初一数学上册课外辅导全套教案精品

合集下载

七年级数学上册教案(优秀5篇)

七年级数学上册教案(优秀5篇)

七年级数学上册教案(优秀5篇)七年级数学上册教案篇一【学习目标】:1、会用尺规画一条线段等于已知线段;2、会比较两条线段的长短;3、理解线段中点的概念,了解“两点之间,线段最短”的性质。

【学习重点】:线段的中点概念,“两点之间,线段最短”的性质是重点;【学习难点】:画一条线段等于已知线段是难点。

【导学指导】一、温故知新1、过A、B、C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为______的说法是对的。

二、自主学习问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?上面的实际问题可以转化为下面的数学问题:2、比较两条线段的长短两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?我们先来回答下面的问题。

怎样比较两个同学的身高?一是用尺子测量;二是站在一起比(脚在同一高度)。

如果把两个同学看成两条线段,那么比较两条线段就有两种方法。

(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。

(2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。

练习题一、填空1.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.2. 三条直线两两相交,则交点有_______________个。

二、下列说法中正确的是( )A、两点之间线段最短B、若两个角的顶点重合,那么这两个角是对顶角C、一条射线把一个角分成两个角,那么这条射线是角的平分线D、过直线外一点有两条直线平行于已知直线9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的`角平分线,其中正确的有( )A、0个B、1个C、2个D、3个同步四维训练知识一:直线的性质3.在开会前,工作人员进行会场布置,在主席台上由两人拉着一条绳子,然后以“准绳”为基准摆放茶杯,这样做的理由是(B)A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线知识点二:线段的作法及比较4.在跳绳比赛中,要在两条绳子中挑出较长的一条用于比赛,选择的方法是(A)A.把两条绳子的一端对齐,然后拉直两条绳子,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合观察另一端的情况D.没有办法挑选七年级数学上册教案篇二《1.2有理数》教学设计【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类《1.2.1有理数》同步练习含答案5.对-3.14,下面说法正确的是(B)A.是负数,不是分数B.是负数,也是分数C.是分数,不是有理数D.不是分数,是有理数《1.2有理数》同步练习含答案解析8.如果a与1互为相反数,则|a|=( )A.2B.-2C.1D.-1【考点】绝对值;相反数。

初一上册数学教案优秀5篇

初一上册数学教案优秀5篇

初一上册数学教案优秀5篇初一上册数学教案(精选篇1)总课时:7课时使用人:备课时间:第八周上课时间:第十周第4课时:5、2平面直角坐标系(2)教学目标知识与技能1.在给定的直角坐标系下,会根据坐标描出点的位置;2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。

过程与方法1.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力;2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。

情感态度与价值观通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。

教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

教学过程第一环节感受生活中的情境,导入新课(10分钟,学生自己绘图找点)在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。

练习:指出下列各点以及所在象限或坐标轴:A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取学生作答)由点找坐标是已知点在直角坐标系中的位置,根据这点在方格纸上对应的x 轴、y轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课的内容。

第二环节分类讨论,探索新知.(15分钟,小组讨论,全班交流)1.请同学们拿出准备好的.方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。

(-9,3),(-9,0),(-3,0),( -3,3)( 学生操作完毕后)2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。

初一数学上册教案(优秀11篇)

初一数学上册教案(优秀11篇)

初一数学上册教案(优秀11篇)初一的数学上册教案篇一【教学目标】知识与技能理解合并同类项的法则,会用合并同类项法则解一元一次方程,并在此基础上探索一元一次方程的一般解法。

过程与方法通过探索合并同类项法则的过程培养学生观察、思考、归纳的能力,积累数学探究活动的经验。

情感、态度与价值观通过探索合并同类项法则并进一步探索一元一次方程一般解法的过程,感受数学活动的创造性,激发学生学习数学的兴趣。

【教学重难点】重点:合并同类项法则的探索及应用。

难点:合并同类项法则的理解和灵活运用。

【教学过程】一、温故知新师:你们知道等式的基本性质是什么吗?学生回答,教师点评。

师:利用等式的基本性质解方程:(1)2x+3=x+4;(2)5x+4=5-3x.学生解答,然后集体订正。

问题展示:问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?师:设前年购买计算机x台,那么去年购买计算机多少台?生:2x台。

师:今年购买计算机多少台?生:4x台。

师:题目中的等量关系是什么?师生共同分析,列出方程:x+2x+4x=140.用框图表示出解这个方程的具体过程:x+2x+4x=140合并同类项7x=140系数化为1x=20二、例题讲解解下列方程:(1)2x-x=6-8;(2)7x-2.5x+3x-1.5x=-壹五×4-6×3.解:(1)合并同类项,得-x=-2,系数化为1,得x=4.(2)合并同类项,得6x=-78,系数化为1,得x=-一三.三、巩固练习解下列方程:1.3x+4x-2x=18-7.2.y-y+y=×6-1.四、课堂小结师:这节课你学习了哪些知识?获得了哪些经验?学生发言,教师予以补充。

初一数学上册教案篇二教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。

能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

七年级数学上册教案 七年级数学上册教案(11篇)

七年级数学上册教案 七年级数学上册教案(11篇)

七年级数学上册教案七年级数学上册教案(11篇)作为一名教职工,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。

教案要怎么写呢?三人行,必有我师也。

择其善者而从之,其不善者而改之。

本页是勤劳的小编小鱼儿为大家整理的11篇七年级数学上册教案的相关范文,仅供参考,希望对大家有一些参考价值。

七年级数学上册教案篇一1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2、难点:正确理解负数的概念。

3、关键:创设情境,充分利用学生身边熟悉的事物, 加深对负数意义的理解。

学习目标:1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。

2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。

3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。

重点与难点:了解线段中点的概念,能画一条线段等于已知线段。

发展学生有条理的思考,并能正确地表述。

学习过程:一、课前预习导学1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。

2、从a到b地有①、②、③三条路可以走,每条路长分别为:则第条路较短,另两条路的长短关系是。

第1题第2题3、如图,若是中点,是中点(1)若,_________;(2)若,_________。

二、课堂学习1、议一议:(1)、在平面内画一个点,过这个点画直线,能画多少条?(2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?(3)、如果平面内有两个点,过这两个点画直线,又能画多少条?总结:“过两点有______,并且____ ”思考:过平面上三点中的每两点画直线,可画多少条?2、做一做:已知两点a、b(1)画线段ab(连接ab)(2)延长线段ab到点c,使bc=ab注意:我们把上图中的点b叫做线段ac的。

3、想一想:(1)如果点b是线段ac的中点,那么线段ab、bc、ac之间有怎样的数量关系?与同学交流。

七年级数学上册教案精选12篇

七年级数学上册教案精选12篇

七年级数学上册教案精选12篇课时篇一三维目标七年级上册数学教案篇二一、知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

二、过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

三、情感态度与价值观培养学生积极思考,合作交流的意识和能力。

教学重、难点与关键1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2、难点:正确理解负数的概念。

3、关键:创设情境,充分利用学生身边熟悉的事物, 加深对负数意义的理解。

教具准备投影仪。

教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。

人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”, 测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2 页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。

五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。

而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%, 它们与负数具有相反的意义,我们把这样的数(即以前学过的0 以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号。

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。

(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0 ,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。

七年级数学上册教案【优秀8篇】

七年级数学上册教案【优秀8篇】

七年级数学上册教案【优秀8篇】过程与方法篇一借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性初一数学上册教案篇二重点用因式分解法解一元二次方程。

难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便。

一、复习引入(学生活动)解下列方程:(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解。

二、探索新知(学生活动)请同学们口答下面各题。

(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。

因此,上面两个方程都可以写成:(1)x(2x+1)=0 (2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。

例1解方程:(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略(方程一边为0,另一边可分解为两个一次因式乘积。

)练习:下面一元二次方程解法中,正确的是( )A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x,两边同除以x,得x=1三、巩固练习教材第14页练习1,2.四、课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。

七年级数学上册教案【优秀3篇】

七年级数学上册教案【优秀3篇】

七年级数学上册教案【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学上册教案【优秀3篇】作为一名优秀的教育工作者,就难以避免地要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

七年级上册数学教案案【精选5篇】

七年级上册数学教案案【精选5篇】

七年级上册数学教案案【精选5篇】七年级上册数学教案案【精选5篇】代数是数学中一个重要的分支,研究数学对象之间的关系和运算,通过符号和方程来表达和解决问题。

这里给大家分享一些关于七年级上册数学教案案,供大家参考学习。

七年级上册数学教案案(篇1)教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

情感态度和价值观:让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:根据具体问题中的相等关系,列出方程。

教学准备:多媒体教室,配套课件。

教学过程:设计理念:数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。

课程标准的建议要求教师不再是“教教材”而是“用教材”。

本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念师:同学们,老师学会了一个魔术,情你们配合表演。

请看大屏幕,这是20_年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,25师:同学们想学会这个魔术吗?生:想!师:通过这节课的学习,同学们一定能学会!一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。

七年级上册数学教案精选9篇

七年级上册数学教案精选9篇

七年级上册数学教案精选9篇七年级数学上册教案篇一教学目的:(一)知识点目标:1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:1.自然数的产生、分数的产生。

2.章头图。

问题见教材。

让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的。

0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。

根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。

展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。

初一数学上册的教案(优秀7篇)

初一数学上册的教案(优秀7篇)

初一数学上册的教案(优秀7篇)初一数学上册教案篇一教学目标1、会进行简单的整式加、减运算、2、能说明整式加、减中每一步运算的算理,逐步发展有条理的思考和表述的能力、重、难点会进行简单的整式加、减运算、教学过程一、情境创设1、操作:(1)准备三张如下图所示的卡片(2)思考:用它们拼成各种形状不同的四边形,并计算拼成的四边形的周长、二、探索活动活动一:1、整式的加减运算要进行哪些步骤?进行整式的加减运算时,____________________________________________《3、6整式的加减》同步测试1、三个小队植树,第一队种_棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树________棵、2、甲仓库有煤壹五00吨,乙仓库有煤800吨,从甲仓库每天运出煤5吨,从乙仓库每天运出煤2吨,求m天后,甲、乙两仓库一共还有多少吨煤,并求出当m=30时,甲、乙两仓库一共存煤的数量?3、6整式的加减:测试1、已知三角形的第一边长为2a+b,第二边比第一边长a-b,第三边比第二边短a,求这个三角形的周长?2、某同学做了一道数学题:“已知两个多项式为A,B,B=3_-2y,求A-B的值、”他误将“A-B”看成了“A+B”,结果求出的答案是_-y,那么原来的A-B的值应该是( )A、4_-3yB、-5_+3yC、-2_+yD、2_-y初一的数学上册教案篇二学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1、会用绝对值比较两个负数的大小。

2、会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:一、创设情境根据绝对值与相反数的意义填空:-5的相反数是,-的相反数是,的相反数是;|0|=,0的相反数是。

七年级数学上册教案【优秀10篇】

七年级数学上册教案【优秀10篇】

在知识的学习过程中,教师应该为学生提供广阔的可供探讨和交流的空间,这次漂亮的小编为您带来了七年级数学上册教案【优秀10篇】,如果能帮助到您,小编的一切努力都是值得的。

人教版七年级上册数学教案篇一教学目标1 知识与技能:使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2 过程与方法:通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3 情感态度与价值观:让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

教学重难点1 教学重点:掌握用整十数除的口算方法。

2 教学难点:理解用整十数除的口算算理。

教学工具多媒体设备教学过程1 复习引入口算。

20×3= 7×50= 6×3=20×5= 4×9= 8×60=24÷6= 8÷2= 12÷3=42÷6= 90÷3= 3000÷5=2 新知探究1、教学例1有80面彩旗,每班分20面,可以分给几个班?(1)提出问题,寻找解决问题的方法。

师:从中你能获取什么数学信息?师:怎样解决这个问题?(2)列式 80÷20(3)学生独立探索口算的方法师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:预设学生可能会有以下两种口算方法:A.因为20×4=80,所以80÷20=4 这是想乘算除B.因为8÷2=4,所以80÷20=4 这是根据计数单位的组成为什么可以不看这个“0”?( 80÷20可以想“8个十里面有几个二十?”)这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?把你喜欢的方法说给同桌听。

(5)检查正误师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)(6)用刚学会的方法再次口算,并与同桌交流你的想法40÷20 20÷10 60÷30 90÷30(7)探究估算的方法出示:83÷20≈ 80÷19≈师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

初一上学期数学教案5篇

初一上学期数学教案5篇

初一上学期数学教案5篇初一上学期数学教案5篇数学教案提供了详细的教学步骤和教学方法,指导教师如何进行有效的数学教学。

教案中包含了教学策略、教学资源、案例分析等内容。

下面给大家分享初一上学期数学教案,欢迎阅读!初一上学期数学教案(精选篇1)教学目标1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;2.初步培养学生观察、分析和抽象思维的能力。

教学重点和难点重点:列代数式.难点:弄清楚语句中各数量的意义及相互关系.课堂教学过程设计一、从学生原有的认知结构提出问题1、用代数式表示乙数:(投影)(1)乙数比x大5;(x+5)(2)乙数比x的2倍小3;(2x-3)(3)乙数比x的倒数小7;( -7)(4)乙数比x大16%?((1+16%)x)(应用引导的方法启发学生解答本题)2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?二、讲授新课例1 用代数式表示乙数:(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?解:设甲数为x,则乙数的代数式为(1)x+5(2)2x-3;(3) -7;(4)(1+16%)x?(本题应由学生口答,教师板书完成)最后,教师需指出:第4小题的答案也可写成x+16%x?例2 用代数式表示:(1)甲乙两数和的2倍;(2)甲数的与乙数的的差;(3)甲乙两数的平方和;(4)甲乙两数的和与甲乙两数的差的积;(5)乙甲两数之和与乙甲两数的差的积?分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?解:设甲数为a,乙数为b,则(1)2(a+b);(2) a- b;(3)a2+b2;(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?(本题应由学生口答,教师板书完成)此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?例3 用代数式表示:(1)被3整除得n的数;(2)被5除商m余2的数?分析本题时,可提出以下问题:(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?解:(1)3n;(2)5m+2?(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?例4 设字母a表示一个数,用代数式表示:(1)这个数与5的和的3倍;(2)这个数与1的差的;(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和?分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?) 例5 设教室里座位的行数是m,用代数式表示:(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?分析本题时,可提出如下问题:(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)解:(1)m(m+6)个; (2)( m)m个?三、课堂练习1、设甲数为x,乙数为y,用代数式表示:(投影)(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的'积的商?2、用代数式表示:(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?3、用代数式表示:(1)与a-1的和是25的数;(2)与2b+1的积是9的数;(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?〔(1)25-(a-1); (2) ;(3)2x2+2; (4)y(y+3)?〕四、师生共同小结首先,请学生回答:1、怎样列代数式?2?列代数式的关键是什么?其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?五、作业1、用代数式表示:(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?2、已知一个长方形的周长是24厘米,一边是a厘米。

(word完整版)初一数学课外辅导计划

(word完整版)初一数学课外辅导计划

初一数学课外辅导计划(一)辅导老师:胡明双一、学情分析七年级是初中学习过程中基础和入门,学好七年级数学能为以后的学习做铺垫。

现在班上的学生基础较差,但也有优秀的学生。

他们都很热爱学习,只要端正学生们的学习态度,大家共同努力,让学生掌握学习数学的方法和技巧,激发学生学习数学的兴趣,这样才能极大提高学生的学习成绩。

二、教学辅导内容和目标七年级数学辅导内容和目标第五章、相交线与平行线本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。

本章重点:垂线的概念和平行线的判定与性质。

本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。

第六章、平面直角坐标系本章主要内容是平面直角坐标系及其简单的应用。

本章重点:平面直角坐标系的理解与建立及点的坐标的确定。

本章难点:平面直角坐标系中坐标及点的位置的确定。

第七章、三角形本章主要学习与三角形有关的线段、角及多边形的内角和等内容。

本章重点:三角形有关线段、角及多边形的内角和的性质与应用。

本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。

第八章、二元一次方程组本章主要学习二元一次议程(组)及其解的概念和解法与应用。

本章重点:二元一次方程组的解法及实际应用。

本章难点:列二元一次方程组解决实际问题第九章、不等式与不等式组本章主要内容是一元一次不等式(组)的解法及简单应用。

本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。

本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。

第十章、实数本章主要内容是学习了平方根、立方根及实数的相关概念。

本章重难点:是会运用平方根立方根进行简单化简计算。

三、辅导教学的具体措施1、认真研读新课程标准,钻研教材,精选习题,精心备课,做好教案,上好新课。

同时仔细批改作业,作好辅导,发现问题及时解决作认真总结成功与失败的经验和原因。

人教版七年级上册数学教案大全5篇

人教版七年级上册数学教案大全5篇

人教版七年级上册数学教案大全5篇人教版七年级上册数学教案大全5篇线性代数是研究向量、线性方程组和线性变换的分支,广泛应用于几何、物理和计算机科学等领域。

这里给大家分享一些关于人教版七年级上册数学教案,供大家参考学习。

人教版七年级上册数学教案精选篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。

进一步发展符号意识。

2.通过一元一次方程的学习,体会方程模型思想和化归思想。

解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。

经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。

教学难点分析实际问题中的相等关系,列出方程。

教学过程活动一知识回顾解下列方程:1. 3x+1=42. x-2=33. 2x+0.5x=-104. 3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

出示问题(幻灯片)。

学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。

本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。

(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。

人教版初一上册数学教案精选【三篇】

人教版初一上册数学教案精选【三篇】

人教版初一上册数学教案精选【三篇】【导语】本文为作者为您整理的人教版初一上册数学教案精选【三篇】,期望对大家有帮助。

课题:1.1正数和负数教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌控正数和负数的概念;2,能区分两种不同意义的量,会用符号表示正数和负数;3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的爱好。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量教学进程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,扼要说明在前两个学段我们已经学过的数,并由此请学生摸索:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…问题1:老师刚才的介绍中显现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:摸索,交换师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(视察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并摸索讨论,然落后行交换。

(也能够出示气象预报中的气温图,地图中表示地势高低地势图,工资卡中存取钱的记录页面等)学生交换后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

先回想小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设以下的问题情境,以尽量贴近学生的实际.这个问题能激发学生探究的愿望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上)数学目录:第一章有理数1.1 有理数的概念1.2 有理数的运算1.3 近似数与科学计数法1.4 单元测试第二章整式加减2.1 整式的加减2.2 单元测试第三章一元一次方程3.1 解一元一次方程3.2 列方程解应用题(一)3.3 列方程解应用题(二)3.4 单元测试第四章图形认识初步4.1 多姿多彩的图形4.2 平面图形4.3 单元测试期末模拟试卷(一)期末模拟试卷(二)期末模拟试卷(三)期末模拟试卷(四)期末模拟试卷(五)第一章 有理数一、全章知识结构二、回顾正数、负数的意义及表示方法 1、正数的表示方法:a>0 2、负数的表示方法:a<0 3、非负数表示方法:a ≥0 4、非正数表示方法:a ≤0三、有理数的分类定义:整数和分数统称为有理数有限小数和无限循环小数都是有理数,而无限不循环小数却不是有理数1、按整数分数分类2、按数的正负性分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数负整数负数零正分数正整数正数有理数.3、在数轴上分类数轴:规定了原点,正方向和单位长度的直线叫做数轴。

数轴的作用:(1)用数轴上的点表示有理数; (2)在数轴上比较有理数的大小;(3)可用数轴揭示一个数的绝对值和互为相反数的几何意义;⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数..四、有理数中具有特殊意义的数:相反数、倒数、绝对值、非负数1、相反数:(1)代数意义:只有符号不同的两个数。

(2)几何意义:在数轴上表示一对相反数的两个点与原点的距离相等。

(3)互为相反数的特性:a+b=0,0的相反数是0。

(4)会求一个数的相反数:3的相反数是 a 的相反数是 a-b 的相反数是2、倒数:(1)乘积是1的两个数互为倒数 (2)互为倒数的特性: ab=1, (3)0没有倒数(4)互为负倒数: 乘积是-1的两个数互为负倒数; ab=-1,例如3的负倒数是3、非负数:(1)就是大于或等于0的数:a ≥0(2)数轴上,在原点的右边包括原点的点表示的数 (3)任何数的平方数都是非负数(4)非正数:就是小于或等于0的数:a ≤0(5)数轴上,在原点的左边包括原点的点表示的数4、绝对值:(1)几何意义:一个数的绝对值就是它到原点的距离。

(2)代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。

突破点: 一个数绝对值就是它离开原点的距离。

特性:a 、互为相反数的两个数的绝对值是相等的b 、如果一个数的绝对值是正数,那么这个数一定有两个且互为相反数c 、绝对值一定为正数或0即非负数d 、正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。

5、我们所学过的非负数有:应用举例:⎪⎩⎪⎨⎧=-=<=====>= 3- 3 0 -0 0 0 0 3 3 0 时,当时,当时,当a a a a a a a a a 0≥a 02≥a(1)已知a 、b 互为相反数,且c 、d 互为倒数,又m 的倒数等于它本身,则mm b a mcd-++)(的值是多少?(2)若0)23(22=++-y x ,求x y 的值是多少?五、有理数的运算及运算顺序:先算 ,再算 ,最后算 ,有括号的 。

六、有理数的乘方n 个相同因数a 的乘积,叫乘方,记做______,其中a 叫_____, n 叫______,乘方的结果叫做______. 例如:59表示___个____相 。

七、科学计数法把一个较大数表示成n a 10⨯的形式,其中a 是整数数位_____的数,即10||1<≤a , n 是比原数的整数数位__ _的正整数。

例如:北京水立方占地面积62800平方米,可以记做_________平方米。

八、近似数的精确度和有效数字一个近似数四舍五入到哪一位,该数位就是这个近似数的精确度,例如近似数500精确到___位,近似数500.5精确到___位,近似数5百精确到_____,近似数2105⨯精确到______位。

对一个近似数,从左边的第一个_____数字起,到_______止,所有的数字都是这个近似数的有效数字。

例如:近似数0.03020,有效数字有___个,分别是________。

对于用科学计数法表示的数n a 10⨯,规定它的有效数字就是a 中的有效数字,如近似数510205.3⨯-的有效数字有____个,它精确到_____位。

第1讲 有理数的概念1、把下列各数分别填入它所在的集合:-11、 5.6、 -0.33、 0、51、 -7、 -32、 722、 3.1416、 π解:整数集合{} 分数集合{ } 正数集合{ }负数集合{ } 有理数集合{}非负数集合{}2、讨论:“—a ”一定是负数吗?3、画出数轴并表示下列有理数:1.5、-2、2、-2.5、29、-324、下面数轴上的点A ,B ,C ,D ,E 分别表示什么数?5、比较下列各对数的大小(1)-(-1)和-(+2) (2)-218和-73 (3)-(-0.3)和|- 31|6、珠穆朗玛峰的海拔高度为8848m ,吐鲁番盆地海拔-155 m ,珠穆朗玛峰比吐鲁番盆地高多少米?7、判断。

( )(1)、若一个数的绝对值等于5,则这个数是5 ( )(2)、若一个数的倒数等于它的本身,则这个数是1 ( )(3)、若一个数的平方等于4,则这个数是2 ( )(4)、若一个的立方等于它的本身,则这个数是0或1 ( )(5)、有理数的绝对值总是正数 ( )(6)、若一个数的绝对值等于5,则这个数是58、绝对值大于2而小于5的整数有9、公交车从南京鼓楼医院出发,先向东行驶5公里,再向西行驶15公里,然后向东行驶10公里停下,问最后停在鼓楼医院的哪边?距医院多少公里?若一公里消耗1.2斤油,共消耗多少斤油?10、(思考题)数轴上离开原点的距离小于2的整数点的个数为x,不大于2的整数点的个数为y,等于2的整数点的个数为z,求x+y+z的值。

能力提高:2.下列各数-5,,,0,-,,-m(m是有理数)中,一定是负数的有()A.1个B.2个C.3个D.4个3.下列说法正确的是()A.“向东5米”与“向西10米”不是相反意义的量。

B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米。

C.如果气温下降60C,记作-60C那么+80C的意义就是下降零上80CD.若将高1米设为标准0,高.1.20米记作+.20,那么-0.05米所表示的高是0.95米。

4.气温下降-40C,改成使用正数的说法是5.观察下面的一列数:,-,,-……请你找出其中排列的规律,并按此规律填空.第9个数是_______6.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。

它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。

如果从A到B记为:A→B (+1,+4),从B到A记为:A→B(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A→C(,),B→C(,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置。

能力提高练习:1.已知x、y是有理数,且,那么x+y的值是()A. B. C. D.2.满足成立的条件是()A. B. C. D.3.已知都不等于零,且,根据的不同取值,有()A.唯一确定的值B.3种不同的值C.4种不同的值D.8种不同的值4.若,则5.若,,则6.已知,那么=7.若,那么a-b= 8.已知a>-3,试讨论与3的大小。

9.下图是一个正方体纸盒的展开图,请把-8,5,8,-2,-5,2分别填入六个正方形,使得折成正方体后,相对面上的两数互为相反数.10.已知数轴上点M和点N分别表示互为相反数的两个数、(),并且M、N两点间距离是6.4,求、两数.第2讲 有理数的运算一.填空题1、支出200元,再支出-50元,共支出 元;2、一个数是8,另一个数比8的相反数小3,则这两个数的和是 ;3、某潜水员先潜入水下61米,然后又上升32米,这时潜水员在 位置;4、一天早晨的气温是-6℃,中午上升了10℃,半夜又下降9℃,那么半夜的气温是 ;5、两数之和是9,其中一个加数是-5,则另一个加数是 ;6、把(+5)-(+3)-(-1)+(-5)写成省略加号和的形式是7、绝对值大于2而小于5的所有负整数的和是 ;8、绝对值不大于8的所有整数的积是 ;9、若a 、b 互为倒数,则31ab= ;ab 的相反数是 ;10、两数的积是-1,其中一个数是-321,另一个数是 ;二、选择题1、一个数是8,另一个数比8的相反数小3,则这两个数的和为( )A 、-3B 、-19C 、19D 、32、下列结论中,正确的是( )A 、有理数减法中,被减数不一定比减数大B 、减去一个数,仍得这个数C 、零减去一个数,仍得这个数D 、互为相反数的两个数相减得零3、计算:[]4(2)-⨯--的结果是( )A 、-8B 、8C 、2D 、-24、如果两个数在数轴上分居原点两侧,则这两个数相除商( )A 、一定是正数B 、一定是负数C 、等于零D 、正负数不能确定5、下列说法正确的个数有( )(1)0是整数 (2)-311是分数 (3)3.2不是正数 (4)自然数一定是正数 (5)-1是最大的负整数A 、1个B 、2个C 、3个D 、4个6、下列计算中,正确的是( )A 、2-2×(-3.5)=0B 、(-3)÷(-6)=2C 、21() 4.59÷-=- D 、(-1)÷2=-0.257、下面是按规律排列的一列数:1、-2、4、-8、16、...其中第7个与第8个数分别为( )A 、-32,64B 、23,-64C 、-64,128D 、64,-1288、下列说法中,错误的是( )A 、0没有倒数B 、倒数是它本身的数只有±1C 、0没有相反数D 、-1的倒数是它本身计算:1、=++-)3()12(2、=-++)4()15(3、=-+-)8()16(4、=+++)24()23(5、=+-132)102(6、=+(-11)(-32)7、=+-0)35(8、=-+)85(789、)3()26()2()4()14(-+++-+-++ 10、)15()41()26()83(++-+++-11、)2.0(3.1)9.0()7.0()8.1(-++-+++- 12、)326()434()313(41-+++-+13、=+--)15()14( 14、=---)16()14( 15、=--+)9()12( 16、=+-)17(1217、=+-)52(0 18、=--)11(108 19、=+-)3.2(8.4 20、=--)213(221、)5()]7()4[(--+-- 22、]12)3[(3---23、)109(8-- 24、)106()53(---25、543210-+-+- 26、2.104.87.52.4+-+-27、18)12()10(1130+-+---- 28、)61(41)31()412(213+---+--29、2111943+-+-- 30、31211+-31、)]18()21(26[13-+--- 32、2111)43(412--+---33、=-⨯)43(32 34、=-⨯-)21()2( 35、=-⨯-)25.0()4(36、)25()7()4(-⨯-⨯- 37、)34(8)53(-⨯⨯-38、)1514348(43--⨯ 39、)8(45)201(-⨯⨯-40、53)8()92()4()52(8⨯-+-⨯---⨯练习题:(1)、(20)(14)(18)13-÷---- (2)、(-43-95+127)÷361(3)、9(3)2(16)4---⨯--÷ (4)、533 ×(-98199)四、解答题:某地气象统计资料表明,高度每增加1000米,气温就降低6℃,现在地面气温是23℃,那么海拔3500米的高山气温大约是多少?能力提高:1.若x>y>z ,x+y+z=0,则一定不能成立的是( )A .x>0,y=0,z<0;B .x>0,y>0,z<0;C .x>0,y<0,z>0;D .x>0,y<0,z<0 2.不相等的有理数a 、b 、c 在数轴上的对应点分别是A,B,C ,如果,那么B 点应为( )A.在A,C 点的右边;B.在A,C 点的左边;C.在A,C 点之间;D.以上三种情况都有可能 3.有理数a,b,c 在数轴上的位置如图所示,式子化简结果为( )A .B .C .D .4.有理数在数轴上的位置如图所示,则化简的结果为 。

相关文档
最新文档