第五章 型钢混凝土结构

合集下载

型钢混凝土组合结构特点

型钢混凝土组合结构特点

型钢混凝土组合结构特点
型钢混凝土组合结构是一种将型钢和混凝土组合在一起形成的结
构体系。

与传统的混凝土结构相比,它具有许多独特的特点,以下是
其主要特点:
1. 高强度和刚性:型钢混凝土组合结构采用钢材和混凝土进行组合,充分利用了两种材料的优点,使结构具有更高的强度和刚性。

同时,它也能够有效地抵抗天气和地震等外力的影响。

2. 轻量化:与纯钢结构相比,型钢混凝土组合结构可以减轻重量,降低成本。

这不仅减轻了建筑物的荷载,还可以减少施工所需的人力
和材料成本。

3. 节能环保:使用型钢和混凝土结合的方式,可以降低建筑物的
建造能耗和使用成本。

同时,该结构具有良好的隔热性能和耐久性,
可以大大减少室内空调的使用频率和建筑物的维修成本。

4. 建造速度快:型钢混凝土组合结构的施工速度较快,建筑物也
更加耐用。

这些优点使得它成为了现代建筑工程中的常见选择。

在使用型钢混凝土组合结构时,需要注意以下几点:
1. 设计结构时应根据结构负荷条件和建筑物用途等因素,考虑型
钢和混凝土的组合方式和比例,并合理调整。

2. 施工时需要注意型钢和混凝土之间的粘结性能,以及钢材和混
凝土在施工过程中的膨胀及收缩性能。

3. 建筑结构的维护和维修需要严格遵守有关标准和规定,正确使用和保护钢材和混凝土。

总之,型钢混凝土组合结构具有许多优点和特点,是建筑领域中不可或缺的现代建筑工程技术之一。

在未来的建筑设施建设中,它将继续得到广泛应用,并为我们的城市发展做出贡献。

型钢混凝土

型钢混凝土

型钢混凝土1. 引言型钢混凝土是一种结构材料,它结合了型钢和混凝土的优点,具有良好的抗拉性能和耐久性。

本文将介绍型钢混凝土的概念、特点、制作方法和应用领域。

2. 概念型钢混凝土是将型钢与混凝土组合在一起形成的复合结构,通过型钢的抗拉性能和混凝土的抗压性能,提高整体结构的抗震性能和承载能力。

型钢混凝土可以用于各种建筑结构中,如桥梁、楼房、厂房等。

3. 特点3.1 抗拉性能相比传统的混凝土结构,型钢混凝土由于引入了型钢材料,在抗拉方面具有较好的性能。

型钢可以承受和分散荷载,有效提高整体结构的抗震能力和承载能力。

3.2 耐久性混凝土具有较好的耐久性,可以抵御自然环境和外界因素的侵蚀,而型钢能有效增加结构的强度和稳定性。

因此,型钢混凝土具有较长的使用寿命和较低的维护成本。

3.3 施工便利性型钢混凝土的制作过程相对简单,施工方便。

可以利用现有的钢模具进行浇筑,使得施工效率高,减少了施工周期和成本。

4. 制作方法型钢混凝土的制作方法主要包括以下几个步骤:4.1 准备工作首先需要准备好型钢和混凝土。

型钢可以选择不同形状和规格的型材,如H形钢、I形钢等。

混凝土应选择质量稳定、强度高的材料。

4.2 钢模具的制作根据设计要求和结构需求,制作相应形状和尺寸的钢模具。

4.3 钢筋的安装根据设计要求,在钢模具内安装好预先加工好的钢筋,确保钢筋的正确位置和间距。

4.4 混凝土的浇筑在钢模具内浇筑混凝土,确保混凝土充分填满模具,并且使用振动器进行振动,以排除空气和提高混凝土的密实度。

4.5 养护过程混凝土浇筑完成后,要进行养护,包括保持适宜的湿度和温度,以促进混凝土的硬化和强度的提升。

5. 应用领域型钢混凝土因其优异的性能特点,在建筑工程中具有广泛的应用。

以下为几个常见的应用领域:5.1 桥梁型钢混凝土可以用于桥梁的桥面板、桥墩和墩座等部位。

它可以增加桥梁的承载能力和抗震性能,提高桥梁的使用寿命。

5.2 楼房型钢混凝土可以用于楼房的楼板、柱、梁等部位。

型钢混凝土结构介绍

型钢混凝土结构介绍

型钢混凝土结构介绍一、型钢混凝土结构的构造型钢混凝土结构主要由型钢构件和混凝土构件组成。

型钢构件是承受荷载的主要受力构件,可以采用H型钢、工字钢、方管等。

型钢构件的连接方式有焊接、螺栓连接、粘结等,可以根据具体的工程需求进行选择。

混凝土构件主要用于提供刚性和抗压能力,一般采用预应力混凝土或钢筋混凝土。

混凝土与型钢的连接方式主要有粘结连接和预制连接两种。

二、型钢混凝土结构的优点1.强度高:型钢构件具有很高的抗拉强度和抗压强度,而混凝土具有很高的抗压强度,两者相互组合可以形成一种强度非常高的结构体系。

2.刚度大:型钢构件的横向抗弯刚度和纵向弯矩刚度都很大,混凝土构件的纵向抗弯刚度和纵向弯矩刚度也很大。

组合后的型钢混凝土结构具有较大的整体刚度,能够有效地抵抗外部荷载的作用。

3.稳定性好:型钢构件具有很好的抗侧扭和抗局部稳定的能力,能够有效地提高整体结构的稳定性。

4.施工方便:型钢构件和混凝土构件可以分别预制,在现场进行组合施工,具有较好的灵活性和适应性。

5.耐久性好:型钢和混凝土都具有较好的耐久性,能够抵抗各种外界环境的侵蚀和破坏。

三、型钢混凝土结构的应用1.高层建筑:型钢混凝土结构在高层建筑中得到了广泛应用。

其高强度和大刚度特点可以有效地抵抗风荷载和地震荷载的作用,提高建筑的安全性和稳定性。

2.大跨度结构:型钢混凝土结构适用于大跨度建筑,如体育场馆、展览馆、机场航站楼等。

它可以有效地减少整体结构的自重,提高结构的承载能力。

3.桥梁:型钢混凝土结构在桥梁领域的应用也非常广泛。

其轻巧的自重和高强度的特点使得桥梁具有较大的跨径和承载能力,同时可以提高桥梁的耐久性和抗震性能。

四、型钢混凝土结构的发展1.结构性能的研究:进一步研究型钢混凝土结构的力学性能和结构性能,提高其受力性能和稳定性。

2.施工技术的创新:进一步提高型钢混凝土结构的施工工艺和技术,提高施工效率和质量。

3.节能环保:进一步研究和应用型钢混凝土结构的节能环保特点,提高建筑的能源利用效率和环境保护水平。

5第五章 型钢混凝土结构

5第五章 型钢混凝土结构

(5.3)
Ess 为型钢弹性模量
x a 2)如果按4.1式计算得的
,属于第一种情况,即中和轴在型钢 s
腹板中通过(①),按下列应力图形(图5.7)计算。
As fc
fs fy As
ar
as
X X X
h
Ass fy As fs
As
ar
as
b/2 b/2
图5.7 中和轴在型钢腹板中通过时的应力图形
1.基本假定 1)梁受力后截面应变仍符合平截面假定(修正平截面)
2)破坏时,梁受压区边缘的混凝土极限压应变为 cu 0.003
3)达到极限状态时,混凝土受压区的应力图形可取矩形分布,其中应力可
取 f c ,受压区折算高度 x 0.8x0,x0为受压区实际高度。
4)达到极限状态时,不考虑混凝土受拉区参加工作。 2.矩形截面梁的计算 型钢混凝土梁正截面计算时,根据中和轴位置不同分:
x
f y ( As As) fstwh fc As Asf
fc b 1.25tw 2.5 fstw
astw
(5.4b)
对中和轴取矩,可得极限弯矩
Mu
f

s
f
Asf
y As
h
h


x
x


as
ar
fstw
h

as 2

f yAs x ar
3.T形截面梁的计算
T形截面梁当中和轴在梁的受压翼缘中通过时,可按宽为的矩形截面梁 进行计算见图(5.9)。
bf As
bf As
as ar
x hf h
x hf h
as ar

型钢混凝土

型钢混凝土

] 型钢混凝土型钢混凝土(SteelReinforcedConcrete,以下简称SRC)结构是指在型钢周围布置钢筋,并浇筑混凝土的结构。

型钢分为实腹式和空腹式。

实腹式SRC构件具有较好的抗震性能,而空腹式SRC构件的抗震性能与普通混凝土(ReinforcedConcrete,以下简称RC)构件基本相同。

因此,目前在抗震结构中多采用实腹式SRC构件。

实腹式型钢可由钢板焊接拼制而成或直接采用轧制型钢。

SRC构件的内部型钢与外包混凝土形成整体、共同受力,其受力性能优于这两种结构的简单叠加。

与钢结构相比,SRC构件的外包混凝土可以防止钢构件的局部屈曲,并能提高钢构件的整体刚度,显著改善钢构件的平面扭转屈曲性能,使钢材的强度得以充分发挥。

此外,外包混凝土增加了结构的耐久性和耐火性。

与RC结构相比,由于配置了型钢,大大提高了构件的承载力,尤其是采用实腹型钢的SRC构件,其抗剪承载力有很大提高,并大大改善了受剪破坏时的脆性性质,提高了结构的抗震性能。

1国外的研究1.1欧美地区SRC结构的应用与研究20世纪初,欧美就开始对SRC柱进行了研究。

1908年Burr做了空腹式SRC柱的试验,发现混凝土的外壳能使柱的强度和刚度明显提高。

1923年加拿大开始做空腹式配钢的SRC 梁的试验。

在1989年的美国钢筋混凝土设计规范ACI2318中,将型钢视为等值的钢筋,然后再以RC结构的设计方法进行SRC构件设计,这种方法的优点在于对SRC结构设计时考虑了构件的“变形协调”和“内力平衡”,但没有考虑型钢材料本身的残余应力和初始位移。

在1993年的钢结构设计规范C2LRFD中,采用极限强度设计法来设计SRC结构,将RC部分转换为等值型钢,再以纯钢结构的设计方法进行组合结构设计,并考虑了残余应力和初始位移。

英国在理论分析资料的基础上,于1969年将建筑中的SRC柱列入英国钢结构规范BS449的第三部分,随后将桥梁中的SRC柱列入英国标准BS5400的第五部分。

型钢混凝土结构施工方案

型钢混凝土结构施工方案

01
03
型钢加工与安装
对型钢进行加工和安装,确保型钢的 位置、尺寸和垂直度符合设计要求。
质量检测与验收
在施工过程中和施工完成后,进行质 量检测和验收,确保施工质量符合设 计要求。
05
04
混凝土浇筑与养护
对型钢混凝土结构进行混凝土浇筑, 并按照规范要求进行养护,确保混凝 土的质量和强度。
施工质量控制
04
型钢混凝土结构材料与设 备
型钢材料选择
总结词
高质量、高强度、防腐性能
详细描述
选择具有高质量、高强度的型钢材料,确保结构的稳定性和安全性。同时,应 考虑型钢的防腐性能,以增加结构的使用寿命。
混凝土材料选择
总结词
高强度、耐久性好、易于施工
详细描述
选用高强度混凝土,以提高结构的承载能力。同时,应选择耐久性好的混凝土,确保结构的长期稳定性。此外, 应选择易于施工的混凝土,以降低施工难度和成本。
结构分析方法
01
02
03
有限元分析
利用有限元方法对结构进 行离散化,通过计算和分 析得出结构的内力和变形 。
实验验证
通过试验对理论分析结果 进行验证,确保结构的安 全性和可靠性。
优化设计
采用优化算法对结构进行 优化设计,提高结构的承 载能力和稳定性。
结构优化设计
材料优化
根据工程需求和实际情况,合理选用 高强度钢材和高性能混凝土等材料, 提高结构的承载能力和耐久性。
住宅建筑
在一些高层或特殊要求的住宅建筑 中,型钢混凝土结构也被广泛应用 ,以提高建筑的安全性和居住品质 。
历史与发展
历史
型钢混凝土结构起源于20世纪初,随着建筑技术的发展和高层建筑的增多,型钢 混凝土结构逐渐得到广泛应用。

型钢混凝土结构

型钢混凝土结构

aw斜腹杆与水平轴夹角。
同样,在抗震设计时:
均布荷载 集中荷载
Vu Vu
1
RE
1
RE
(0.56 fcbh0 1.2 fsw
( 0.16
1.5
f c bh0
f sw
Awv S
Awv S
h0 h0
AwIf sw sin w )
(5.40)
AwIf sw sin w )
(5.41)
设计时应有: V Vu
斜压破坏的型钢混凝土梁,在剪切破坏前大致平行的斜裂缝将剪跨区
的混凝土分割成若干斜压杆。混凝土和型钢腹板一起参加斜压杆工作。
由于斜压杆主要传递轴向压力,因此全梁犹如一个拱,斜压杆作为传递
压力拱圈,型钢受拉翼缘及纵向受拉钢筋作为拱的拉杆,因此,剪切斜
压破坏可假定为拉拱作用机理。
弯曲剪切破坏的应力见图4.34
配置箍筋能增加对混凝土的约束,对防止粘结破坏有利。 对受均布荷载的梁,由于梁上有荷载“压迫”作用,所以保护层不易 发生粘结剥落。
3.弯剪破坏(剪压破坏):当剪跨比较大时( 2 )发生剪压破坏,
先由弯矩影响产生垂直裂缝,随剪力增加发展为斜裂缝,最后剪压区混 凝土压碎而破坏。
5.3.2 影响梁抗剪能力的因素
1.剪跨比: M实际反映了弯剪共同作用时,弯矩与剪力作用所
Vh
占比例。 越大说明以弯矩为主, 越小说明以剪力为主。
所以剪跨比不仅影响到构件抗剪强度,而且影响到破坏形态,一般
1.5 发生剪切斜压破坏, 1.5~2.0发生剪切粘结破坏, 2.0~3.0 发生弯曲剪切破坏(剪压破坏), 3.0发生弯曲破坏。
Asv S
h0
(5.34)
注:或将式右边第一项 0.07 fcbh0 改为 0.7 ftbh0

第五章 受弯与压弯构件分析原理

第五章 受弯与压弯构件分析原理
三、计算理论
1.第一种方法 考虑外包混凝土对钢骨刚度的提高作用,按钢结构稳定理论计算。英国及欧
洲规范采用此方法。 2.第二种方法
假定构件的钢骨与外包混凝土形成一个整体,变形一致;从而套用钢筋混凝 土的有关计算理论。我国及美国ACI规范采用此方法。
第二节 型钢混凝土受弯与压弯构件
3.第三种方法 “强度叠加法”,它不要求钢骨与外包混凝土完全实现整体工作,认为:型
三、数值迭代法求解(简述迭代步骤) 四、长柱的分析
长柱的特性
第二节 型钢混凝土受弯与压弯构件
一、型钢混凝土结构(钢骨混凝土结构SRC)
第二节 型钢混凝土受弯与压弯构件
二、试验研究
1.钢骨与外包混凝土能够较好的共同工作,截面应变符合平截面假定。 2.在柱脚、结构类型转换层等传递较大内力的部位,还应在钢骨翼缘外侧设置栓 钉,以防止钢骨与混凝土之间产生相对滑移。
查得新的
s'u,若所查得的
' 正好与所假设值充分接近,则停止迭代,
su

s'u即为所求;将查得的
' su
代入静力平衡方程中可求得叠合梁的抗
弯承载力。
第四节 FRP(纤维增强塑料)受弯构件
一、受力特点
破坏类型、二次受力、滞后应变。
二、理论计算时的基本假定
①正截面应变分布符合平截面假定。 ②混凝土和钢筋的应力应变关系为已知,不考虑混凝土的受拉。 ③FRP材料采用线弹性应力应变关系,当考虑二次受力情况时,应计算FRP材料 的滞后应变。 ④FRP采用的拉应变由平截面假定确定,但不应超过其允许拉应变。
第三节 混凝土叠合受弯构件
2)计算公式
As su

K1K3
fcbxn

型钢混凝土结构介绍

型钢混凝土结构介绍

型钢混凝土结构介绍
型钢混凝土结构的主要组成部分是钢筋混凝土梁柱和型钢框架。

梁柱通常由钢筋混凝土构成,具有较高的强度和承载力,可承受大部分竖向荷载。

型钢框架则由型钢柱和梁组成,形状和尺寸多样,可以根据具体的工程需求进行设计和加工。

型钢混凝土结构的特点之一是具有较高的刚度和承载力。

钢材具有较高的强度和刚度,可以承受大部分水平荷载,而混凝土具有良好的抗压性能,能够承受大部分竖向荷载。

这种结构体系在地震和风荷载等外力作用下具有较好的抗震和抗风能力。

型钢混凝土结构还具有较好的施工性能和经济性。

钢筋混凝土的施工工艺相对简单,施工周期短,不受天气和环境条件的限制。

型钢框架的构件可以在工厂预制,减少现场加工的时间和成本。

此外,型钢混凝土结构还可以重复利用,减少浪费和环境影响。

型钢混凝土结构在建筑和工程领域有广泛的应用。

在高层建筑中,可以采用型钢混凝土框架结构,使建筑具有较高的承载能力和刚度。

在工业厂房和仓库中,可以采用型钢混凝土梁柱结构,具有较高的耐荷性能和施工效率。

在桥梁和地下结构中,型钢混凝土结构也被广泛应用,可以满足不同的设计要求和施工条件。

总之,型钢混凝土结构是一种具有较高刚度和承载力的结构体系,具有优秀的抗震和抗风能力,施工方便,经济性好。

它在各种建筑和工程项目中都有广泛的应用。

随着科技和工艺的不断发展,型钢混凝土结构将进一步发展和完善,为建筑和工程领域提供更多的解决方案和技术支持。

5第五章 型钢混凝土结构

5第五章 型钢混凝土结构

3.T形截面梁的计算
T形截面梁当中和轴在梁的受压翼缘中通过时,可按宽为的矩形截面梁 进行计算见图(5.9)。
bf As
bf As
as ar
as hs ar
x hf h as
ar as hs ar
x hf h
Ass As b/2 b/2
(a)
图4.4
Ass As b/2 b/2
(b)
图5.9
若为图a的配钢情况,可按下式判定中和轴在梁的受压翼
则能保证型钢全截面屈服,此时极限承载能力按下式计算
M u f y A s h a r x f s A s h s x a s 0 . 5 h s
fy A s x a r 0 .5 fcb2x
(5.8)

0.8a's 1 fs
x 0.8(has) 1 fs
(5.10)
如果按4.5式或5.4a、5.4b式算得的 x0,.8而as按5.6式算得
的x又有
,x则0.可8a视s 为第三种情况,即按5.1和5.2计算
极限承载力,不论哪种情况均应有
MMu
(5.11)
型钢混凝土结构与钢筋混凝土结构及钢结构设计不同,往 往不是根据内力计算出钢筋面积或型钢面积,然后选择配 筋或型钢的大小,而是梁断面确定后,先配置型钢,然后 验算其承载能力是否满足。对于配钢的形式与型钢的尺寸 应当尽量优化,在保证安全的前提下,尽量配得构件受力 合理(尤其是型钢)而且经济,这就需要丰富的设计经验 以及工程界人士进一步深入研究。
0.00E3ss
0.00E3ss
(5.9)
则说明中和轴距上翼缘很近,不考虑上翼缘作用
可按情况三计算( 5.2 ),然后对型钢上翼缘取矩,可得极限承载能力

什么是型钢混凝土结构

什么是型钢混凝土结构

什么是型钢混凝土结构
什么是型钢混凝土结构
型钢混凝土(SteelReinforeedConcrete,简称SRC)结构是指在混凝土中主要配置型钢,并配有一定的横向箍筋及纵向受力钢筋的结构,是钢与混凝土组合结构的一种主要形式。

型钢混凝土结构在日本称为钢骨钢筋混凝土(铁骨铁筋,二,,u一})结构。

在欧美称为混凝土包钢结构(SteelEnc∞edConcrete)结构,在前苏联则被称为劲性钢筋混凝土结构。

根据不同的配钢形式,型钢混凝土结构可以分为实腹式配钢型钢混凝士和空腹式配钢型钢混凝土两大类。

目前在抗震结构中多采用实腹式配钢型钢混凝土构件,常用的实腹式型钢混凝土柱、梁、剪力墙和节点等构件典型截面形式
以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。

1。

《钢-混凝土组合结构》第5章 型钢混凝土梁

《钢-混凝土组合结构》第5章   型钢混凝土梁
型钢混凝土梁不仅强度高,刚度大,而且有良好的延 性和耗能性能,尤其适合于抗震区的建筑。
8
§5.2 型钢混凝土梁的构造要求
5.2.1 型钢
1. 含钢率
含钢率是指型钢混凝土梁内的型钢截 面面积与梁全截面面积的比值。梁中 的 型 钢 含 钢 率 宜 大 于 4% , 较 为 合 理 的含钢率为5%~8%。 2. 型钢的级别、形式及保护层厚度 型钢混凝土梁中的型钢宜采用Q235或 Q345钢.
2)计算步骤 需要通过多次试算,才能取得正确结果。 (2)简单叠加法 对于钢骨为双轴对称的充满型实腹型钢,即钢 骨截面形心与钢筋混凝土截面的形心重合时,如图 5.3.4,型钢混凝土梁的正截面受弯承载力可按下列 方法计算。
30
5.3.2 型钢混凝土梁正截面承载力计算
31
5.3.2 型钢混凝土梁正截面承载力计算
5
§5.1 概 述
型钢混凝土梁是在混凝土中主要配置轧制或焊接 的型钢,其次配有适量的纵筋和箍筋。这种结构形式 的梁,我们把它称为型钢混凝土梁。
6
7
§5.1 概 述
型钢混凝土梁配置的型钢形式分为实腹式型钢和空腹 式型钢两大类。见图5.1,本章主要介绍实腹式型钢梁。
由于在混凝土中配置了型钢,型钢混凝土梁的承载力, 刚度大大提高,因而大大减小了梁的截面尺寸,增加了房 间净空,即降低了房屋的层高与总高度,使其更适用于大 跨,高层及超高层建筑中。
17
bc段:
此时截面刚度大大降低,M-f曲线 明显弯曲。继续加载到极限荷载80% 时,型钢受压翼缘出现水平粘结裂缝, 型钢上翼缘达到受压屈服,仅有腹板中 部的一部分截面尚处于弹性受力状态。 此时梁的截面刚度已很小,受压区混凝 土的应力发展显著加快,M-f曲线接近 水平线。

第五篇 型钢混凝土结构

第五篇 型钢混凝土结构

集中荷载
0.16 Vu ( f c bh0 f sw RE 1.5
Awv h0 AwIf sw sin w ) S (5.40) Awv h0 AwIf sw sin w ) S
(5.41)
设计时应有:
且应有:
V Vu
V
1
RE
(0.32 f c bh0 )
V Vc Vsw Vsv
Vc f c bh0
(5.29)
(5.30)

为混凝土的抗力系数。
vc
1
vsw v vsf vsv c
图4.8 弯曲剪切破坏时的应力图形
图5.14 弯曲剪切破坏时的应力图形
型钢腹板的抗力
Vsw f s t w hw
Asv Vsv 1.2 f yv h0 S
平均裂缝宽度:
s
Es
lcr Wss 0.473 ss
ss
Es
lcr
型钢混凝土梁的最大裂缝宽度:
Ws ,max 1.263 s
s
Es
lcr
Ate 1.263 s 0.544 0.309as 1.735c Es 0.45 Sss SS (5.51)
A's 纵向受压钢筋的截面积;
f c , f ' y , f s 分别为混凝土轴心抗压强度设计值、纵向钢筋抗压强度设
计值及型钢抗压强度设计值;

为型钢混凝土柱稳定系数,根据
按表 l04.9 / i 取用。
i
I0 A0
I 0 换算截面惯性矩
A0 换算截面面积
(5.55) I c为混凝土净截面对换算截面重心 并垂直于弯矩面的轴心惯性矩。

型钢混凝土结构

型钢混凝土结构

型钢混凝土结构摘要:简要介绍型钢混凝土结构的类型及优越性,并对其在国内外的发展过程及应用现状做出评述,应用具有理论意义和实用价值。

一、型钢混凝土结构概况(一)型钢混凝土结构的一般概念近年来,随着我国建筑业的快速发展,型钢混凝土组合结构在各种工程结构中得到了更为广泛的应用。

在大跨度建筑、高层以及超高层建筑工程中,型钢混凝土组合结构体现出了比钢结构和钢筋混凝土结构更加优越的特性。

一、概述型钢混凝土组合结构的特性是在型钢结构的外面有一层混凝土的外壳,过去也采用劲性钢筋混凝土结构这个名称。

型钢混凝土组合结构构件中除配谿型钢外,一般还应配谿普通纵向钢筋和箍筋。

在型钢混凝土组合结构构件中型钢可以分为实腹式和空腹式两大类。

空腹式型钢比较节省材料,但制作费用较多,实腹式型钢制作简便,承载能力大。

1.型钢混凝土组合结构承载力高,刚度大,截面小,更能满足高层及超高层建筑的要求。

2.型钢混凝土组合结构施工速度快,工期短。

3.型钢混凝土组合结构的延性好,抗震性能更加优越。

4.型钢混凝土组合结构的耐久性和耐火性均好于钢结构。

5.型钢混凝土组合结构与钢结构相比,可大大的节约钢材。

型钢混凝土框架比钢框架可节省钢材达50%或者更多一些。

二、型钢混凝土的材料性能和一般构造要求:1.型钢:型钢混凝土构件的型钢材料宜采用牌号Q235的碳素结构钢以及Q345的低合金高强度结构钢,其质量标准应符合现行国家标准,钢材性能要求应满足抗拉强度、伸长率、屈服点、硫磷含量、冷弯实验、冲击韧性合格的要求。

若用于地震区,应具有良好的延性,钢材的极限抗拉强度和屈服强度不能太接近,其强屈比不小于1.2。

2.钢筋和混凝土:型钢混凝土组合结构中的纵向钢筋和箍筋宜采用延性较好的热轧钢筋,其纵向受力钢筋直径不宜小于16mm,纵筋与型钢的净间距不宜小于30mm,其他构造要求均应满足国标《混凝土结构设计规范》(GB50010-2002)的要求。

为了充分发挥型钢混凝土组合结构中型钢的作用,混凝土强度等级不宜小于C30。

型钢混凝土结构介绍

型钢混凝土结构介绍

型钢混凝土结构介绍一、钢—混凝土组合结构概况(一)钢—混凝土组合结构的一般概念组合结构定义:组合结构的种类繁多,从广义上讲,组合结构是指两种或多种不同材料组成一个结构或构件而共同工作的结构(Composite Structure)。

钢—混凝土组合结构是继木结构、砌体结构、钢筋混凝土结构和钢结构之后发展兴起的第五大类结构。

从广义概念上看,钢筋混凝土结构就是具有代表性的组合结构的一种。

组合结构分类:组合结构通常是指钢—混凝土组合结构,其中钢又分为钢筋和型钢,混凝土可以是素混凝土也可以是钢筋混凝土。

国内外常用的钢—混凝土组合结构主要包括以下五大类:(1)压型钢板混凝土组合板;(2)钢—混凝土组合梁;(3)钢骨混凝土结构(也称为型钢混凝土结构或劲性混凝土结构);(4)钢管混凝土结构;(5)外包钢混凝土结构。

(二)钢—混凝土组合结构的发展概况钢—混凝土组合结构这门学科起源于本世纪初期。

于本世纪二十年代进行了一些基础性的研究。

到了五十年代已基本形成独立的学科体系。

至今组合结构在基础理论,应用技术等方面都有很大的发展。

目前钢—混凝土组合结构在高层建筑、桥梁工程等许多土木工程中得到广泛的应用,并取得了较好的经济效益。

在国外,钢—混凝土组合结构最初大量应用于土木工程旨在二次世界大战结束后,当时的欧洲急需恢复战争破坏的房屋和桥梁,工程师们采用了大量的钢—混凝土组合结构,加快了重建的速度,完成了大量的道路桥梁和房屋的重建工程。

1968年日本十胜冲地震以后,发现采用钢—混凝土组合结构修建的房屋,其抗震性能良好,于是钢—混凝土组合结构在日本的高层与超高层中得到迅速发展。

60年代以后世界上许多国家(包括英、美、日、苏、法、德)根据本国的试验研究成果及施工技术条件制定了相应的设计与施工技术规范。

1971年成立了由欧洲国际混凝土委员会(CES)、欧洲钢结构协会(ECCS)、国际预应力联合会(FIP)和国际桥梁及结构工程协会(IABSE)组成的组合结构委员会,多次组织了国际性的组合结构学术讨论会,并于1981年正式颁布了《组合结构》规范。

课件_型钢混凝土组合结构

课件_型钢混凝土组合结构

7
日本
• 1981 年至1985 年
▫ 多高层建筑中,六层以上占总数的45.2%,建筑 面积占总面积的62.8% , ▫ 10~15 层的高层建筑中,90% ▫ 16层以上的超高层建筑中,达到50 % ▫ 即使以钢结构为主体的高层建筑,其底部几层 也多采用型钢混凝土结构。
• 1995年1月,日本关西大地震倒塌和严重破坏 的建筑物中,钢筋混凝土结构占55%,钢结构 占38%,而SRC结构及其混合结构仅占7%,进 一步验证了SRC结构良好的抗震性能
1
型钢混凝土组合结构
2
简介
• 型钢混凝土结构是以型钢为钢骨并在型钢周围配 置钢筋和浇筑混凝土的埋入式组合结构体系。 • 日本:钢骨混凝土结构(Steel Reinforced Concrete)。 • 英、美等西方国家称之为混凝土包钢结构(Steel Encased Concrete) • 前苏联称之为劲性钢筋混凝土结构。
技术规程
• YB 9082-97(钢骨混凝土结构设计规程)
12
▫ 正截面承载力计算某些情况计算结果小得离谱(相 比试验值)。而且,正截面计算偏小,相对来说容 易造成事实上的强梁弱柱,抗震不利。所以不是结 果偏小就好
• JGJ138-2001(型钢混凝土组合结构技术规程)
▫ 正截面承载力基本上可以说不能用,漏洞百出,结 果离谱(相比试验值) ▫ 节点连接;柱脚计算不合理;抗弯计算
9
技术规程
• YB 9082-97(钢骨混凝土结构设计规程)
▫ 叶列平教授参考了日本和美国的规范 ▫ 日本建筑学会《铁骨铁筋コンクリート计算规准. 同解说》 若林实
10
• JGJ138-2001(型钢混凝土组合结构技术规程)
▫ 西安建筑科技大学(姜维山、赵鸿铁、白国良)、 西南交大赵世春等 ▫ 根据实验研究结果,在苏联模式上进行了修正

型钢混凝土结构的施工

型钢混凝土结构的施工

型钢混凝土结构的施工型钢混凝土结构亦称为劲性钢筋混凝土结构或包钢混凝土结构,是在型钢结构的外面包裹一层混凝土外壳形成的钢一混凝土组合结构。

型钢混凝土结构与其他结构形式相比,具有以下特点:1)型钢混凝土构件比同样外形钢筋混凝土构件的承载能力高出一倍以上,因而可以减小构件截面尺寸,增加使用面积和降低层高。

对于高层建筑而言,其经济效益显着。

2)型钢在浇筑混凝土之前已形成钢结构,且具有较大的承载能力,能承受构件自重和施工荷载,因而无需设置支撑,可将模板直接悬挂在型钢上,这样可以降低模板费用,加快施工速度。

由于无需临时立柱,也为进行设备安装提供了可能。

同时,浇筑的型钢混凝土不必等待混凝土达到一定强度就可继续进行上层施工,可以缩短工期。

3)型钢混凝土结构与钢结构相比,耐火性能和耐久性能优异,同时由于外包混凝土参与工作,和型钢结构共同受力,因此还可节省钢材50%以上。

4)型钢混凝土尤其是实腹式型钢混凝土结构的延性比钢筋混凝土结构明显提高,因而具有良好的抗震性能。

一、型钢混凝土结构构造1、型钢混凝土构件型钢混凝土构件是采用型钢配以纵向钢筋和箍筋浇筑混凝土而成,其基本构件有型钢混凝土梁和柱。

型钢混凝土构件中的型钢分为实腹式和空腹式两类,实腹式型钢由轧制的型钢或钢板焊成,空腹式型钢由缀板或缀条连接角钢或槽钢组成。

实腹式型钢制作简便,承载能力大,空腹式型钢节省材料,但制作费用高。

2、梁柱节点构造梁柱节点的基本要求是:内力传递明确,不产生局部应力集中现象,主筋布置不妨碍浇筑混凝土,型钢焊接方便。

在梁柱节点处柱的主筋一般在柱角上,这样可以避免穿过型钢梁的翼缘。

但柱的箍筋要穿过型钢梁的腹板,也可将柱的箍筋焊在型钢梁上。

梁的主筋一般要穿过型钢柱的腹板,如果穿孔削弱了型钢柱的强度,应采取补强措施。

图5-44为十字形实腹式型钢柱与H形型钢梁的节点透视图。

3、柱脚节点构造(1)柱脚的型钢不埋入基础内部。

型钢柱下端设有钢底板,利用地脚螺栓将钢底板锚固,柱内的纵向钢筋与基础内伸出的插筋相连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5.31)
钢箍承担的剪力:均布荷载
集中荷载
0.58 为型钢的抗力系数
(5.32)
(5.33)
A sv V 0 . 8 fyv h sv 0 S
在试验的基础上回归分析,并参考到可靠指标的要求,得出:
均布荷载作用下的矩形梁,以及T形梁工字形梁
A sv V 0 . 07 f bh 0 . 58 f t h 1 . 2 f (5.34) c 0 s w w yv h 0 S
注:亦可将式右边第一项 当 当
0.07 fcbh 0 改为 0.5
0.7 ft bh0 0.5
1 .5 时,取 1 .5; 2 .5时,取 2 .5。
抗震设计时,均布荷载作用下
A 1 sv V ( 0 . 056 f bh 0 . 58 f t h f )(5.36) u c 0 s w w yv h 0 S RE
5.3.3 配实腹式型钢的抗剪承载力计算
斜压破坏的型钢混凝土梁,在剪切破坏前大致平行的斜裂缝将剪跨区
的混凝土分割成若干斜压杆。混凝土和型钢腹板一起参加斜压杆工作。 由于斜压杆主要传递轴向压力,因此全梁犹如一个拱,斜压杆作为传递
压力拱圈,型钢受拉翼缘及纵向受拉钢筋作为拱的拉杆,因此,剪切斜
压破坏可假定为拉拱作用机理。 弯曲剪切破坏的应力见图4.34 梁的抗剪承载力计算公式 混凝土抗力 其中
第五章 型钢混凝土结构 —Steel Reinforced Concrete Structures
主讲:程安春
5.3 型钢混凝土梁斜截面承载能力分析
5.3.1 试验研究与破坏形态
型钢混凝土梁的剪切破坏形态一般有三类: 1 .5 1.剪切斜压破坏:一般当剪跨比很小( )时发生; 2. 剪切粘结破坏: 这是因为型钢混凝土构件中,型钢与混凝土粘结力差 是其薄弱环节,因此当剪跨比较小时,有时会发生剪切粘结破坏,产生 剪切粘结破坏裂缝 。
配置箍筋能增加对混凝土的约束,对防止粘结破坏有利。
对受均布荷载的梁,由于梁上有荷载“压迫”作用,所以保护层不易 发生粘结剥落。 3. 弯剪破坏(剪压破坏):当剪跨比较大时( 2 )发生剪压破坏, 先由弯矩影响产生垂直裂缝,随剪力增加发展为斜裂缝,最后剪压区混 凝土压碎而破坏。
5.3.2 影响梁抗剪能力的因素
集中荷载作用下:
A 10 . 056 1 . 3 sv V ( f bh f t h f ) u c 0 s w w yv h 0 0 . 5 1 . 5 S RE


RE 剪切抗力调整系数,
设计时应有:
且应有:
(5.37)
V Vu
,截面限制条件比钢筋混凝土梁略松。 V0 .4f bh c 0
越小( M 影响越小)抗剪强度较高, 越大( M 影响越大)抗
剪强度越低。 2.加载方式:均布荷载作用下,粘结力较好,抗剪强度高,同时剪跨比 对其影响不大;集中荷载作用下,抗剪强度较低,同时剪跨比对其影响 明显。 3.混凝土的强度等级:混凝土强度影响到斜压杆强度,剪压区强度以及 粘结力等。
所以剪跨比不仅影响到构件抗剪强度,而且影响到破坏形态,一般
4.含钢率与型钢强度:含钢率越高,型钢强度越高,抗剪能力越大。
5.宽度比: b f / 在一定范围内越大,型钢约束的混凝土相对较多,梁的抗 b 剪强度与变形能力提高。 6.型钢翼缘的保护层:保护层太小,易发生粘结破坏,产生较大滑移。
7.含箍率:钢箍本身承担剪力,且能约束混凝土,因此使抗剪能力提高, 因此在配实腹钢的型钢混凝土构件,必须配置必要的钢箍。
同样设计时应有: 以及应有: 符号:
V Vu
V0 .4fcbh 0
h 受拉角钢重心到混凝土受压边缘的距离; 0 f sw 竖腹板与斜腹杆的抗拉设计强度;
Awv 同一截面内竖腹杆截面面积总和;
Aw与斜裂缝相交的斜腹杆面积的总和; I
S竖腹杆的中心距;
a w 斜腹杆与水平轴夹角。
同样,在抗震设计时:
均布荷载
A 1 wv V ( 0 . 56 f bh 1 . 2 f A wI f ) u c 0 sw h 0 ssin w w S RE
5.3.3 配角钢骨架梁的抗剪承载力计算
均布荷载作用下的矩形梁、以及T形梁、工字梁:
A wv V 0 . 07 f bh 1 . 5 f A f sin a w (5.38) c 0 sw h 0 wI sw S
集中荷载作用下的矩形独立梁:

A 0 . 2 wv V f bh 1 . 2 f A wI f sin a w(5.39) c 0 sw h 0 sw 1 . 5 S 时,取 ;当 时,取 。 2 .5 2 .5 1 .5 1 .5
1.剪跨比:
M 实际反映了弯剪共同作用时,弯矩与剪力作用所 Vh
占比例。
越大说明以弯矩为主, 越小说明以剪力为主。
1 . 5 ~ 2 . 0 发生剪切斜压破坏, 发生剪切粘结破坏, 2 . 0 ~ 3 . 0 1 .5 发生弯曲剪切破坏(剪压破坏), 3 发生弯曲破坏。 .0
0.07fcbh 0 改为
0.7 ft bh 0
注:或将式右边第一项
其中, t w , h w为型钢腹板厚度与高度,
ቤተ መጻሕፍቲ ባይዱ
f s 为型钢抗拉强度设计值,其余符号用同《混凝土规范》。
上式中,第一项为混凝土的抗力;第二项为型钢的抗力(只考虑腹 板作用);第三项为钢箍的作用。 在集中荷载作用下的独立矩形梁:
A 0 . 07 1 . 3 sv V f bh f t h f c 0 s w w yv h 0 (5.35) 0 . 5 1 . 5 S
V V V V c sw sv
V fcbh c 0
(5.29)
为混凝土的抗力系数。
(5.30)
vc
1
vsw v vsf vsv c
图 4.8 弯 曲 剪 切 破 坏 时 的 应 力 图 形
图5.14 弯曲剪切破坏时的应力图形
型钢腹板的抗力
V fstw h sw w
A sv V 1 . 2 fyvh sv 0 S
相关文档
最新文档