二次函数与一元二次方程教学讲义

合集下载

二次函数与一元二次方程(第1课时)PPT课件

二次函数与一元二次方程(第1课时)PPT课件
(1) h和t的关系式是什么?
解 :1 .h 5 t24t.0
(2) 小球经过多少秒后落地?你 有几种求解方法?与同伴进行交
流. ①图象法
②解方程 -5t2+40t=0
议一议 二次函数与一元二次方程
画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1).每个图象与x轴有几个交点?
(1)2.个,1个,0个程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(2) 一元二次方程x2+2x=0,x2-2x+1=0有几个根?验 证一下一元二次方程x2-2x+2=0有根吗?
2.抛物线y=ax2+bx+c(a≠0)的图象全部在x
轴下方的条件是( D )
(A)a<0 b2-4ac≤0(B)a<0 b2-4ac>0 (C)a>0 b2-4ac>0 (D)a<0 b2-4ac<0
小结 拓展 我思考,我进步
一个关系:二次函数图象与一元二次
我 方程根的关系:

函数
方程
的 收
y=ax2+bx+c(a≠0)
9
想一想 二次函数与一元二次方程
思考在本节一开始的小球上抛问题中,
何时小球离地面的高度是60m?你是如 何知道的? 能否达到80米?100米呢?
结论3 当y取定值时,二次函数可转
化为一元二次方程。

二次函数和一元二次方程-辅导讲义

二次函数和一元二次方程-辅导讲义

讲义内容知识概括知识点一:一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0)一元二次方程ax2+bx+c=0有两个不等实根△=b2-4ac>0。

(2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点一元二次方程ax2+bx+c=0有两个相等实根,(3)抛物线y=ax2+bx+c与x轴没有公共点一元二次方程ax2+bx+c=0没有实数根△=b2-4ac<0.(4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况方程ax2+bx+c=h的根的情况。

抛物线y=ax2+bx+c与直线y=mx+n的公共点情况方程ax2+bx+c=mx+n的根的情况。

方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c=++中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a++≠本身就是所含字母x的二次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:∆>抛物线与x轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根∆=抛物线与x轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根0∆<抛物线与x轴无交点二次三项式的值恒为正一元二次方程无实数根.题型一 求字母系数的取值范围【例1】若二次函数)1(24)1(22-+--=k kx x k y 的图象与x 轴有两个交点,求k 的取值范围;练习1:已知:关于x 的函数772--=x kx y 的图象与x 轴总有交点,求k 的取值范围?练习2:已知抛物线2234y x kx k =+-(k 为常数,且k >0).证明:此抛物线与x 轴总有两个交点;练习3:已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.题型二 一次函数图象和二次函数图象的交点问题【例2】已知抛物线C 经过(-5,0),(0,25),(1,6)三点,直线l 的函数表达式为32-=x y ;(1)求抛物线的表达式;(2)证明抛物线C 与直线l 无交点;(3)若与l 平行的直线m x y +=2与抛物线C 只有一个公共点P ,求点P 的坐标;练习1:已知二次函数y=﹣x 2+bx+c 的图象如图所示,它与x 轴的一个交点坐标为(﹣1,0),与y 轴的交点坐标为(0,3).(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围.题型三 关于二次函数图象交点的综合问题【例3】已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ONOM-=,求k 的值.练习1:抛物线2y x bx c =-++的部分图象如图所示,则方程02=++-c bx x 的两根为 .练习2:下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③B.只有①③④C.只有①④D.只有②【例4】已知二次函数y=x2+bx﹣c的图象与x轴两交点的坐标分别为(m,0),(﹣3m,0)(m≠0).(1)证明4c=3b2;(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.练习:已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式;(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.。

《二次函数与一元二次方程》说课稿

《二次函数与一元二次方程》说课稿

《二次函数与一元二次方程(第1课时)》说课稿一、教材分析《二次函数与一元二次方程》是人教版九年级上册第22章第二节的第1课时的内容。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

用函数的观点看方程,可以把方程看成函数值为某个定值时的情况,所以,研究函数与方程的关系是对函数的进一步深化。

学生在一次函数时已经了解了一次函数与一元一次方程、一元一次不等式、二元一次不等式组之间的联系,本章专设一节,通过探讨二次函数与一元二次方程的联系,再次展示函数与方程之间的联系。

这样既深化学生对一元二次方程的认识,又可以运用二次函数解决一元二次方程的相关问题,体现了知识之间的联系。

二、学情分析学生已经学习了一元一次方程和一次函数,一元二次方程,二次函数的图像和性质等知识,对函数与方程的关系已有初步认识。

但是运用函数的思想解决问题的意识还不够,仍习惯于孤立地看待方程与不等式的问题。

本节学习可以帮助学生进一步建立函数与方程的联系,提升用函数思想解决问题的意识和能力。

三、教学目标1.了解一元二次方程的根的几何意义;理解抛物线与横轴的三种位置关系对应一元二次方程的根的三种情况.2.经历探索二次函数与一元二次方程关系的过程,结合图象,进一步体会函数与方程之间的联系。

3.运用函数思想解决问题,体会事物之间的转化,提升思维品质。

四、教学重难点重点:二次函数与一元二次方程的联系,利用函数解决方程的有关问题.难点:将方程问题转化为函数问题,运用函数的思想解决问题。

五、教学策略由一次函数与一元一次方程的关系说起,采用类比的方法研究二次函数与一元二次方程的关系。

以实际问题为情境从数与形两个角度理解函数与方程之间的联系。

《22.2二次函数与一元二次方程》说课稿

《22.2二次函数与一元二次方程》说课稿

22.2 二次函数与一元二次方程》说课稿一、教材分析1、教材的地位和作用《二次函数与一元二次方程》是人教版九年级上册第22 章第二节的教学内容.它既是一次函数与一元一次方程关系的延续. 又为高中数学求一元二次不等式的解集以及三个“二次” 的关系进一步探讨奠定基础.2、重难点的确点重点:从数和形两个角度理解二次函数与一元二次方程的关系;掌握二次函数与一元二次方程的互相转化问题.难点:灵活运用二次函数与一元二次方程的关系解决问题;利用函数的图象求一元二次方程的近似解.二、目标分析知识与技能:掌握二次函数与一元二次方程的联系.数学思考:运用类比、猜想的数学方法解决实际问题.解决问题:经历探索二次函数与一元二次方程关系的过程,认识到事物的互相联系与转化.情感态度:让学生在合作探究中培养学生合作学习的良好意识和团结协作的精神.三、学情分析已形成的:1、能理解二次函数的性质、图象,有一定看图识图能力,并能画一次函数、二次函数的草图.2、能熟练求解一元一次方程与一元二次方程的根.有待形成、提升的:1、由特殊到一般的归纳总结能力.2、理解二次函数与一元二次方程的联系和研究时互相转化的数学思想及数形结合思想.3、用函数的观点解决问题的应用意识.四、教法学法分析1、教法分析在本节课中我采用情景教学法,观察发现法和探讨法为主,多媒体演示为辅的教学方法进行教学. 以学生活动为主线,引导学生在观察、操作、合作、交流等具体过程中突破本节课的难点,在学习活动中,尽量让每一位学生积极参与,最终让他们学会学习.2、学法分析通过观察发现、合作交流、归纳总结完成本节课的教学.五、教学过程(一)复习引入活动1:问题1:一次函数与一元一次方程有怎样的联系?师生活动:老师引导,学生回答,最后分别从数与形这两个角度得出一次函数与一元一次方程的关系.问题2:类比猜想一下二次函数与一元二次方程的联系?师生活动:老师展示问题,学生回答.得出当二次函数y=aX+bx+c(a工的函数值y=0时,则得到了一个一元二次方程ax2+bx+c=0(a工;0若把一元二次方程ax2+bx+c=0(a丰0)中的常量0变为变量y,则得到二次函数y=ax2+bx+c(a工.0)设计的意图:在学生已有的数学基础上,采用类比的学习方法,探索新知.(二)探究新知活动2:4问题:如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线. 如果不考虑空气阻力,小球的飞行高度h(单位:m)飞行时间t(单位:s)2之间具有函数关系:h= 20t-5t 2问:(1)小球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5 m ?4 小球从飞出到落地要用多少时间?师生活动:第(1)问师生共同分析,先用代数的方法解答,然后引导学生用图象法对此问进行解释和分析. 第(2)问由学生分析并展示过程,同时让学生用图象演示为什只有一个时间小球的飞行高度达到20m?接着老师又引导学生从二次函数的性质(即二次函数的最大值)来说明为什么只有一个时间?剩下的学生独立完成,学生代表分析并展示过程.设计的意图:让学生用数与形这两种不同的方法解决实际问题.活动3:小组合作问题:根据刚才例题的讲解,类比一次函数与一元一次方程的联系,现在以小组为单 位对二次函数与 x 轴的交点的横坐标与一元二次方程的根的关系进行讨论,并请代表展示 结果•二次函数的图象与 x 轴交点横坐标与一元二次方程根的关系:(1)"数”:二次函数y=ax 2+bx+c ( 0)的函数值y=0时相应的自变量的值即为一元二次方 程 ax 2+bx+c=0 (0)的根;(2) "形”:二次函数 y=ax 2+bx+c ( a * 0)的图象与 x 轴交点的横坐标.即为一元二次方程 ax 2+bx+c=0 (a丰 0)的根.设计的意图:通过学生合作交流, 得出二次函数y=ax 2+bx+c(a 丰0)的图象和x 轴交点的 横坐标与一元二次方程 ax 2+bx+c=0(a 丰0)的根的关系,同时培养学生合作学习的能力•活动4:观察发现(1 )观察二次函数①y=x 2+x-2,②y=x 2-6x+9,③y=x 2-x+1的图象,回答下列问题: 函数与x 轴的交点的个数是:① ______________ 个② _________ 个③ _________ 个• 函数与x 轴交点的横坐标为:① _________________② ____________ ③x 2+x-2=0,② X 2-6X +9=0,③ x 2-x+1=0,则元二次方程根的情况: ①厶_0,有_根 ②' _0,有_根,③△ _0,有 _______________________ 根. 一元二次方程的解是:① ___________ ,②, ③ •思考:二次函数y=a/+bx+c(a 工与)x 轴交点情况与一元二次方程 ax 2+bx+c=0(a 却的根的情况有怎样的联系?师生活动: 老师展示问题,学生观察填空•通过观察(1)与(2)的结果,对思考问题进行合作讨论设计意图:通过学生讨论、观察,得出判别式和二次函数与 系.并让学生掌握特殊到一般的学习方法 •(三) 归纳新知(2)已知一元二次方程①x 轴交点个数的情况的关 -2 -1^*11 2 X-2设计意图:培养学生语言表述能力,及用表格法归纳知识的能力。

九年级数学二次函数与一元二次方程公开课课件

九年级数学二次函数与一元二次方程公开课课件

方程有两不相
函数与x轴有一个交点 根
方程有两相等
函数与x轴没有交点 方程没有根
方程的根的情况是由什么决定的?
判别式b2-4ac的符号
结论:
对于二次函数y=ax2+bx+c,判别式又能 给我们什么样的结论?
(1)b2-4ac>0 点
函数与x轴有两个交
(2)b2-4ac=0 点
函数与x轴有一个交
(3)b2-4ac<0 函数与x轴没有交点
有两个交点
b2-4ac = 0
有两个相等的实数根
有一个交点
b2-4ac < 0
没有实数根
没有交点
跟踪练习一
1 . 若方程ax2+bx+c=0的根为x1=-2和x2=3,则二次函数 y=ax2+bx+c的图象与x轴交点坐标是(-2,0)、(3,0)。
2.抛物线y=x2-4x+4与轴有 一 个交点,坐标是 (2,0) 。
友情提示:二次函数有哪几种表达形式?
例2 :已知抛物线与X轴交于A(-1,0),B(2,0)
并经过点M(0,2),求抛物线的解析式?
思考: 你能用什么方法做呢? 哪个方法更好?
y
解:设所求的二次函数为 y=a(x+1)(x-2)
x
因为 点M( 0,2 )在抛物线上
o
所以:a(0+1)(0-2)=2 得 : a=-1
5.若函数 y mx2 6x 1图象与x 轴是只有一个公共点,求m
的值解.:∵ 图象与x 轴是只有一个公共点 则△=0
即 36-4m=0 ∴ m=9
想一想 议一议
若一元二次方程ax 2+bx+c=0两个根为x 1 , x2 则一 元二次方程可化为 (x-x1)(x-x2)=0 若二次函数y=ax 2+bx+c的图象和x轴交点坐标(X1 ,0) (方X法2 称,0为),则二二次次函函数数的的交表点达式式。可表示为Y=a(x-x1)(x-x2)这种表示

九年级数学上册教学课件《二次函数与一元二次方程》

九年级数学上册教学课件《二次函数与一元二次方程》
解:
t2 - 4t+4=0.
t1 =t2 =2.
当小球飞行2s时,它的飞行高度为20m.
你能结合图指出为什么只在一个时间小球的高度为20m吗?
2s
20m
(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
h=20t-5t2.
20.5=20t-5t2.
解:
t2 - 4t+4.1=0.
因为(-4)2 – 4×4.1<0,
有两个不同实根有两个相同实根没有根
有两个交点有一个交点没有交点
△ > 0
△ = 0
△ < 0
二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系(2)
ax2+bx+c = 0 的根
抛物线 y=ax2+bx+c与x轴
若抛物线 y=ax2+bx+c 与 x 轴有交点,则________________ 。
无公共点
先画出函数图象:
公共点的函数值为 。
0
对应一元二次方程的根是多少?
x1 =-2,
x2 =1.
x1 =x2 =3.
方程无解
有两个不等的实根
有两个相等的实根
没有实数根
由上述问题,你可以得到什么结论呢?
方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x轴公共点的横坐标。当抛物线与x轴没有公共点时,对应的方程无实数根.
综合应用
解:(1)如图所示.(2)由图象可知,铅球推出的距离为10.
拓展延伸
7.把下列各题中解析式的编号①②③④与图象的编号A、B、C、D对应起来.①y=x2+bx+2; ②y=ax(x-3); ③y=a(x+2)(x-3); ④y=-x2+bx-3.

《二次函数与一元二次方程》精品教学课件

《二次函数与一元二次方程》精品教学课件

再见
(1)yx2x2
2,1
(2)yx26x9
3
(3)yx2x1
没有实数根
y=x2-x+1 y 4
y=x2+x-2
3 2 1
y=x2-6x+9
–3 –2 –1 O –1 –2 –3
1234 x
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
例:利用函数图象求方程x22x2=0的实数根(结果保留小数点后一位).
yax²bxc(a0)
ax²bxcm(a0)

yax²bxc(a0) 与x轴的位置关系 没有公共点 有一个公共点 有两个公共点

ax²bxc0 (a≠0) 根的情况
没有实数根 有两个相等的实数根 有两个不相等的实数根
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
教科书第47页 习题22.2 第1、2、3、5题
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
回顾与思考
一次函数 ykxb 的图象如图所示,则关于x的 一元一次方程 kxb0 的解为 x3 .
关于x的一元一次方程 kxb0 的解
y
4 3 2 1
–4 –3 –2 –1 O –1 –2 –3 –4
1 2 3 4x
函数解析式

数形结合
函数图象 形
解:画出函数y=x22x2的图象, 如图所示,它与x轴的公共点的横坐标 大约是0.7,2.7.
所以方程x22x2=0的实数根为 x1≈0.7,x2≈2.7.
图片是【数学探究】《探究二次函数与x轴 交点》的动画缩略图,可以通过改变参数值, 改变函数图象位置,观察图象与x轴的交点情况.

人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)

人教版数学九年级上册22.2  二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O

新课标数学预习讲义---二次函数与一元二次方程、不等式

新课标数学预习讲义---二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式预习讲义【巩固初中知识】一、一元二次方程1.一元二次方程)0(02≠=++a c bx ax 的解法(1)配方法:将方程整理成q p x =+2)(,方程的根是 . 注:2x 系数是1和不是1时配方注意事项;2x 系数是负数时配方注意事项. (2)公式法: )04(2>-=∆ac b .(3)因式分解:十字相乘法:0)(2=+++pq x q p x ⇒ . 2.一元二次方程根的判别(24b ac ∆=-) (1)△>0,方程有两个不相等的实数根;(2)△=0,方程有一个实数根或者两个相等的实数根; (3)△<0,方程没有实数根,方程无解. 3.韦达定理(根与系数关系)一元二次方程)0(02≠=++a c bx ax 的两个根是1x 和2x ,则1x +2x = ; 1x .2x = . 二、一元二次函数1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

2.二次函数2y ax bx c =++的性质当0a >时,抛物线开口 ,当0a <时,抛物线开口 ,对称轴为 ,顶点坐标为 . 3.二次函数解析式求法(1)一般式: (a ,b ,c 为常数,0a ≠),需要三个坐标点; (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠),顶点坐标和其他任一点的坐标; (3)零点式: (a 为常数,且0a ≠),二次函数的零点为1x ,2x .【衔接高中知识】(1)一元二次不等式的定义:只含有一个未知数并且未知数的最高次数是2的不等式叫作一元二次不等式,形如02>++c bx ax (或0<,或0≤,或0≥),其中0≠a .(2)一元二次不等式的解法步骤:第1步:将不等式的右边化为零,左边化为二次项系数大于零的不等式: c bx ax ++2>0或 c bx ax ++2<0(a >0) 第2步:求出相应的一元二次方程的根.第3步:利用二次函数的图象与x 轴的交点确定一元二次不等式的解集. 三个“二次”的关系判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0 (a >0)的根ax 2+bx +c >0 (a >0)的解集ax 2+bx +c <0 (a >0)的解集【考点分类精讲】考点1 解简单的一元二次不等式【考题1】解下列不等式 (1)3x 2-x -4>0; (2)x 2-x -12≤0;(3))3)(1(x x --<x 25-; (4)2)1(3)11(+≥+x x x(5)03422<+-x x(6)042<-+x x【举一反三】1.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .(0,2) B .(-2,1) C .(-∞,-2)∪(1,+∞) D .(-1,2) 2.不等式2620x x --+≤的解集是( ) A .21|32x x ⎧⎫-≤≤⎨⎬⎩⎭B .12|23x x x ⎧⎫≥≤-⎨⎬⎩⎭或 C .21|32x x x ⎧⎫≥≤-⎨⎬⎩⎭或D .12{|}23x x -≤≤ 考点2 解一元二次不等式组【考题2】求使2223132xx x x -++-+有意义的x 的取值范围.【举一反三】求使0562086122>-+-+>+-x x x x 有意义的x 的取值范围.考点3 已知一元二次不等式的解集求参数的取值范围【考题3】设关于x 的不等式02<++b ax x 的解集为)2,1(,求不等式012>++ax bx 的解集.【举一反三】1.关于x 的不等式2282a ax x --<0(a >0)的解集为(1x ,2x ),且1521=-x x ,则=a ( ) A .25 B .27 C .415 D .215 2.已知不等式220ax x c ++<的解集是11,,32⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,则不等式220cx x a ++≤的解集是( ) A .11,23⎡⎤-⎢⎥⎣⎦ B .11,32⎡⎤-⎢⎥⎣⎦C .[-2,3]D .[-3,2]考题4 一元二次不等式的恒成立问题【考题4】已知关于x 的不等式049)1(220822<+++++-m x m mx x x 恒成立,求实数m 的取值范围【举一反三】1.已知不等式042<++ax x 的解集为空集,则a 的取值范围是( ) A .44>-<a a 或B .44<<-aC .44≥-≤a a 或D .44≤≤-a2.设关于x 的不等式1)1()1(22----x a x a <0的解集是R ,则实数a 的取值范围是( ) A .a <53-或a >1B .53-<a <1C .53-<a ≤1 D .53-<a ≤1或1-=a 3.定义运算:,若使得成立,则实数a 的取值范围是 ) A . B .C .D .【难点突破】含参数一元二次不等式的解法【考题5】解关于x 的不等式x 2-(1+a )x +a <0(a 为常数).举一反三:1.关于x 的不等式0)1(2<++-a x a x 的解集中,恰有3个整数,则a 的取值范围是( ) A .(4,5) B .(-3,-2)∪(4,5) C .(4,5]D .[-3,-2)∪(4,5]2.若10<<a ,则不等式01)1(2<++-x aa x 的解集是 ( ) A .}1|{ax a x <<B .}1|{a x ax << C .a x x >|{或}1ax <D .ax x 1|{>或}a x < 3.解关于x 的不等式012<--+ax x ax ,其中(a 为常数).【题型优化测训】1.不等式0232<+-x x 的解集为( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-2,-1)D .(-∞,-2)∪(-1,+∞) 2.若不等式22-+bx ax <0的解集为(2-,41),则ab 等于( ) A .-28B .-26C .28D .263.定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x -b )>0的解集是(2,3),则a +b =( ) A .1B .2C .4D .84.若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是( ) A .(-2,2] B .(-2,2) C .(-∞,-2)∪[2,+∞)D .(-∞,2]5.已知不等式20ax bx c ++>的解集为(-4,1),则不等式2(1)(3)0b x a x c +-++>的解集为( ) A .4(1,)3- B .4(,1)(,)3-∞-⋃+∞ C .4(,1)3-D .4(,)(1,)3-∞-⋃+∞ 6.关于x 的不等式()()224210a x a x -++-≥的解集是R ,则实数a 的取值范围为( )A . )56,2(-B .)56,2[-C .}2{-D .∅7.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a 、b 的值.(选做题)不等式2x -1>m (x 2-1)对一切满足|m |≤2的值均成立,则x 的范围为______________.。

《二次函数与一元二次方程》数学PPT课件

《二次函数与一元二次方程》数学PPT课件
虑空气阻力,球的飞行高度 h (单位:m)与飞行时间t (单位:s)之间具有关系:h= 20t–5t2 .
考虑下列问题:
(1)球的飞行高度能否达到 15 m? 若能,需要多少时间?
(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
(3)球的飞行高度能否达到 20.5 m?为什么?
(4)球从飞出到落地要用多少时间?
b2-4ac=0
有一个
有两个相等的实数根
b2-4ac<0
没有公共点
没有实数根
课堂小结
判别式(△)
b2-4ac
二次函数
y=ax2+bx+c
(a≠0)
b2-4ac>0
与x轴有两个不同的交点
(x1,0)
(x2,0)
b2-4ac=0
b2-4ac<0
与x轴有唯一个

交点(- ,0)
图象
y
x
有两个不同的解
x=x1,x=x2
(2)当h=20时,20t-5t2=20,
化简得t2-4t+4=0,
t1=t2=2.
当球飞行2s时,它的高度为20m.
思考:结合图形,你知道为什么在1)中有两个点
符合题意,而在2)中只有一个点符合题意?
情景思考
分析:由于小球的飞行高度h与飞行时间t有函数关系h=20t-5t2,所以可以将问题中h的值代
x1=-2,
x2=1
x1=x2=3
无实根
思考探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么
关系?
抛物线y=ax2+bx+c(a≠0)

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT优质教学课件

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT优质教学课件

因为
方程=0的解为
则二次函数草图为
不等式的解集为
不等式的解集为
不等式的解集为R
不等式的解集为
不等式的解集为
不等式的解集为
不等式的解集为R
不等式的解集为
不等式的解集为
不等式的解集为
方法指导
SCQ NO.1 MIDDLE SCHOOL
解一元二次不等式的一般方法化标准:不等式右侧化为0,二次项系数化为正整数.判别式:确定对应一元二次方程有无实根.求实根:若有根,求根. 作草图:作出对应二次函数的草图.写解集:结合图像写一元二次不等式的解集.
实数
特别提醒:(1)二次函数的零点不是点,是二次函数图象与轴交点的横坐标. (2)一元二次方程的根是相应一元二次函数的零点.
A
3.二次函数、一元二次方程、一元二次不等式之间的对应关系
设 ,方程 的判别式
判别式
解不等式 或 的步骤
求方程 的根
SCQ NO.1 MIDDLE SCHOOL
课堂小结
SCQ NO.1 MIDDLE SCHOOL
图像法解一元二次不等式
利用“三个二次的关系”求参数
一元二次不等式
三个基本知识
二次函数的零点
“三个二次”之间的关系
两个题型
教材认知
SCQ NO.1 MIDDLE SCHOOL
1.一元二次不等式一般地,我们把只含有_______未知数,并且未知数的最高次数是2的整式不等式,称为一元二次不等式.一元二次不等式的一般形式是__________________或 ,其中 、 、 均为常数, .
一个
C
2.二次函数的零点一般地,对于二次函数 ,我们把使 成立的_________的值叫作二次函数 的零点.

二次函数与一元二次方程 说课

二次函数与一元二次方程 说课

2
4
6
8
t
预习生疑
1.二次函数与x轴的交点与一元二次方程的根
合作辨疑
有什么关系?
探究释疑
2.二次函数与y=h的交点与一元二次方程的
实践解疑
根有什么关系?
反思升疑
3.还有哪些交点类型?在哪些地方考察?
预习生疑
x= -x²+4x-3
y= -x²+4x-3
合作辨疑
探究释疑
y=x
在函数y= -x²+4x-3上求满足y=x的点的横坐标
教法与学法分析
以学生为主体,以问题为主线,以质疑为特征
动手
操作
启发
发现
讨论
小组
合作
【合作辩疑】
预习生疑
1.二次函数与x轴的交点与一元二次方程的根
合作辨疑
有什么关系?
探究释疑
2.二次函数与y=h的交点与一元二次方程的
实践解疑
根有什么关系?
反思升疑
3.还有哪些交点类型?在哪些地方考察?
小组讨论要求
时间:5分钟;小组长组织本组组员进行合作交流;
证、说明推理,有效地突破了难点;及时小结,注重升华;
紧密链接中考,注意拓展延伸和上下链接。
教材分析 学情分析 教学目标 教法与学法分析 教学过程 特色说明
数学是思维的体操。怎样培养学生的核心素
养,我认为目标就是:即便学生将来忘记了所学
的知识,却会在将来感激数学课堂带来的思维灵
动。
这就是我们数学教师的使命与价值。
解方程得 =
+
,



=
∴ 两图像有两个交点
+

22.4 二次函数与一元二次方程讲学稿

22.4  二次函数与一元二次方程讲学稿

22.4 二次函数与一元二次方程讲学稿执笔:李新丰审核:焦道胜金峰教学目标:1.会用函数图象的交点解释方程的根的意义;2.能结合二次函数的图象与x轴的交点的个数判断一元二次方程的根的存在性和根的个数;3.了解函数的零点与对应方程根的联系.教学重点:根据二次函数的图象与x轴的交点的个数判断一元二次方程的根的个数.教学难点根据二次函数的图象与x轴的交点的个数判断一元二次方程的根的个数.教学过程:一、提出统摄性问题,创设适宜情境,引入新课我们知道,等式x2-2x-3=0是关于x的一元二次方程,关系式y =x2-2x-3则是关于自变量x的一个二次函数,那么,二次函数与对应的一元二次方程有什么关系?它们有哪些联系?这些联系对于研究函数问题有怎样的作用?这就是我们这节课所要研究的问题.(引入新课,书写课题——二次函数与一元二次方程)二、学生活动(一)探究二次函数与对应的一元二次方程之间的关系问题1:你能快速地求出一元二次方程x2—2x—3=0的根吗?请画出二次函数y =x2-2x-3的图象.(生动手画图,师生共同归纳画二次函数图象的步骤)方法引导:画二次函数简图的步骤:(1) 先根据二次项系数确定图象的开口方向,即当a>0时,图象开口向上;当a<0时,图象开口向下.(2) 再根据x=2ba -画出函数的对称轴.(3) 确定函数图象与两坐标轴的交点,成图.问题2:请观察你所画的函数图象,研究图象上的一些特殊点以及二次方程x 2-2x-3=0的根,你有什么发现吗?(组织学生交流,得出如下结论)结论:(1) 一元二次方程x 2-2x-3=0的两个实数根就是二次函数y =x 2-2x-3的图象与x 轴交点的横坐标.(2) 一元二次方程x 2-2x-3=0的两个实数根即为二次函数y =x 2-2x-3的函数值等于0时的自变量x 的值.问题3:研究一元二次方程x 2-2x-3=0的根的个数及其判别式与二次函数y =x 2-2x-3的开口方向和顶点位置,你能得到什么结论?结论:(1) 一元二次方程x 2-2x-3=0有两个不相等的实数根,判别式Δ>0;(2) 二次函数y =x 2-2x-3的开口向上,顶点在x 轴下方;(3) 方程x 2-2x-3=0有两个不相等的实数根⇔判别式Δ>0⇔对应的二次函数y =x 2-2x-3的开口向上且顶点在x 轴下方;问题4:你能将这个结论进行推广吗?(学生思考,同时投影显示如下问题) 合作探究:一元二次方程ax 2+bx+c=0(a>0)的根的个数及其判别式与二次函数y= ax 2+bx+c=0(a>0)的开口方向和顶点位置之间有什么联系?(师生共同结合函数ax 2+bx+c=0(a>0)的图象的不同情形,得出如下结论) 方程ax 2+bx+c=0(a>0)有两个不相等的实数根⇔判别式Δ>0⇔对应的二次函数y =ax 2+bx+c(a>0)的开口向上且顶点在x 轴下方;方程ax 2+bx+c=0(a>0)有两个相等的实数根⇔判别式Δ=0⇔对应的二次函数y =ax 2+bx+c(a>0)的开口向上且顶点在x 轴上;方程ax 2+bx+c=0(a>0)没有实数根⇔判别式Δ<0⇔对应的二次函数y =ax 2+bx+c(a>0)的开口向上且顶点在x 轴上方.也就是说,判断一个方程是否有解以及解的个数的问题,可以转化为讨论对应的二次函数的图象开口方向以及顶点与x 轴的位置问题.也可以通过二次函数对应的二次方程的根的个数来判断二次函数的开口方向以及顶点位置.思考:当二次函数y =ax 2+bx+c(a <0)时,是否也有类似的结论呢?(二) 函数与方程关系的应用[例1]求证:一元二次方程2x 2+3x-7=0有两个不相等的实数根.根据我们前面研究的结论,你觉得应该如何完成上题的证明呢?证法一:因为一元二次方程2x 2+3x-7=0 的判别式Δ=32-4×2×(-7)=65>0,所以方程2x 2+3x-7=0有两个不相等的实数根.证法二:设f(x)= 2x 2+3x-7,因为函数的图象是一条开口向上的抛物线,且顶点在x 轴的下方,即2333()2()3()770444f -=-+⨯--=-<,所以函数f(x)= 2x 2+3x-7图象与x 轴有两个不同的交点,即方程2x 2+3x-7=0有两个不相等的实数根.思考:该题还有其他证法吗?[例2]右图是一个二次函数y=f(x)的图象.(1) 写出这个二次函数的零点;(2) 写出这个二次函数的解析式;(3) 试比较f(-4) f(-1),f(0) f(2)与0的大小关系. 问题:什么是函数的零点?所谓函数的零点,是指函数图象上函数值为0的点的横坐标,你能说出求函数零点的本质是什么吗?求函数的零点即解与函数对应的方程.问题:你能由图中找到二次函数的零点吗?请同学们回顾一下初中确定一个二次函数的解析式都有哪些方法呢?[学生交流归纳求二次函数解析式的常见方法]方法一:设函数解析式为y =ax2+bx+c(a≠0),再根据题意得到关于a、b、c的三个方程,联立方程,解方程组确定出y =ax2+bx+c(a≠0).方法二:根据题中具体要求,也可设函数的解析式为y=a(x-x1)(x-x2),进而求出函数的对应变量的值.方法三:也可设解析式为顶点式,进而求出函数的解析式.问:你能根据题目的具体条件选拔具体的方法确定上题中函数的解析式吗?(师板书解题过程)(3)解:由(1),可知这个函数的解析式可设为f(x)=a(x+3)(x-1),由f(-1)=4可知a=-1,故f(x)=- (x+3)(x-1),即这个二次函数的解析式为f(x)=-x2-2x+3.方法引导:要比较二次函数图象上两个自变量所对应的函数值的乘积与0的大小关系,只需判断各个自变量的值的大小、正负以及函数零点之间的关系.(4)解:由函数图象可知f(-4)=-5,f(-1)=4,f(0)=3,f(2)=5,所以f(-4) ·f(-1)=-20<0,f(0)·f(2)=-15<0.三、课堂小结1.一元二次方程根的个数的判断方法;2.函数的零点和方程的根的联系.四、布置作业课本第30页习题第1、2、3题.。

(完整)《二次函数与一元二次方程》说课稿

(完整)《二次函数与一元二次方程》说课稿

《〈二次函数与一元二次方程〉第一课时》说课稿付家堰中小学刘家付各位领导、专家:大家好!我今天的说课内容是人教版九年级上册第22章第二节《二次函数与一元二次方程》的第一课时的教学内容,现就我对本节课的教学安排和教学思路向各位领导和专家汇报如下:一、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系.这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系,因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。

2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。

3、心理上,老师应抓住一元二次方程的求解方法很多,在学习了因式分解法、配方法、求根公式法等的基础上,激发学生对一元二次方程的其它解法的探求兴趣,进而由一次函数与一元一次方程的关系类比到二次函数的图象与一元二次方程的根的情况上来,顺着学生的思维逐步引导加以激发。

三、教学目标根据新课标的要求及九年级学生的认知水平特制定本节课的教学目标如下:知识与技能:掌握二次函数与一元二次方程的联系.过程与方法:经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

情感、态度与价值观:1、经历探索二次函数与一元二次方程的关系的过程,提高学生的分析能力与在探索过程中抽象概括能力.2、培养学生团结合作学习的良好意识和积极进取的精神。

3、培养学生用联系的观点看问题。

四、教学重难点重点:二次函数的图象和一元二次方程的联系.难点:培养学生的数形结合的意识和学会用数形结合的方法解决问题。

讲义二次函数与一次函数、一元二次方程、不等式

讲义二次函数与一次函数、一元二次方程、不等式

【讲义】二次函数与一次函数、一元二次方程、不等式(组)(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次函数与一次函数、反比例函数、一元二次方程、不等式组课程目标:灵活运用二次函数的性质解一元二次方程;熟练解决二次函数与与其它函数结合的有关问题。

课程要求:完成讲义中的练习;完成课后配套练习。

一、二次函数与一元二次方程、不等式(组)例1.函数(是常数)的图像与轴的交点个数为()A.0个B.1个C.2个D.1个或2个例2.已知实数x,y满足x2+3x+y-3=0,则x+y的最大值为 .例3.设函数y=x2﹣(k+1)x﹣4(k+5)的图象如图所示,它与x 轴交于A、B两点,且线段OA与OB的长的比为1:4,则k=_________ .例4. 如图10-2,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是 .例5. 已知P(3,m-)和Q(1,m)是抛物线221y x bx=++上的两点.(1)求b的值;22y mx x m=+-m x(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.【当堂练】1.已知二次函数c bx ax y ++=2的图象如图10-1所示,则下列结论正确的是( )A .a >0B .c <0C .b 2-4ac <0D .a +b +c >02.如图所示,函数的图像与轴只有一个交点,则交点的横坐标 .3.二次函数的图像与轴的交点坐标为 . =ax2+bx+c 中,a<0,抛物线与x 轴有两个交点A (2,0)B (-1,0),则ax2+bx+c>0的解是____________; ax2+bx+c<0的解是____________5. 抛物线与轴有个交点,因为其判别式0,相应二次方程的根的情况为. 2(2)7(5)y k x x k =--+-x 0x =269y x x =-+-x 2283y x x =--x 24b ac -=23280x x -+=O6.关于的方程有两个相等的实数根,则相应二次函数与轴必然相交于点,此时 .7.平面直角坐标系中,若平移二次函数y=(x-2009)(x-2008)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为( )A .向上平移4个单位B .向下平移4个单位C .向左平移4个单位D .向右平移4个单位8.若关于x 的一元二次方程0522=++ax x 的两根在1与2之间(不含1和2),则a 的取值范围是 .9.右图是二次函数y 1=ax 2+bx+c 和一次函数y 2=mx+n 的图像,•观察图像写出y 2≥y 1时,x 的取值范围_______.10.已知抛物线的顶点在抛物线上,且抛物线在轴上截得的线段长是和的值.11.已知函数.(1)求证:不论为何实数,此二次函数的图像与轴都有两个不同交点;(2)若函数有最小值,求函数表达式.12.关于x 的一元二次方程22(1)2(2)10m x m x ---+=.(1)当m 为何值时,方程有两个不相等的实数根;x 25mx mx m ++=25y mx mx m =++-x m =21()3y x h k =--+2y x =x 43h k 22y x mx m =-+-m x y 54-(2)点()11A --,是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式;(3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.二、二次函数与一次函数、反比例函数例1.当路程s 一定时,速度v 与时间t 之间的函数关系是( )A .正比例函数B .反比例函数C .一次函数D .二次函数例2. 在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图象可能是( )例2.函数2y kx =-与k y x =(k ≠0)在同一坐标系内的图象可能是( )例3.如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.例4.如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-33,1)、C(-33,0)、O(0,0).将此矩形沿着过E(-3,1)、F(-433,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′.(1)求折痕所在直线EF的解析式;(2)一抛物线经过B、E、B′三点,求此二次函数解析式;(3)能否在直线EF上求一点P,使得△PBC周长最小如能,求出点P的坐标;若不能,说明理由.例5.如图,过y轴上点A的一次函数与反比例函数相交于B、D两点,B (﹣2,3),BC⊥x轴于C,四边形OABC面积为4.(1)求反比例函数和一次函数的解析式;(2)求点D的坐标;(3)当x在什么取值范围内,一次函数的值大于反比例函数的值.(直接写出结果)【当堂练】1.二次函数y=ax 2+bx 的图象如图所示,那么一次函数y=ax+b 的图象大致是( )A .B .C .D .. 2.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的个数为( )A . 1B . 2C . 3D . 43.在同一直角坐标系中,函数y=mx+m 和y=﹣mx 2+2x+2(m 是常数,且m≠0)的图象可能是( )A .B .C .D .4.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是( )A .B .C .D .5.根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为 .6. 定义[]p q ,为一次函数y px q =+的特征数.(1)若特征数是[]22k -,的一次函数为正比例函数,求k 的值;(2)设点A B ,分别为抛物线()(2)y x m x =+-与x 轴、y 轴的交点,其中0m >,且OAB △的面积为4,O 为坐标原点,求图象过A 、B 两点的一次函数的特征数.7.已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中且、为实数.(1)求一次函数的表达式(用含b 的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x1、x2,求| x1-x2 |的范围.8.如图,直线3+-=x y 与x 轴,y 轴分别交于B ,C 两点,抛物线c bx x y ++-=2经过点B 和点C ,点A 是抛物线与x 轴的另一个交点.(1)求抛物线的解析式和顶点坐标;(2)若点Q 在抛物线的对称轴上,能使△Q AC 的周长最小,请求出Q 点的坐标;(3)在直线BC 上是否存在一点P ,且31:=:PAB PAC S S ∆∆,若存在,求P 点的坐标,若不存在,请说明理由.22y ax bx =+-0a b >>a b9.如图,在平面直角坐标系中,直线33--=x y 与x 轴交于点A ,与y 轴交于点C. 抛物线c bx x y ++=2经过A 、C 两点,且与x 轴交于另一点B(点B 在点A 右侧).(1)求抛物线的解析式及点B 坐标;(2)若点M 是线段BC 上一动点,过点M 的直线EF 平行y 轴交x 轴于点F ,交抛物线于点E.求ME 长的最大值;(3)试探究当ME 取最大值时,在抛物线x 轴下方是否存在点P ,使以M 、F 、B 、P 为顶点的四边形是平行四边形若存在,请求出点P 的坐标;若不存在,试说明理由.。

高一寒假讲义-二次函数与一元二次方程、不等式

高一寒假讲义-二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式含答案知识梳理1、一元二次不等式的概念(1)只含有一个未知数,且未知数的最高次数是2的不等式叫做一元二次不等式.如:不等式2x2-x+1>0是一元二次不等式.(2)使一元二次不等式成立的未知数的取值范围叫一元二次不等式的解集.(3)一元二次不等式经过变形,可化成以下两种标准形式:①ax2+bx+c>0(a>0);②ax2+bx+c<0(a>0).设二次方程ax2+bx+c=0的判别式Δ=b2-4ac,则:(1)Δ>0时,方程ax2+bx+c=0有两个不相等的解x1,x2,设x1<x2,则不等式①的解集为{x|x<x1或x>x2},不等式②的解集为{x|x1<x<x2}.(2)Δ=0时,方程ax2+bx+c=0有两个相等的解,即x1=x2,此时不等式①的解集为{x|x≠x1},不等式②的解集为∅.(3)Δ<0时,方程ax2+bx+c=0无实数解,不等式①的解集为R,不等式②的解集为∅.2、三个“二次”二次函数的图象、一元二次方程的根、一元二次不等式的解集三者之间的关系(如下表):Δ=b2-4ac 二次函数y=ax2+bx+c(a>0)的图象方程ax2+bx+c=0解的情况ax2+bx+c>0(a>0)的解集ax2+bx+c<0(a>0)的解集Δ>0有两相异实根x1,x2{x|x>x2,或x<x1} {x|x1<x<x2} Δ=0有两相等实根x0{x|x≠x0} ∅Δ<0没有实根 R ∅3、含参数的一元二次不等式的解法(1)两边同除或同乘含参的式子时,应讨论含参的式子的符号.如:当a >0时,关于x 不等式ax >a 2的解是x >a ;当a <0时,关于x 不等式ax >a 2的解是x <a .(2)解含参数的一元二次不等式时,先求相应二次方程的根,比较根的大小后,再根据相应二次函数的图象写出不等式的解集.如:当a >0时,关于x 不等式x 2-ax >0的解是x <0或x >a ;当a <0时,关于x 不等式x 2-ax >0的解是x <a 或x >0.知识典例题型一 一元二次不等式的求解例1 不等式23210x x +-≤的解集是( ) A .11,3⎡⎤-⎢⎥⎣⎦B .(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭C .1,13⎡⎤-⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞-+∞ ⎥⎝⎦【答案】A巩固练习1、不等式290x x -+>的解集是( ) A .{0x x <或}9x > B .{9x x <-或}0x > C .{}09x x << D .{}90x x -<<【答案】C2、不等式2320x x -++>的解集为____________. 【答案】2,13⎛⎫- ⎪⎝⎭题型二 分式不等式求解例 2 解不等式2x -53-x>0解析:原不等式可化为: 2x -5x -3<0, 即(2x -5)(x -3)<0. ∴x ∈⎝⎛⎭⎫52,3,∴原不等式的解集为⎝⎛⎭⎫52,3巩固练习求下列不等式的解集:(1)x +21-x <0 (2)x +1x -2≤2.解析:(1)由x +21-x <0,得x +2x -1>0,此不等式等价于(x +2)(x -1)>0, ∴原不等式的解集为{x |x <-2或x >1}. (2)解法一:移项得x +1x -2-2≤0,左边通分并化简有-x +5x -2≤0,即x -5x -2≥0,它的同解不等式为⎩⎪⎨⎪⎧(x -2)(x -5)≥0,x -2≠0,∴x <2或x ≥5,∴原不等式的解集为{x |x <2或x ≥5}. 题型三 带参数的一元二次不等式例 3 解关于x 的一元二次不等式()2330x m x m +-->【解析】利用十字相乘法进行化简:03>+-))((m x x (1)当3>-m 时,即3-<m ,解为}{3<->x m x 或 (2)当3=-m 时,即3-=m ,解为R(3)当3<-m 时,即3->m ,解为}{m x x -<>或3巩固练习1、解关于x 的不等式x 2-ax -2a 2<0.分析:求出一元二次方程的两根2a ,-a ,比较两根的大小. 解析:方程x 2-ax -2a 2=0的判别式 Δ=a 2+8a 2=9a 2≥0, 得方程两根x 1=2a ,x 2=-a , (1)若a >0,则-a <x <2a ,此时不等式的解集为{x |-a <x <2a }; (2)若a <0,则2a <x <-a , 此时不等式的解集为{x |2a <x <-a }; (3)若a =0,则原不等式即为x 2<0, 此时解集为∅.综上所述,原不等式的解集为 当a >0时,{x |-a <x <2a }; 当a <0时,{x |2a <x <-a }; 当a =0时,∅.2、解关于x 的不等式22420x ax a +-<. 【答案】答案不唯一,具体见解析.题型四 二次项系数为参数的一元二次不等式例 4 设m R ∈,解关于x 的不等式22230m x mx +-<. 【答案】详见解析巩固练习1、若不等式2(2)2(2)40a x a x -+--<的解集为R ,则a 的取值范围是( ) A .2a ≤ B .22a -<≤C .22a -<<D .2a <【答案】B2、解关于x 的不等式:ax 2-2(a +1)x +4<0.解析:(1)当a =0时,原不等式的解集为: {x |x >2}.(2)当a ≠0时,原不等式化为:a ⎝⎛⎭⎫x -2a (x -2)<0, ①当a <0时,原不等式等价于⎝⎛⎭⎫x -2a (x -2)>0 ,此时原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <2a 或x >2;②当0<a <1时,2<2a,此时原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 2<x <2a ;③当a >1时,2a<2,此时原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a <x <2; ④当a =1时,原不等式的解集为∅.题型五 参数求解例 5 一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则+a b 的值是( )A .10B .-10C .14D .-14【答案】D巩固练习1、已知不等式20ax bx c ++>的解集为1|23x x ⎧⎫-<<⎨⎬⎩⎭,则不等式20cx bx a ++<的解为( ) A .1|32x x ⎧⎫-<<⎨⎬⎩⎭B .{3x x <-或12x ⎫>⎬⎭ C .1|23x x ⎧⎫-<<⎨⎬⎩⎭D .{2x x ≤-或13x ⎫>⎬⎭【答案】A2、已知不等式20x bx c ++>的解集为{}21x x x <或. (1)求b 和c 的值;(2)求不等式210cx bx ++≤的解集. 【答案】(1)3b =-,2c =;(2)1|12x x ⎧⎫⎨⎬⎩⎭≤≤题型五 恒成立问题例 5 若关于x 的不等式220x x a ++>的解集为R ,则实数a 的取值范围是_____. 【答案】()1,+∞巩固练习1、已知关于x 的不等式23208kx kx +-<的解集为R ,则实数k 的取值范围是__________. 【答案】(]3,0-2、对任意的实数x ,不等式()11ax x -<恒成立,则实数a 的取值范围是( ). A .(),0-∞ B .[)4,0-C .(]4,0-D .(],4-∞-【答案】C巩固提升1、不等式25140x x -++≤的解集为( )A .{7x x ≥或}2x ≤ B .{}27x x ≤≤ C .{7x x ≥或}2x ≤- D .{}27x x -≤≤【答案】C2、不等式()43x x -<的解集为( ) A .{|1x x <或}3x > B .{0x x <或}4x > C .{}13x x << D .{}04x x <<【答案】A3、不等式220ax bx ++>的解集是11|23x x ⎧⎫-<<⎨⎬⎩⎭,则-a b 的值为( )A .14B .-14C .10D .-10【答案】D4、不等式13()()022≥x x +-的解集是( )A .1{|2x x <-或3}2x > B .1{|2x x ≤-或3}2x ≥C .13{|}22x x -≤≤D .13{|}22x x -<<【答案】C5、不等式23100x x --<的解集是( ) A .()2,5- B .()5,2- C .()(),52,-∞-+∞ D .()(),25,-∞-+∞【答案】A6、已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与一元二次方程教学讲义第一讲:一元二次方程判别式及根与系数的关系一、知识点总结1、一元二次方程ax 2+bx +c =0(a ≠0)的求根公式:2、证明:设ax 2+bx+c=0 (a ≠0)的两根为x 1,x 2,由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”)⑴、若一元二次方程ax 2+bx+c=0(a ≠0)的两根分别为x 1,x 2,则:x 1+x 2=-b/a ;x 1x 2=c/a ; ⑵、若x 1,x 2是某一元二次方程的两根,则该方程可以写成:x 2-(x 1+x 2)x+x 1x 2=0。

关于一元二次方程根的判别式:3、一元二次方程 ax 2+bx+c=0 (a ≠0)根的判别式为:△=b 2-4ac作用:不解方程,判断方程根的情况,解决与根的情况有关的问题。

主要内容:⑴、△>0:有两个不相等的实数根; ⑵、△=0:有两个相等的实数根; ⑶、△<0:没有实数根。

二、典型例题关于根的判别式的应用:1、对于数字系数方程,可直接计算其判别式的值,然后判断根的情况;2、对于字母系数的一元二次方程,若知道方程根的情况,可以确定判别式大于零、等于零还是小于零,从而确定字母的取值范围;3、运用配方法,并根据一元二次方程根的判别式可以证明字母系数的一元二次方程的根的有关问题。

例1 当m 分别满足什么条件时,方程2x 2-(4m+1)x +2m 2-1=0, (1)有两个相等实根;(2)有两个不相实根;(3)无实根;(4)有两个实根.解:∵△=(4m+1)2-4×2×(2m 2-1)=8m+9(1)当△=8m+9=0,即m= -89时,方程有两个相等的实根; (2)当△=8m+9>0,即m >-89时,方程有两个不等的实根;(3)当△=8m+9<0,即m < -89时,方程没有实根。

例2 求证:关于x 的方程x 2+(m+2)x+2m-1=0有两个不相等的实数根。

分析:(1)要证方程有两个不相等的实数根,就是证明其根的判别式要大于零.(2)对于一个含有字母的代数式,要判断其正负,通常下面方法:通过配方变为“ 一个完全平方式+正数”;或变为“ -( )2–正数”。

解答过程略关于根与系数的关系(韦达定理)的应用:例3 (1)已知关于x 的方程3x 2+6x-2=0的两根为x 1 ,x 2,求2111x x +的值。

分析:已知方程,求两根组成代数式的值。

这里主要说明解题格式,学生完成过程.(2)已知关于x 的方程3x 2-mx-2=0的两根为x 1 ,x 2,且31121=+x x ,求 ①m 的值;②求x 12+x 22的值。

分析:第(1)题是已知方程,求两根组成代数式的值,而第(2)题的第一问就反来了,也就是已知代数式的值求方程。

第②问,再进一步,已知代数式的值,求另一个代数式的值.但是,无论是哪一个问题,所要用到的都是根与系数的关系。

小结:求方程两根所组成的代数式的值,关键在于把所求代数式变形为两根的和与两根的积的形式。

关于根的判别式和韦达定理的综合应用问题:例4、已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。

(1)是否存在实数k ,使23)2)(2(2121-=--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。

(2)求使21221-+x x x x 的值为整数的实数k 的整数值。

通过此题,使学生明白解决这类问题,一般遵循“三步曲”,即假设存在——推理论证——得出结论(合理或矛盾两种情况)。

第二讲:二次函数的解析式与图象一、复习引入1、二次函数的三种表达式: ⑴、一般式:y=ax 2+bx+c (a ≠0),解题的关键在于:通过三个独立条件“确定”这三个参数。

当a >0时,图象开口向上;当a <0时,图象开口向上。

对称轴为:x=-b/2a 。

当△=b2-4ac >0时,图象与x 轴有两个交点(方程ax 2+bx+c=0有两个不相等的实数根);当△=b2-4ac=0时,图象与x 轴有且只有一个交点(方程ax 2+bx+c=0有两个相等的实数根);当△=b 2-4ac <0时,图象与x 轴没有交点(方程ax 2+bx+c=0没有实数根)。

顶点坐标是:(-b/2a ,4ac-b 2/4a )。

⑵、顶点式:y =a (x-h )2+k (a ≠0)。

其中,h= -b/2a ,k=4ac-b 2/4a 。

⑶、零点式:y=a(x -x 1)(x -x 2)。

利用了函数与方程根的关系。

2、二次函数的图象:⑴、说出下列函数的开口方向、对称轴、顶点: y=(x+2)2-1;(2) y=-(x-2)2+2;(3) y=a(x+h)2+k 。

⑵、①、二次函数y=ax 2(a ≠0)的图像可由的y=x 2图像各点纵坐标变为原来的a 倍得到;②、a 决定了图像的开口方向: a>0开口向上,a< 0开口向下;③、a 决定了图像在同一直角坐标系中的开口大小: |a|越小图像开口就越大。

第三节:用二次函数的图象讨论二次方程根的分布对一元二次方程)0(02≠=++a c bx ax ,除了讨论其根的性质和符号外往往还要求我们讨论其根落在某个区间内或外的充要条件,这类问题,一般大都以二次函数的图象作为辅助工具。

下面介绍借助二次函数图象讨论二次方程根的范围问题的一般方法。

对于方程)0(02≠=++a c bx ax ,总可以化为与其同解的方程02=++q px x 的形式。

1. 程02=++q px x 的根与常数k 的关系设0)(2=++=q px x x f 的二根为α、β,且βα≤,那么它们与常数),(βα≠≠k k k ,在x 轴上的位置关系分别如下图:α k α β k α β (1)两根均小于k ,即k <≤βα的充要条件是⎪⎩⎪⎨⎧<->≥∆kp k f 2/0)(0(2)一根小于k 而另一根大于k ,即βα<<k 的充要条件是0)(<k fkβ xx x(3)二根均大于k ,即βα≤<k 的充要条件是⎪⎩⎪⎨⎧>->≥∆kp k f 2/0)(0例1 设二次方程0622=-++p px x 的解满足下列条件:(1)两根都大于1;(2)一根大于1,而另一根小于1,分别求实数p 的范围。

2.方程02=++q px x 的根与常数)(,2121k k k k <的关系如果方程=)(x f 02=++q px x 二根为α、β,且βα≤,那么它们与常数)(,2121k k k k <,在x 轴上的位置关系分别如下图:(1) 方程0)(=x f ,两根βα,分别在),(21k k 两侧的充要条件是⎩⎨⎧<<0)(0)(21k f k f(2)方程0)(=x f 在),(21k k 只有一根,即βα<<<21k k 或21k k <<<βα的充要条件是⎩⎨⎧<>0)(0)(21k f k f 或⎩⎨⎧><0)(0)(21k f k f(3)方程0)(=x f 二根都在),(21k k 内,即21k k <≤<βα的充要条件是⎪⎩⎪⎨⎧<-<>>≥∆21212/0)(0)(0kp k k f k f (4)方程0)(=x f 二根α、β满足条件21k k <<α且43k k <<β的充要条件是⎪⎩⎪⎨⎧><<>0)(0)(0)(0)(4321k f k f k f k f 例2.若方程)0(0122>=+-a x ax 的二根满足条件,小根小于1,大根在(1, 3)内,求a 的范围。

一般说来,利用二次函数图象来研究与其相应的一元二次方程实根的分布问题,关键xβ α 1k 2k x α β 1k 2kx αβ 1k 2k xαβ 1k 2k4k3k是根据题设条件作出抛物线的确切位置的草图,根据图列出满足条件的不等式。

这要比直接利用判别式和根与系数的关系来解方便些。

其优点是直观明显,公式与图形结合,有利于提高我们分析问题和解决问题的能力。

若二次方程的根分布在某闭区间上,这时区间端点的值要通过检验看是否满足题意。

随堂练习1.方程05)2(2=-+-+m x m x 的两根均大于2,求实数m 的范围。

2.方程0122=++px x 的两实数一根小于1,另一根大于1,求实数p 的范围。

3.方程01)5(42=+-+x a x 的两实根都在(0, 1)内,求实数a 的范围。

4.p 为什么数时,关于x 的方程02)13(722=--++-p p x p x 的两根α、β分别满足10<<α,21<<β。

第四节:二次函数的最值一、 课前基础练习:1函数y 12++=x x 在]1,1[-上的最小值和最大值分别是 ( ))(A 1 ,3 )(B 43 ,3 (C )21- ,3 (D )41-, 32.函数242-+-=x x y 在区间]4,1[ 上的最小值是 ( ))(A 7- )(B 4- )(C 2- )(D 23.函数5482+-=x x y 的最值为 ( ) )(A 最大值为8,最小值为0 )(B 不存在最小值,最大值为8(C )最小值为0, 不存在最大值 )(D 不存在最小值,也不存在最大值4. 若函数]4,0[,422∈+--=x x x y 的值域是______________________5. 函数)0(12)(2>++=a ax ax x f 在区间]2,3[-上有最大值4,则=a ____________ 二、 能力培养:6.如果实数y x ,满足122=+y x ,那么)1)(1(xy xy +-有 ( )(A)最大值为 1 , 最小值为21 (B)无最大值,最小值为43(C ))最大值为 1, 无最小值 (D)最大值为1,最小值为437.已知函数322+-=x x y 在必区间],0[m 上有最大值3,最小值2,则m 的取值范围是 ( )(A) ),1[+∞ (B) ]2,0[ (C) ]2,1[ (D) ]2,(-∞8.若函数c bx x x f ++=2)(对任意实数都有)2()2(t f t f -=+那么 ( )(A))4()1()2(f f f << (B))4()2()1(f f f << (C))1()4()2(f f f << (D))1()2()4(f f f <<9. 若12,0,0=+≥≥y x y x ,那么232y x +的最小值为__________________10.设21,,x x R m ∈是方程01222=-+-m mx x 的两个实根,则2221x x +的最小值______三、 综合拓展:11.设),](1,[,44)(2R t t t x x x x f ∈+∈--=求函数)(x f 的最小值)(t g 的解析式。

相关文档
最新文档