.则()()11,0,0,0,0,1A D ,()1,1,0B ,()0,1,0C ,()11,0,1A 由113AM AD = ,则21,0,33M ⎛⎫⎪⎝⎭由23BN BD = ,则11,,033N ⎛⎫ ⎪⎝⎭所以111,,333MN ⎛⎫=-- ⎪⎝⎭,()11,0,1AD =-,则()11111010333MN AD ⎛⎫⋅=-⨯-+⨯+-⨯= ⎪⎝⎭,所以1AD MN ⊥,选项A 正确.又()11,1,1AC =-- ,则13AC MN = ,所以1//AC MN又1,MN A C 不在同一直线上,所以1//MN A C ,故选项B 正确.平面11DCC D 的一个法向量为()1,0,0n =r ,而1103MN n ⋅=-⨯≠ 所以MN 与平面11DCC D 不平行,故选项C 不正确.由()1,1,0DB = ,有1111100333MN BD ⎛⎫⋅=-⨯+⨯+-⨯= ⎪⎝⎭,所以NM DB ⊥,又1AD MN ⊥,且NM 与1,DB A D 均相交,所以MN 为1AD 与BD 的公垂线,故选项D 正确.故选:ABD12.【详解】||AC ==||BC ==,AB ==90BAC ∠=︒ ,222||||||BC AB AC ∴=+,22(1)22(2)1x x ∴-+=+-+,解得2x =.故答案为:2.13.【详解】12//l l ,//a b ∴,所以存在实数λ,使得b a λ= ,则4245x y λλλ=⎧⎪=⎨⎪=⎩,解得2λ=,8x =,10y =.18x y ∴+=.故答案为:18.14.【详解】连接BD ,BG 因为AB PB PA =- ,AB DC =,所以DC PB PA =- .因为PC PD DC =+,所以PC PD PB PA PA PB PD =+-=-++ .因为12PH HC =,所以13PH PC = ,所以111333PH PA PB PD =-++.又因为AH PH PA =- ,所以411333AH PA PB PD =-++.因为AG m AH=,所以4333m m m AG m AH PA PB PD ==-++ .又因为41333m m m PG PA AG PA PB PD ⎛⎫=+=-++ ⎪⎝⎭,且G ,B ,P ,D 四点共面,所以4103m -=,解得34m =.故答案为:3415.【详解】(1)证明:如图,以D 为原点,以射线DA 、DC 、1DD 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系D xyz -,则()0,0,0D ,0,0,1,()1,1,0F ,()0,2,0C ,()10,2,2C ,()12,2,2B ,40,,03G ⎛⎫⎪⎝⎭,所以()1,1,1EF =-,()12,0,2B C =-- ,所以()()()()()11,1,12,0,21210120EF B C ⋅=-⋅--=⨯-+⨯+-⨯-=,所以1EF B C ⊥,故1EF B C ⊥.(2)因为120,,23C G ⎛⎫=-- ⎪⎝⎭,所以1C G =因为EF = ()12241,1,10,,22333EF C G ⎛⎫⋅=-⋅--=-+= ⎪⎝⎭ ,所以111443cos ,315EF C GEF C G EF C G⋅==⋅.16.【详解】(1)因为111ABC A B C -为直三棱柱,所以11//A C AC ,又D ,E ,分别为AB ,BC 的中点,所以//DE AC ,所以11//DE A C ,又11A C ⊄平面1B DE ,DE ⊂平面1B DE ,所以11//AC 平面1B DE .(2)因为111ABC A B C -为直三棱柱,且AB AC ⊥,以A 为坐标原点,分别以1,,AB AC AA 所在直线为,,x y z 轴,建立如图所示的空间直角坐标系,设()10AA a a =>,且1AB =,则()()1111,0,,,0,0,0,0,,1,0,22a B a D A a F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则11,0,2B D a ⎛⎫=-- ⎪⎝⎭,11,0,2a A F ⎛⎫=- ⎪⎝⎭,由11B D A F ⊥可得110B D A F ⋅= ,即21022a -+=,且0a >,解得1a =,设()0AC b b =>,则()10,,1C b ,即()11111,0,,0,,02A F A C b ⎛⎫=-= ⎪⎝⎭,设平面11A FC 的法向量为(),,n x y z =,则1111020n A F x z n AC by ⎧⋅=-=⎪⎨⎪⋅==⎩ ,解得20z x y =⎧⎨=⎩,取1x =,则2z =,所以平面11A FC 的一个法向量为()1,0,2n =,又1,,022b E ⎛⎫ ⎪⎝⎭,即11,,122b A E ⎛⎫=- ⎪⎝⎭,所以点E 到平面11A FC的距离1A E n d n ⋅==17.【详解】(1)在平行六面体1111ABCD A B C D -中,连接AC ,EF ,1D F ,1BD ,如图,11D B D D DB =+ 1AA AB AD =-+- a b c =-- ,11122EF EA AF D A AC =+=+ 1)11()(22AA AD AB AD =-+++ 111112222AB AA a c =-=- .(2)111)1(2D F D D D B =+ 11)1(2AA D B =-+ 1()2c a b c =-+-- 1122a b c =-- xa yb zc =++ ,因此12x =,12y =-,1z =-,所以1D F 在基{},,a b c r r r 下的坐标为11(1)22--,,.18.【详解】(1)依题意ABD △是边长为2的正三角形,O 为AB 的中点,所以OD AB ⊥,所以OD PO ⊥,OD BO ⊥,2PD =,3CD =,PC =则222PD CD PC +=,所以PD CD ⊥,又//AB DC ,即//OB DC ,所以OB PD ⊥,又OD PD D ⋂=,,OD PD ⊂平面POD ,所以OB ⊥平面POD ,因为OP ⊂平面POD ,所以OB OP ⊥,又OB OD O = ,,OB OD ⊂平面BODC ,所以OP ⊥平面BODC ,又BD ⊂平面BODC ,所以PO BD ⊥;(2)如图建立空间直角坐标系,则1,0,0,0,0,1,()D,()C,3122E ⎛⎫ ⎪ ⎪⎝⎭,所以11,222BE ⎛⎫= ⎪ ⎪⎝⎭ ,()3,0,0DC =,()0,DP = ,设平面PDC 的法向量为(),,n x y z =,则300n DC x n DP z ⎧⋅==⎪⎨⋅=+=⎪⎩,令(n = ,设直线BE 与平面PDC 所成角为θ,则sin 5BE n BE nθ⋅===⋅ ,所以直线BE 与平面PDC19.【详解】(1)证明:设AC 的中点为O ,连接OB ,OB ',由题意可得,BB '=AB =AB '=BC =B 'C ,在△AB 'C 中,因为O 为AC 的中点,则OB '⊥AC ,即∠B 'OC =90°,则△OBB '≌△OCB ',所以∠B 'OB =∠B 'OC =90°,即OB '⊥OB ,因为AC ∩OB =O ,AC ,OB ⊂平面ABC ,故OB '⊥平面ABC ,又OB '⊂平面AB 'C ,所以平面AB ′C ⊥平面ABC ;(2)以点O 为坐标原点,建立空间直角坐标系如图所示,不妨设OA =1,则O (0,0,0),A (-1,0,0),B (0,1,0),B '(0,0,1),C (1,0,0),所以(1,1,0),(1,0,1)AB AB '== ,设平面ABB '的法向量为(),,n x y z = ,则00n AB n AB ⎧⋅=⎨⋅=⎩' ,即00x y x z +=⎧⎨+=⎩,令x =1,则y =z =-1,故(1,1,1)n =-- ,因为OB ⊥平面AB 'C ,所以平面AB 'C 的一个法向量为(0,1,0)OB = ,则|||cos ,|||||n OB n OB n OB ⋅〈〉=== 又二面角B -AB ′-C 为锐二面角,所以二面角B -AB ′-C的余弦值为3;(3)结合(2)可得,(1,1,0),(1,0,1),(0,1,1)BC CB BB ''=-=-=- 则(1,1,0)(0,1,1)(1,1,)AN AB BN AB BB λλλλ'=+=+=+-=- ,(1,1,0)(0,1,1)(1,1,)AN AB BN AB BB λλλλ'=+=+=+-=- ,因为BM ⊥AN,则0BM AN ⋅= ,即(1)(1)0μλμλ---+=,所以111λμ=-+,故λ是关于μ的单调递增函数,当14,55μ⎡⎤∈⎢⎣⎦时,14,69λ⎡⎤∈⎢⎥⎣⎦,故λ的取值范围为14,69⎡⎤⎢⎥⎣⎦.。
【高二数学试题精选】空间向量与立体几何练习题(带答案)
空间向量与立体几何练习题(带答案)5 c一、选择题1.若空间向量a与b不相等,则a与b一定( )A.有不同的方向B.有不相等的模c.不可能是平行向量 D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】 D图2-1-72.如图2-1-7所示,已知平行六面体ABcD-A1B1c1D1,在下列选项中,cD→的相反向量是( )ABA→B.A1c1→cA1B1→ D.AA1→【解析】由相反向量的定义可知,A1B1→是cD→的相反向量.【答案】 c图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,Ac→〉相等的是( )A.〈AB→,Bc→〉B.〈Bc→,cA→〉c.〈c1B1→,Ac→〉D.〈Bc→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,Bc→〉=〈AB→,Ac→〉=〈Bc→,B1A1→〉=60°,故选D.【答案】 D4.在正三棱锥A BcD中,E、F分别为棱AB,cD的中点,设〈EF→,Ac→〉=α,〈EF→,BD→〉=β,则α+β等于( )Aπ6 B.π4cπ3 D.π2【解析】如图,取Bc的中点G,连接EG、FG,则EG∥Ac,FG∥BD,故∠FEG=α,∠EFG=β∵A-BcD是正三棱锥,∴Ac⊥BD.∴EG⊥FG,即∠EGF=π2∴α+β=∠FEG+∠EFG=π2【答案】 D5.如图2-1-9所示,正方体ABcD-A1B1c1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有( )图2-1-9A.8个 B.7个c.6个 D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,c1D1→,D1c1→,cD→,Dc→,共8个,故选A【答案】 A二、填空题6.在正方体ABcD-A1B1c1D1中,若E为A1c1的中点,则向量cE→和BD→的夹角为________.【解析】∵BD→为平面Acc1A1的法向量,而cE在平面Acc1A1中,∴BD→⊥cE→∴〈BD→,cE→〉=90°【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a=P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知在集合P中模为3的向量的个数为8【答案】 8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABcD-A1B1c1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】 (1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,cc1→,c1c→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,Bc1→,c1B→,B1c→,cB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,Dc→及D1c1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABcD中,为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥Ac,S⊥Ac又∵BD∩S=∴Ac⊥平面SBD.∴Ac→为平面SBD的一个法向量.∴〈Ac→,AD→〉=45°图2-1-1211.如图2-1-12,四棱锥P—ABcD中,PD⊥平面ABcD,底面ABcD为正方形且PD=AD,E、F分别是Pc、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBc的一个法向量.【解】 (1)取AD的中点,连接F,连接EF,∵E、F分别是Pc、PB的中点,∴EF綊12Bc,又Bc綊AD,∴EF 綊12AD,则由EF綊D知四边形DEF是平行四边形,∴F∥DE,∴F→就是直线DE的一个方向向量.(2)∵PD⊥平面ABcD,∴PD⊥Bc,又Bc⊥cD,∴Bc⊥平面PcD,平面PcD,∴DE⊥Bc,又PD=cD,E为Pc中点,∴DE⊥Pc,从而DE⊥平面PBc,∴DE→是平面PBc的一个法向量,由(1)可知F→=ED→,∴F→就是平面PBc的一个法向量5 c。
高二数学空间向量与立体几何试题
高二数学空间向量与立体几何试题1.如图,ABCD—A1B1C1D1是正方体,B1E1=D1F1=,则BE1与DF1所成角的余弦值是()A.B.C.D.【答案】A【解析】取M=,则由正方体的性质可得M 与平行且相等.再取AB的中点N,则由M∥AN 且 M=AN,可得M AN 为平行四边形,AM∥N,且AM=N.∠B N为B与D所成的角.设正方体的棱长为1,△B N中,NB=、N= = =B由余弦定理可得cos∠B N=,故选A。
【考点】本题主要考查正方体的几何性质及异面直线所成角的求法。
点评:根据题目特点,可灵活采用不同方法,这里运用几何方法,使问题得解,体现解题的灵活性。
2.正四棱锥的高,底边长,则异面直线和之间的距离()A.B.C.D.【答案】C【解析】建立如图所示的直角坐标系,则,,,,.,.令向量,且,则,,,,.异面直线和之间的距离为:.【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.3.在三棱锥P-ABC中,AB⊥BC,AB=BC=PA,点O、D分别是AC、PC的中点,OP⊥底面ABC,则直线OD与平面PBC所成角的正弦值()A. B. C. D.【答案】D【解析】题目中给出了建立空间直角坐标系的条件。
以O为原点,射线OP为非负z轴,建立空间直角坐标系(如图),利用向量知识可计算得到直线OD与平面PBC所成角的正弦值为,故选D。
【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.4.已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值.【答案】【解析】解:如图建立空间直角坐标系,=(0,1,0),=(-1,0,1),=(0,,1)设平面ABC1D1的法向量为=(x,y,z),由可解得=(1,0,1)设直线AE与平面ABC1D1所成的角为θ,则,【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
高中数学——空间向量与立体几何练习题(附答案)
.空间向量练习题1. 如下图,四棱锥 P-ABCD 的底面 ABCD 是边长为 1 的菱形,∠ BCD =60°, E 是 CD的中点, PA ⊥底面 ABCD ,PA =2.〔Ⅰ〕证明:平面 PBE ⊥平面 PAB;〔Ⅱ〕求平面PAD 和平面 PBE 所成二面角〔锐角〕的大小 .如下图,以 A 为原点,建立空间直角坐标系 .那么相关各点的坐标分别是 A 〔 0, 0, 0〕, B 〔 1, 0, 0〕,C(3 ,3,0), D(1 ,3,0), P 〔 0,0, 2〕 , E(1, 3,0).2 22 22〔Ⅰ〕证明因为 BE (0,3,0) ,2平面 PAB 的一个法向量是 n(0,1,0) ,所以 BE 和n 共线 .从而 BE ⊥平面 PAB.又因为 BE平面 PBE ,故平面 PBE ⊥平面 PAB.(Ⅱ)解易知 PB(1,0, 2), BE(0,3,0〕, PA (0,0, 2), AD( 1 ,3,0)22 2n ( x 1 , y 1 , z 1 ) n 1 PB 0,设是平面PBE 的一个法向量,那么由得1n 1 BE 0x 1 0 y 1 2z 1 0,0 x 13y 2 0 z 2 0.所以y 1 0, x 12z 1.故可取 n 1 (2,0,1).2设 n 2( x 2 , y 2 , z 2 )PAD 的 n 2 PA 0, 是 平 面 一个法向量,那么由AD得n 2 00 x 2 0 y 2 2z 2 0,1 3 所以 z2 0, x 23 y 2 .故可取 n 2 ( 3, 1,0).2 x 22 y 2 0 z 20.于是, cosn 1, n 2n 1 n 22 3 15 .n 1 n 2 5 25故平面和平面所成二面角〔锐角〕的大小是15PADPBEarccos..2. 如图,正三棱柱 ABC - A 1B 1C 1 的所有棱长都为 2, D 为 CC 1 中点。
高二数学空间向量与立体几何测试题
高二数学 空间向量与立体几何测试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( )A .有相同起点的向量B .等长向量C .共面向量D .不共面向量3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .//B .⊥C .也不垂直于不平行于,D .以上三种情况都可能4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) A.627 B. 637 C. 647 D. 6575.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( )A.+-a b cB. -+a b cC. -++a b cD. -+-a b c6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为( )A .30°B .45°C .60°D .以上都不对7.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为( )A .2B .3C .4D .59.已知的数量积等于与则35,2,23+-=-+=( )EM GDCBA10.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分) 11.若A(m +1,n -1,3),B(2m ,n ,m -2n ),C(m +3,n -3,9)三点共线,则m +n = .12.12、若向量 ()()1,,2,2,1,2a b λ==-,,a b 夹角的余弦值为89,则λ等于__________.13.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b-c ,则m,n 的夹角为 。
高中数学——空间向量与立体几何练习题(附答案)
空间向量练习题1. 如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD的中点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. 如图所示,以A 为原点,建立空间直角坐标系.则相关各点的 坐标分别是A (0,0,0),B (1,0,0),3(,,0),22C 1(,22D P (0,0,2),(1,,0).2E (Ⅰ)证明因为BE =, 平面PAB 的一个法向量是0(0,1,0)n =, 所以0BE n 和共线.从而BE ⊥平面PAB . 又因为BE ⊂平面PBE , 故平面PBE ⊥平面PAB .(Ⅱ)解易知(1,0,2),(0,02PB BE =-=), 1(0,0,2),(,,0)22PA AD =-= 设1111(,,)n x y z =是平面PBE 的一个法向量,则由110,n PB n BE ⎧=⎪⎨=⎪⎩得111122020,000.2x y z x y z +⨯-=⎧⎪⎨⨯++⨯=⎪⎩所以11110,2.(2,0,1).y x z n ===故可取 设2222(,,)n x y z =是平面PAD 的一个法向量,则由220,0n PA n AD ⎧=⎪⎨=⎪⎩得2222220020,100.2x y z x y z ⨯+⨯-=⎧⎪⎨++⨯=⎪⎩所以2220,.z x y ==故可取2(3,1,0).n =-于是,12121223cos ,5n n n n n n <>===⨯故平面PAD 和平面PBE 所成二面角(锐角)的大小是 2. 如图,正三棱柱ABC -A 1B 1C 1的所有 棱长都为2,D 为CC 1中点。
(Ⅰ)求证:AB 1⊥面A 1BD ;(Ⅱ)求二面角A -A 1D -B 的大小; (Ⅲ)求点C 到平面A 1BD 的距离;(Ⅰ)证明 取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A,(00A ,1(120)B ,,,1(12AB ∴=,,(210)BD =-,,,1(12BA =-.12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .(Ⅱ)解 设平面1A AD 的法向量为()x y z =,,n .(11AD =--,,,1(020)AA =,,.AD ⊥n ,1AA ⊥n ,令1z =得(1)=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴为平面1A BD 的法向量.cos <n ,1113222AB AB AB ->===n n .∴二面角1A A D B --的大小为 (Ⅲ)解 由(Ⅱ),1AB 为平面1A BD 法向量,1(200)(12BC AB =-=,,,,.∴点C 到平面1A BD 的距离1122BC AB d AB -===. 3.如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点, (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离. ⑴ 证明 连结OC,BO DO BC CD ==,CO BD ⊥.在AOC ∆中,由已知可得1,AO CO ==而2AC =,222,AO CO AC ∴+= 90,o AOC ∴∠=即.AO OC ⊥,BD OC O =∴AO ⊥平面BCD . (2)解 以O 为原点,如图建立空间直角坐标系, 则(1,0,0),(1,0,0),B D -2cos ,4BA CD BA CD BA CD⋅∴<>==⋅, ∴ 异面直线AB 与CD 所成角的余弦值为4.⑶解 设平面ACD 的法向量为(,,),n x y z =则(,,)(1,0,1)0(,,)1)0n AD x y z n AC x y z ⎧⋅=⋅--=⎪⎨⋅=⋅-=⎪⎩, ∴0x z z +=⎧⎪-=,令1,y =得(3,1,n =-是平面ACD 的一个法向量.又1(2EC =- ∴点E 到平面ACD 的距离377EC n h n⋅===. 4.已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=½AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点. (Ⅰ)证明:CM ⊥SN ;(Ⅱ)求SN 与平面CMN 所成角的大小. 证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系如图。
高二数学空间向量与立体几何试题
高二数学空间向量与立体几何试题1.已知向量与向量平行,则()A.B.C.D.【答案】C【解析】因为向量与向量平行,所以,,故选C。
【考点】本题主要考查平行向量及向量的坐标运算。
点评:简单题,按向量平行的充要条件计算。
2.在平面若一直线垂直于轴,则其方程可表示为(为定值).在空间若一直线垂直于平面,则其方程可表示为.【答案】(其中为定值)【解析】直线在竖直方向上,竖坐标可为任意实数;直线与平面有交点,交点坐标是定值,所以空间若一直线垂直于平面,则其方程可表示为(其中为定值)。
【考点】本题主要考查空间直角坐标系的概念。
点评:类比推理,结合图形特征。
3.已知M=(2,-5,-3),N(-4,9,-5),则线段中点的坐标是_____________.【答案】(-1, 2,-4)【解析】利用线段的中点坐标公式可得线段中点的坐标是(-1, 2,-4)。
【考点】本题主要考查线段的终点坐标公式。
点评:简单题,套公式计算。
4.已知三点的坐标分别为,若,则()A.28B.C.14D.【答案】D【解析】因为,所以=0,即=(-2,-6,,2)·(-1,6,-3)=0,所以=-14,选D。
【考点】本题主要考查向量的坐标运算。
点评:简单题,按垂直向量的充要条件计算。
5.已知是边长为1的正三角形所在平面外一点,且,分别是的中点,则异面直线与所成角的余弦值为()A.B.C.D.【答案】B【解析】由已知,这是一个正四面体,由平面几何知识,||=||=。
如图,因为分别是的中点,所以=,==,=·===-所以C==,故选B。
【考点】本题主要考查空间向量的应用,向量的数量积。
点评:典型综合题。
通过综合应用几何图形的特征,将问题转化成向量的数量积运算,达到解题目的。
6.正方体的棱长为2,分别为、的中点。
求:与所成角的余弦值.【答案】与所成的角的余弦值为【解析】如图建系:则C(0,2,0)、D1(0,0,2)、M(2,0,1)、N(2,2,1)∴∴但与所成的角应是的补角,∴与所成的角的余弦值为。
空间向量与立体几何测试试卷
空间向量与立体几何测试试卷空间向量与立体几何测试试卷一、选择题(每题2分,共20分)1.设向量a=(1,2,3),向量b=(4,5,6),则a·b的结果为:A. 4B. 14C. 32D. 562.设向量a=(1,2,3),向量b=(4,5,6),则a×b的结果为:A. (1,-2,1)B. (-1,2,-1)C. (1,2,1)D. (-1,-2,-1)3.已知向量a=(1,2,3),向量b=(4,5,6),则向量a+b的结果为:A. (5,7,9)B. (5,6,7)C. (4,7,9)D. (4,6,8)4.已知向量a=(1,2,3),向量b=(4,5,6),则向量a-b的结果为:A. (3,3,3)B. (-3,-3,-3)C. (-3,-1,1)D. (3,1,-1)5.已知向量a=(1,2,3),向量b=(4,5,6),则向量a·(a+b)的结果为:A. 42B. 56C. 70D. 846.设向量a=(1,2,3),向量b=(4,5,6),则向量a×(a+b)的结果为:A. (14,-28,14)B. (-14,28,-14)C. (14,28,14)D. (-14,-28,-14)7.设向量a=(1,2,3),向量b=(4,5,6),则向量|a|的结果为:A. √6B. √14C. √26D. √468.设向量a=(1,2,3),向量b=(4,5,6),则向量|b|的结果为:A. √14B. √26C. √38D. √509.设向量a=(1,2,3),向量b=(4,5,6),则向量a×b的模长为:A. √6B. √14C. √26D. √3810.设向量a=(1,2,3),向量b=(4,5,6),则向量a·b的模长为:A. 14B. 26C. 38D. 50二、填空题(每题3分,共30分)1.向量(2,3,4)与向量(-1,2,-3)的夹角为______度。
高二数学选修21第3章空间向量与立体几何单元测试题(含答案)
高二数学选修2-1第3章空间向量与立体几何单元测试题(含答案)空间向量是解立体几何的一种常用方法,以下是第3章空间向量与立体几何单元测试题,希望对大家有帮助。
一、填空题1.判断下列各命题的真假:①向量AB的长度与向量BA的长度相等;②向量a与b平行,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤有向线段就是向量,向量就是有向线段.其中假命题的个数为________.2.已知向量AB,AC,BC满足|AB|=|AC|+|BC|,则下列叙述正确的是________.(写出所有正确的序号)①AB=AC+BC②AB=-AC-BC③AC与BC同向;④AC与CB同向.3.在正方体ABCD-A1B1C1D中,向量表达式DD1-AB+BC化简后的结果是________.4.在平行六面体ABCD-A1B1C1D中,用向量AB,AD,AA1来表示向量AC1的表达式为___________________________________________________ _____________________.5.四面体ABCD中,设M是CD的中点,则AB+12(BD+BC)化简的结果是________.6.平行六面体ABCDA1B1C1D1中,E,F,G,H,P,Q分别是A1A,AB,BC,CC1,C1D1,D1A1的中点,下列结论中正确的有________.(写出所有正确的序号)① +GH+PQ② -GH-PQ③ +GH-PQ④ -GH+PQ=0.7.如图所示,a,b是两个空间向量,则AC与AC是________向量,AB与BA是________向量.8.在正方体ABCD-A1B1C1D中,化简向量表达式AB+CD+BC+DA 的结果为________.二、解答题9.如图所示,已知空间四边形ABCD,连结AC,BD,E,F,G 分别是BC,CD,DB的中点,请化简(1)AB+BC+CD,(2)AB+GD+EC,并标出化简结果的向量.10.设A是△BCD所在平面外的一点,G是△BCD的重心.求证:AG=13(AB+AC+AD).能力提升11.在平行四边形ABCD中,AC与BD交于点O,E是线段OD 的中点,AE的延长线与CD交于点F.若AC=a,BD=b,则AF=______________________.12.证明:平行六面体的对角线交于一点,并且在交点处互相平分.解析①真命题;②假命题,若a与b中有一个为零向量时,其方向是不确定的;③真命题;④假命题,终点相同并不能说明这两个向量的方向相同或相反;⑤假命题,向量可用有向线段来表示,但并不是有向线段.2.④解析由|AB|=|AC|+|BC|=|AC|+|CB|,知C点在线段AB上,否则与三角形两边之和大于第三边矛盾,所以AC与CB同向.3.BD1解析如图所示,∵DD1=AA1,DD1-AB=AA1-AB=BA1,BA1+BC=BD1,DD1-AB+BC=BD1.4.AC1=AB+AD+AA1解析因为AB+AD=AC,AC+AA1=AC1,所以AC1=AB+AD+AA1.5.AM解析如图所示,因为12(BD+BC)=BM,所以AB+12(BD+BC)=AB+BM=AM.6.①解析观察平行六面体ABCDA1B1C1D1可知,向量EF,GH,PQ 平移后可以首尾相连,于是EF+GH+PQ=0.7.相等相反8.0解析在任何图形中,首尾相接的若干个向量和为零向量.9.解 (1)AB+BC+CD=AC+CD=AD.(2)∵E,F,G分别为BC,CD,DB的中点.BE=EC,EF=GD.AB+GD+EC=AB+BE+EF=AF.故所求向量AD,AF,如图所示.10.证明连结BG,延长后交CD于E,由G为△BCD的重心,知BG=23BE.∵E为CD的中点,BE=12BC+12BD.AG=AB+BG=AB+23BE=AB+13(BC+BD)=AB+13[(AC-AB)+(AD-AB)]=13(AB+AC+AD).11.23a+13b解析 AF=AC+CF=a+23CD=a+13(b-a)=23a+13b.12.证明如图所示,平行六面体ABCDABCD,设点O是AC的中点,则AO=12AC=12(AB+AD+AA).设P、M、N分别是BD、CA、DB的中点.则AP=AB+BP=AB+12BD=AB+12(BA+BC+BB)=AB+12(-AB+AD+AA)=12(AB+AD+AA).同理可证:AM=12(AB+AD+AA)AN=12(AB+AD+AA).由此可知O,P,M,N四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分.第3章空间向量与立体几何单元测试题的全部内容就是这些,查字典数学网预祝大家新学期可以取得更好的成绩。
高二数学-空间向量与立体几何测试题及答案
高二数学空间向量与立体几何测试题第1卷(选择题,共50分)一、选择题:(本大题共10个小题每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 在下列命题中:CD若a、b共线则a、b所在的直线平行;@若a、b所在的直线是异面直线,则a、b一定不共面;@若a、b、c三向量两两共面,则a、b、c三向量一定也共面;@已知三向量a、b、c,则空间任意一个向量p总可以唯一表示为p=a+yb+zc,, y, z R.其中正确命题的个数为( )A. 0B. 1C. 2D. 32. 若三点共线为空间任意一点且则的值为()A. lB.C.D.3. 设,且,则等千()A. B. 9 C. D4. 已知a=(2, —1, 3) , b= C—1, 4, —2) , c= (7, 5, 入),若a、b、c三向量共面,则实数入等千()A. B. C.5.如图1,空间四边形的四条边及对角线长都是,点分别是的中点则等千()D.A.C...BD6. 若a、b均为非零向量,则是a与b共线的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件7. 已知点0是LABC所在平面内一点满足• = • = • '则点0是LABC的()A. 三个内角的角平分线的交点B. 三条边的垂直平分线的交点C. 三条中线的交点8. 已知a+b+c=O,al =2, bl =3,A. 30°B. 45°D.三条高的交点l e = , 则向量a与b之间的夹角为()C. 60°D. 以上都不对9. 已知, ' ,点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A.B.10. 给出下列命题:CD已知,则C. D.@为空间四点若不构成空间的一个基底,那么共面;@已知则与任何向量都不构成空间的一个基底;@若共线则所在直线或者平行或者重合.正确的结论的个数为()C. 3A.1B.2D.4 第II卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.已知LABC的三个顶点为A(3, 3, 2) , B (4, —3, 7) , C (0, 5, 1) , 则BC边上的中线长为12. 已知三点不共线为平面外一点若由向量确定的点与共面,那么13. 已知a,b,c是空间两两垂直且长度相等的基底,m=a+b,n=b-c,则m,n的夹角为14. 在空间四边形ABC D中,AC和B D为对角线G为L:.ABC的重心,E是B D上一点BE=3E D, 以{, , }为基底,则=15. 在平行四边形ABCD中,AB=AC=l,乙ACD=90, 将它沿对角线AC折起,使AB与CD成60角,则B,D两点间的距离为16. 如图二面角a-t -B的棱上有A,B两点直线AC,B D分别在这个二面角的两个半平面内,且都垂直千AB,已知AB=4,AC=6, B D=8, C D= ,二面角Q—t—B的大小三、解答题(本大题共5小题,满分70分),17. C lo分)设试问是否存在实数,使成立?如果存在,求出;如果不存在,请写出证明.18. (12分)如图在四棱锥中,底面ABC D是正方形,侧棱底面ABC D,, 是PC的中点,作交PB千点F.(1)证明PAIi平面EDB:(2)证明PB上平面E F D:(3)求二面角的大小.、、、、、、、、.、19. (12分)如图在直三棱柱ABC—AlBlCl中,底面是等腰直角三角形,乙ACB=90°.侧棱AA1=2, D. E 分别是CCl与AlB的中点点E在平面ABO上的射影是DAB D的重心G.(1)求AlB与平面ABO所成角的大小.(2)求Al到平面ABO的距离1) 20. 12分)如图在三棱柱ABC-AlBlCl中,AB上AC,顶点Al在底面ABC上的射影恰为点B,且AB=AC=A1B=2.2)求棱AA1与BC所成角的大小;在棱BlCl上确定一点P,使AP=, 并求出二面角P—AB—Al的平面角的余弦值A1C1B21. (12分)如图直三棱柱ABC-AlBlCl中AB上AC,D.E分别为AAl.B lC的中点DEl_平面BCCl.C I)证明:A B=ACC II)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小c,22. (12分)P是平面ABC D外的点四边形ABC D是平行四边形,AP= (-1, 2, -1)(1)求证:PA 平面ABC D.(2)对千向量,定义一种运算:,试计算的绝对值;说明其与几何体P—ABC D的体积关系,并由此猜想向量这种运算的绝对值的几何意义(几何体P-ABC D叫四棱锥,锥体体积公式:V= ) .一、选 1 2 择题(本大题土2上、10小题,每3 4空间向量与立体几何(2)参考答案5 6 7 8 9 10小题5/刀\.让,/、50分)题号答案D D D A B C A 二、填空题(本大题共4小题,每小题6分,共24分)11. (0, ,) 12. 0 13. 1, —3 14. 90° l厮—15。
空间向量与立体几何测试卷(高二理科)
空间向量与立体几何测试卷姓名: 班别:一、选择题:1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为c z b y a x p ++=.其中正确命题的个数为 ( )A .0B .1C .2D .32.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( )A.11111AA A B A D ++B.111AB DD D C ++ C.111AD CC D C ++ D.11111()2AB CD AC ++ 3.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( )A .627B .637C .647D .6574. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( ) A .2 B .3 C .4D .5 5.若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为89,则λ=( ) A.2 B.2- C.2-或255 D.2或255- 6.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标( ) A.7412⎛⎫- ⎪⎝⎭,, B.(241),, C.(2141)-,, D.(5133)-,,7.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B = ( )A .a +b -cB .a -b +cC .-a +b +cD .-a +b -c8.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为( )A .30°B .45°C .60°D .以上都不对9.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为 ( )A .131(,,)243 B .123(,,)234 C .448(,,)333 D .447(,,)33310.三棱锥S —ABC 中,SA ⊥底面ABC ,SA=4,AB=3,D 为AB 的中点∠ABC=90°,则点D 到面SBC 的距离等于( )A .125B .95C .65D .35二、填空题:11.已知向量)1,5,3(=a ,)3,2,2(=b ,)3,1,4(--=c ,则向量c b a 432+-的坐标为 .12.若A(m +1,n -1,3),B(2m ,n ,m -2n ),C(m +3,n -3,9)三点共线,则m +n = .13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = .14.在正三棱柱ABC ——A 1B 1C 1中,若AB=2BB 1,则AB 1与C 1B 所成的角的大小为 .三、解答题:15.16. 设向量()()3,5,4,2,1,832,,a b a b a b =-=-⋅,计算并确定,λμ的关系,使a b z λμ+与轴垂直16.如图,在直三棱柱ABC -A 1B 1C 1中,AC =BC =CC 1=2,AC ⊥BC ,D 为AB 的中点.(1)求异面直线1AC 与1B B 所成的角的余弦值;(2)求证:11//AC B CD 面;(3)求证:11A B B CD ⊥面17.如图,在四棱锥S ABCD -中,底面ABCD 是正方形,其他四个侧面都是等边三角形,AC 与BD 的交点为O , E 为侧棱SC 的中点.(Ⅰ)求直线SD 与平面BDE 所成角的余弦值;(Ⅱ)求证:平面BDE ⊥平面SAC ;O S A B CDE18.正四棱锥S —ABCD 中,所有棱长都是2,P 为SA 的中点,如图.(1) 求DP 与SC 所成的角的大小;(2). 求二面角B —SC —D 的大小19.如图①,正三角形ABC 边长2,CD 为AB 边上的高,E 、F 分别为AC 、BC 中点,现将ABC ∆沿CD 翻折成直二面角B DC A --,如图②(1)判断翻折后直线AB 与面DEF 的位置关系,并说明理由(2)求二面角D AC B --的余弦值(3)求点C 到面DEF 的距离图 ① 图 ②。
高中新课标数学选修(21)空间向量及立体几何测试题
高中新课标数学选修〔2-1〕空间向量与立体几何测试题一、选择题1.空间的一个基底{},,a b c 所确定平面的个数为〔 〕 A.1个 B.2个 C.3个 D.4个以上答案:C2.(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,那么BC =〔 〕 A.(042),, B.(042)--,, C.(040),, D.(202)-,, 答案:B3.向量111222()()x y z x y z ==,,,,,a b ,假设≠a b ,设a b -=R ,那么a b -与x 轴夹角的余弦值为〔 〕A.12x x R- B.21x x R- C.12x x R- D.12()x x R-±答案:D4.假设向量MAMB MC ,,的起点与终点M A B C ,,,互不重合且无三点共线,O 是空间任一点,那么能使MAMB MC ,,成为空间一组基底的关系是〔 〕 A.111333OM OA OB OC =++B.MA MB MC ≠+C.1233OM OA OB OC =++D.2MA MB MC =- 答案:C5.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,那么E 是平面11ABC D 的间隔 是〔 〕 A.32B.22C.12D.33答案:B6.一条长为a 的线段,夹在互相垂直的两个平面之间,它和这两个平面所成的角分别是45°和30°,由这条线段两端向两平面的交线引垂线,垂足的间隔 是〔 〕A.2a B.3a C.22a D.23a 答案:A7.假设向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,那么a =〔 〕 A.2 B.4C.6D.12答案:C8.设P 是60°的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,A B ,为垂足,42PA PB ==,,那么AB 的长为〔 〕A.42 B.23 C.25 D.27答案:D9.ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角P AD C --为60°,那么P 到AB 的间隔 为〔 〕 A.22 B.3 C.2 D.7答案:D 10.()()(00)x y z a b c xyz abc ==≠≠,,,,,,p q ,假设有等式2222222()()()x y z a b c ax by cz ++++=++成立,那么,p q 之间的关系是〔 〕A.平行 B.垂直 C.相交 D.以上都可能答案:A11.平面α与β所成二面角为80°,P 为αβ,外一定点,过点P 一条直线与αβ,所成的角都是30°,那么这样的直线有且仅有〔 〕 A.1条 B.2条 C.3条 D.4条 答案:D12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,那么P 点的轨迹为〔 〕 A.直线 B.圆 C.椭圆 D.双曲线 答案:B二、填空题13.(11)(2)t t t t t =--=,,,,,a b ,那么-b a 的最小值是 .答案:35514.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 答案:120°15.如图2,在正三棱柱111ABC A B C -中,1AB D =,在棱1BB 上,且1BD =,假设AD 与平面11AA C C 所成的角为α,那么sin α= . 答案:6416.m l ,是异面直线,那么: ①必存在平面α过m 且与l 平行; ②必存在平面β过m 且与l 垂直; ③必存在平面γ与m l ,都垂直; ④必存在平面δ与m l ,间隔 都相等. 其中正确命题的序号是 . 答案:①④三、解答题17.设空间两个不同的单位向量122(0)(0)x y x y ==,,,,,a b 与向量(111)=,,c 的夹角都等于π4. 解:〔1〕由π6cos 42==ac a c ,且11a c =+·x y , 1162+=∴x y . 又22111x y =+=a ,222111111113()2122x y x y x y x y +=++=+=∴. 1114x y =∴. 〔4〕同理可得22226124x y x y +==,, 11x y ,∴是方程261024x x -+=的两根,同理22x y ,也是. 又≠∵a b ,1221==,∴x y x y .cos ==,·∴·a b a b a b a b 1212112212=+=+=x x y y x y x y , 60a b =,∴°.18.如图3,直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,ADC ∠是直角,角421AB CD AB AD DC ===,,,∥,求异面直线1BC 与DC 所成的大小. 建解:以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴立空间直角坐标系D xyz -,那么1(012)(240)(010)C B A ,,,,,,,,. 1(232)BC =--,,∴,(010)CD =-,,.设1BC 与CD 所成角为θ, 那么11317cos 17BC CD BC CD θ==·. 317arccos17θ=∴. ∴异面直线1BC 与DC 所成角的大小为317arccos17. 19.如图4,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上挪动,问AE 等于何值时,二面角1D EC D --的大小为π4. 分别解:设AE x =,以D 为原点,直线1DA DC DD ,,所在直线为x y z ,,轴建立空间直角坐标系,那么11(101)(001)(10)(100)(020)A D E x A C ,,,,,,,,,,,,,,. 11(120)(021)(001)CE x D C DD =-=-=,,,,,,,,∴.设平面1D EC 的法向量为()a b c =,,n ,由1020(2)00nn ⎧=-=⎧⎪⇒⎨⎨+-==⎩⎪⎩,,,··D C b c a b x CE 令1b =,22c a x ==-,∴. (212)x =-,,∴n .依题意121π222cos 422(2)5DD DD x ==⇒=-+n n ·.23x =-∴〔23x =+不合题意,舍去〕. 23AE =-∴.20.如图5所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截而得到的,其中14231AB BC CC BE ====,,,.〔1〕求BF ;〔2〕求点C 到平面1AEC F 的间隔 .解:〔1〕以D 为原点,DAF DC DF ,,所在直线为x 轴, y 轴,z 轴建立空间直角坐标系D xyz -, 1(000)(240)(200)(040)(241)(043)D B A C E C ,,,,,,,,,,,,,,,,,,设(00)F z ,,. 由1AF EC =,得(20)(202)z -=-,,,,, 2z =∴.(002)(242)F BF =--,,,,,∴.26BF =∴.〔2〕设1n 为平面1AEC F 的法向量,1(1)x y =,,n ,由1100AE AF ⎧=⎪⎨=⎪⎩,,··n n得410220y x +=⎧⎨-+=⎩,.114x y =⎧⎪⎨=-⎪⎩,.∴又1(003)CC =,,,设1CC 与1n 的夹角为α, 那么111433cos 33CC CC α==·n n. C ∴到平面1AEC F 的间隔 1433cos 11d CC α==.21.如图6,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O D ,分别是AC PC ,的中点,OP ⊥底面ABC .〔1〕求证:OD ∥平面PAB ;〔2〕当12k =时,求直线PA 与平面PBC 所成角的大小;〔3〕当k 为何值时,O 在平面PBC 内的射影恰好为PBC △的重心? 解:〔1〕证明:OP ⊥∵平面ABC OA OC AB BC ==,,, OA OB OA OP OB OP ⊥⊥⊥,,∴.以O 为原点,建立如下图空间直角坐标系O xyz -.设AB a =,那么222000000222A a B a C a ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,.设OP h =,那么(00)P h ,,.D ∵为PC 的中点,21042OD a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴. 202PA a h ⎛⎫=- ⎪ ⎪⎝⎭,,,12OD PA =-∴. OD PA ∴∥,OD ∴∥平面PAB .〔2〕12k =,即2PA a =,72h a =∴, 27022PA a a ⎛⎫=- ⎪ ⎪⎝⎭,,∴ 可求得平面PBC 的法向量1117⎛⎫=-- ⎪ ⎪⎝⎭,,n . 210cos 30PA PA PA ==,·∴n n n. 设PA 与平面PBC 所成的角为θ,那么210sin cos 30PA θ==,n .PA ∴与平面PBC 所成的角为210arcsin30. 〔3〕PBC △的重心221663G a a h ⎛⎫- ⎪ ⎪⎝⎭,,,221663OG a a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴, OG ⊥∵平面PBC ,OG PB ⊥∴.又202PB a h ⎛⎫=- ⎪ ⎪⎝⎭,,,2211063OG PB a h =-=∴·. 22h a =∴. 22PA OA h a =+=∴,即1k =.反之,当1k =时,三棱锥O PBC -为正三棱锥. O ∴在平面PBC 内的射影为PBC △的重心.22.如图7,向量OA OB OC ===,,a b c ,可构成空间向量的一个基底,假设123()a a a =,,,a123123()()b b b c c c ==,,,,,b c ,在向量已有的运算法那么的根底上,新定义一种运算233231131221()a b a b a b a b a b a b ⨯=---,,a b ,显然⨯a b 的结果仍为一向量,记作p .(1) 求证:向量p 为平面OAB 的法向量;(2) 求证:以OA OB ,为边的平行四边形OADB 的面积等于⨯a b ;(3) 将四边形OADB 按向量OC =c 平移,得到一个平行六面体111OADB CA D B -,试判断平行六面体的体积V 与()⨯·a b c 的大小.解:〔1〕233213113212213()()()0a b a b a a b a b a a b a b a =-+-+-=pa ·, ⊥p a ∴,同理⊥pb . p ∴是平面OAB 的法向量.〔2〕设平行四边形OADB 的面积为S ,OA 与OB 的夹角为θ, 那么sin θ=S OA OB 21⎛⎫=- ⎪ ⎪⎝⎭·a b a b a b 222()a b a b a b -=⨯·.∴结论成立.〔3〕设C 点到平面OAB 的间隔 为h ,OC 与平面OAB 所成的角为α, 那么=V Sh sin α=⨯a b c ,又()cos sin α⨯=⨯⨯=⨯,·a b c a b c a b c a b c , ∴V ()a b c =⨯·.。
(完整版)空间向量与立体几何测试题及答案
高中 数学选修(2-1)空间向量与立体几何测试题一、选择题1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( )A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++D.11111()2AB CD AC ++答案:B3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C.12D.2-答案:B5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D.649答案:B6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-,,AB AC AD ,则四点,,,A B C D ( )A.一定共圆B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,, 的中点,则2a 等于( )A.2BA AC · B.2AD BD ·C.2FGCA ·D.2EFCB · 答案:B8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122-,,C.51122--,,D.51122,,答案:A9.若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为89,则λ=( ) A.2 B.2- C.2-或255D.2或255-答案:C10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( )A.7412⎛⎫- ⎪⎝⎭,, B.(241),, C.(2141)-,, D.(5133)-,,答案:D11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos3D.3arccos6答案:D12.给出下列命题:①已知⊥a b ,则()()a b c c b a b c ++-=···;②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面;③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( )A.1 B.2 C.3 D.4 答案:C13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055⎛⎫-⎪⎝⎭,,14.已知,,A B C 三点不共线,O 为平面ABC 外一点,若由向量1253OP OA OB OC λ=++确定的点P 与A B C ,,共面,那么λ= . 答案:21515.已知线段AB ⊥面α,BC α⊂,CD BC ⊥,DF ⊥面α于点F ,30DCF ∠=°,且D A ,在平面α的同侧,若2AB BC CD ===,则AD 的长为 . 答案:2216.在长方体1111ABCD A B C D -中,1B C 和1C D 与底面所成的角分别为60°和45°,则异面直线1B C 和1C D 所成角的余弦值为 . 答案:64三、解答题17.设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k ,试问是否存在实数λμν,,,使4123a a a a λμν=++成立?如果存在,求出λμν,,;如果不存在,请写出证明.答案:解:假设4123a a a a λμν=++成立.1234(211)(132)(213)(325)a a a a =-=-=--=,,,,,,,,,,,∵, (22323)(325)λμνλμνλμν+--++--=,,,,∴. 22332235λμνλμνλμν+-=⎧⎪-++=⎨⎪--=⎩,,,∴解得213λμν=-⎧⎪=⎨⎪=-⎩,,. 所以存在213v λμ=-==-,,使得412323a a a a =-+-. 理由即为解答过程.为2a ,求1AC 与侧面18.如图2,正三棱柱111-ABC A B C 的底面边长为a ,侧棱长11ABB A 所成的角.解:建立如图所示的空间直角坐标系,则113(000)(00)(002)222⎛⎫-⎪ ⎪⎝⎭,,,,,,,,,,,aA B a A a C a a . 由于(100)=-,,n 是面11ABB A 的法向量,1111312cos 6023aAC AC AC a AC ===⇒=,,·°n n n n.故1AC 与侧面11ABB A 所成的角为30°.19.如图3,直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=°,侧棱12AA D E =,,分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,求点1A 到平面AED 的距离.解:建立如图所示的空间直角坐标系,设2CA a =, 则1221(200)(020)(001)(202)(1)333a a A a B a D A a E a a G ⎛⎫⎪⎝⎭,,,,,,,,,,,,,,,,,.从而2(021)333a a GE BD a ⎛⎫==- ⎪⎝⎭,,,,,.由0GE BD GEBD ⊥⇒=·,得1a =, 则1(202)(200)(111)A A E ,,,,,,,,.自1A 作1A H ⊥面AED 于M ,并延长交xOy 面于H ,设(0)H x y ,,,则1(22)A H x y =--,,. 又(201)AD =-,,,(111)AE =-,,. 由112(2)20(2)20A H AD x A H AE x y ⊥---=⎧⎧⇒⎨⎨⊥--+-=⎩⎩,,11x y =⎧⇒⎨=⎩,,得(110)H ,,.又1111cos A M A A A A A M =,·111426cos 2326A AA A A H ==⨯=,·.20.已知正方体1111ABCD A B C D -的棱长为2,P Q ,分别是BC CD ,上的动点,且2PQ =,确定P Q ,的位置,使11QB PD ⊥.解:建立如图所示的空间直角坐标系,设BP t =, 22那么211(202)(022)(20)(22(2)20)B D P t Q t ---,,,,,,,,,,,,从而21(2(2)22)QB t =---,,,1(222)PD t =--,,, 由11110QB PD QB PD ⊥⇒=·, 即222(2)2(2)401t t t -----+=⇒=. 故P Q ,分别为BC CD ,的中点时,11QB PD ⊥.21.如图4,在底面是直角梯形的四棱锥S ABCD -中,90ABC ∠=°,SA ⊥面ABCD ,112SA AB BC AD ====,,求面SCD 与面SBA 所成二面角的正切值. 解:建立如图所示的空间直角坐标系,则1(000)(100)(110)00(001)2A B C D S ⎛⎫-- ⎪⎝⎭,,,,,,,,,,,,,,. 延长CD 交x 轴于点F ,易得(100)F ,,,作AE SF ⊥于点E ,连结DE ,则DEA ∠即为面SCD 与面SBA 所成二面角的平面角.又由于SA AF =且SA AF ⊥,得11022E ⎛⎫ ⎪⎝⎭,,,那么102EA ⎛⎫=-- ⎪⎝⎭,,12,111222ED ⎛⎫=-- ⎪⎝⎭,,,从而6cos 3EA ED EA ED EA ED ==,·, 因此2tan 2EAF ED =,. 故面SCD 与面SBA 所成二面角的正切值为22.22.平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且11C CB C CD BCD ∠=∠=∠,试问:当1CDCC 的值为多少时,1A C ⊥面1C BD ?请予以证明.解:欲使1A C ⊥面1C BD ,只须11AC C D ⊥,且11AC C B ⊥. 欲证11AC C D ⊥,只须证110CA C D =·, 即11()()0CA AA CD CC +-=·, 也就是11()()0CD CB CC CD CC ++-=·, 22由于1C CB BCD ∠=∠,显然,当1CD CC =时,上式成立; 同理可得,当1CD CC =时,11AC C B ⊥. 因此,当11CDCC =时,1A C ⊥面1C BD .一。
高二数学空间向量与立体几何测试题
高二数学 空间向量与立体几何测试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c,x,y,z ∈R .其中正确命题的个数为( )A.0B.1C.2D.32.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1B.1-C.12D.2-3.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( )A.4- B.9 C.9- D.6494.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A.627 B. 637 C. 647 D. 6575.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件6.已知点O 是△ABC 所在平面内一点,满足OA ·OB =OB ·OC =OC ·OA ,则点O 是△ABC 的( ) A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点 7.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角为( )A .30°B .45°C .60°D .以上都不对8.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为 ( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333第Ⅱ卷(非选择题,共60分)二、填空题(本大题共5小题,每小题5分,共25分)9.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为10.已知,,AB C 三点不共线,O 为平面ABC 外一点,若由向量 1253OP OA OB OC λ=++确定的点P 与AB C ,,共面,那么λ= .11.已知a,b,c 是空间两两垂直且长等的基底,m=a+b,n=b-c ,则m,n 的夹角为 .12.在空间四边形ABCD 中,AC 和BD 为对角线, G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .13.在平行四边形ABCD 中,AB=AC=1,∠ACD=900,将它沿对角线AC 折起,使AB 与CD 成600角,则B,D 两点间的距离为三、解答题(本大题共3小题,满分35分),14.(10分)如图,二面角α-ι-β的棱上有A,B 两点,直线AC,BD 分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,CD=68求二面角α-ι-β的大小.EM GDCBA15.(12分)如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,DC PD =,E 是PC 的中点,作PB EF ⊥交PB 于点F. (1)证明 ∥PA 平面EDB ; (2)证明⊥PB 平面EFD ;(3)求二面角D -PB -C 的大小.16(13分)如图,在三棱柱ABC-A 1B 1C 1中,AB ⊥AC,顶点A 1在底面ABC 上的射影 恰为点B,且AB=AC=A 1B=2.(1) 求棱AA 1与BC 所成角的大小; (2) 在棱B 1C 1上确定一点P,使AP=14,并求出二面角P-AB-A 1的平面角的余弦值.BC附加题:如图,已知⊥PA 面ABC ,BC AD ⊥于D ,1===AD CD BC 。
人教版高二数学空间向量与立体几何练习(含答案)
人教版高二数学空间向量与立体几何练习(含答案)1.空间直角坐标系中,已知(1,2,3)A -,(3,2,5)B -,则线段AB 的中点坐标为( ) A.(1,2,4)--B.(2,0,1)-C.(2,0,2)-D.(2,0,1)-2.若向量(1,,0)λ=a ,(2,1,2)=-b ,且a 与b 的夹角的余弦值为23,则实数λ等于( ). A.0B.43-C.0或43-D.0或433.已知棱长为1的正方体1111ABCD A B C D -的上底面1111A B C D 的中心为1O ,则11AO AC ⋅的值为( ).A.-1B.0C.1D.24.已知(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则下列向量是平面ABC 的一个法向量的是( ) A.(1,1,1)- B.(1,1,1)- C.333,,333⎛⎫--- ⎪ ⎪⎝⎭D.333,,333⎛⎫- ⎪⎪⎝⎭5.如图,在三棱锥P ABC -中,ABC 为等边三角形,PAC 为等腰直角三角形,4PA PC ==,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为( )A.142 3 D.126.如图,点P 为矩形ABCD 所在平面外一点,PA ⊥平面,ABCD Q 为线段AP 的中点,3,4,2AB BC PA ===,则点P 到平面BQD 的距离为( )A.513B.1213C.135D.13127.(多选)已知向量(1,1,)m =-a ,(2,1,2)m =--b ,则下列结论中正确的是( ) A.若||2=a ,则2m = B.若⊥a b ,则1m =- C.不存在实数λ,使得=a b D.若1⋅=-a b ,则(1,2,2)+=---a b8.(多选)已知正方体1111ABCD A B C D -的棱长为1,点E 、O 分别是11A B 、11A C 的中点,P 在正方体内部且满足1312423AP AB AD AA =++,则下列说法正确的是( ) A.点A 到直线BE 5 B.点O 到平面11ABC D 2 C.平面1A BD 与平面11B CD 3 D.点P 到直线AB 的距离为25369.已知(1,52) AB =-,,(3,1,)BC z =,若AB BC ⊥,(1,,3)BP x y =--,且BP ⊥平面ABC ,则x y +=___________.10.如图,在正四棱锥P ABCD -中,PA AB =,点M 为PA 的中点,BD BN λ=.若MN AD ⊥,则实数λ=__________.11.在棱长为2的正方体1111ABCD A B C D -中,M ,N 分别是111,A D CD 的中点,则直线MN 与平面ABCD 所成的角的余弦值为__________.12.如图,ABC △和BCD △都是边长为2的正三角形,且它们所在平面互相垂直.DE ⊥平面BCD ,且6AE =.(1)设P 是DE 的中点,求证://AP 平面BCD . (2)求二面角B AE C --的正弦值.答案以及解析1.答案:D解析:设中点坐标为(,,)x y z ,根据中点坐标公式得1322x +==,2202y -+==,3512z -==-.故选D. 2.答案:C解析:由题意得2202cos ,||31414λλ⋅-+〈〉===+⋅++a b a b a b ,解得0λ=或43λ=-.故选C. 3.答案:D解析:建立如图所示的空间直角坐标系,则(1,0,0)A ,111,,122O ⎛⎫⎪⎝⎭,1(0,1,1)C ,111,,122AO ⎛⎫=- ⎪⎝⎭,1(1,1,1)AC =-,121111,,1(1,1,1)122222AO AC ⎛⎫∴⋅=-⋅-=++= ⎪⎝⎭.故选D.4.答案:C解析:易得(1,1,0)AB =-,(1,0,1)AC =-, 设(,,)x y z =n 为平面ABC 的一个法向量,则0,0,AB AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x y x z -+=⎧⎨-+=⎩x y z ∴==,故选C.5.答案:B解析:取AC 的中点O ,连接OP ,OB ,PA PC =,AC OP ∴⊥,平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC = ,OP ∴⊥平面ABC ,又AB BC =,AC OB ∴⊥,以O 为坐标原点,建立如图所示的空间直角坐标系,PAC 是等腰直角三角形,4PA PC ==,ABC 为等边三角形,(22,0,0)A ∴,(2,0,0)C -,2)P ,(2,6,0)D , (42,0,0)AC ∴=-,(2,6,2)PD =-,2cos ,424||||AC PD AC PD AC PD ⋅∴〈〉===⨯∴异面直线AC 与PD 所成角的余弦值为24. 故选B. 6.答案:B解析:如图,以A 为原点,分别以,,AB AD AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则(3,0,0),(0,4,0),(0,0,2),(0,0,1)B D P Q ,(3,0,1),(3,4,0),(0,0,1)QB BD QP =-=-=.设平面BQD 的一个法向量为(,,)x y z =n ,则0,0,BD QB ⎧⋅=⎪⎨⋅=⎪⎩n n 即340,30.x y x z -+=⎧⎨-=⎩ 令4x =,则12,3,(4,3,12)z y ==∴=n .∴点P到平面BQD 的距离||12||13QP d ⋅==n n . 7.答案:AC解析:由||2=a 2221(1)2m +-+, 解得2m =±,故A 选项正确;由⊥a b得2120m m --++=,解得1m =,故B 选项错误; 若存在实数λ,使得λ=a b ,则12λ=-,1(1)m λ-=-,2m λ=,显然λ无解,即不存在实数λ使得λ=a b ,故C 选项正确; 若1⋅=-a b ,则2121m m --++=-,解得0m =, 于是(1,2,2)+=--a b ,故D 选项错误. 8.答案:BC解析:如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,1(0,1,1)D ,1,0,12E ⎛⎫ ⎪⎝⎭,所以(1,0,0)BA =-,1,0,12BE ⎛⎫=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,225sin 1cos θθ-. 故A 到直线BE 的距离12525||sin 1d BA θ===A 错. 易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭, 平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211222DA C O d DA ⋅===,故B 对. 1(1,0,1)A B =-,1(0,1,1)A D =-,11(0,1,0)A D =.设平面1A BD 的法向量为(,,)x y z =n ,则110,0,A B A D ⎧⋅=⎪⎨⋅=⎪⎩n n 所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1y =,1x =, 所以(1,1,1)=n .所以点1D 到平面1A BD 的距离1133||3A D d ⋅=n n . 因为易证得平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 3,故C 对.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离2218195||144166||AP AB d AP AB ⋅=-=-=,故D 错. 9.答案:257解析:已知AB BC ⊥,由题意,可得BP AB ⊥,BP BC ⊥.利用向量数量积的运算公式,可得352015603(1)30z x y x y z +-=⎧⎪-++=⎨⎪-+-=⎩,,,解得4071574,x y z ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,401525777x y ∴+=-=. 10.答案:4解析:连接AC ,交BD 于点O ,连接OP ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设2PA AB ==,则(2,0,0)A ,(0,2,0)D -,22M ⎝⎭,2,0)B ,(0,2,0)BD ∴=-,(2,2,0)AD =-,设(0,,0)N b ,则(0,2,0)BN b =-.BD BN λ=,22(2)b λ∴-=,222b λ-∴=222N λ⎛⎫-∴ ⎪ ⎪⎝⎭,22222,,22MN λλ⎛⎫-∴=-- ⎪ ⎪⎝⎭, MN AD ⊥,2410MN AD λλ-∴⋅=-=,解得4λ=.11.答案:63解析:建立如图所示的空间直角坐标系,则1(0,0,0),(0,0,2),(1,0,2),,(0,1,1)D D M N ,所以(1,1,1)MN =--,平面ABCD 的一个法向量为1(0,0,2)DD =,所以1113cos ,3||MN DD MN DD MN DD ⋅〈==-MN 与平面ABCD 所成的角为θ,则3sin θ,所以6cos θ=. 12.答案:(1)见解析 26解析:(1)证明:取BC 的中点O ,连接,,AO DO AD .ABC ∴△是正三角形, OA BC ∴⊥.∵平面ABC ⊥平面BCD ,平面ABC 平面BCD BC =,OA ∴⊥平面BCD . OD ⊂平面BCD , AO OD ∴⊥.在Rt AOD △中,2sin 603AO DO ===336∴=+=.AD又6AE=,∴△为等腰三角形.ADE∴⊥.P是DE的中点,AP DEDE⊥平面BCD,∴∴⊥∴.AO DE AP AO AP OD////,,BCD AP⊄平面BCD,OD⊂平面,∴平面BCD.//AP(2)由(1)知,,OA DP AP OD,////∴四边形APDO为平行四边形,∴==,PD OA3∴=.23DE以点O为坐标原点,以,,OD OC OA的方向分别为x轴、y轴、z轴的正方向,建立如图的空间直角坐标系O xyz-,则3),(0,1,0)C E,A B-,(0,1,0),(3,0,23)∴===-.BA AE AC(0,1,3),(3,0,3),(0,1,3)设平面ABE的法向量为(,,)m,x y z=则0,0,BA AE ⎧⋅=⎪⎨⋅=⎪⎩m m即0,0.y ⎧=⎪=令y =1,1x z ==-,1)∴=-m .设平面ACE 的法向量为(,,)a b c =n , 则0,0,AE AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.b ==⎪⎩ 令1a =-,则1b c ==,(∴=-n.1cos ,||||5⋅∴===m n m n m n. sin ,∴=m n ∴二面角B AE C --.。
(完整word版)空间向量与立体几何测试题及答案
高中 数学选修(2-1)空间向量与立体几何测试题一、选择题1 •若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量 的终点构成的图形是()A. —个圆 E. —个点 C.半圆 D.平行四边形答案:A2 .在长方体 ABCD -ABQD i 中,下列关于 AG 的表达中错误的一个是( )答案:E3.若a , b, c 为任意向量, A. (a 亠b ) c =a - (b c )B. (a 亠b )・c =a ・c b-cC.m(a 亠 b ) =m a 亠 m bD. (a ・b )・c=a ・( b-c ) 答案:D1A. 1B. -1C.丄D -22答案:BA.B. AB DD^ De lC. AD CC 1 DC 1D.1(AB i CD i ) - AC im R ,下列等式不一定成立的是(4.若三点A B , e 共线,P 为空间任意一点, 且 PA 叱iPB = 1 PC ,^y - 的值为5. 设 a =(x,4,3), b= (3,2, z),且 a II b , A. -4 B. 9 C. -9答案:B6 . 已知非零向量 e b e 2不共线, 如果A B, C , D ( )A. 一定共圆则四点亠A DB.恰是空间四边形的四个顶点心C. 一定共面D. 肯定不共面答案:C则xz 等于(AB = e AC =2 e 2 8 e AD =3 e -3 e 2,答案:B则x, y , z 的值分别为( )9 .若向量a =(1, ,2)与b= (2, -1,2)的夹角的余弦值为答案:c答案:D12.给出下列命题:① 已知 a _b ,则 a-(b c ) c-(b a ) =b c ;② A, B, M , N 为空间四点,若BA,B M ,BN 不构成空间的一个基底, 那么A , B, M , N 共面; ③ 已知a_b ,则a , b 与任何向量都不构成空间的一个基底; ④ 若a, b 共线,则a, 正确的结论的个数为(A. 1B. 2 答案:C 二、填空题13.已知 a =(3,15), b = (1,2,3),向量 c 与 z 轴垂直,且满足 c-a = 9, c-b - -4,则 c =7.如图1空间四边形 ABCD 的四条边及对 角线长都是a ,点E , F , G 分别是AB, AD , CD 的中点,贝U a 2等于() B. 2AD-BD C. 2FG-CAD. 8 .右 a = e e 2 - e 3, b =e ^ - e 2 ■ e 3, c =e<i • e 2 — e 3,d =e 2 e 2 3 e ,且 d = x a y b z c ,1.1,2 5 厶D1 - 1「25 /1 - 1「2 5 ~1 - 2-A. 2B. -2C.-2或—55D. 2 或-5510 •已知ABCD 为平行四边形,且A(413),A. -,4,12答案:DB. (2,4,1) 11 .在正万体 ABCD - A| B 1C 1D 1 中,A. 60°B. 90°B(2,— 5,1), C(3,7, -5),则顶点D 的坐标为(C. (24,1)D. (513, -3)O 为AC , BD 的交点,则 C品C. arccos ——3GO 与AD 所成角的(D. arccos ——6b 所在直线或者平行或者重合.)D. 4A. 2EF-CB答案:22, -21 , 0 5 514.已知A B, C 三点不共线,O 为平面ABC 外一点,若由向量 ■ OC 确5 3 定的点P 与A, B, C 共面,那么,二 ____________ . 答案:-1515.已知线段 AB_面〉,BC 二卅,CD _BC , DF _ 面〉于点 F , / DCF =30°,且 D , A 在平面:-的同侧,若 AB =BC 二CD =2,则AD 的长为 ____________________ . 答案:2 216.在长方体ABCD —ABQ i D i 中,BQ 和CQ 与底面所成的角分别为 60°和45°,则异面直 线BC 和CQ 所成角的余弦值为 _____________________ . 答案:—4 三、解答题17 .设 a t =2i - j +K 逊=i +3 j -2 k 爲=-2 i + j 弋 k a =3 i +2 j +5 k,试问是否存在实 数-,7,使a 4 a 「;[_a 2 •a 3成立?如果存在,求出 \ ;如果不存在,请写出证明.答案:解:假设a 4 = ■ a^ ''a 2亠、.①成立. •- a 1 =(2, -1,1), a 2 =(13, -2), a 3 =(-21,3), a^(3,2,5), ••• (2 •-2、,-,3二朕:,• -2」- 3、)=(3,2,5).◎人+4-2v=3, j\ = -2, •. -2,解得」=1,■ -2」-3.. =5,- -3.所以存在,=-2, " =1 , v = -3 使得 a 4 = -2a 1 a 2 -3a 3. 理由即为解答过程.18 .如图2,正三棱柱AB^ -A 1B 1C 1的底面边长为a ,侧棱长为 所成的角.解:建立如图所示的空间直角坐标系,则 A(0,0, 0, B(0 , a , 0, A (0,0, V2a) , C 「一亟 a, - , ,7a2 2 由于n = ( -1,0, 0)是面ABB 1A ]的法向量,1*122a ,求AC 1与侧面ABB 1A\故AC i与侧面ABB i A所成的角为30°.19 •如图3,直三棱柱ABC- ABC中,底面是等腰直角三角形, .ACB 二90°,侧棱AA i =2, D, E分别是CC i与AB的中点,点E在平面ABD上的射影是求点A i到平面AED的距离. △ ABD的重心G ,解:建立如图所示的空间直角坐标系,设CA=2a ,则A(2a,0,0, B(0,2a,0, D(0,0,1), A(2a,0,2) E(a, a,),-(0 , -2a,1).由GE_BD=GE・BD=0,得a=1,则A i(2,0,2) A(2,0,0) E(1,1,1).自A1作AH —面AED于M,并延长交xOy面于H,设H (x, y,0), —I则AH =(x —2, y, -2).又AD =(-2,0,1) , AE =(—1,1,1).丄AH _AD, —2(x—2)—2=0, x =1, ZR由1得H (1,1,0)."H _ AE -(x -2) y -2 =0 y =1,又AM =A1A90s A1AAM = AA^cos A1AAH =2 —=20.已知正方体ABCD -ABGD1的棱长为2, P, Q分别是BC, CD上的动点,且PQ = . 2 ,确定P, Q的位置,使QB1 _PD . 解:建立如图所示的空间直角坐标系,设BP =t ,得CQ = 2 -(2 -t)2, DQ =2 - 2 -(2 -t)2.那么B(2,0, 2) D1(0,2,2, P(2 , , 0) Q(2 - 2-(2-t)2,2,0),从而QB =( 2 -(2 -t)2, -2 ,2) , PD1 =(22 -t,2),T —+由QB _ PD = QB^PD t =0 ,即-2 2 -(2 -t)2 -2(2 -t) 4 =0二t =1 .故P, Q分别为BC, CD的中点时,QB i _PD i .21.如图4,在底面是直角梯形的四棱锥S—ABCD中,.ABC=90°,SA_面ABCD ,1SA二AB二BC =1, AD ,求面SCD与面SBA所成二面角的正切2值.解:建立如图所示的空间直角坐标系,(1\则A(0,0,0, B(—1,0,0, C(—1,1,0) D .0, 2 0 , S(0,0,1).延长CD交x轴于点F ,易得F(1,0, 0),作AE _SF于点E ,连结DE ,则ZDEA即为面SCD与面SBA所成二面角的平面角.又由于SA二AF且SA_AF,得E -€5那么从而乩一1,°,」,ED…丄,1,V 2 2 丿V 2 2cos EA, EDEA-ED因此tan EAF , ED 二彳.故面SCD与面SBA所成二面角的正切值为22.平行六面体ABCD -A1B1C1D1的底面ABCD是菱形,且.GCB =. GCD = BCD ,试问:CD的值为多少时,AQ _面GBD ?请予以证明.当CG解:欲使AQ _面GBD ,只须AC _GD ,且AC _GB .欲证AC丄GD ,只须证CA・CD =0 ,t —t T 即(CA AA)・(CD -CG) =0 ,也就是(CD CB CC)(CD _CCJ =0,|C^2 -|C CJ2+|CB|C D|COS^BCD由于• GCB =/BCD , 显然,当CD |CC1时,上式成立;cos _GCB = 0 .同理可得,当时,AC —GB .CD因此,当时, AC _面G BD ..选择题:(10小题共40分)定共面的是2.直三棱柱 ABC — A B i G 中,若 CA = a, CB = b, CC r = C,则 A )B =3.若向量m 垂直向量a 和b ,向量n = ■ a h :b(',」:=只且■、,北0)则A. m 〃 nB. m _ nC. mi 不平行于n,m 也不垂直于nD.以上三种情况都可台匕 冃匕4.以下四个命题中,正确的是C. (a b)c5.对空间任意两个向量 a,b(b o),a//b 的充要条件是6.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为A B i = a, A i D i = b, A A = c ,则下列向量中与B 1M 相等的是1.已知A B C 三点不共线,对平面ABC 外的任一点O,下列条件中能确定点 M 与点A. OM = OA 亠 OB 亠 OCB . OM = 2OA _ OB _ OCC . OM =OA !OB !OC2 3D.OM =1OA 」0B -OC3 3 3A. a b —cB. a — b eC. 一 a b cD. - a b - cA.若00=丄0入+丄0目 则P 、 2 3 'A 、E 三点共线 B.设向量{a,b,c }是空间一个基底,c + a }构成空间的另一个基底D. △ ABC 是直角三角形的充要条件是 AB AC =0A. a 二 bB. a - -bC. b - ■ aA.0 °B.45C.90o.D.180 °7.在平行六面体 ABCD - A 1B 1C 1D 1中,M 为AC 与 BD 的A. -lalb lc B. la 」b 」c C. 2 2 2 28.已知 a =(• 1,0,2 Jb =(6,2」 -1,2),若a 〃b,则•与•啲值分别为9.已知a =3i 2j - k,b = i - j 2k,则5a 与3b 勺数量积等于10.在棱长为1的正方体ABC —A i B i CD 中,M 和N 分别为AB 和BB 的中点,那么直线CN所成角的余弦值是二.填空题:(4 小题共16分)11.若 A(m+1,n-1,3),B(2m,n,m-2n),c(m+3,n-3,9) 12.已知 A(0, 2, 3), B(-2 , 1, 6), C( 1, -1 , 5),若|a |二.3,且a _ AB,a _ AC,则向量 a的坐标为13.已知a,b 是空间二向量,若心|=3,闪|=2扁4卜.7,则a 与b 的夹角为 14.已知点 G 是厶ABC 的重心,O 是空间任一点,若 OA • OB • OC 」OG,贝,的值三.解答题:(10+8+12+14=44 分)15. 如图:ABCD 为矩形,PAL 平面 ABCD PA=AD M N 分别是PC AB 中点,16. 一条线段夹在一个直二面角的两个面内, 它和两个面所成的角都是300,求这条线段与这个二面角的棱所成的角的大小B.5, 2D.-5 , -2-b c 2A.-15B.-5C.-3D.-1AM 与2 B.-5C.35 D 」10三点共线,则 m+n= (1)求证:MN L 平面PCD (2)求NM 与平面 ABCD 所成的角的大小•17. 正四棱锥S—ABCD中,所有棱长都是2, P为SA的中点,如图(1) 求二面角B—SC- D的大小;(2)求DP与SC所成的角的大小18. 如图,直三棱柱ABC-A1B1C1,底面△ ABC中,CA=CB=1 / BCA=90,棱AA=2, M N分别是A1B1, AA的中点;(1)求BN的长;⑵求cos ::: BA1,CB1的值;⑶求证:AB _CM•(4)求CB与平面AABB所成的角的余弦值高中数学选修2-1测试题(10)—空间向量⑴参考答案DDBB DCDA AB 11.0 12.(1 ,1 , 1) 13.60 0 14.315.(1) 略⑵45 016.45 0 17.(1) 1 3⑵18.(1) 3 (2) ■ 30(3) 略(4) 3 1010 1018.如图,建立空间直角坐标系O—xyz. (1 )依题意得B ( 0, 1, 0)、N( 1, 0, 1) •••I BN |= .(1 一0)2(0 一1)2 (1 - 0)2「3.(2) 依题意得A1 (1, 0, 2)、B ( 0, 1 , 0)、C (0, 0, 0)、B…BA ={ —1, —1, 2}, CB1 ={0, 1, 2, }, BA| • CB1 =3,BA. CB 11CB 1 |= J5 ••• cos< BA 1 , CB 1 >=(3)证明:依题意,得 G (0, 0, 2)、M( 1,1,2), A 1B ={ - 1 , 1 , 2} , CM,2 2 1 2 2评述:本题主要考查空间向量的概念及运算的基本知识 .考查空间两向量垂直的充要条件——-1 . 30. |BAJ|CB i |102‘20}. • A , B • C 1M =-1 12+ 2+0=0,AB 丄 C 1M ,• AB 丄CM.。
高二数学同步测试空间向量与立体几何(附答案).
高二数学同步测试—空间向量与立体几何(附答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1=a ,11D A =b ,A A 1=c .则下列向量中与MB 1相等的向量是( ) A .++-2121 B .++2121C .c b a +-2121D .c b a +--21212.在下列条件中,使M 与A 、B 、C 一定共面的是( )A .OC OB OA OM --=2 B .213151++=C .=++D .=+++OM3.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=,''060BAA DAA ∠=∠=,则'AC 等于( )A .85BC.D .50 4.与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)5.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是( )A .0B .2πC .πD .32π 6.已知空间四边形ABCD 中,,,===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN = ( )A .213221+- B .212132++-C .c b a 212121-+ D .c b a 213232-+ 7.设A 、B 、C 、D 是空间不共面的四点,且满足000=∙=∙=∙,,,则∆BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定8.空间四边形OABC 中,OB=OC ,∠AOB=∠AOC=600,则= ( )A .21B .22 C .-21 D .09.已知A (1,1,1)、B (2,2,2)、C (3,2,4),则∆ABC 的面积为 ( )A .3B .32C .6D .2610. 已知),,2(),,1,1(t t t t t =--=,则||-的最小值为( )A .55 B .555 C .553 D .511 二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.若)1,3,2(-=,)3,1,2(-=,则,为邻边的平行四边形的面积为 . 12.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN 2=,现用基组{}OC OB OA ,,表示向量,有=x z y ++,则x 、y 、z 的值分别为 .13.已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则∆ABC 的形状是 . 14.已知向量)0,3,2(-=,)3,0,(k =,若,成1200的角,则k= . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)如图,已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'AC '上,且|'|3|'|A N NC =,试求MN 的长.220),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°. (1)求向量OD 的坐标;(2)设向量和的夹角为θ,求cos θ的值 17.(12分)若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.18.(12分)四棱锥P —ABCD 中,底面ABCD 是一个平行四边形, ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.(1)求证:P A ⊥底面ABCD ; (2)求四棱锥P —ABCD 的体积;(3)对于向量={x 1,y 1,z 1},={x 2,y 2,z 2},={x 3,y 3,z 3},定义一种运算: (×)·=x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算(×AD )·AP 的绝对值的几何意义..19.(14分)如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点. (1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .20.(14分)如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.(1)证明:C 1C ⊥BD ; (2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值; (3)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.参考答案一、1.A ;解析:)(21111BC BA A A BM B B MB ++=+==c +21(-b a +)=-21+21+.评述:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力.2.A ;解析:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 既可.只有选项A .3.B ;解析:只需将A A C A '++=',运用向量的内即运算即可,||C A ='.4.C ;解析:向量的共线和平行使一样的,可利用空间向量共线定理写成数乘的形式.即λ=⇔≠//,.5.C ;解析:||||cos b a ⋅=θ,计算结果为-1.6.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 7.B ;解析:过点A 的棱两两垂直,通过设棱长应用余弦定理可得三角形为锐角三角形. 8.D ;解析:建立一组基向量,,,再来处理⋅的值. 9.D ;解析:应用向量的运算,显然><⇒>=<AC AB ,sin ||||,cos ,从而得><=S ,sin ||||21. 10.C ;二、11.56;解析:72||||,cos -=>=<b a ,得753,sin >=<,可得结果.12.OC OB OA 313161++; 解析:OA OC OB OA 313161]21)(21[3221)(32213221++=-++=-+=+=+= 13.直角三角形;解析:利用两点间距离公式得:222||||||AC BC AB +=. 14.39-;解析:219132||||,cos 2-=+=⋅>=<k k b a ,得39±=k .三、15.解:以D 为原点,建立如图空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ). 由于M 为'BD 的中点,取''A C 中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分,从而N 为''O C 的中点,故N (4a ,34a ,a ). 根据空间两点距离公式,可得||MN ==.16.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量OD [TX →]的坐标为{0,-23,21}. (2)依题意:}0,1,0{},0,1,0{},0,21,23{=-==OC OB OA ,所以}0,2,0{},23,1,23{=-=--=-=OB OC BC OA OD AD . 设向量AD 和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 17. 证:如图设321,,r SC r SB r SA ===,则,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EH=GH=MN 得:223123212132)2()2()2(rr r r r r r r r -+=-+=-+ 展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠0,23r r -≠0,∴1r ⊥(23r r -)即SA ⊥BC . 同理可证SB ⊥AC ,SC ⊥AB .18. (1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴AP ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABV =31||·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48它是四棱锥P —ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积).评述:本题考查了空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量的夹角公式和直线与平面垂直的判定定理、棱锥的体积公式等.主要考查考生的运算能力,综合运用所学知识解决问题的能力及空间想象能力. 19.如图,建立空间直角坐标系O —xyz . (1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2)∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB 30101||||1111=⋅CB BA . (3)证明:依题意,得C 1(0,0,2)、M (21,21,2),A 1={-1,1,2},M C 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M . 评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件. 20.(1)证明:设CB =,CD =,1CC =,则| |=||,∵CB CD BD-==-,∴BD ·1CC =(-)·=·-·=||·||cos60°-||·||cos60°=0, ∴C 1C ⊥BD.(2)解:连AC 、BD ,设AC ∩BD =O ,连OC 1,则∠C 1OC 为二面角α—BD —β的平面角.∵21)(21=+=CD BC CO (+),2111=-=CC CO O C (+)-∴CO ·211=OC (a +b )·[21(a +b )-c ] =41(a 2+2a ·b +b 2)-21a ·c -21b ·c =41(4+2·2·2cos60°+4)-21·2·23cos60°-21·2·23cos60°=23. 则|CO |=3,|O C 1|=23,∴cos C 1OC 3311=(3)解:设1CC CD=x ,CD =2, 则CC 1=x 2.∵BD ⊥平面AA 1C 1C ,∴BD ⊥A 1C ∴只须求满足:D C C A 11⋅=0即可. 设A A 1=,AD =,DC =, ∵C A 1=a +b +c ,D C 1=a -c ,∴C A 11⋅=(a +b +c )(a -c )=a 2+a ·b -b ·c -c 2=xx 242+-6, 令6-242x x -=0,得x =1或x =-32(舍去). 评述:本题蕴涵着转化思想,即用向量这个工具来研究空间垂直关系的判定、二面角的求解以及待定值的探求等问题.。
高二数学-空间向量与立体几何测试题及答案
高二数学 空间向量与立体几何测试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面; ③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c,x,y,z ∈R . 其中正确命题的个数为 ( )A.0B.1C.2D.32.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( )A.1B.1-C.12D.2- 3.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4-B.9C.9-D.6494.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A.627 B. 637 C. 647 D. 6575.如图1,空间四边形ABCD 的四条边及对角线长都是a ,点E F G ,,分别是AB AD CD ,, 的中点,则2a 等于( ) A.2BA AC · B.2AD BD ·C.2FGCA ·D.2EFCB ·6.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件7.已知点O 是△ABC 所在平面内一点,满足OA ·OB =OB ·OC =OC ·OA ,则点O 是△ABC 的( ) A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点 8.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角为( )A .30°B .45°C .60°D .以上都不对9.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)33310.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···;②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面;③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1B.2C.3D.4第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 12.已知,,A B C 三点不共线,O 为平面ABC 外一点,若由向量1253OP OA OB OC λ=++确定的点P 与AB C ,,共面,那么λ= . 13.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b-c ,则m,n 的夹角为 .14.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点, BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .15.在平行四边形ABCD 中,AB=AC=1,∠ACD=900,将它沿对角线AC 折起,使AB 与CD 成600角,则B,D 两点间的距离为16.如图,二面角α-ι-β的棱上有A,B 两点,直线AC,BD 分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,CD=68, 二面角α-ι-β的大小 .三、解答题(本大题共5小题,满分70分),17.(10分)设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k ,试问是否存在实数λμν,,,使4123a a a a λμν=++成立?如果存在,求出λμν,,;如果不存在,请写出证明.18.(12分)如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD , DC PD =,E 是PC 的中点,作PB EF ⊥交PB 于点F. (1)证明 ∥PA 平面EDB ; (2)证明⊥PB 平面EFD ; (3)求二面角D -PB -C 的大小.EM GDCBAιβα AD CBE z y xC 1B 1A 1D GC BA19.(12分)如图,在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°.侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G . (1)求A 1B 与平面ABD 所成角的大小. (2)求A 1到平面ABD 的距离.20.(12分)如图,在三棱柱ABC-A 1B 1C 1中,AB ⊥AC,顶点A 1在底面ABC 上的射影恰为点B,且AB=AC=A 1B=2. (1) 求棱AA 1与BC 所成角的大小;(2) 在棱B 1C 1上确定一点P,使AP=14,并求出二面角P-AB-A 1的平面角的余弦值.21.(12分)如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1.(Ⅰ)证明:AB =AC(Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小ABCC B 1A 1ACBA 1B 1C 1DE22.(12分)P 是平面ABCD 外的点,四边形ABCD 是平行四边形,()2,1,4,AB =--()4,2,0,AD =()1,2,1AP =--.(1)求证:PA ⊥平面ABCD.(2)对于向量111222(,,),(,,)a x y z b x y z ==,定义一种运算:()a b c ⨯⋅=123231312132213321x y z x y z x y z x y z x y z x y z ++---,试计算()AB AD AP ⨯⋅的绝对值;说明其与几何体P-ABCD 的体积关系,并由此猜想向量这种运算()AB AD AP ⨯⋅的绝对值的几何意义(几何体P-ABCD 叫四棱锥,锥体体积公式:V=13⨯⨯底面积高).空间向量与立体几何(2)参考答案一、选择题(本大题共10小题,每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10 答案DDDABCACCB二、填空题(本大题共4小题,每小题6分,共24分) 11.(0,15,25) 12.0 13. 1,-3 14.90° 15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学 空间向量与立体几何测试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是( )A .有相同起点的向量B .等长向量C .共面向量D .不共面向量3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( )A .n m //B .n m ⊥C .n m n m 也不垂直于不平行于,D .以上三种情况都可能4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) A.627 B. 637 C. 647 D. 6575.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( )A.+-a b cB. -+a b cC. -++a b cD. -+-a b c6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为( )A .30°B .45°C .60°D .以上都不对7.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为( )A .2B .3C .4D .59.已知的数量积等于与则b a k j i b k j i a 35,2,23+-=-+=( )EM GDCBA10.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分) 11.若A(m +1,n -1,3),B(2m ,n ,m -2n ),C(m +3,n -3,9)三点共线,则m +n = .12.12、若向量 ()()1,,2,2,1,2a b λ==-,,a b 夹角的余弦值为89,则λ等于__________.13.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b-c ,则m,n 的夹角为 。
15.在三角形ABC 中,A(1,-2,-1),B(0,-3,1),C(2,-2,1),若向量n 与平面ABC 垂直,且|m则n 的坐标为 。
16.已知向量a =(λ+1,0,2λ),b =(6,2μ-1,2),若a||b,则λ与μ的值分别是 .三、解答题(本大题共5小题,满分70分)17.(12分) 已知空间四边形ABCD 的对边AB 与CD ,AD 与BC 都互相垂直,用向量证明:AC 与BD 也互相垂直.BA DC18.(14分))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,取如图所示的空间直角坐标系.(1)写出A、B1、E、D1的坐标;(2)求AB1与D1E所成的角的余弦值.19.(14分)如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、PC的中点.(1)求证:EF∥平面PAD;(2)求证:EF⊥CD;(3)若∠PDA=45︒,求EF与平面ABCD所成的角的大小.20.(15分)在正方体1111D C B A ABCD -中,如图E、F分别是 1BB ,CD的中点, (1)求证:⊥F D 1平面ADE ;2)cos 1,CB EF .z y xFE D 1C 1B 1A 1D CBA21.(15分)如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD , DC PD =,E 是PC 的中点,作PB EF ⊥交PB 于点F. (1)证明 ∥PA 平面EDB ; (2)证明⊥PB 平面EFD ;(3)求二面角D -PB -C 的大小.空间向量与立体几何(1)参考答案11.0 12.-2 13. AD AC AB 4331121+--14.60° 15。
(2,-4,-1),(-2,4,1) 16。
1152,. 三、解答题(本大题共5题,共76分)17.证明:0,=⋅∴⊥CD AB CD AB . 又CA CB AB -= ,0)(=⋅-∴CD CA CB 即CD CA CD CB ⋅=⋅.……① 0,=⋅∴⊥BC AD BC AD .又CA CD AD -= ,0)(=⋅-∴BC CA CD 即BC CA BC CD ⋅=⋅.……②由①+②得:0=⋅+⋅BC CA CD CA 即0=⋅BD CA .BD AC ⊥∴. 18. 解:(1) A (2, 2, 0),B 1(2, 0, 2),E (0, 1, 0),D 1(0, 2, 2)(2)∵ → AB 1 =(0, -2, 2),→ ED 1 =(0, 1, 2) ∴ |→ AB 1 |=22 ,|→ED 1 |=5 ,→ AB 1 ·→ ED 1 =0-2+4=2,∴ cos 〈→ AB 1 ,→ED 1 〉 = → AB 1 ·→ ED 1 |→ AB 1 |·|→ ED 1 | =1与ED 1所成的角的余弦值为1010. 19.证:如图,建立空间直角坐标系A -xyz ,设BC =2b ,PA =2c ,则:A (0, 0, 0),B (2a , 0, 2b , 0),D (0, 2b , 0),P (0, 0, 2c ) ∵E 为点,F 为PC 的中点∴ E (a , 0, 0),F (a , b , c ) (1)∵ → EF =(0, b , c ),→ AP =(0, 0, 2c ),→AD =(0, 2b , 0)∴ → EF =12(→ AP +→ AD ) ∴ → EF 与→ AP 、→AD 共面又∵ E ∉ 平面PAD ∴ EF ∥平面PAD .(2) ∵ → CD =(-2a , 0, 0 ) ∴ → CD ·→EF =(-2a , 0, 0)·(0, b , c )=0∴ CD ⊥EF .(3) 若∠PDA =45︒,则有2b =2c ,即 b =c , ∴ →EF =(0, b , b ),→ AP =(0, 0, 2b ) ∴ cos 〈→ EF ,→ AP 〉=2b 22b ·2b =22 ∴ 〈→EF ,→AP 〉= 45︒∵→AP⊥平面AC,∴→AP是平面AC的法向量∴EF与平面AC所成的角为:90︒-〈→EF,→AP〉=45︒.20.解:建立如图所示的直角坐标系,(1则D(0,0,0),A(1,0,0),1D(0,0E(1,1,21),F(0,21,0),则FD1=(0,21,-1),AD=(1,0,0AE=(0,1,21),则DAFD⋅1=0,AEFD⋅1=0,DAFD⊥∴1,AEFD⊥1⊥∴FD1平面ADE.(2)1B(1,1,1),C(0,1,0),故1CB=(1,0,1),EF=(-1,-2,-21),1CBEF⋅∴=-1+0-21=-23,2341411=++=2=,则cos2322323-=⋅-==150=.21.解:如图所示建立空间直角坐标系,D(1)证明:连结AC,AC交BD于G.连结EG.依题意得(,0,0),(0,0,),(0,,)22a aA a P a E底面ABCD是正方形,G∴故点G的坐标为(,,0)22a a且(,0,),(2aPA a a EG=-=2PA EG∴=. 这表明EGPA∥.而EG⊂平面EDB且PA⊄平面EDB,PA∴∥(2)证明:依题意得(,,0),(,,)B a a PB a a a=-。
又(0,,),22DE=故0222=-+=⋅aaDEPBPB DE∴⊥, 由已知EF PB⊥,且,EF DE E=所以PB⊥平面EFD.(3)解:设点F的坐标为000(,,),,x y z PF PBλ=则000(,,)(,,)x y z a a a aλ-=-从而000,,(1).x a y a z aλλλ===-所以00011(,,)(,(),()).2222a aFE x y z a a aλλλ=---=---由条件EF PB⊥知,0=⋅PBPE即22211()()0,22a a aλλλ-+---=解得13λ=。
∴点F的坐标为2(,,),333a a a且2(,,),(,,).366333a a a a a aFE FD=--=---3233222=+--=⋅aaaFDPB,即PB FD⊥,故EFD∠是二面角C PB D--的平面角.∵691892222aaaaFDPE=+-=⋅aaaaaaaa3694996636369222222=++==++=2.1cos .2||||6a FE FD EFD FE FD ∴===3EFD π∴∠=,所以,二面角C —PC —D 的大小为.3π江苏省海安高级中学期末复习测试空间向量与立体几何(2)姓名 班级第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( )A .OC OB OA OM ++=B .OC OB OA OM --=2C .OC OB OA OM 3121++=D .OC OB OA OM 313131++=2.在空间直角坐标系中,已知点(,,)P x y z ,那么下列说法正确..的是 ( )A .点p 关于x 轴对称的坐标是()1,,p x y z -B .点p 关于yoz 平面对称的坐标是()2,,p x y z --C .点p 关于y 轴对称点的坐标是()3,,p x y z -D .点p 关于原点对称点的坐标是()4,,p x y z ---3.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( )A.1B.51 C.53 D.574.已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连结AM 、AG 、MG ,则−→−AB +1()2BD BC +等于( )A.−→−AG B. −→−CG C. −→−BC D.21−→−BC 5.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A .52-B .52C .53D .10106.已知向量(0,2,1)=a ,(1,1,2)=--b ,则a 与b 的夹角为( )A. 0°B. 45°C. 90°D. 180° 7.已知点()1,3,4p --,且该点在三个坐标平面yoz 平面,zox 平面,xoy 平 面上的射影的坐标依次为()111,,x y z ,()222,,x y z 和()333,,x y z ,则( )A .2221230x y z ++= B.2222310x y z ++= C. 2223120x y z ++= D.以上结论都不对 8、已知点A(4,1,3),B(2,-5,1),C 为线段AB 上一点,且3||||AC AB =,则点的坐标是 ( )A.715(,,)222- B.3(,3,2)8- C.107(,1,)33- D.573(,,)222-9、设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB 则△BCD是( )A.钝角三角形 B.直角三角形 C.锐角三角形 D.不确定 10、已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,则点B 到平面EFG 的距离为( )A.1010 B. 11112 C.53 D.1 第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分)FE D 1C 1B 1A 1DCBAzyS11、若(1,1,0),(1,0,2),a b a b ==-+则同方向的单位向量是_________________. 12.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD =xAB y AC z AS ++,则x +y +z = .13、已知()()2,4,,2,,26a x b y a a b ===⊥,若且,则x y +的值为 。