行星齿轮结构及工作原理

合集下载

行星齿轮工作原理

行星齿轮工作原理

行星齿轮工作原理行星齿轮,也称为行星传动,是广泛应用于各种机械装置中的一种传动机构。

它由一个太阳齿轮、一组行星齿轮和一个内齿圈组成。

行星齿轮通常用于需要高传动比和紧凑结构的应用,如自行车排挡、汽车变速器、机器人等等。

行星齿轮的工作原理是将输入的动力通过齿轮的组合转换为输出的动力,并且可以在传递动力的同时实现传动比的改变。

行星齿轮的工作过程如下:1.太阳齿轮:太阳齿轮位于行星齿轮机构的中心位置,接受输入的动力。

当太阳齿轮旋转时,它会通过齿轮齿距的干涉将动力传递给行星齿轮。

2.行星齿轮:行星齿轮是连接在太阳齿轮和内齿圈之间的一组齿轮。

它们被一个轴连接在一起,并且每个行星齿轮都有自己的齿数。

当太阳齿轮旋转时,行星齿轮也会随之旋转。

3.内齿圈:内齿圈是行星齿轮机构的外部齿轮,它与行星齿轮嵌合在一起。

当行星齿轮旋转时,内齿圈也会转动。

而内齿圈的齿数要大于行星齿轮的齿数,从而实现较大的传动比。

行星齿轮机构的工作原理主要是基于齿轮的齿距干涉和相对转动来实现动力的传递和传动比的改变。

当太阳齿轮旋转时,它的齿距会与行星齿轮的齿距相干涉,从而将动力传递给行星齿轮。

同时,行星齿轮的转动也会受到内齿圈的影响,进一步改变传动比。

行星齿轮的优点主要有以下几个方面:1.高传动比:由于行星齿轮结构的特殊性,可以实现大传动比的转动,比其他传动机构更有优势。

2.紧凑结构:行星齿轮机构的结构紧凑,占用空间小,适用于空间有限的场合。

3.负载分配:行星齿轮机构可以将负载分散到多个行星齿轮上,从而提高传动的可靠性和承载能力。

4.无倒退传动:行星齿轮机构的输出轴可以在不断电或无法输入动力的情况下保持静止,不会产生倒退传动的问题。

总结来说,行星齿轮是一种应用广泛的传动机构,通过太阳齿轮、行星齿轮和内齿圈的组合运动,可以实现输入动力的传递和输出动力的变化。

其结构紧凑、传动效率高、传动比可调等特点使得行星齿轮在各种机械装置中都得到了广泛应用。

行星齿轮的结构及原理

行星齿轮的结构及原理

行星齿轮的结构及原理行星齿轮是一种机械传动元件,具有紧凑、高转矩传递和高精度传动等优点,在工业领域中得到广泛应用。

行星齿轮由行星轮、太阳轮和内齿圈三部分组成,其传动原理与差速器相似,可以实现多种不同的传动方式。

下面介绍行星齿轮的结构及原理。

行星齿轮由以下三个部分组成:行星轮、太阳轮和内齿圈。

其中,地球仪齿轮结构是行星齿轮的一种特殊结构,它将行星轮和太阳轮合二为一,实现了行星齿轮的紧凑结构。

(1)行星轮行星轮是行星齿轮传动中的动力源,它通常由若干个行星齿轮组成,每一个行星轮都与行星轮轴相连,行星轮的轴心不在齿轮轴线上,其作用是使行星轮绕齿轮中心轴自转和公转。

(2)太阳轮太阳轮是行星齿轮结构中的被动元件,它与外部环形齿轮相连,不但负责传递动力,还起到支撑、固定行星轮的作用。

(3)内齿圈内齿圈是行星齿轮结构中的固定元件,它通常由内部齿轮组成,与太阳齿轮相贴合而构成一个内在的环形齿轮。

它通过与太阳轮齿合,使其转动并产生一个输出速度。

行星齿轮传动是一种典型的行星式结构,其传动原理类似于自行车中的“牙轮组”和汽车中的“差速器”。

行星齿轮可以实现多种不同的传动方式,下面介绍其中三种常见的传动方式:(1)行星轮固定,输出端固定当行星轮固定不动时,行星轮的齿轮将有一个与太阳轮齿轮相等的转速,并与内齿圈齿轮相向工作,产生一个输出速度。

此情况下,行星轮的公转速度与内齿圈的自转速度相等,而太阳轮的自转速度为零。

(3)内齿圈固定,太阳轮转速变化总之,行星轮的自转和太阳轮的自转和公转的组合可以实现多种不同的传动方式,具有极高的灵活性和多样性。

具体采用哪种传动方式,取决于具体的需求和应用环境。

拉维娜式行星齿轮机构工作原理

拉维娜式行星齿轮机构工作原理

拉维娜式行星齿轮机构工作原理
拉维娜式行星齿轮机构是一种常用于传动和减速的机械装置。

该装置由中央太阳齿轮、行星齿轮和内外环齿轮组成。

工作原理如下:
1. 中央太阳齿轮:太阳齿轮位于行星齿轮机构的中央,通过输入动力来驱动整个装置。

太阳齿轮上的外齿轮与行星齿轮相啮合。

2. 行星齿轮:行星齿轮通常有多个,围绕中央太阳齿轮旋转。

每个行星齿轮的内齿
轮与中央太阳齿轮的外齿轮相啮合。

3. 内外环齿轮:内环齿轮位于行星齿轮内部,并且与行星齿轮上的外齿轮相啮合。

外环齿轮则位于整个齿轮机构的外部。

4. 动力传递:当中央太阳齿轮转动时,外齿轮带动行星齿轮绕中央太阳齿轮旋转。

行星齿轮齿面同时与中央太阳齿轮上的外齿轮和内环齿轮啮合,形成一个闭合的传动链。

最终,齿轮机构的输出动力通过内环齿轮传递到外环齿轮上。

5. 动力减速:由于行星齿轮机构的结构,每个行星齿轮和内环齿轮的齿数比外环齿
轮少。

输入动力经过行星齿轮机构转动后,会被减速输出到外环齿轮上。

通过这种拉维娜式行星齿轮机构,可以实现动力的传递和减速。

其紧凑的结构和高效
的传动特性使其广泛应用于机械动力传动系统中。

行星齿轮机构的结构与传动原理

行星齿轮机构的结构与传动原理

四、直接传动★
n1
n2 刚性联接3
直接传动:传动比=1 条件:任何两元件被刚性联接。 n1+αn2-(1+α) n3 = 0 n3= n1或n3= n2或n1= n2 传动比=1
五、增速传动
制动n1
输出n2 输入n3
一)、 ★增速传动:传动比=α/(1+α ) 条件:主动件-行星架,被动件-齿圈,固定件-太阳轮。 n1+αn2-(1+α) n3 = 0 n1=0 传动比=n3/n2=α/ (1+α )
三、带式制动器
带式制动器结构:
1-变速器壳体 2-制动带 3-制动鼓 4-活塞 5-液压缸施压腔 6-液压 缸端盖 7-液压缸释放腔 8-推杆 9-调整螺钉 10-回位弹簧
带式制动器工作过程:
间隙如何测量、调整?
1.2.3、单向离合器
常见类型有:棘轮式、滚柱斜槽式 和 楔块式单向(超越)离合器 作用:连锁作用,固定作用,改善换档的平稳性。
1、滚柱斜槽式单向(超越)离合器
1-外环 2-内环 3-滚柱 4-弹簧。
二、楔块式单向(超越)离合器
1-外环 2-内环 3-楔块。
三、棘轮式单向(超越)离合器
1-外轮 2-棘爪 3-棘轮 4-叶片弹簧。
四、单向离合器作用
(1) 连锁作用 ---将二元件直接连接使之一起运动。
(2) 固定作用—将行星齿轮机构中某一元件与壳体相连,使该元件被固定。
制动n2
输出n1
输入n3
二)、增速传动:传动比=1/ (1+α ) 条件:主动件-行星架,被动件-太阳轮,固定件-齿圈。 n1+αn2-(1+α) n3 = 0 n2=0 传动比=n3/n1=1/ (1+α )

项目2拉维娜行星齿轮结构与工作原理

项目2拉维娜行星齿轮结构与工作原理

表3-2-2
改进后拉维娜式3档行星齿轮变速机构 换档执行组件工作规律
换档操纵手柄位置 档位
换档执行组件
C1 C2 C3 C4 B1 B2 F1 F2
1

2

D
3

● ●
●●
● ●
超速档 ○
●●
R
倒档
●●

1 S、L或2、1



●●●
注:●——接合、制动或锁止。 ○――接合或制动,但不传递动力。
当汽车滑行、输出轴反向驱动行星齿轮变速机构时,齿圈 通过长行星轮对行星架产生朝顺时针方向的力矩,此时1 档单向超越离合器F1脱离锁止状态,使行星架朝顺时针方 向自由转动,行星齿轮机构因此失去传递动力的能力,无 法实现发动机制动。
为了使1档能产生发动机制动作用,可将操纵手柄拨入前 进低档(S、L或2, 1)位置,这样在1档时,前进档离合器 C1和低速档及倒档制动器B2同时工作,行星架由低速档 及倒档制动B2固定,此时动力传递路线及传动比和前述1 档时完全相同(图3-2-4),而且汽车加速器滑行时,行 星架固定不动。在汽车下坡或滑行时,驱动轮可以通过行 星齿轮变速机构反向制动发动机,利用发动机怠速运转阻 力实现发动机制动作用。
图3-2-4 1-输入轴;2-行星架;3-后太阳轮;4-输出轴; 5-短行星轮;6-齿圈;7-长行星架;C1-前进离 合器;B2-低速成档及倒档制动器
2档
2档时,前进档离合器C1和2档制动器B1一起 工作。发动机动力经输入轴和前进档离合器C1传 至后太阳轮,使后太阳轮朝顺时针方向转动,并 通过短行星轮带动长行星轮朝顺时针方向转动。 由于前太阳轮被2档制动器B1固定,因此长行星 轮在做顺时针自转时,还将朝顺时针方向作公转, 从而带动齿圈和输出轴以较快转速朝顺时针方向 转动。此时发动机动力是由后太阳轮经短行星轮、 长行星轮传至前行星排,再由前行星排传至齿圈

行星齿轮机构的原理

行星齿轮机构的原理

行星齿轮机构的原理
行星齿轮机构的原理
行星齿轮机构是由一个中心行星轮、一个围绕其运动的太阳轮和一些外围行星轮组成的。

行星轮和太阳轮组成了内部齿轮,而外围行星轮则是外部齿轮。

当中心行星轮旋转时,它会驱动太阳轮进行旋转,并使外围行星轮通过其齿轮与太阳轮相互作用。

这种机构的工作原理类似于行星绕着太阳旋转的轨道,所以被称为“行星齿轮机构”。

行星齿轮机构具有两种运动方式:同步和反向。

在同步运动中,中心行星轮的轴与太阳轮的轴是同轴的,而在反向运动中,中心行星轮的轴与太阳轮的轴是反向的。

这种机构有许多应用,包括汽车变速器、机床、机器人和航空航天等领域。

行星齿轮机构的优点之一是其高效能。

由于梳齿式的设计,每个行星轮在太阳轮上均可拥有多个连接点,因此其负载能力更高,可承受更大的转矩和功率输出。

此外,行星齿轮机构还可以减少碰撞和磨损,使其拥有更长的使用寿命。

然而,行星齿轮机构也存在一些局限性。

由于其设计的复杂性,行星齿轮机构的制造和维护成本相对较高。

此外,在高负载和高转速应用中,行星齿轮机构可能产生噪音和振动,这可能会导致其他部件的损坏。

总的来说,行星齿轮机构是一种高效能的机构,具有高扭矩传输、较长使用寿命等优点,但同时也要注意其复杂性和成本,避免在高负载和高转速下运行时产生噪音和振动。

行星齿轮组工作原理

行星齿轮组工作原理

行星齿轮组工作原理
行星齿轮组是一种常用的齿轮传动装置,由太阳轮、行星轮、内齿圈和行星架等组成。

它的工作原理如下:
1. 太阳轮:太阳轮是行星齿轮组的输入轴,通过外部力矩使太阳轮产生转动。

2. 行星轮:行星轮是与太阳轮啮合并靠近中心的齿轮,它们之间共用一组行星齿轮。

行星轮与太阳轮通过行星齿轮轴联接。

3. 行星架:行星架通过轴与每个行星轮相连接,使得行星轮能绕太阳轮的轴线旋转。

行星架一般由支撑片或者梅花臂组成。

4. 内齿圈:内齿圈是连接行星架的齿轮,它具有内齿,行星齿轮的外齿与内齿圈啮合。

内齿圈是行星齿轮组的输出轴。

当太阳轮转动时,太阳轮驱动行星轮绕着太阳轮旋转,行星架上的行星轮也沿着内齿圈的运动方向自转。

由于行星轮与内齿圈有啮合,所以行星轮的自转会导致内齿圈的转动,从而实现输出轴的旋转。

行星齿轮组的工作原理基于齿轮的啮合和相对运动,利用行星架的设计可以实现高传动比和更强的扭矩输出。

由于行星齿轮组的特点,它被广泛应用于各种传动装置中,如汽车变速器、机床、航天器等。

行星齿轮组的结构及工作原理

行星齿轮组的结构及工作原理

行星齿轮组的结构及工作原理1. 行星齿轮组的基本概念嘿,大家好!今天我们聊聊行星齿轮组。

首先别被这个名字吓到,它其实是一个非常有趣且实用的机械系统。

行星齿轮组,就像名字中的“行星”一样,实际上是由一颗“太阳”齿轮、几颗“行星”齿轮以及一个“环形”齿轮构成的。

太阳齿轮居中,就像太阳在太阳系中一样,行星齿轮围绕着它旋转,环形齿轮则把这些行星包裹起来。

是不是感觉像在描述一个小小的星系?1.1 结构详解好啦,既然说到结构,那我们就来深入看看这些齿轮们的具体安排。

想象一下太阳齿轮是个帅气的明星,中心位置闪闪发光,它的旁边围绕着几颗行星齿轮,像一群小粉丝一样转来转去。

这些行星齿轮又被一个巨大的环形齿轮包裹住,环形齿轮就像是个大大的“护城河”,保护着这些小家伙们不受外界干扰。

太阳齿轮、行星齿轮和环形齿轮的组合,正是这整个系统的秘密武器。

1.2 工作原理接下来,咱们聊聊这套系统是如何工作的。

太阳齿轮接收到动力后,它的旋转会带动行星齿轮一起旋转。

行星齿轮的旋转又会推动环形齿轮。

要是这还不够直观,那就这样想:太阳齿轮就像是在旋转一首节奏感强的音乐,行星齿轮是跟着节拍跳舞的舞者,而环形齿轮则是舞台的背景墙,这些元素一起合作,整个表演才会精彩纷呈。

通过这种配合,齿轮组能够实现不同的速度和扭矩输出。

2. 行星齿轮组的应用场景这套行星齿轮组的设计其实非常巧妙,应用也特别广泛。

咱们可以在许多机械设备中见到它们,比如汽车变速器、风力发电机甚至一些高科技的航天器。

行星齿轮组的好处就是它能在保证稳定性的同时,实现高效的动力传输。

就像咱们平时用的那些变速器,咻咻咻地换挡,实际上就是在利用这套系统的精妙设计。

2.1 汽车变速器在汽车变速器中,行星齿轮组的作用不可小觑。

它帮助汽车在不同速度下运行得更加平稳。

不管你是需要低速大扭矩,还是高速低扭矩,行星齿轮组都能轻松搞定。

这种变化就像是变魔术一样,将动力需求完美匹配到不同的驾驶场景。

2.2 风力发电机至于风力发电机,行星齿轮组则负责将风力转换成电力。

行星齿轮传动原理

行星齿轮传动原理

行星齿轮传动原理
行星齿轮传动是一种常见的机械传动系统,其原理基于行星齿轮的结构和运动方式。

它包括一个太阳轮、行星轮、行星架和内齿轮。

1. 太阳轮(Sun Gear):位于行星齿轮传动的中心,通常是一个固定的轴或齿轮。

2. 行星轮(Planet Gear):连接在行星架上,围绕太阳轮旋转。

行星轮的个数可以有多个,而它们都连接在共享的行星架上。

3. 行星架(Planet Carrier):支撑并使行星轮围绕太阳轮旋转的结构。

行星架与外部机械部件(例如输出轴)连接。

4. 内齿轮(Ring Gear):位于行星齿轮系统的外部,与行星轮齿相啮合。

它是一个外环状的齿轮。

在行星齿轮传动中,太阳轮通常是输入轴,内齿轮则是输出轴。

其工作原理基于各个部件的相互作用和运动:
- 当太阳轮作为输入旋转时,行星轮通过行星架与太阳轮啮合,同时围绕太阳轮自转。

- 行星轮的运动也会驱动内齿轮,使其旋转。

这就导致了行星齿轮传动的输出。

- 通过控制太阳轮、行星轮或内齿轮中的任何一个的运动,可以改变传动比例和输出速度。

行星齿轮传动由于结构紧凑、传动比可调和承载能力强等特点,在许多机械系统中得到广泛应用,例如汽车变速器、减速器以及其他需要传动和扭矩转换的装置。

行星齿轮减速器结构和原理

行星齿轮减速器结构和原理

行星齿轮减速器结构和原理
导语:行星齿轮减速器属于精密减速电机,具有很高的工作效率和适用性;行星齿轮减速器按照功率分为小型行星齿轮减速器、大功率行星减速器
行星齿轮减速器属于精密减速电机,具有很高的工作效率和适用性;行星齿轮减速器按照功率分为小型行星齿轮减速器、大功率行星减速器,分别应用于不同的领域场景中;下面详细介绍行星齿轮减速器的结构组成和工作原理。

一、行星齿轮减速器结构组成
行星齿轮减速器结构主要又行星轮、太阳轮、内齿圈、行星架、驱动源(马达、电机)组合而成。

二、行星齿轮减速器工作原理
1.级数:行星齿轮的套数。

由于一套行星齿轮无法满足较大的传动比,有时需要2套或者3套来满足用户较大的传动比的要求.由于
增加了行星齿轮的数量,所以2级或3级减速机的长度会有所增加,效率会有所下降。

2.回程间隙:将输出端固定,输入端顺时针和逆时针方向旋转,使输入端产生额定扭矩+-2%扭矩时,减速机输入端有一个微小的角位移,此角位移就是回程间隙.
3.行星齿轮减速器由一个内齿环(A)紧密结合于齿箱壳体上,环齿中心有一个自外部动力所驱动之太阳齿轮(B)介于两者之间有一组由三颗齿轮等分组合于托盘上之行星齿轮组(C)该组行星齿轮依靠着出力轴、内齿环及太阳齿支撑浮游于期间;当入力侧动力驱动太阳齿时,可带动行星齿轮自转,并依循着内齿环之轨迹沿着中心公转,行星之旋转带动连结于托盘之出力轴输出动力。

行星齿轮的工作原理

行星齿轮的工作原理

行星齿轮的工作原理
行星齿轮是一种特殊的齿轮传动机构,它由一个太阳齿轮、若干个行星齿轮、一个环形齿轮和一个行星架组成。

这种结构能够实现大传动比、承载能力强、输出扭矩平稳等优点,因此广泛应用于各种机械传动领域。

1. 基本组成
- 太阳齿轮:位于中心,与行星齿轮啮合
- 行星齿轮:绕太阳齿轮公转,同时自传
- 环形齿轮:内齿环,与行星齿轮啮合
- 行星架:用于支撑和引导行星齿轮运动
2. 工作原理
当行星架固定时,输入动力经太阳齿轮带动行星齿轮绕自身转动和公转,从而带动环形齿轮输出;反之,当环形齿轮固定,输入动力则通过相反的运动传递。

根据固定不同部件,行星齿轮可实现减速或增速传动。

3. 特点
- 大传动比:通过设置多级行星齿轮,可实现很大的传动比
- 承载能力强:齿轮啮合面积大,分散负荷
- 输出扭矩平稳:多个行星齿轮分担输出,扭矩波动小
- 体积小、重量轻:紧凑布局,高功率密度
行星齿轮传动凭借其独特的结构和优异的性能,在工业机械、汽车、
航空航天等领域有着广泛的应用。

行星齿轮机构的传动原理和结构_图文

行星齿轮机构的传动原理和结构_图文

2.单排单级行星齿轮机构的组成及变速原理
(1)单排单级行星齿轮机构的组成
单排单级行星齿轮机构由太阳轮、行 星齿轮架及行星轮和齿圈组成。
齿圈制有内齿,其余齿 轮均为外齿,太阳轮位于 机构中心,行星轮一般有 3个或4个,空套(或装滚 针轴承)在行星齿轮轴上 ,行星齿轮轴均布地固定 在行星架上。
行星轮即可绕行星轴自 转,又可绕太阳轮公转。 太阳轮与行星轮是外啮合 ,二者旋转方向相反;行 星轮与齿圈是内啮合,二 者旋转方向相同。行星齿 轮系统的齿轮均采用斜齿 常啮合状态
(3)单排双级行星齿轮机构传动分析和传动比计算
1)单排双级行星齿轮机构传动分析 单排双级行星齿轮机构必须将太阳轮、齿圏和行星架三个元件中的一 个加以固定,或者将某两个元件互连接在一起,输入与输出才能获得一定的 传动比。改变各元件的运动状态,可获得多个传动比。
2)单排双级行星齿轮机构动力传动比计算 ①用运动方程计算传动比
图3-12行星架与齿圈相连,行星排成一体输出图与结构简图
2)传动比计算
①用运动方程计算传动比
该行星齿轮机构运动方程n1+αn2-(1+α)n3=0中,由于将 行星架与齿圈连成一体n1=n2,该运动方程变为n2+αn2- (1+α)n3=0 得n2/n3=1即传动比i= n2/n3=1 (或n1+αn1- (1+α)n3=0 得n1/n3=1即传动比i= n1/n3=1)即该单排行星齿 轮机构不论齿圈输入还是行星架输入,太阳轮输出,转向相 同,转速相同。
(2)齿圈输入,太阳轮制动,行星架输出 1)转矩传动分析
如图3-6所示,当齿圈输入顺时针旋转时,使行星齿轮也顺时针旋转(两 齿轮內啮合),因太阳轮制动,使行星轮必绕太阳轮顺时针转动,行星轮 在行星架上自转,它必须带着行星架绕太阳轮旋转,于是行星架便被动顺 时针旋转而输出动力。

行星齿轮工作原理

行星齿轮工作原理

行星齿轮工作原理
行星齿轮是由一个固定中心轴和若干个围绕中心轴旋转的齿轮组成的机构。

其工作原理可以概括为以下几个步骤:
1. 固定齿轮:行星齿轮的中心轴上固定一个大齿轮,称为太阳轮。

太阳轮的外部齿轮齿数少于行星轮,通常是少于行星轮的两倍。

2. 行星轮运动:围绕太阳轮旋转的是若干个行星轮,它们的齿轮齿数与太阳轮相同,同时也与彼此相同。

这些行星轮以固定的间距连接到一个中心载体上,并能自由旋转。

3. 行星轮运动传递:当太阳轮转动时,它驱动行星轮绕着中心轴旋转。

行星轮由于与太阳轮直接接触,所以齿轮上的力会导致行星轮绕固定轨道旋转。

4. 增速传递:太阳轮上的齿轮与每个行星轮的齿轮都有接触,当太阳轮旋转时,行星轮会以自己的轴心旋转,并绕着太阳轮的轨道旋转。

因为行星轮齿轮齿数多于太阳轮,所以行星轮的转速比太阳轮的转速快。

5. 输出传递:行星轮上的齿轮也与外围的环齿轮相连,环齿轮的齿数与太阳轮的齿数相同。

当行星轮绕太阳轮旋转时,它们的齿轮与环齿轮的齿轮齿数相同,因此环齿轮的转速与太阳轮的转速相同。

通过以上步骤,行星齿轮可以实现从太阳轮到环齿轮的力传递
和速度增大,用于传递和转换机械装置中的动力。

行星齿轮工作原理的设计可以提供更高的转速比并减少对齿轮系统的负载,并且由于各个行星轮的分布,其承载力和稳定性较高。

行星齿轮机构8种传动原理

行星齿轮机构8种传动原理

行星齿轮机构8种传动原理行星齿轮机构是一种常见的传动装置,由太阳轮、行星轮、内齿轮、外齿轮等组成。

它具有结构紧凑、传动平稳、噪声小等优点,广泛应用于机械制造、自动化控制、机器人等领域。

下面介绍行星齿轮机构的8种传动原理。

1. 行星轮定子传动原理行星轮定子传动原理是指外齿轮作为定子,内齿轮与外齿轮有齿合传动,行星轮则通过其轴承中心固定在外齿轮的轮干上,同时与内齿轮齿合,实现行星轮的转动。

此时太阳轮作为输入轴,输出轴固定在内齿轮上。

该传动原理的优点是传动平稳,缺点是结构较为复杂,制造成本较高。

4. 中心不平行传动原理中心不平行传动原理是指太阳轮与输出轴不在同一中心线上,导致内齿轮与行星轮齿合时,行星轮会向着太阳轮移动。

这种传动方式结构简单,适用性强,但因为该传动方式会导致行星轮受到侧向载荷,造成寿命不足等问题,被逐渐淘汰。

5. 多星行星传动原理多星行星传动原理是指在行星齿轮机构中,行星轮的数量可以大于3个,增加行星轮的数量可以实现更大的减速比,控制了机械装置的速度和扭矩变化。

如果行星轮的数量过多,会增加构件数量,结构复杂度不易控制。

6. 行星轮马达传动原理行星轮马达传动原理是指将行星齿轮机构借助液压或气压等介质驱动。

行星轮马达的工作方式与行星轮减速器基本相同,只不过输入轴变成了液压或气压作用,输出轴与太阳轮同心固定。

行星轮马达优点是输出扭矩大,速度范围广,缺点是成本较高。

7. 非圆行星传动原理非圆行星传动原理是指将行星轮的轮干改为非圆形,例如椭圆形、正六边形等。

非圆行星传动原理可以实现不同的传动比,具有更广泛的应用,同时因为其结构复杂度,也更容易出现故障。

8. 可逆行星传动原理可逆行星传动原理是指在行星齿轮机构中使用可逆式行星轮,即行星轮的驱动梭头可以从输出端移动到输入端,交换输入和输出轴的位置。

这种传动方式可以使行星齿轮机构实现前后转动的变化,广泛应用于机械设备中。

该传动原理的优点是结构简单,适应性强,缺点是因为其可逆性,所以传动效率低。

第3章行星齿轮变速器结构与工作原理

第3章行星齿轮变速器结构与工作原理

第3章行星齿轮变速器结构与工作原理行星齿轮变速器是一种主要用于传递大扭矩的传动装置,广泛应用于机械工程领域。

本章将介绍行星齿轮变速器的结构和工作原理。

行星齿轮变速器由太阳齿轮、行星齿轮组和内齿轮组成。

其中,太阳齿轮位于中心,行星齿轮围绕太阳齿轮旋转,内齿轮作为固定不动的部分。

这种结构使得行星齿轮变速器具有更高的传动效率、更大的扭矩传递能力和更小的外形尺寸。

行星齿轮组由行星轮、行星架和行星轴组成。

行星轮可以自由旋转,并通过行星架与太阳齿轮和内齿轮连接。

行星轴同时连接行星轮和行星架,使得行星轮能够绕行星轴旋转。

行星架是行星齿轮变速器的支撑结构,通过轴承支撑行星轴和行星轮。

行星齿轮变速器的工作原理是通过行星齿轮组的运动实现传动比的变化。

当太阳齿轮作为输入轮旋转时,行星齿轮组开始工作。

太阳齿轮传递动力给行星齿轮,行星齿轮绕太阳齿轮和内齿轮旋转,并通过行星架传递动力给输出轮。

同时,内齿轮作为固定不动的部分,起到定位和支撑作用。

通过调整太阳齿轮、行星齿轮和内齿轮的相对位置,可以实现不同的传动比。

当太阳齿轮作为输入轮旋转时,太阳齿轮的转速决定了输出轮的转速。

当太阳齿轮的转速大于行星齿轮的转速时,输出轮的转速会减小,传动比降低;当太阳齿轮的转速小于行星齿轮的转速时,输出轮的转速会增加,传动比提高。

总之,行星齿轮变速器通过太阳齿轮、行星齿轮和内齿轮之间的运动,实现了传动比的变化。

其结构紧凑,传动效率高,扭矩传递能力强,已被广泛应用于机械工程领域,例如汽车、航空航天、工程机械等。

第3章 行星齿轮变速器结构与工作原理

第3章 行星齿轮变速器结构与工作原理
阳轮
2、拉威娜式自动变速器齿轮机构动力传递 路线
1)行星架制动,小太阳轮输入
传动路线:
小太阳轮→短行星齿轮→长行星齿轮(仅有自 转)→内齿圈→输出轴,此变速结果为同向减 速传动。
2)大太阳轮制动,小太阳轮输入
传动路线:
小太阳轮→短行星齿轮→长行星齿轮(随行星 架公转)→内齿圈→输出轴,此变速结果为 同向减速传动。
3)大太阳轮制动,行星架输入 传动路线:
行星架→长行星齿轮(随行星架公转)→内齿 圈→输出轴,此变速结果为同向增速传动。
4)行星架制动,大太阳轮输入 传动路线:
大太阳轮→长行星齿轮(仅有自转)→内齿圈 →输出轴,此变速结果为反向减速传动。
1)D位一档传动路线
小太阳轮→短行星 齿轮→长行星齿轮 →内齿圈→输出轴
长行星齿轮在带动内 齿圈顺时针转动的同 时,对行星架产生逆 时针力矩,F1在逆 时针方向合行星架固 定。
此时,发动机的动力
经输入轴,小太阳轮、
图3-16 D位1挡传动路线示意图
短行星齿轮、长行星
C1-前进挡离合器;F1-低挡单向离合器; F2-前进挡向离合器 齿轮传给内齿圈和输
出轴。
2)D位2档传动路线
离合器、制动器、单向离合器统称为自动变速器行 星齿轮机构换档执行元件或施力元件。
3.4 典型行星齿轮传动原理及工 作分析
3.4.1 拉威娜式行星齿轮传动原理
图3-13 拉威娜式行星齿轮变速机构 1-小(前)太阳轮;2-行星架;3-短行星轮;4-长行星齿轮;5-齿圈;6-大(后)太阳轮
工作过程:
1)小太阳轮输入,行星架固定
3)D位3档传动路线
C1、C2同时接合,
F2锁止,使输入轴同
时和小、大太阳轮相

行星齿轮机构

行星齿轮机构

本堂课主要 讲了汽车行星齿 轮机构的结构和 原理及换挡执行 机构的结构与原 理。
思考题:
行星齿轮机构的结构与原理?
2)带式制动器
①、组成: 由制动带、制 动鼓、液压缸及活 塞等组成。
②、工作原理:
当液压缸无油压时,制动带与鼓之间要有一定的间隙,制动 鼓可随与它相连的行星排元件一同转动。 当液压缸通油压时,作用在活塞上油压力推动活塞,使之克 服回位弹簧的弹力而移动,活塞上的推杆随之向外伸出,将制动 带压紧在制动鼓上,于是制动鼓被固定而不能转动,此时,制动 器处于制动状态。
(5)行星架固定,太阳 轮主动,齿圈被动 i >1 ,倒档,降速档。 降速传动,传动比一 般为1.5~4,转向相反。
(6)行星架固定,齿圈 主动,太阳轮被动 i < 1,倒档,升速档。 升速传动,传动比一 般为0.25~0.67,转向相 反。
(7)三元件中任意两元件结合为一体的情况: 当把行星架和齿圈结合为一体作为主动件,太阳 轮为被动件或者把太阳轮和行星架结合为一体作为主 动件,齿圈作为被动件的运动情况,行星齿轮间没有 相对运动,作为一个整体运转,传动比为1,转向相 同。汽车上常用此种组合方式组成直接档。
(2)齿圈固定,行星 架主动,太阳轮被动 i<1,前进超速档。 升速传动,传动比一 般为0.2~0.4,转向相 同。
( 3 )太阳轮固定, 齿圈主动,行星架被 动 i>1,前进降速档。 降速传动,传动比一 般为1.25~1.67,转向 相同。
(4)太阳轮固定,行 星架主动,齿圈被动 i< 1,前进超速档。 升速传动,传动比一 般为0.6~0.8,转向相 同。
2、简单行星齿轮机构工作原理
单排行星齿轮机构运动特性方程: n1+α n2-(1+α )n3=0 式中: n1----太阳轮转速 n2----齿圈转速 n3----行星架转速 α =Z2/Z1 Z1----太阳轮齿数 Z2----齿圈齿数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行星齿轮机构和工作原理
一、 简单的行星齿轮机构的特点
行星齿轮机构的组成:
简单(单排)的行星齿轮机构是变速机构
的基础,通常自动变速器的变速机构都由两排
或三排以上行星齿轮机构组成。

简单行星齿轮
机构包括一个太阳轮、若干个行星齿轮和一个
齿轮圈,其中行星齿轮由行星架的固定轴支
承,允许行星轮在支承轴上转动。

行星齿轮和
相邻的太阳轮、齿圈总是处于常啮合状态,通
常都采用斜齿轮以提高工作的平稳性(如图l
所示)。

如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。

正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。

行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的自转和绕着太阳的公转一样,当出现这种
情况时,就称为行星齿轮机构作用的传动
方式。

在整个行星齿轮机构中,如行星轮
的自转存在,而行星架则固定不动,这种
方式类似平行轴式的传动称为定轴传动。

齿圈是内齿轮,它和行星轮常啮合,是内
齿和外齿轮啮合,两者间旋转方向相同。

行星齿轮的个数取决于变速器的设计负
荷,通常有三个或四个,个数愈多承担负
荷愈大。

简单的行星齿轮机构通常称为三构件机构,三个构件分别指太阳轮、行星架和齿圈。

这三构件如果要确定相互间的运动关系,一般情况下首先需要固定
其中的一个构件,然后确定谁是主动件,并确定主动件的转速和旋转方向,结
果被动件的转速、旋转方向就确定了。

二、 单排行星齿轮机构的工作原理
根据能量守恒定律,三个元件上输入和输出的功率的代数和应等于零,从而得到单排行星齿轮机构一般运动规律的特性方程。

特性方程:n1+an2-(1+a)n3=0
n1——太阳轮转速,n2——齿圈转速,n3——行星架转速,a——齿圈与太阳轮齿数比。

由特性方程可以看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、环形内齿圈和行星架三个机构中,任选两个分别作为主动件和从动件,而使另一个元件固定不动,或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。

下面分别讨论三种情况。

1、齿圈固定,太阳轮为主动件且顺时针转动,而行星架则为被动件。

太阳轮顺时针转动时,太阳轮轮齿必给行星轮齿A一个推力F
1
,则行星轮应为逆时针
转动,但由于齿圈固定,所以齿圈轮齿必给行星轮齿B一个反作用力F
2
,行星轮
在F
1和 F
2
合力作用下必绕太阳轮顺时针旋转,结果行星轮不仅存在逆时针自
转,并且在行星架的带动下,绕太阳轮中心轴线顺时针公转。

在这种状态下,就出现了行星齿轮机构作用的传动方式,而且被动件行星架的旋转方向与主动件同方向。

在这里,太阳轮是主动件而且是小齿轮,被动件行星架没有具体齿数的传动关系,因此定义行星架的当量齿数等于太阳轮和齿圈齿数之和。

这样,太阳轮带动行星架转动仍属于小齿轮带动最大的齿轮,是一种减速运动且有最大的传动比。

因为此时n2=0,故传动比
i13=n1⁄n3=1+a。

(如图3)
【用挂图进行讲解,通过力的作用与
反作用原理,让学生说出行星齿轮机
构个组成部分的旋转方向,然后通过
单排行星齿轮模型进行验证,并求出
传动比。


2、太阳轮固定,行星架为主动件且
顺时针转动,齿圈为被动件。

当行星
架顺时转动时,势必造成行星轮的顺
时针转动,但因太阳轮制动,太阳轮齿给行星轮齿 B齿一个反作用力F 1,行星轮在F 1的作用下顺时针旋转,其轮齿给齿圈轮齿A一个F 2的推力,齿圈在F 2的作用下
顺时针旋转。

在这里,主动件行星架的旋转方向和被动件齿圈相同。

由于行星架是一个当量齿数最大齿轮,因此被动的齿圈以增速的方式输出,两者间传动比小于1。

因为此时n 1=0,故传动比i 23=n 3⁄n 2=a/(1+a)。

(如图4)
用挂图进行讲解,通过力的作用与反作用原理,让学生说出行星齿轮机构个组
【成部分的旋转方向,然后通过单排行星齿轮模型进行验证,并求出传动比。


3、行星架固定,太阳轮为主动件且顺时针转动,而齿圈则作为被动件。

由于行星架被固定,则机构就属于定轴传动,太阳轮顺时针转动,给行星轮齿A一个作
用力F
1,行星轮则逆时针转动,给齿圈轮齿B一个作用力F
2
,齿圈也逆时针旋转,
结果齿圈的旋转方向和太阳轮相反。

在定轴传动中,行星轮起了过渡轮的作用,改变了被动件齿圈的旋向。

因为此时n3=0,故传动比i12=n1⁄n2=-a。

(如图5)
【用挂图进行讲解,该部分采用师生互动法,通过学生自己讲解,然后自己通过单排行星齿轮模型进行验证,并求出传动比。


4、联锁行星齿轮机构的任意两个元件。

若行星齿轮机构的太阳轮、行星架和环形内齿圈三者中,有任意两个机构被联锁
成一体时,则各齿轮间均无相对运动,整
个行星机构将成为一个整体而旋转,此时
相当于直接传动。

太阳轮与齿圈连成一体
时,太阳轮的轮齿与齿圈的轮齿间便无任
何相对运动,夹在太阳论与齿圈之间的行
星轮也不会相对运动,因此太阳轮、齿圈
和行星架便成为一体,传动比为1。

(如
图6)
【用挂图进行讲解,通过单排行星齿轮机构一般运动规律的特性方程求出传动比,然后通过单排行星齿轮模型进行验证。


5、不固定任何元件。

若行星齿轮机构的太阳轮、行星架和环形内齿圈三者中,无任何元件被固定,而无任意两个机构被联锁成一体,各构件将都可做自由运动,不受任何约束。

当主动件转动时,从动件可以不动,这样可以不传递动力,从而得到空挡。

下面讨论齿圈的输出是增速或减速的问题。

从结构图上已经可以看到,太阳轮的齿数小于齿圈的齿数,属于小齿轮带动大齿轮的传动关系,因此齿圈显然是减速状态,即两者间的传的比大于l。

注意,由于行星轮是过渡轮,传动比的大小与行星轮的齿数多少无关。

三、行星齿轮机构基本特征
通过以上三种传动关系的分析,可以把简单行星齿轮机构的运动特征归纳成下列几点:
1、当行星架为主动件时,从动件超速运转。

2、当行星架为从动件时,行星架必然较主动件转速下降。

3、当行星架为固定时,主动件和从动件按相反方向旋转。

4、太阳轮为主动件时,从动件转速必然下降。

5、若行星架作为被动件,则它的旋转方向和主动件同向。

6、若行星架作为主动件,则被动件的旋转方向和它同向。

7、在简单行星齿轮机构中,太阳轮齿数最少,行星架的当量齿数最多.而齿圈齿数则介于中间。

(注:行星架的当量齿数=太阳轮齿数十齿圈齿数。


8、若行星齿轮机构中的任意两个元件同速同方向旋转,则第三元件的转速和方向必然与前两者相同,即机构锁止,成为直接档。

(这是一个十分重要的特征,尽管上述的例子没有涉及。


9、仅有一个主动件并且两个其它部件没被固定时,此时处于空挡。

图7 列出简单行星齿轮机构的三元件经组合后六种不同的运动状况。

若假设太阳轮20齿,齿圈40齿,则行星架当量齿数为60齿。

以上叙述的简单行星齿轮机构运动关系是属于经常遇到的,在确定三者关系时,首先把其中一件固定,然后确定另外两者的主、被动关系。

实际上简单行星齿轮机构还有一个很重要的特征,允许同时两件作为主动件输入,而被动件照样有唯一的输出,这是行星齿轮机构的一个十分重要的特征,而且在自动变速器上被广泛采用。

【画出如图7的表格,通过提问学生回答问题,从而自己概括出规律,然后再总结出行星齿轮机构基本特征。


思考题、讨论题、作业
1.单排行星齿轮机构一般运动规律的特性方程?
2.简单行星齿轮机构的运动特征有哪些?
内容小结
1、单排行星齿轮的基本特征
2、单排行星齿轮机构一般运动规律的特性方程
3、单排行星齿轮的工作原理。

相关文档
最新文档